

Volume 6 | Number 2 | Second Quarter 2003

http://www.interactive.sei.cmu.edu

In This Issue
columns
Introducing Predictable Assembly from
Certifiable Components (PACC) 1

Using CMMI® Appraisals in Acquisition—
A Primer 8

CMMISM and BSCC 13

Use Care When Downloading and Installing
Programs 17

What’s the Difference Between Product
Line Scope and Product Line
Requirements? 20

Some Programming Principles:
Products 23

Features
Documenting Software Architectures 31

Second International Conference on
COTS-Based Software Systems 35

SEPG
SM

 2003 Attendance Tops 1,500 37

New CERT
®

Certification to Train Computer
Security Incident Handlers 40

Improving Workforce Capabilities with the
People Capability Maturity Model® 43

Messages

Features

Columns

From the Director i Introducing Predictable
Assembly from Certifiable
Components (PACC) 1

Using CMMI® Appraisals in
Acquisition—a Primer 8

CMMISM and BSCC 13

Use Care When Downloading
and Installing Programs 17

What’s the Difference Between
Product Line Scope and Product
Line Requirements? 20

Some Programming Principles:
Products 23

Documenting Software
Architectures 31

Second International
Conference on COTS-Based
Software Systems 35

SEPG
SM

 2003 Attendance
Tops 1,500 37

New CERT
®
 Certification to

Train Computer Security
Incident Handlers 40

Improving Workforce
Capabilities with the People
Capability Maturity Model

®

 43

©2003 by Carnegie Mellon University
The Software Engineering Institute (SEI)
is a federally funded research and
development center sponsored by the U.S.
Department of Defense and operated by
Carnegie Mellon University.

® Capability Maturity Model, Capability
Maturity Modeling, Carnegie Mellon,
CERT, CERT Coordination Center,
CMM, and CMMI are registered in the
U.S. Patent and Trademark Office.

SM Architecture Tradeoff Analysis
Method; ATAM; CMM Integration;
COTS Usage Risk Evaluation; CURE;
EPIC; Evolutionary Process for
Integrating COTS Based Systems;
Framework for Software Product Line
Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat,
Asset, and Vulnerability Evaluation;
Options Analysis for Reengineering;
Personal Software Process; PLTP;
Product Line Technical Probe; PSP;
SCAMPI; SCAMPI Lead Assessor;
SCAMPI Lead Appraiser; SCE; SEI;
SEPG; Team Software Process; and TSP
are service marks of Carnegie Mellon
University.
TM Simplex is a trademark of Carnegie
Mellon University.

news@sei interactive, 1Q03 http://interactive.sei.cmu.edu i

From the Director

These will be my last words to you from the pages of news@sei. Later this summer, I will
become a vice president of Georgia Institute of Technology and the director of the
Georgia Tech Research Institute. I will also be a professor in the School of Industrial and
Systems Engineering. While this is a tremendous professional opportunity for me, I will
miss the opportunity I have had to lead such a magnificent organization and to serve you.

I am very proud of the SEI and all we have accomplished during the past seven years.
These accomplishments (such as creation and adoption of the CMMI, outstanding
successes with the TSP, continued impact and leadership of the CERT/CC, the
introduction of the product line framework, and many others that have been chronicled in
news@sei) were only possible because of the willingness of the community to partner
with us and to share your ideas and insights. I want to take this opportunity to thank you
for your support of the SEI, but more importantly for your partnering with us to advance
the practices of software engineering and cyber security.

Carnegie Mellon Provost Mark Kamlet is chairing the search committee. Until the search
committee finds a new director, the SEI will be in the capable hands of Angel Jordan, SEI
founding father, emeritus professor and former provost of Carnegie Mellon University,
and member of the National Academy of Engineering. Angel is thoroughly committed to
guiding the SEI in its core objectives: accelerating the introduction and widespread use of
high-payoff software engineering practices and technology, maintaining a long-term
competency in software engineering and technology transition, enabling government and
industry organizations to make measured improvements in their software engineering
practices, and fostering the adoption and sustained use of standards of excellence for
software engineering practice. Angel knows and respects the current SEI leadership team.
So with the continued outstanding support of Clyde Chittister (SEI Chief Operating
Officer) and the current leaders of the SEI’s administrative units, the SEI will be in great
hands.

I have encouraged my SEI colleagues to stay focused on the SEI strategy and to always
seek to improve, remembering that improvement requires change. I believe that a change
in leadership at this time is a healthy change and it will help the SEI accomplish even
more in the future. The SEI’s new director will likely have a different style than I have,
but I’m sure will be as passionate about the SEI and its service to the community as am I.

ii http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Again, thank you for your support these past seven years. I hope our paths cross again!

Stephen E. Cross
SEI Director and CEO

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 1

The Architect

Introducing Predictable Assembly from Certifiable
Components (PACC)
Kurt Wallnau

In September 2002 the SEI launched a new initiative, Predictable Assembly from
Certifiable Components (PACC). This new initiative is developing technology and
methods that enable software engineers to predict the runtime behavior of assemblies of
software components from the properties of those components. This requires that the
properties of the components are rigorously defined and trusted and can be certified by
independent third parties.

PACC builds on past and, in some cases, ongoing SEI research in software architecture
and in the use of commercial off-the-shelf (COTS) software. The work reflects clear
industry trends toward greater use of software-component technology and increasing
concern with the quality of software systems.

Nothing serves so well as an illustration, so that’s where I’ll start. Then I’ll introduce the
key principles and technologies underlying our approach, which is called prediction-
enabled component technology (PECT). I’ll wrap up by describing what we’re currently
doing, open challenges, and next steps.

A Simple Illustration
In PACC our concern is to predict the runtime behavior of assemblies of components. By
runtime behavior we mean any behavior of a system that is directly or indirectly
observable on the executing system. For convenience, we refer to any such observable
behavior as a runtime property.

In this illustration I’ll use execution latency, i.e., the time it takes an assembly to perform
a task, as the runtime property we wish to predict (our work on automatic verification of
reliability properties through model checking will be the subject of a future article). The
illustration is drawn from a proof of feasibility of PACC for power transmission and
distribution (see Predictable Assembly of Substation Automation Systems: An
Experiment Report for details).

A power substation serves several purposes, among which is protection and control of
primary equipment, such as transformers, circuit breakers, and switches. Our task is to
develop, from software components, a controller for a high-voltage switch. One function
of the controller is to provide an interface that allows operators to manually open and

2 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

close the switch. We wish to predict the time it takes a controller to process operator
requests, and the time it takes the controller to report on the change in switch status.

The illustration in Figure 1 presents the gestalt of the software engineering task in terms
of PACC. We assume that a set of software components already exists, and that the
service time of these components (defined as the time it takes the component to do its
work, assuming no blocking or preemption) has been obtained (1 in the figure). The
software engineer selects a set of candidate components, and composes their
specifications to produce a model of the controller assembly, which is analyzed and from
which latency is predicted (2 in the figure). If the predicted latency satisfies requirements,
the components (rather than their specifications) are composed and the resulting
assembly is deployed. Predictions are only predictions if there is a possibility that they
are wrong, so some validation is required of the deployed assembly (3 in the figure).

Figure 1: A Predictable Substation Assembly

This much might have been guessed from the name of the PACC initiative. However,
technology being developed by the SEI aims to increase the level of automation in the
assembly, prediction, and composition processes, and to provide an objective and
quantified basis for trusting component properties and the predictions that are based on
these properties. In particular, using this example:

System with observed latency

y

z

ykz = 51ms

…
Components with certified service times

a ab
bC2C1

akb = 30ms akb = 47ms

op
er

at
or

 in
te

rfa
ce

eq
ui

pm
en

t i
nt

er
fa

cew

yz

x

Assembly with predicted latency

C1

C2

Cj Ck

wkx = 72ms, ykz = 52ms* *

measure & certify

compose & predict

deploy &
validate

System with observed latency

y

z

ykz = 51ms

…
Components with certified service times

a ab
bC2C1

akb = 30ms akb = 47ms

op
er

at
or

 in
te

rfa
ce

eq
ui

pm
en

t i
nt

er
fa

cew

yz

x

Assembly with predicted latency

C1

C2

Cj Ck

wkx = 72ms, ykz = 52ms* *

measure & certify

compose & predict

…
Components with certified service times

a ab
bC2C1

akb = 30ms akb = 47ms

…
Components with certified service times

a ab
bC2C1

akb = 30ms akb = 47ms

op
er

at
or

 in
te

rfa
ce

eq
ui

pm
en

t i
nt

er
fa

cew

yz

x

Assembly with predicted latency

C1

C2

Cj Ck

wkx = 72ms, ykz = 52ms* *

op
er

at
or

 in
te

rfa
ce

eq
ui

pm
en

t i
nt

er
fa

cew

yz

x

Assembly with predicted latency

C1

C2

Cj Ck

wkx = 72ms, ykz = 52ms* *wkx = 72ms, ykz = 52ms* *

measure & certifymeasure & certify

compose & predictcompose & predict

deploy &
validate
deploy &
validate

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 3

Latency prediction for user-selected controller operations (e.g., from arrival of an
operator request on w until the switch is signaled on x in Figure 1) is computed
automatically from assembly specifications.

