Tales of Empirically Understanding and Providing Process Support for Migrating to Clouds

M. Ali Babar

Lancaster University, UK & IT University of Copenhagen

Talk @ MESOCA, Eindhoven, the Netherlands
September, 23, 2013
Overview

• Cloud computing and its key facets
• Some scenarios that make migration difficult
• Empiricism as a research approach
• Insights from three tales of cloud migration
• Concluding remarks
Background Brief

M. Ali Babar
Reader @ Lancaster University
PhD in CSE, University of New South Wales

Work History:
- NICTA, Australia: 2003 - 2007
- JRCASE, Macquarie University: 2001 – 2003
- Various industrial roles in IT: Prior to 2001

Research in software architecture, Service Orientation, Cloud Computing, and Software Development Paradigm

http://malibabar.wordpress.com

Tales of Empirically Understanding and Providing Process Support for Migrating
Cloud Computing Research Threads

Decision Support Systems

Processes for Engineering Clouds

Architecting Cloud Systems & Services
“Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” (A definition by the US National institute of standards and technology (NIST))
Key Facets of Cloud Computing

Reproduced from Figure 1 of The Future of Cloud Computing: Opportunities for European Cloud Computing beyond 2010.
Actors and Reference Architectures

Cloud Consumer
Person or organization that maintains a business relationship with, and uses service from *Cloud Providers*.

Cloud Provider
Person, organization or entity responsible for making a service available to *Cloud Consumers*.

Cloud Auditor
A party that can conduct independent assessment of cloud services, information system operations, performance and security of the cloud implementation.

Cloud Carrier
The intermediary that provides connectivity and transport of cloud services from *Cloud Providers* to *Cloud Consumers*.

Cloud Broker
An entity that manages the use, performance and delivery of cloud services, and negotiates relationships between *Cloud Providers* and *Cloud Consumers*.

Source: European Cloud Partnership Info Day 12/04/2012, inspired by the NIST roadmap
Location Specific Challenges for Migration

Scenario 1: processing and data only in region A
Scenario 2: data only in region B
Scenario 3: data only in region B, processing only in region A
Empirism as a Research Approach

• **Empiricism**
 – Generally being regarded at the heart of the modern scientific methods, that our theories should be based on our observations of the world rather than on intuition or faith

• **Empirical Software Engineering (ESE)**
 – Empirical research in SE is the scientific use of quantitative and qualitative data to understand and improve software product and software development process (Vic Basili)
 – Data is central element to address a research issues related to processes or tools

• **ESE provides techniques for understanding and developing processes and tools**
Being the First Mover in Public Sector!!!
Cloud Migration in Danish Public Sector

• Project purpose
 – Reduce the overhead of running mail system. And focus on delivering core values

• Objectives
 – All mailboxes on O365 and validated
 – Close down of temporary Exchange 2010
 – Use of Microsoft’s email center for all emails

• Project scope – email and calendar
 – Migration of all TAP and VIP mailboxes
 – Migration of all student mailboxes
 – Changing our email routing to use Microsoft’s email center as primary MX servers
<table>
<thead>
<tr>
<th>Risk</th>
<th>Preventive actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of data during migration</td>
<td>Use of dedicated migration tool. Extra backup before migration and smaller number of user in each migration.</td>
</tr>
<tr>
<td>Loss of accessibility to the mailbox during migration.</td>
<td>Use of dedicated migration tool for ensuring accessibility during the migration.</td>
</tr>
<tr>
<td>Security breach</td>
<td>Using a dedicated migration tools for preventing security lapses.</td>
</tr>
<tr>
<td>Security risk lies in data being migrated to the wrong mailboxes, meaning that another user than the owner would gain access to data.</td>
<td></td>
</tr>
<tr>
<td>Change in administration paradigm.</td>
<td>Training and workshops around the admin part of O365.</td>
</tr>
<tr>
<td>Mail routing - Due to the complex mail routing structure that can be problematic.</td>
<td>Closing down the mails for 2-3 hours – have a backup plan and inform the users.</td>
</tr>
</tbody>
</table>
Potential Risks and Mitigation Action

<table>
<thead>
<tr>
<th>Risk</th>
<th>Preventive actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed migration will create extra expenses in keeping the current Exchange 2010 platform running</td>
<td>Plan for delays and arrange extra internal staff on call.</td>
</tr>
<tr>
<td>Lack of internal resources for the project can result in increased project cost due to use of more external resources.</td>
<td>Get commitment from all involved departments of the organization.</td>
</tr>
<tr>
<td>If Consultants may not be able to fulfill the agreed obligations.</td>
<td>Arrange a backup plan with the vendor’s support team to complete the project with them directly. There will be a financial impact in this case.</td>
</tr>
</tbody>
</table>
Key Challenges and Strategies

