Workshop Co-Organizers

Grace A. Lewis, Software Engineering Institute, USA
Jeff Gray, University of Alabama, USA
Tao Xie, North Carolina State University, USA
Emad Shihab, Rochester Inst. of Technology, USA
Nachiappan Nagappan, Microsoft Research, USA
David Rosenblum, National University of Singapore
Henry Muccini, University of L'Aquila, Italy
Adam Porter, Univ. of Maryland College Park, USA
Luigi Pomante, University of L'Aquila, Italy
Chris Parnin, Georgia Institute of Technology, USA
Marc Novakouski, Software Engineering Institute, USA
Iulian Neamtiu, Univ. of California – Riverside, USA
Meiyappan Nagappan, Queen's University, Canada
Leonardo Mostarda, Middlesex University, UK
Ali Mesbah, University of British Columbia, Canada
James Edmonson, Software Engineering Institute, USA
Wei Le, Rochester Institute of Technology, USA
Ahmed E. Hassan, Queen's University, Canada
Joseph Loyall, Raytheon BBN Technologies, USA
Patricia Lago, VU Amsterdam, The Netherlands
Abram Hindle, University of Alberta, Canada
Jeff Boleng, Software Engineering Institute, USA

MOBS 2013
International Workshop on the Engineering of Mobile-Enabled Systems

In conjunction with the 35th International Conference on Software Engineering (ICSE 2013)
May 25, 2013 – San Francisco, CA USA
http://www.sei.cmu.edu/community/mobs2013

Mobile apps are becoming important parts of enterprise and mission-critical systems that make use of contextual information to optimize resource usage and drive business and operational processes. Mobile technology is also reaching people in the field across multiple domains to help with various tasks such as speech and image recognition, natural language processing, decision-making, and mission planning.

Mobile apps and smartphones are only one instance of today’s mobile computing technology. RFID tags, sensor nodes, and computing-enabled mobile devices are all components of the current mobile computing paradigm. These devices are being integrated into enterprise systems and mission-critical systems as a way to collect data in the field. Different from previous paradigms, data is no longer a discrete piece of information locally produced and distributed in servers; data is also produced, stored and used in the field, shared between mobile and resident devices, and potentially uploaded to local servers or the cloud — a distributed, heterogeneous, context-aware, data production and consumption paradigm. What this means from a systems and software engineering perspective is that mobile devices and sensors are being integrated into IT solutions and re-shaping the way that systems are built. We call these systems mobile-enabled systems.

The goal of MOBS 2013 is to create a focal point and an ongoing forum for researchers and practitioners to share results and open issues in the area of software engineering of mobile-enabled systems.

MOBS 2013 seeks contributions in topics, such as:

- Architecting mobile-enabled systems
- Requirements engineering for mobile-enabled systems
- Context-aware mobile-enabled systems
- Development processes for mobile-enabled systems
- Methods and tools for modeling, engineering and analyzing quality attributes such as availability, security, privacy and trust in mobile-enabled systems
- Verification and validation of mobile-enabled systems
- Reverse engineering mobile-enabled systems
- Techniques for release and deployment of mobile-enabled systems
- Novel software architectures for scalably supporting data collection and synchronization across mobile devices
- Simulation-based assurance and analysis for scalability, survivability, reliability and resilience of mobile-enabled systems
- Cyber-foraging strategies for resource optimization in mobile devices
- Data-driven computing
- Online and offline debugging
- Generative approaches (e.g., models and DSLs) to assist in managing the complexity resulting from the heterogeneous composition of mobile-enabled platforms
- Human-centered issues that drive the emerging trend of incorporating mobile computing into existing interfaces
- Privacy policies for mobile-enabled systems
- Empirical studies, case studies and industry experiences

The submission and review process will be done using EasyChair (http://www.easychair.org/?conf=mobs2013). Submissions must follow the IEEE formatting style guidelines, as noted on the MOBS web page. All accepted papers will be published in the conference proceedings and in both ACM Digital Library and IEEE Digital Library. To encourage discussion, the page limit for papers is 6 pages.