The analysis model used to make latency predictions defines precisely what runtime
properties of components must be known and how these properties are specified and
obtained. Thus, the properties of components that must be trusted are precisely those that
enable predictions of assembly runtime behavior.

The assumptions underlying the analysis model about how components interact with their
environment and with each other are made explicit. Assemblies are well formed if they
satisfy these assumptions. Well-formedness is checked automatically—thus, assembly
behavior is predictable by construction.

The accuracy and reliability of analysis-model predictions is objectively validated using
statistically sound sampling and measurement. These qualities of predictions are
certifiable properties of the analysis model itself, and are specified as a confidence
interval for predictions—e.g., 9 out of 10 predictions will have an upper error bound of
3% with a 95% confidence.

We are concerned with more than just the timing properties of assemblies—e.g.,
reliability (an area of current work) and security (an area for future work). Therefore, the
technology being developed by the SEI to enable PACC can be applied to many analysis
models.

Prediction-Enabled Component Technology—Just the Basics
Our approach to achieving the above objectives is to use prediction-enabled component
technology (PECT). Here I will limit the description of PECT to the simple core ideas.
Readers interested in the more comprehensive treatment are referred to Volume III: A
Technology for Predictable Assembly from Certifiable Components.

As its name suggests, a PECT is an enhanced component technology. What is a
component technology? There is no answer to this question that won’t provoke an
argument, any more than there is a universally agreed-upon answer to the question What
is a component? Nonetheless, there is growing agreement on the following rough
definition:

4 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

• A software component is an implementation, ready to execute on some (possibly
virtual) machine, with well-defined interfaces that enable third-party composition
(roughly, integration with other components).

• A component technology is a component model and runtime environment where

o the component model specifies what interfaces a component must provide,
and how components are allowed to interact with one another and their
runtime environment

o the runtime environment is a container in which component behavior
executes and in which components interact. The runtime environment may
also provide useful services—persistence, transactions, etc.

Regular readers of this column will notice the similarity between this definition of
component model and the usual definition of architectural style (or pattern) as a
collection of component types and their allowable patterns of interaction. Even though
they may differ in many respects, a component model and architectural style both specify
invariants that must be satisfied by any instance of that model/style. These invariants are
exactly those “well-formedness” rules that we impose on component assemblies to ensure
that they can be analyzed, and therefore to ensure their predictability.

Seen in this light, a component technology can be thought of as an infrastructure for
designing, developing, and deploying applications that adhere to a particular architectural
style. The infrastructure does restrict the freedom of developers and designers, but in
compensation it enforces design and implementation invariants that, in this case, ensure
predictability. The tradeoff between restricted freedom and predictability has been seen
before—in the development of strongly typed programming languages, now considered
an essential element of modern software engineering practice. The long-awaited shift to
a higher level of abstraction—from functions and classes to components—is underway.

Figure 2 provides a concise description of the structure of a PECT in the Unified
Modeling Language (UML). Even readers not fully familiar with UML should be able to
use this model to follow along, as there are only a few points to make that have not
already been stated explicitly.

1. The construction language in Figure 2 could well be any architecture description
language that supports primitive notions of component and connector. The

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 5

notation and tools we use (of our own making) will likely be replaced by the first
usable UML 2.0 tools.

2. A PECT can and generally will support several analysis models, each of which is
“packaged” in its own automated reasoning framework. An interpretation defines
an automated translation from assemblies of components specified in the
construction language to the reasoning framework.

3. PECT as a general concept does not depend on any component technology, but
any PECT will. An abstract component technology specifies the invariants
imposed on by a specific component and a collection of reasoning frameworks
(each which may impose its own additional invariants).

Figure 2: A UML Model of the Structure of a PECT

6 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

The SEI PACC initiative has developed several prototype demonstrations of PECT, and
as a result we are gaining experience in the methods and technology infrastructure needed
to achieve the levels of automation and trust we are seeking.

Status and Challenges

We are developing methods and tools that will enable the software industry to introduce
predictable assembly from certifiable components into practice. Although the initiative is
less than a year old, we are already working with an industrial sponsor, the ABB Group
(Asea Brown Boveri, Ltd.), to demonstrate PECT feasibility in challenging industrial
settings, currently in the domain of industrial robotics. Our current focus is on
demonstrating PECT in incrementally more demanding and larger scale industry and
DoD settings, and in documenting the methods we use to develop and validate PECTs.
We are also broadening our repertoire of reasoning frameworks to include a variety of
performance-analysis models, as well as automated verification (through model
checking) of specific component and assembly-reliability claims.

Although we believe that we have demonstrated the potential of PECT, there are several
challenges that must be met if the ideas are to find widespread use and acceptance:

Techniques for certifying, and labeling, component properties required by reasoning
frameworks must be developed.

The business case for PECT must be established, since the development of PECTs
requires substantial up-front investment.

The engineering methods and technology needed to build and use PECTS must be better
understood, documented, and supported by commercial tools.

Although these are serious challenges, the needs addressed by PACC are real and
immediate. Moreover, progress is being made, and not just at the SEI. Academic
research and industrial practice are moving in the direction of predictable assembly, and
the guaranteed component quality is demanded by the marketplace, by societal needs, and
by our own quest to establish rigorous foundations for software engineering practice.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 7

If PACC were to be summed up in a single sentence, it would be that it allows us to shift
our focus from predicting the runtime properties of assemblies to building only
assemblies whose properties we can predict.

For more information about PACC or to inquire about opportunities to collaborate with
the SEI in this research, see the PACC Web site.

8 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

CMMI in Focus

Using CMMI® Appraisals in Acquisition—a Primer
Mike Phillips

When we began the CMMI project, we knew that we had to provide an appraisal method to
accompany the models. Our initial choice was SCAMPISM V1.0 (Standard CMMI Appraisal
Method for Process Improvement). But as we upgraded toward V1.1 models, our sponsor
directed that we also specifically address the use of CMMI for source selection and contract
monitoring, a function previously performed by the Software Capability Evaluation (SCESM) or
System Development Capability Evaluation (SDCE). SCAMPI V1.1 was significantly revised to
enable that use. This column will address some of the ways that SCAMPI can be used with
CMMI models for use in source selection and contract monitoring.

Establishing the Playing Field
Government contractors often receive a Request for Proposal (RFP) from a government program
office that requires that candidate contractors achieve a particular CMM or CMMI maturity level
to be considered a viable competitor for the contract. In some cases, proposing contractors are
asked to provide evidence of process discipline. Frequently these are internal appraisals
performed at the contractor’s expense.

For the Capability Maturity Model for Software (SW-CMM), these appraisals are usually CMM-
Based Appraisals for Internal Process Improvement (CBA IPIs). Some contractors have chosen
to administer an internally (usually corporately) sponsored SCE, which provides similar
information. For CMMI models, these appraisals use the Standard CMMI Appraisal Method for
Process Improvement (SCAMPI). Some program offices prefer to send their own or other
external teams to appraise the contractors’ current development sites. As I mentioned above,
these were called evaluations when the SW-CMM was the model, but SCAMPI has unified the
appraisal methods into one that covers both internally sponsored assessments and externally
sponsored evaluations.

An appraisal is used to confirm the progress a contractor has made in reaching higher levels of
organizational maturity or process area capability. Several of a contractor’s projects are chosen
for appraisal. These projects are supposed to be representative of the contractor’s full
capabilities, not just the “pick of the litter.” Typically, functional area experts from the
contractor’s other projects or non-project staff also are interviewed or provide data to ensure that
the results gathered represent the entire contractor organization, not just the projects examined
during the appraisal. The challenge for the appraisal team is to gain confidence that the goals of
each applicable process area are being met across the organization—and that a deficiency in one
project does not characterize the whole organization.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 9

In many cases, the proposed development will require that the contractor create a new product
team to work on the contract. Since a fully formed team may not have been created, the appraisal
conducted to evaluate the contractor typically examines active project teams.

Because the appraisal precedes the creation of a new product team for the contract, the program
office cannot have full confidence that the work to be performed under the proposal will be
performed at the same maturity level as the appraisal suggests, because product teams are
typically reformed and teamed differently with both internal and external partners. On the other
hand, contractors that are continuing to improve their organizational maturity may well exceed
the maturity levels documented in earlier appraisals.