• **No specific precedent**
 – Get powerful stakeholders behind the move
 – Get the vendors excited for widespread publicity

• **Legal impediments**
 – Work with regulators – Data Protection Agency
 – Inform vendors about the required customization
 – Have legal and technical tracks within the project

• **Fear of unknown**
 – Take the internal stakeholders into full confidence
 – IT staff briefings and training
 – Strategy for moving back
Key Outcomes

• **Setting the path for Danish public sector**
 – Ministerial support and appreciation
 – From 18 months to 2 months migration time
 – O365 contract tailored for Danish legal system

• **Stable platform for critical services**
 – No more regular outrages of email and calendar
 – Security and privacy better managed
 – Staff allocated to more value added services

• **Cost reduction and reinvestment**
 – No big licensing fee for educational institutes; saved money is going towards improving services
Cloud Migration of Software Engineering Tools
Tools as a Service (TaaS)
Experimental Cloud Migration of Tools

• Migrating software metrics collection and analysis tool – called Hakystat

• Supporting a large number of organizations for process and product metrics for monitoring and improvement

• GSE organizations require elastic computing and storage resources

• SaaS on IaaS (Amazon) or SaaS on PaaS (Google)
What is Hackystat?

- A framework for collecting and analyzing process and product data
- Provides IDE’s Plugins called sensors that send information to a service called SensorBase
- Several services to compute metrics by using the data from SensorBase
- Metrics are viewed by using a ProjectBrowser, which uses services like SensorBase, Telemetry, DailyProjectData, and TickerTape
Architecture of Hackystat

- Generates reports for external clients
- Provides visualization of different metrics through GUIs
- Receives and stores data and provides daily abstractions
- Provides weekly, monthly and yearly abstractions of metrics
- Provides daily abstraction of data

Diagram:
- TickerTape
- ProjectBrowser
- SensorBase
- DailyProjectData
- Telemetry
- Database
<table>
<thead>
<tr>
<th>Quality Attributes</th>
<th>Architectural Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amazon EC2 & S3</td>
</tr>
<tr>
<td>Scalability</td>
<td>Replication of system services to meet performance requirements.</td>
</tr>
<tr>
<td></td>
<td>Separation of database layer into a new service that utilizes platform specific persistency features.</td>
</tr>
<tr>
<td>Portability</td>
<td>A wrapper layer is added to ensure platform independence.</td>
</tr>
<tr>
<td></td>
<td>A separate database layer to provide seamless transfer of database layer.</td>
</tr>
<tr>
<td>Compatibility</td>
<td>System features are exposed through original REST API.</td>
</tr>
<tr>
<td></td>
<td>A wrapper layer is added to provide abstraction to services cluster and their deployment configuration.</td>
</tr>
<tr>
<td>Reliability &</td>
<td>Façade/Wapper layer to provide abstraction.</td>
</tr>
<tr>
<td>Autonomous</td>
<td>Amazon’s Elastic Load Balancer ensures autonomous scalability.</td>
</tr>
<tr>
<td>Scalability</td>
<td>Amazon Elastic Load Balancer ensures auto scaling as well as efficient and cost effective deployment configuration.</td>
</tr>
<tr>
<td>Efficient &</td>
<td></td>
</tr>
<tr>
<td>effective deployments</td>
<td></td>
</tr>
<tr>
<td>deployments</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Views of Hackystat in Cloud
Key Challenges

• Heavy reliance on cloud infrastructure
 – SaaS on PaaS or IaaS are tightly coupled with the APIs provided by a service provider
 – Huge efforts required for porting applications

• Vendor dependent technology enhancements
 – Make it difficult to evolve a complex system using public clouds based on changing business needs

• Lack of tooling support
 – Existing tools only cover API specific details and do not help understand underlying virtual environment
Key Challenges

• **Evaluation of quality attributes**
 – Supporting implementation level investigation of static quality attributes e.g., complexity
 – Modeling & testing unknown users and infrastructures for scalability, accountability…..
 – Modeling & reasoning fine-grained control over privacy and security – design and implementation of multi-tenancy

• **Testing**
 – Change in the infrastructure of PaaS/SaaS platforms necessitate continuous testing
Differences in TaaS and SaaS