Another way of stating this is that there is a risk that a new contract will stimulate both hiring
and reorganization within the contractor organization. This may bring together organizational
elements that weren’t seen in the earlier appraisals. Further, many contracts for developing
software-intensive systems demand teaming arrangements across multiple contractors. These
requirements lessen the usefulness of predictive appraisals conducted on individual contractors
because they are less directly applicable to the actual multi-contractor project team.

Thus, a preliminary appraisal may best be considered a way to establish the playing field among
the contractors being considered—to set the minimum standards. If all proposing contractors are
at maturity level 3, for example, the program office would have some degree of confidence that
each of the contractors is able to predict cost and schedule realistically and that these contractors
will be better able to work together than contractors that have not improved their development
discipline to this level. Such a situation would not, however, give the program office confidence
that development risks would be predictably addressed by the contractor team.

Reducing Development Risk

The original purpose of SCEs was to address risk to the program office. SCE teams were created
by the program office to look at specific areas of concern. These areas of concern typically
included a handful of process areas that were investigated at the contractor’s site for a few days.
A method similar to the SCE, the SDCE, involved asking the contractor questions that focused
on specific areas of concern instead of maturity level ratings. In spite of the initial emphasis of
these methods, maturity levels eventually became commonly used and familiar to the
organizations using them. A maturity level focus displaced the risk focus of the two evaluation
methods in many acquisition environments.

This emphasis may now be changing in some environments. For example, in the Department of
Defense (DoD), the guidance from the Office of the Secretary of Defense/Acquisition,
Technology, and Logistics (OSD/AT&L), which had required maturity level 3 for large DoD
programs, no longer requires these programs to achieve these ratings. The new guidance still
encourages these programs to pursue process improvement, but the maturity level expectation is
no longer stated in policy guidance.

The program manager must still mitigate the risks of development of complex software-intensive
systems. The CMMI Product Suite may be of assistance. Using a CMMI model and the SCAMPI
method, the program office can conduct a baseline appraisal of the overall project and gain
agreement with the contractors about the primary developmental risks to the success of the

10 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

contract. Risk mitigation then becomes a measure of program progress, and award fee
mechanisms can be used to encourage and reward improvements that address the weaknesses
identified in the baseline appraisal.

Contract monitoring appraisals, tailored to the areas of concern, can provide the confidence to
the program office that needed improvements have been made by the contractors to ensure the
success of the program. In one recent example, a baseline appraisal found 47 risk areas that could
have potentially significant impact on program success. A year later, 41 of those risk areas had
been mitigated by the contractors. The remaining six were still in progress, but the government
and industry program managers agreed that this attention to process discipline was paying
dividends on both sides.

Another approach briefed by an Army representative at the recent Software Technology
Conference in Salt Lake City was similar. It allowed contractors to provide varied evidence of
process improvement in their proposals. Maturity level documentation was not required. Instead,
the contractors were encouraged to propose how the government-industry team would
collaborate on continuing process improvement to both reduce risk and raise quality.

These real-world examples require the development of an acquisition strategy, RFPs, proposals,
processes, and relationships that allow and encourage this sort of teamwork between the
government and industry. Another factor in overall program success is the effectiveness of the
teamwork across contractor teams from multiple companies.

Encouraging Multiple Contractor Teamwork

A frequent challenge these days occurs when multiple contractors, often with very different
cultural roots, must work closely together. In these situations, separate appraisals of each
contractor’s capabilities may be misleading when applied to the overall program, as the teams
have typically not been working together in the way they must after contract award. CMMI and
SCAMPI offer some particular advantages in these situations. An appraisal of the entire team of
contractors that focuses on a set of critical processes, or process areas, can be conducted. In some
cases, there may be value in establishing a single process to be shared by multiple contractors;
however, the primary value of such a focused appraisal is in knowing how the contractors must
modify their processes to improve the effectiveness of integrating their work. Typically, the time
spent in product integration and test is costly and time consuming. Early attention to process
integration can pay big dividends by minimizing the time and effort required for product
integration and test at the end of the product development life cycle.

There is a risk when contractors on a team vary in their level of process improvement
achievement. A noteworthy example was a maturity level 5 contractor that needed subsystems
provided by a maturity level 1 small company. The maturity level 5 contractor determined that
the best way to ensure that these two contractors could work together effectively was to include
the small company as a full team member for the contract. The small company’s staff worked
within the process architecture of the maturity level 5 contractor, and contributed its pieces of the
system within a well-established framework. The small company gained exposure to the values
of process discipline as a result of the mentoring teamwork. Consequently, all organizations
involved benefited from this strategic approach. The program office was assured success, the

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 11

maturity level 5 contractor was able to meet its obligations with minimized risk, and the maturity
level 1 contractor gained valuable experience.

Encouraging Government Contractor Teamwork

CMMI provides elements of the Software Acquisition CMM (SA-CMM) in process areas at
maturity level 2 and maturity level 3. At maturity level 2, the Supplier Agreement Management
(SAM) process area addresses acquisition issues. At maturity level 3, the Integrated Supplier
Management (ISM) process area provides further guidance in acquisition activities. The
integrated product and process development (IPPD) process areas, Integrated Project
Management (IPM), Integrated Teaming (IT), and Organizational Environment for Integration
(OEI), of course, provide a rich set of practices to encourage effective teamwork. There are great
opportunities for shared value when implementing the Requirements Development (RD) and
Requirements Management (REQM) process areas using a teaming approach.

Improving Internal Government Capabilities

The SEI has been asked by several program offices to help them improve the systems
engineering provided within government acquisition. The SEI has supplemented the CMMI
models with practices more directly applicable to an acquisition environment; these were
extracted from the Software Acquisition CMM (SA-CMM) to provide the basis for investigation.
Visits to program offices that lasted less than a week allowed team members to determine what
capabilities were present in the workforce and where improved processes and/or training were
required. While these visits share the basic data-gathering techniques of the more rigorous
SCAMPI Class A, no attempt at determining a maturity level rating is seen as necessary or
desirable.

Summary

As you may have gathered from the examples used in this article, much of the SEI’s experience
with contract monitoring has been with government organizations. However, these concepts are
equally relevant in commercial industry. The goal is the same for government and industry—to
ensure that the products they procure are developed and delivered by qualified contractors and
result in quality integrated products.

CMMI models, coupled with a variety of appraisal approaches—from a full SCAMPI Class A
through risk based appraisals to capability determinations—can be used in a variety of ways to
meet the needs of the acquisition workforce, both in government and industry.

More information about this topic is available in the following documents, which are available
on the SEI Web site:

CMMI models [http://www.sei.cmu.edu/cmmi/models/models.html]

12 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

SCAMPI V1.1 Method Definition Document
[http://www.sei.cmu.edu/publications/documents/01.reports/01hb001.html]

SCAMPI V1.1 Use in Supplier Selection and Contract Process Monitoring
[http://www.sei.cmu.edu/publications/documents/02.reports/02tn008.html]

SCAMPI V1.1 Method Implementation Guidance for Government Source Selection and Contract
Process Monitoring [http://www.sei.cmu.edu/publications/documents/02.reports/02hb002.html]

About the Author

Mike Phillips is the Director of Special Projects at the SEI, a position created to lead the
Capability Maturity Model® Integration (CMMI®) project for the SEI. He was previously
responsible for transition-enabling activities at the SEI.

Prior to his retirement as a colonel from the Air Force, he managed the $36B
development program for the B-2 in the B-2 SPO and commanded the 4950th Test Wing
at Wright-Patterson AFB, OH. In addition to his bachelor’s degree in astronautical
engineering from the Air Force Academy, Phillips has masters degrees in nuclear
engineering from Georgia Tech, in systems management from the University of Southern
California, and in international affairs from Salve Regina College and the Naval War
College.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 13

The COTS Spot

CMMISM and BSCC
Robert C. Seacord

Introduction

Since the release of Building Systems from Commercial Components [Wallnau 01] in July
of 2001, the design and engineering team from the SEI COTS-Based Systems Initiative
has developed the collection of techniques described in that book into a more prescriptive
COTS-based systems design process. This evolution has been partially described in this
column and other forums and will soon be offered as part of an updated tutorial.
However, we have not yet described the relationship between this work and another
important SEI product, Capability Maturity Model® Integration (CMMI) [CMMI 03]. In
this column, I examine how this process, newly evolved from Building Systems from
Commercial Components (BSCC) techniques, can be used to satisfy portions of the
CMMI process model.

The CMMI model is illustrated in Figure 1. The process areas are clusters of related
practices in an area that, when performed collectively, satisfy a set of goals in that area.
CMMI Version 1.1 models identify 25 process areas, grouped into categories.

Generic Practices

Generic Goals

Process Area 2Process Area 1 Process Area n

Specific Goals

Specific Practices Capability Levels
Generic Practices

Generic Goals

Process Area 2Process Area 1 Process Area n

Specific Goals

Specific Practices Capability Levels

Figure 1: CMMI Model Components

14 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Technical Solution

The Technical Solution practice area is defined in the Engineering process area. The
purpose of Technical Solution is to design, develop, and implement solutions to
requirements. Solutions, designs, and implementations encompass products, product
components, and product-related life-cycle processes either singly or in combinations, as
appropriate. The techniques and practices described in BSCC satisfy the following
specific goals of the Technical Solution:

SG 1 Select Product-Component Solutions

 Product or product-component solutions are selected from alternative solutions.

SG 2 Develop the Design

 Product or product-component designs are developed.

The specific goal for selecting product-component solutions requires considering
alternative solutions in advance of selecting a solution. This goal is supported in BSCC
through the use of contingency planning, a technique for managing multiple design
alternatives of unknown feasibility and determining how and when to apply resources to
resolve critical unknowns. Risk/Misfit, another BSCC technique, is a decision aide used
for determining the level of resources to be used in exploring the different design
alternatives based on cost, schedule, performance, and risk. While Risk/Misfit itself may
be better aligned with the Decision, Analysis, and Resolution (DAR) process area, its
application here satisfies the specific goal of evaluating design alternatives against these
criteria.

The specific goal of selecting product-component solutions in CMMI is supported by
three specific practices:

SP 1.1 Develop detailed alternative solutions and selection criteria.
SP 1.2 Evolve operational concepts and scenarios.
SP 1.3 Select product-component solutions.

These specific practices are supported by BSCC processes and techniques as described in
the following subsections.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 15

Develop Detailed Alternative Solutions And Selection Criteria

Developing detailed alternative solutions is an essential concept of the Technical Solution
process area. As already mentioned, BSCC encourages the development and management
of multiple design alternatives through contingency management. The development of
detailed design alternatives is supported in BSCC through the R3 process and the use of
model problems. R3 stands for Risk analysis, Realize model problems, and Repair misfit.
Risk analysis involves creating one or more model blackboards that illustrate a scenario
through the design alternative containing a critical risk. If critical unknowns exist in the
blackboard, model problems are realized to further assess the risk. Model problems are
situated prototypes created to answer specific design questions. If specific risks still exist
after creation of the model solution (to the model problem), it may still be possible to
repair the misfit, either by adapting the design alternative or by changing the context
(e.g., the requirements). Repair misfit is the final step in R3.

Selection criteria are an inherent part of BSCC. The major selection criterion used in
BSCC is design risk; for example, that the design does not satisfy stakeholder needs.
Project-level design risk is assessed at the beginning of the process. Design alternatives
are continually assessed against these risks throughout the R3 process. The ability of each
design alternative to address these risks is considered along with the costs and benefits of
each approach in identifying a path for continued design-space exploration. Continued
application of these criteria in the design process prevents unnecessary expenditure of
resources on unfeasible solutions.

Evolve Operational Concepts And Scenarios

SP 1.2 evolves the operational concept, scenarios, and environments to describe the
conditions, operating modes, and operating states specific to each product component.
Operational concepts and scenarios are also a critical element of BSCC. Scenarios are
developed and used in the creation of blackboards within R3 to assess specific design
risks.

Typical work products for this specific practice include product-component operational
concepts, scenarios, and environments for all product-related life-cycle processes (e.g.,
operations, support, training, manufacturing, deployment, fielding, delivery, and
disposal); timeline analyses of product-component interactions; and use cases. BSCC
includes work products such as ensemble descriptions and blackboards that emphasize
timeline analyses of product-component interactions. Use cases are used in BSCC to
discover critical unknowns in a design alternative and to explore design risk in the R3
process.

16 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Select Product-Component Solutions

The final specific practice for SG 1 selects the product-component solutions that best
satisfy the criteria established. Since integration problems are a major source of risk in
COTS-based systems development, COTS components must be selected in the context of
a feasible design solution. Consequently, evaluation in BSCC is an inherent part of the
design process. Successful execution of BSCC results in the selection of a feasible design
alternative that consists of a collection of components and design decisions.

Summary

The application of BSCC satisfies the specific goal of developing detailed alternative
solutions and selection criteria in the Technical Solution process area for COTS-based
system development. Both CMMI models and BSCC emphasize the need to evaluate
multiple design alternatives relative to cost, schedule, and risk, as well as achieving the
required functionality and design qualities.

I will explore, in a future column, where and to what degree BSCC satisfies the specific
practices of SG 2 (developing the design).

References
[CMMI 03] Capability Maturity Model® Integration (CMMISM), Version 1.1 CMMISM for
Systems Engineering, Software Engineering, Integrated Product and Process Development, and
Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1) Staged Representation CMU/SEI-2002-TR-
012/ESC-TR-2002-012, March 2002.

[Wallnau 01] Wallnau, Kurt; Hissam, Scott; and Seacord, Robert. Building Systems from
Commercial Components. New York, NY: Addison-Wesley, 2001.

About the Author

Robert C. Seacord is a senior member of the technical staff at the SEI and currently leads a
team researching software sustainment. He is coauthor of 2 SEI Series books, Modernizing
Legacy Systems: Software Technologies, Engineering Processes, and Business Practices and
Building Systems from Commercial Components as well as more than 40 papers on component-
based software engineering, Web-based system design, legacy system modernization, component
repositories and search engines, security, and user interface design and development. He has over
20 years of development experience and was previously a technical staff member at the X
Consortium and IBM.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 17

Security Matters

Use Care When Downloading and Installing Programs
Larry Rogers

When you buy an appliance, you give little thought to it doing you or your house any
harm. Why? Because there are organizations like Underwriters Laboratories that set
standards and certify products. When you see a certifier’s label, you have more
confidence that a product will be safer than a competing product that does not carry the
same label. You’re willing to accept the risk because you believe the product has met
some standards and has been certified by a respected authority.

Unfortunately, the Internet is not the same. There are neither standards nor many
certification organizations. Anyone who writes a program can distribute it through any
means available, such as through the Web or by sending you a copy. Speaking of that,
have you ever received a CD-ROM in the mail? How do you know that it contains what
the label says? The answer is: you don’t know. More importantly, it’s difficult to know.

No matter how you acquire a program, it runs on your computer at the mercy of the
program’s author. Anything, any operation, any task that you can do, this program can
also do. If you’re allowed to remove any file, the program can too. If you can send email,
the program can too. If you can install or remove a program, the program can too.
Anything you can do, an intruder can do also, through the program you’ve just installed
and run.

Sometimes there’s no explanation of what a program is supposed to do or what it actually
does. There may be no user’s guide. There may be no way to contact the author. You’re
on your own, trying to weigh a program’s benefits against the risk of the harm that it
might cause.

What’s the problem you’re trying to solve here? You are trying to determine if the
program you’ve just found satisfies your needs without causing harm to your computer
and ultimately the information you have on the computer. How do you decide if a
program is what it says it is? How do you gauge the risk to you and your computer by
running this program?

You address these same risk issues when you purchase an appliance; you may just not
have realized that’s what you were doing. When you make that purchase, you buy from
either a local store you know or a national chain with an established reputation. If there’s
a problem with your purchase, you can take it back to the store and exchange it or get
your money back. If it causes you harm, you can seek relief through the legal system. The

18 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

reputation of the merchant, the refund/return policy, and the availability of the legal
system reduce your risk to a point where you make the purchase.

Apply these same practices when you buy a program. You should

• Learn as much as you can about the product and what it does before you purchase
it.

• Understand the refund/return policy before you make your purchase.

• Buy from a local store that you already know or a national chain with an
established reputation.

Presently, it is not as clear what the legal system’s role is for a program that causes harm
or does not work as advertised. In the meantime, the LUB practices are a good first step.

But what about all those free programs available on the Internet? There is a multitude of
free programs available for all types of systems, with more available each day. The
challenge is to decide which programs deserve your confidence and are, therefore, worth
the risk of installing and running on your home computer.

So how do you decide if a program is worth it? To decide if you should install and run a
program on your home computer, follow these steps:

1. The Do test: What does the program do? You should be able to read a clear
description of what the program does. This description could be on the Web site
where you can download it or on the CD-ROM you use to install it. You need to
realize that that if the program was written with malicious intent, the
author/intruder isn’t going to tell you that the program will harm your system. He
or she will probably try to mislead you. So, learn what you can, but consider the
source and consider whether you can trust that information.

2. The Changes test: What files are installed and what other changes are made on
your system when you install and run the program? Again, to do this test, you
may have to ask the author how the program changes your system. Consider the
source.

3. The Author test: Who is the author? (Can you use email, telephone, letter, or
some other means to contact him or her?) Once you get this information, use it to
try to contact the author to verify that the contact information works. Your

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 19

interactions with the author may give you more clues about the program and its
potential effects on your computer and you.