- TaaS contains executable artifacts – needs different security mechanisms
- TaaS needs to be integrated with other tools and middleware components
- TaaS artefacts can consume unpredictable resources
- TaaS needs different kinds of SLAs – continuous monitoring and adaptation
Educating Engineers in Cloud Migration
Cloud Migration Education

• **Context**
 – Cloud computing project cluster - imparting knowledge, understanding, and skills of cloud computing in general and migration in particular

• **Set up**
 – Teams of 7-8 students working on migration projects – open source projects – 6 projects

• **Project phases and process support**
 – Pilot project – migration of one given system – no process support provided
 – Main project – independent selection of an open source – support through a generic process framework, general guidelines, and GitHub
Process and Tools Support: Research Agenda & Progress
Architecture-Based Migration Process

A Generic Cloud Migration Process

- **A**: Requirements identification
 - System requirements

- **B**: Identification of potential cloud hosting environments
 - List of potential cloud environments

- **C**: Analyzing applications compatibility with potential cloud environments
 - Selected cloud environments

- **D**: Identification of potential architecture solutions
 - Tradeoff analysis of cloud environments
 - Tradeoff analysis of quality attributes w.r.t. clouds

- **E**: Evaluation of cloud platforms for cloud specific quality attributes

- **F**: Evaluation of potential architecture solutions, their tradeoff analysis with respect to cloud environments and quality attributes supported by platforms.

- **G**: Finalized design decision and modified system architecture
 - Implementation and system refactoring
Cloud Migration Knowledge Ecosystems

Private Ecosystem A

- Company
- Employee

Public Ecosystem

- Implementing
- create customized AK input form
- share AK
- View AK
- Modeling

IDE

- AK Consume
- AK Extraction

KBase

- AK Consume
- AK Extraction

Modeling Tool

- integration

Requirement

- Integration

CM/Issue Tracking

Private Ecosystem B

- collaboration

Private Ecosystem C
Architecture Knowledge for Cloud Migration

- REST
- Ruby on Rails
- TEST
- YML
- Nix
- DisNix

Management of cloud resources and services according to SLAs and QoS requirements.

Middleware Infrastructure & Platforms

Architecture consideratrons for porting existing applications on cloud.

Architecture Consideration For Migration

Challenges and research direction.

Architecture Challenges & Emerging Research

Domain Specific Architectures

General Guidelines

Cloud Architectures

Quality Attributes

Multi-tenancy

Frameworks

Dataflow Security and Workflow Processing

Supporting Hybrid Devices

Legend

Categories
Sub categories
Problems addressed.

Technologies being used

- JVM
- Perl
- MeDICi
- Restlet
- Windows Azure Platform
- Amazon EC2

- XMPP
- SQS
- OpenID
- Open Auth
- REST
- NIX

Quality Attributes

- Adaptability
- Reliability
- Resource Provisioning
 - SLA
 - SaaS Integration
 - Performance

Adaptability, scalability, SLA compliance, services interoperability, services integration and services accountability.

Isolation of components, services and data.

Frameworks for cloud application development and deployment.

- WSO2 Carbon Platform
- JavaEE
- JDBC

- Aneka
- InterGrid
- Xen
- VMWare
- KVM
- OpenPEX
- Hadoop
- Hbase
- Postgre
- Tomcat

Workflow management on cloud according to SLAs and QoS requirements.
Tools for Supporting Cloud Migration

- SaaS Quality Requirements
- Existing Architecture
- Forward Engineering Engine
- Patterns Catalogue
- Target Platform(s)
- Modified Architecture
Concluding Remarks!!!

• Cloud computing matters, quickly learn how to exploit the benefits and address the challenges

• Technological issues are difficult to address but socio-legal challenges can be daunting

• Migration without suitable processes and tools can be painful – support is needed

• Lack of knowledge and skill – migration education is very important but not attractive
Acknowledgements

• Slides are based on the work that is being carried out in my group in close collaboration with several colleagues, PhD students, and industrial partners.

• Some research challenges and promising solutions have been developed for joint research proposals.

• ITU’s migration to O365 project documents and interviews with key stakeholders

• Students teams’ reports and interviews for the project cluster course 2013 at ITU
For the Details of the Work

- Ali Babar, M., Chauhan, M. A., A Tale of Migration to Cloud Computing for Sharing Experiences and Observations, SECLoud workshop, Collocated with ICSE 2011, Hawaii, USA.
Thank You!

Questions

M. Ali Babar
alibabar.m@gmail.com
malibabar.wordpress.com