4. The Learn test: Has anybody else used this program, and what can you learn from
him or her? Try some Internet searches using your Web browser. Somebody has
probably used this program before you, so learn what you can before you install
it.

If you can’t determine these things – the DCAL tests for short – about the program you’d
like to install, then strongly consider whether it’s worth the risk. Only you can decide
what’s best. Whatever you do, be prepared to rebuild your computer from scratch in case
the program goes awry and destroys it. “Make Backups of Important Files and
Folders” in Home Computer Security tells you how to make a copy of your important
information so you’ll have it if you need it.

Your anti-virus program prevents some of the problems caused by downloading and
installing programs. However, you need to remember that there’s a lag between
recognizing a virus and when your computer also knows about it. Even if that nifty
program you’ve just downloaded doesn’t contain a virus, it may behave in an unexpected
way. You should continue to exercise care and do your homework when downloading,
installing, and running new programs.

About the Author

Lawrence R. Rogers is a senior member of the technical staff in the Networked Systems
Survivability Program at the Software Engineering Institute (SEI). The CERT Coordination
Center® is a part of this program. Rogers’s primary focus is analyzing system and network
vulnerabilities and helping to transition security technology into production use. His professional
interests are in the areas of the administering systems in a secure fashion and software tools and
techniques for creating new systems being deployed on the Internet. Rogers also works as a
trainer of system administrators, authoring and delivering courseware. Before joining the SEI,
Rogers worked for 10 years at Princeton University. Rogers co-authored the Advanced
Programmer’s Guide to UNIX Systems V with Rebecca Thomas and Jean Yates. He received a
BS in systems analysis from Miami University in 1976 and an MA in computer engineering in
1978 from Case Western Reserve University.

20 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Software Product Lines

What’s the Difference Between Product Line Scope and
Product Line Requirements?
Paul Clements

Setting the proper scope of the product line is a step of fundamental importance. Make it too
large and the core assets will have to be too hopelessly generic to ever work; make it too small,
and the market demand for your product suite will be too small to recover the up-front
investment. Make it the right size but encompassing the wrong systems for your market and
you’ll have no customers.

What does the representation of a product line scope look like, exactly? That is, how do you
write one down? It can be very vague, or very precise—any statement that will let a decision-
maker decide whether a proposed product is in or out will do. In practice, to make such a
decision requires a fairly precise statement of what the “in” systems will all have in common.
One product line scope definition that we once saw talked about systems for special-operations
helicopters. These systems were supposed to do three things: “aviate” (that is, fly), “navigate”
(move from point A to point B), and “communicate” (talk to other systems). While this
description ruled out, say, software for toasters, it is clearly insufficient to tell whether the
software for another kind of aircraft would be in or out of the product line. Something more
detailed was needed. During the next round, some specific behaviors and features were
articulated, and this began to position the product line squarely in the realm of special-operations
helicopters.

This is usually how it goes. Scope starts out as a vague description of a set of systems by
naming some functions they provide. After that, then it’s refined to be written in terms of the
products’ observable behaviors and their exhibited quality attributes such as performance or
security.

But that is also how writing down requirements for a system goes. So why are the scope and the
requirements covered in two separate practice areas? Aren’t they in fact the same activity? The
answer is “Theoretically, yes.” But “theoretically” is often a euphemism for “not really.”

In part a of Figure 1, the rectangle represents every possible software system that ever has been,
ever will be, or ever could be built. This is the starting point, albeit a not very useful one, for
determining the scope of a product line. Typically, a product line manager is able to start
describing systems that are definitely outside the product line (toasters) and a few products that
are definitely in (a small list of specific special-operations helicopters). Part b of Figure 1 shows
the system space divided into three parts: systems that are out (mottled), systems that are in
(white), and systems we aren’t sure about yet (black). The process of defining the product line
scope is the process of narrowing down the “not sure about” space by carefully defining more of
the “out” and “in” spaces, until conceptually it resembles part c.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 21

Figure 1: The Evolution of a Product Line Scope

Now think about requirements. A good requirements specification should tell us everything that
must be true about a system for it to be acceptable, and no more. The “no more” part means that
many systems could be built to satisfy a given requirements specification, since a statement of
requirements does not and should not mandate a particular implementation. Requirements for a
product line specify things that are true about every system in the family, and specify a set of
allowable variations exhibited by individual systems. Given any system, we should be able to
compare it to the requirements specification and see whether or not it conforms—that is, whether
it satisfies all of the common requirements and an allowable combination of the variable
requirements. It either does or it doesn’t: There is no in between. Part d of Figure 1 is the visual
rendition of this situation, which is just part c pursued to the point where the “not sure about”
space has been squeezed to nothingness. This is why we said that requirements engineering was
theoretically akin to product line scoping—a completely precise scope is, in fact, a requirements
specification for the product line.

At least theoretically. Often, the scope includes aspects of the system that would not appear in
even the most complete requirements specification, aspects related to business goals or
construction constraints. For example, “any reasonable system commissioned by our most
important customer” might appear in a scope definition as something you’re willing to build, but
not in any requirements spec because it’s not a testable condition of the software.

In addition, the scope and the requirements are defined at different times. The scope is defined
early enough so that a business case can be built and used to see if the product line is
economically viable. The requirements are specified as a prelude to actual development. The
two products have different consumers. The scope is written for people like marketers, who need
to see what they will be asked to sell but do not require full statements of product behavior. The
requirements spec is used by the architect and the developers of core assets and products who do
need to know exact behavior. (The scope definition is also used by the architect to begin
planning architectural means to provide the commonality and variability defined there.) Finally,
there is no mandate for the scope to be completely precise—the situation in part c of Figure 1 is
just fine. The vast majority of systems are ruled out, a useful number of systems are ruled in,
and a class of systems remains on the cusp, meaning “If asked to build one of those, we’ll think

22 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

about it.” If, over time, you’re asked to build a lot of those, it may be a sign that your scope
missed the target a bit, and needs to be adjusted.

In fact, the situation in part c is more desirable for a scope than the one in part d. If you’re asked
to build a system that lies oh-so-close but just outside the anointed set of “in” systems, then “I’ll
think about it” is probably a better response than a flat “No.” Rejecting it out of hand might
cause you to miss a good business opportunity that you had not previously considered.

So if you thought that setting the scope and setting the product line requirements sounded like similar
activities, you’re right. They are. In practice, however, scoping and requirements engineering are done by
different people, stop at different points, and are used for different purposes by different stakeholders.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 23

Watts New

Some Programming Principles: Products
Watts S. Humphrey

The Nature of Computer Programs

Computer programs are fundamentally different from other types of products. Software
doesn’t wear out, rot, or deteriorate. Once a program works and as long as its operating
conditions remain the same, it will continue to work indefinitely. Software products can
be reproduced for essentially nothing and distributed worldwide in seconds. From a
business perspective, software is almost an ideal product. It is the most economical way
to implement most logic and it is the only way to implement complex logic. As an
intellectual product, software can be legally protected almost indefinitely and this makes
software products potentially very profitable. These basic software characteristics
provide great opportunities. However, they also present us with six major challenges. To
properly address these challenges, we must substantially change the way we do our work
and the methods we use to run our projects.

The First Challenge: Software Work Is Intellectual

Because software work is intellectual and our products are intangible, we cannot easily
describe what we do or demonstrate our results. This makes it extremely difficult for
non-software people to manage software groups or even to understand what we do. As
more people get involved with and become knowledgeable about software, this will be
less of a problem. However, today, few customers, managers, or executives have an
intuitive feeling for the software business. The problem is that you can’t touch, see, or
feel software. When we tell them that the product is nearly ready to ship, they have no
real appreciation for what we are saying. We can’t take them out into the laboratory and
show them the first software model being assembled, describe which parts must be added
before final test, or show them parts being welded, machined, or painted.

The problem here is trust. Businesses run on trust, but many managers follow the
maxim: “Trust but verify.” Unfortunately, with software, management can only verify
what we say by asking another software person who they hope is more trustworthy.
Since we typically don’t have any way to prove that what we say is true, management can
only tell if we are telling an accurate story by relating what we currently tell them with
what we have said before and how that turned out. Unfortunately, the abysmal history of
most software operations is such that very few if any software developers or managers
have any credibility with their more senior management.

24 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

The result is a critical challenge for the software community: we work in an environment
where senior management doesn’t really believe what we tell them. This means that,
almost invariably, management will push for very aggressive development schedules in
the hopes that we will deliver sooner than we otherwise would. To maintain this
schedule pressure, management is not very receptive to pleas for more time.
Furthermore, even when we break our humps and actually deliver a product on the
requested schedule, management isn’t very impressed. After all, that is only what we
said we would do. Other groups do that all the time.

The Second Challenge: Software Is Not Manufactured

Because software can be reproduced automatically, no manufacturing process is required.
This means that there is no need for a manufacturing release process and therefore that
there is no external process to discipline our design work. When I used to run systems
development projects, the hardware had to be manufactured in IBM’s plants. Before I
could get a cost estimate signed off or get a price and product forecast, I needed
agreement from the manufacturing and service groups. This required that the product’s
design be released to manufacturing. In this release process, the manufacturing engineers
reviewed the design in great detail and decided whether or not they could manufacture
the product for the planned costs, in the volumes required, and on the agreed schedules.
We also had to get service to agree that the spare parts plan was adequate, that the
replacement rate was realistic, and that the service labor costs were appropriate.

As you might imagine, release-to-manufacturing meetings were extremely detailed and
often took several days. The development engineers had to prove that their designs were
complete enough to be manufactured and that the cost estimates were realistic and
accurate. While these release meetings were grueling and not something that the
development engineers enjoyed, once you passed one, you had a design that the
manufacturing people could build and everybody knew precisely where your program
stood.

Unfortunately, software development does not require such a release process. The
consequence is that design completion is essentially arbitrary and we have no consistent
or generally-accepted criteria that defines what a complete design must contain. The
general result is poor software-design practices, incomplete designs, and poor-quality
products. The challenge here is that, without any external forces that require us to use
disciplined design practices, we must discipline ourselves. This is difficult in any field,
but especially for software, since we have not yet learned how to reliably and consistently
do disciplined software work.

The Third Challenge: The Major Software Activities Are Creative

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 25

Because software can be reproduced automatically, a traditional manufacturing process is
not required and no manufacturing resources are needed. This is a major change from
more traditional products where the manufacturing costs are often more than ten times
the development expenses. In software, the principal resources are development and test.
This mix imposes a new set of demands on management: they must now learn to manage
large-scale intellectual work.

In the past, large-scale activities have generally concerned military operations or
manufacturing processes. Typically, large numbers of people have been needed only for
repetitive or routine activities like reproducing already-designed products. In software,
large-scale efforts are often required to develop many of the products. In directing large
numbers of people, management has typically resorted to autocratic methods like
unilaterally establishing goals, setting and controlling the work processes, and managing
with simplistic measures. The problem here is that large-scale intellectual work is quite
different from any other kind of large-scale activity. Autocratic practices do not produce
quality intellectual work and they are counterproductive for software. In fact, such
practices often antagonize the very people whose creative energies are most needed.

To address this challenge, management must understand the problem and they must also
get guidance on what to do and how to do it. While the proper management techniques
are not obvious, they are not very complex or difficult. And once they are mastered,
these management techniques can be enormously effective.1

The Fourth Challenge: Software Lives Forever

Because software essentially lives forever, product managers face an entirely new and
unique set of strategic issues. For example, how can they continue to make money from
essentially stable products, and what can they do to sustain a business in the face of
rampant piracy? The problem is that immortal products that can be reproduced for
essentially nothing will soon lose their unique nature and cease to be protectable assets.
While this is not a severe problem when the software is frequently enhanced, once
products stabilize, they will be exceedingly hard and often impossible to protect, at least
for anything but very short periods.

This may not seem like a serious problem today, but it soon will be. A large but
ultimately limited number of basic functions will be required to provide future users with

1 See my book, Winning with Software: an Executive Strategy. Reading, Mass., Addison Wesley, 2002.

26 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

a stable, convenient, accessible, reliable, and secure computing capability. While such
functional needs have evolved rapidly over the last 50 years, the rate of change will
inevitably slow. This fact, coupled with the users’ growing needs for safety, security,
reliability, and stability, will require that the rate of change for many of our products be
sharply reduced. This in turn will make it vastly more difficult to protect these products.

The reason that this is important to programmers is that if the uniqueness of our products
cannot be protected, our organizations will be unable to make money from the products
we produce. They will then no longer be able to pay us to develop these products.

Lest this prediction sound too dire, the programming business will not wither away. I am
only suggesting that the part of the programming business that provides basic system
facilities will almost certainly have to change. On the other hand, I cannot visualize a
time when application programming will not be a critical and valuable part of the world
economy. In fact, I believe that skilled application programming will become so
important that the programming profession as we now know it will no longer exist: every
professional will have to be a skilled application programmer.

The Fifth Challenge: Software Provides Product Uniqueness

Because software contains the principal logic for most products, it provides the essential
uniqueness for those products. This means that the software’s design is an essential
product asset and that the key to maintaining a competitive product line is maintaining a
skilled and capable software staff. This is an entirely new consideration for a
management group that has viewed software as an expense to be limited, controlled, and
even outsourced, rather than as an asset to be nurtured, protected, and grown. The
pressure to limit software expenses is what caused IBM to lose control of the PC
business. Management was unwilling to devote the modest resources needed to develop
the initial PC software systems. This gave Bill Gates and Microsoft the opportunity to
replace IBM as the leader of the software industry.

As software becomes a more important part of many products, whole industries are likely
to lose control of their products’ uniqueness. This control will be in the hands of the
programmers in India or China or whoever else offered the lowest-cost bids for
outsourcing the needed software work. In effect, these industries are paying their
contractors to become experts on their products’ most unique features. Ultimately, these
contractors will very likely become their most dangerous competitors. Over time, these
industries may well find themselves in a position much like IBM’s in the PC business:
manufacturing low-profit commodity-like hardware to run somebody else’s high-margin
software.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 27

The Sixth Challenge: Software Quality is Critical

Because software controls an increasing number of the products we use in our daily lives,
quality, safety, security, and privacy are becoming largely software issues. These
increasing quality needs will put enormous pressure on software businesses and on
software professionals. The reason is that software safety, security, and privacy are
principally software design issues. Without a complete, fully-documented, and
competently reviewed design, there is practically no way to ensure that software is safe,
secure, or private. This is a problem of development discipline: since we don’t have to
release our products to a manufacturing or implementation group, there is no objective
way to tell whether or not we have produced a complete and high-quality design.

This development discipline problem has several severe consequences. First, it has never
been necessary for software people to define what a complete software design must
contain. This means that most software engineers stop doing design work when they
believe that they know enough to start writing code. However, unless they have learned
how to produce complete and precise designs, most software engineers have only a vague
idea of what a design should contain.

With the poor state of software design and the growing likelihood of serious incidents
that are caused by poor-quality, insecure, or unsafe software, we can expect increased
numbers of life-critical or business-critical catastrophes. It won’t take many of these
catastrophes to cause a public outcry and a political demand for professional software
engineering standards. This will almost certainly lead to the mandatory certification of
qualified software engineers. Then, the challenge for us will be to determine what is
required to be a qualified software engineer and how such qualification can be measured.

Conclusions

Since we have been living with all of these problems for many years, you might ask why
we should worry about them now. The reason is that the size and scope of the software
business has been growing while software engineering practices have not kept pace. As
the scale and criticality of software work expands, the pressures on all of us will increase.
Until we learn to consistently produce safe, secure, and high-quality software on
predictable schedules, we will not be viewed as responsible professionals. As the world
increasingly depends on our work, we must either learn how to discipline our own
practices or expect others to impose that discipline on us. Unfortunately, in the absence
of agreed and demonstrably effective standards for sound software engineering practices,
government-imposed disciplines will not likely be very helpful and they could even make
our job much more difficult.

28 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early
drafts. For this column, I particularly appreciate the helpful comments and suggestions
of Marsha Pomeroy-Huff, Bill Peterson, and Alan Willett.

In closing, an invitation to readers

In these columns, I discuss software issues and the impact of quality and process on
engineers and their organizations. However, I am most interested in addressing the issues
that you feel are important. So, please drop me a note with your comments, questions, or
suggestions. I will read your notes and consider them when planning future columns.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey

watts@sei.cmu.edu

About the Author

Watts S. Humphrey founded the Software Process Program at the SEI. He is a fellow of
the institute and is a research scientist on its staff. From 1959 to 1986, he was associated
with IBM Corporation, where he was director of programming quality and process. His
publications include many technical papers and six books. His most recent books are
Managing the Software Process (1989), A Discipline for Software Engineering (1995),
Managing Technical People (1996), and Introduction to the Personal Software ProcessSM
(1997). He holds five U.S. patents. He is a member of the Association for Computing
Machinery, a fellow of the Institute for Electrical and Electronics Engineers, and a past
member of the Malcolm Baldrige National Quality Award Board of Examiners. He holds
a BS in physics from the University of Chicago, an MS in physics from the Illinois
Institute of Technology, and an MBA from the University of Chicago.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 29

The views expressed in these articles are the author’s only and do not represent directly or imply any official position or view of the Software

Engineering Institute or Carnegie Mellon University. This article is intended to stimulate further discussion about this topic.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense
and operated by Carnegie Mellon University.

® Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, CERT Coordination Center, CMM, and
CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

SM Architecture Tradeoff Analysis Method; ATAM; CMM Integration; COTS Usage Risk Evaluation; CURE; EPIC; Evolutionary
Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal
Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Assessor; SCAMPI Lead Appraiser; SCE;
SEI; SEI-Europe; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

TM Simplex is a trademark of Carnegie Mellon University.

30 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 31

Documenting Software Architectures

Pennie Walters

Every day, in organizations around the world, thousands of dollars are invested to design and
build software architectures, only to result later in architectures that can’t be reproduced,
repaired, analyzed, or even implemented due to poor documentation or a complete lack of it. In
the past, no one seemed to know what makes good software architecture documentation. Though
many books described the languages used to create it, none addressed its content or purpose.

Typically the question of how to document a software architecture was answered by identifying
how not to do it, leaving documenting as a trial-and-error process—sometimes with costly
consequences.

Researchers at the Software Engineering Institute tackle the issue of software architecture
documentation in a new book titled Documenting Software Architectures: Views and Beyond.

This book, which was just awarded a Jolt Productivity Award from Software Development
magazine, strives to answer the critical question, How do you document an architecture so that
others can successfully use it, maintain it, and build a system from it?

What Is a Software Architecture?
A software architecture is the structure or structures of a system, comprising elements, their
externally visible properties, and the relationships among them all. Documenting software
architecture is important because it serves as the blueprint for a system and the project that
develops that system. It defines work assignments and is the primary carrier of quality attributes
(e.g., performance, reliability, security, and modifiability), the best artifact for early analysis, and
the key to post-deployment maintenance and mining. So it makes sense that documenting an
architecture is the crowning step to creating it.

Because software architectures are too complicated to be seen all at once, documenting them
using views is a helpful technique. A view is a representation of some of the system’s elements
and the relationships associated with them. The most fundamental principle of architecture
documentation comes from the concept of views: Documenting an architecture is a matter of
documenting the relevant views and then adding documentation that applies to more than one
view.

While some software architects prescribe using standard views for a particular type of system,
Documenting Software Architectures recommends using an approach that incorporates input
from the stakeholders (those who have a vested interest in the system, such as developers or
subcontractors). Such input tells architects how the documentation will be used and what
stakeholders expect from it. Ultimately, this input helps the architects decide which information
should be part of a software architecture’s documentation.

Knowing Which View to Use

32 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Which views are relevant for a particular software architecture depends on who the stakeholders
are and how they plan to use the documentation. Software architecture documentation has three
primary uses: as a resource for educating infrastructure support personnel, new stakeholders,
future architects, and others about the system; as a vehicle of communication among
stakeholders; and as the basis for system analysis. For example, if future architects will use the
documentation to gauge the impact of an expected change, a uses view (showing which modules
are required for the proper operation of certain parts of a system) and a decomposition view
(showing how a system’s responsibilities are partitioned across modules) would be relevant.
For nontrivial systems, one module view (showing elements that are units of implementation) is
typically used, as well as one component-and-connector view (showing elements with runtime
behavior and interaction), and one allocation view (showing how software structures are
allocated to non-software structures).

Views of large software systems might contain hundreds or thousands of elements, so architects
need to break the information presented into manageable chunks called view packets. A view
packet is the smallest cohesive bundle of documentation that would be given to a stakeholder. It
can show broad areas of the system at slight depth or small areas of the system at great depth. To
orient the reader looking at a view packet, context diagrams are also included in the software
architecture documentation. These diagrams depict the system or part of the system explained by
each view packet.

Sound software architectural documentation should also show how views are related to each
other through a combined view or a bridging document that relates elements and relationships.

Additional Documentation Components
Once software architecture is documented through views, it is necessary to add seven additional
components to the documentation:

1. a documentation roadmap that tells how the documentation is organized, lists the views used

and their elements, and provides scenarios for determining which parts of the documentation
to consult

2. a view template that explains how each view is documented and organized
3. a system overview that provides context for new architects through an informal description of

the system, including its purpose and functionality
4. mapping between views, which establishes useful correspondence between them
5. a directory, which shows where each element, relationship, and property is defined and used
6. an architecture glossary and acronym list
7. background information, design constraints, and rationale
These components are described in detail in Documenting Software Architectures.

Architecture Documentation Protects Your Investment
For nearly all systems, quality attributes are every bit as important as making sure that the
software performs its expected functions. Architecture is the means by which these quality
attributes are built into a system; in documentation, the formula for achieving them is put down

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 33

on paper. Using Documenting Software Architectures as your guide, you can create sound
software architecture documentation that will protect the investment made during hours of design
and decision making, and ultimately protect the intellectual property of your organization.

For more information, contact—
Paul Clements
Phone
512-453-1471
Email
clements@sei.cmu.edu
World Wide Web
http://www.sei.cmu.edu/ata/products_services/dsa_book.html?si

34 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 35

Second International Conference on COTS-Based Software
Systems
Bill Anderson and Anatol Kark

Held in Ottawa, Canada’s beautiful capital, the International Conference on Commercial Off-the-
Shelf-Based Software Systems (ICCBSS) provided a forum for attendees to exchange ideas
about current best practices and promising research directions for creating and maintaining
systems that incorporate commercial off-the-shelf (COTS) software products.
Brian Lillico, a director for the Canadian Public Works and Government Services, summarized
his team’s impressions. “[Our] team especially enjoyed seminars where project leaders spoke
about their project experiences and some of their lessons learned. Overall, we think [ICCBSS is]
on the right track and does address the growing need for this type of information. I look forward
to attending the 2004 session.”
ICCBSS, pronounced “ice cubes” even before this year’s subzero temperatures in Canada’s
winter wonderland, is truly international in scope:
• Presentations from Europe,

Australia, and the Americas highlighted the state of the practice and introduced research in
techniques for managing and engineering COTS-based systems.

• More than 100 practitioners from all over the world attended, representing government,
military, commercial, and academic interests.

• ICCBSS is jointly sponsored by the National Research Council Canada, the Software
Engineering Institute, the USC Center for Software Engineering, and the European Software
Institute.

The conference was opened by Dr. Victor Basili, professor of computer science at the University
of Maryland and executive director of the Fraunhofer Center. He provided a proposal for
formalizing knowledge about COTS-based system development. Dr. Basili described a
refinement of the definition of COTS to distinguish “easy” from “hard” COTS products. He
introduced the concept of patterns of COTS-based systems to support more rigorous analysis of
the impact of COTS products upon system development.
Presenters were selected on the basis of refereed papers published by Springer Verlag as Volume
2580 of Lecture Notes in Computer Science. These papers addressed COTS quality, architecture,
and project-management topics including:
• ISO/IEC-based quality models and classification techniques, protective wrappers (software

that integrates a COTS product into a system to provide some quality protection), and an
evaluation framework that allows detailed software evaluation while protecting the vendor’s
intellectual property rights

• definition and substantiation of architecture conflicts that produce interoperability problems,
a decision model to facilitate communication, recommendations for designing secure
systems, practical experience in integrating COTS in safety-critical systems, and techniques
for embedding executable specifications in software-component interfaces

• mechanisms to help organizations avoid inadequate practices and monitor project
performance, modifications to COTS-based-systems cost models to address security
concerns, and techniques used to help small manufacturing enterprises apply COTS solutions

36 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

One excellent paper1 reported on an experimental application of i*, an agent-based approach for
selecting multiple, interdependent software components to meet complex system requirements.
Of particular interest to participants was a panel discussion in which representatives from Oracle,
Peoplesoft, and Opentext challenged the community to become better customers, realize that COTS
vendors are not custom-system developers, and leverage COTS software by being open to process
modification.
Half-day tutorials enabled participants to examine topics in greater detail:
• functional fit analysis techniques to select the best solution and determine the degree of

enhancement work required to meet customer requirements
• U.S. Air Force use of an engineering and management process to select, field, and support

COTS products, other existing components, or custom components in complex environments
• matching component capability to system need through the application of marketing

principles and practices

In the closing keynote, Dr. Robert Balzer, chief technical officer at Teknowledge Corporation,
challenged software developers to be more creative in leveraging commercial offerings to their
advantage. He demonstrated an integration architecture that used commonly available COTS
products to meet specific end-user needs.
The conference provided a lively forum for exchanging experiences, ideas, and formal research.
COTS practitioners put new challenges in front of the research community, from acquisition and
economic models to development, integration and testing techniques. COTS researchers
proposed new techniques and tools that are ready for practical application. These challenges and
emerging pragmatic solutions will be explored at the Third ICCBSS, “Matching Solutions to
Problems,” which will be held in Redondo Beach, CA, Feb. 1-4, 2004.
The conference encourages your participation through conference attendance and submission of
papers, presentations, tutorials, panels, or posters. Further information, including information
about how to order the proceedings of past and upcoming conferences, is available at the
conference Web site:
http://www.iccbss.org.

For more information, contact—

Customer Relations
Phone
412-268-5800
Email
customer-relations@sei.cmu.edu
World Wide Web
http://www.iccbss.org

1 Franch, X. and Maiden, N.A.M. “Modeling Component Dependencies to Inform
 Their Selection,” 81-91. Proceedings of the COTS-Based Software Systems Second Interna-
 tional Conference (ICCBSS 2003) in Lecture Notes in Computer Science 2580. Ottawa,
 Canada, February 2003. Heidelberg, Germany: Springer-Verlag, 2003.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 37

SEPGSM 2003 Attendance Tops 1,500
Pamela Curtis

The 15th Software Engineering Process Group (SEPG) Conference (SEPG 2003) was held in
Boston on February 24-27, 2003. More than 1,550 people attended, from defense and civil
agencies, defense and commercial industry, and academic institutions.

Nearly three-fourths of attendees rated the SEPG keynote presentations as good to excellent
compared to keynotes they’d heard at similar conferences. In the keynotes:
• Tom Davenport, director of the Accenture Institute for Strategic Change and a well-known

author on business process reengineering, knowledge management, and enterprise systems,
presented “Six Ways to Make Knowledge Work Better.”

 “Process shouldn’t cover everything,” Davenport said. “Leave less routine tasks unstructured
to allow for creativity. Avoid over-engineering.”

• Allan Woods, vice chairman and chief information officer of Mellon Financial Corporation,
spoke on “Execution.”

 “Inertia is part of the natural law,” Woods said. “Execution challenges us to get out of the
ruts, to challenge conventional wisdom.”

• Bill Hancock, vice president and chief security officer of Exodus, a cable and wireless
service where he is responsible for global security for one of the world’s largest hosting
companies and IP networks, presented “Security Issues and Programming Fears.”

 “A lot of code out there—including nuclear reactor subsystems—hasn’t got a shred of
security in it, because of limited resources,” Hancock said.

The keynote presentations and speaker biographies are available on the SEI Web site.1

SEPG 2003 included increased numbers of presentations by users and adopters of Capability
Maturity Model® Integration (CMMI®) models and Team Software ProcessSM (TSPSM) from the
United States, Europe, and Asia, evidence of the growing impact of these SEI technologies in the
global community of software engineers. On display in the exhibit hall was a new book in the
SEI Series in Software Engineering, CMMI: Guidelines for Process Integration and Product
Improvement, written by SEI staff members Mary Beth Chrissis, Mike Konrad, and Sandy
Shrum. The book, which generated much interest at the conference, is the definitive source for
CMMI model information.

First SEPG News Conference
SEPG 2003 also featured a first-ever news conference, which focused on the relationship

1 1 http://www.sei.cmu.edu/sepg/keynotes.htm?ns

38 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

between security and software quality. The news conference began with a panel discussion led
by SEI Director Steve Cross; Rich Pethia, director of the SEI’s Networked Systems Survivability
Program; Watts Humphrey, SEI fellow and creator of TSP; and Carol Grojean, a senior program
manager with Microsoft. Articles resulting from the news conference have appeared in eWeek,1
Application Development Trends,2 and CIO Magazine.3

Pethia described the seriousness of the software quality problem: there were 40,000 new reports
of software vulnerabilities in 2002, and the same types of vulnerabilities are reported year after
year. “It takes a half a man year for a system administrator just to read all the new vulnerability
reports,” Pethia stated. “Applying patches for all of them is impossible. We need an order-of-
magnitude decrease in security flaws in released software.” Achieving this, Humphrey explained,
will require changing the practices of software engineers, a primary goal of TSP. He described
how the TSP team is working with staff from the SEI’s Survivable Systems initiative to identify
common security problems in software and then add practices to TSP that will help engineers
avoid injecting such defects into the software they develop.

Grojean presented compelling data about the positive impact of TSP on cost, schedule, and
quality for the project that she leads. For example, based on the projected reduction in the
number of defects in the code, Grojean’s team expects a 94% reduction in the cost of post-
production fixes. Grojean said her team’s use of TSP “gives management increased confidence
in what we deliver, since our emphasis has been on quality from the beginning.”

SEPG 2004
The 16th SEPG Conference will be held on March 8-11, 2004, at the Marriott World Center in
Orlando, Florida.

For more information, contact—

Customer Relations
Phone
412-268-5800
Email
customer-relations@sei.cmu.edu
World Wide Web
http://www.sei.cmu.edu/sepg?ns

1 http://www.eweek.com/article2/0,3959,922974,00.asp
2 http://www.adtmag.com/article.asp?id=7358, http://www.adtmag.com/article.asp?id=7378
3 http://www2.cio.com/research/security/edit/a02272003.html

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 39

40 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

New CERT
®
 Certification to Train Computer

Security Incident Handlers
Eric Hayes

Most organizations today depend on networked computer systems as an integral part of their
businesses. As applications become more complex and services become increasingly integrated,
protecting network security and recovering from computer security incidents has become a
business-critical component of an organization’s IT security plan. Creation of computer security
incident response teams (CSIRTs) is an organizational best practice for protecting information
assets and ensuring that an organization’s mission survives. New laws and regulations also
require organizations to identify and implement response capabilities—in some cases mandating
that such incident response teams be formalized.

The CERT Coordination Center (CERT/CC) has been in the business of Internet security since
1988, handling incidents and helping other organizations create incident response teams. To help
ensure a supply of qualified personnel to meet the growing demand for organizational incident
response teams, the CERT/CC has created a program to train and certify individuals as CERT-
Certified Computer Security Incident Handlers. CERT certification provides a tangible
recognition of skills from the Internet’s first and best-known computer security incident response
team.

Certified incident handlers will be trained to handle diverse aspects of incident response and
team leadership, ranging from applying operational concepts to managing a team to using
technical expertise to prepare for, detect, analyze, and respond to security events. This range of
knowledge ensures that CERT-certified incident handlers are well prepared to recognize and
respond to security risks and threats.

The Curriculum
The certification requires individuals to take four core courses from the SEI or from an SEI
transition partner (an organization licensed to provide SEI courses):

1. Creating a Computer Security Incident Response Team (CSIRT) (one day)
2. Information Security for Technical Staff (five days)
3. Managing CSIRTs (three days) or Fundamentals of Incident Handling (five days)
4. Advanced Incident Handling (five days)

One elective course in computer forensics, intrusion detection and analysis, or security audits
and assessments is also required. This requirement is met by completing a course at a university
or college accredited by the Accreditation Board for Engineering and Technology (ABET) or by
completing five continuing education units from a recognized security training organization.

Once the prerequisites and course curricula have been completed, a final requirement for
certification is to pass an SEI-administered written exam. The certificate is valid for three years;
renewals require additional continuing education units and experience in
the field.

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 41

Qualifications for Applicants
Applicants need to have at least three years of technical or managerial experience in incident
handling (IH). After applicants meet this basic prerequisite, they must submit a letter of
recommendation from their current or previous manager in support of their application.

The program welcomes incident handlers, CSIRT managers, system and network administrators
with IH experience, and IH trainers and educators, as well as those with some technical training
who want to enter the IH field.

Benefits of Certification
The certification should help computer-security professionals in their careers by demonstrating
that they have achieved a high level of expertise. Organizations that hire CERT-Certified
Computer Security Incident Handlers will benefit by having employees who are able to
• identify the benefits, challenges, and operational requirements needed to successfully create a

structured incident handling or management team

• successfully participate as leaders or members of CSIRTs
• describe the information security tenets of confidentiality, availability, and integrity, and apply

these concepts to the protection of information and information assets in an enterprise using a
variety of technical and procedural solutions

• recognize and identify organizational risks and threats

• recommend and implement best practices for incident handling functions, computer security
solutions, and mitigation strategies to reduce risks and counter threats across the enterprise

• demonstrate technical expertise in analyzing incident data and identifying response strategies

The SEI invites all qualified applicants to consider the CERT-Certified Computer Security
Incident Handler certification program to enhance their computer security careers.

For a directory of organizations that teach SEI courses, see the SEI transition partner Web site:
http://www.sei.cmu.edu
/collaborating/partners/?ns

For more information, contact—
Kimberly Lang
Phone
412-268-9564
Email
training-info@cert.org
World Wide Web
http://www.cert.org/csirts

42 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 43

Improving Workforce Capabilities with the People Capability
Maturity Model

®

Sally Miller, Bill Curtis, and William Hefley

Authors’ note:
A more in-depth version of this article can be found in the April 2003 issue of CrossTalk
(http://www.stsc.hill.af.mil
/crosstalk/2003/04/index.html).

The People Capability Maturity Model (People CMM®) is a framework that guides organizations
in improving their processes for managing and developing their workforces. Based on the best
current practices in fields such as human resources, knowledge management, and organizational
development, the People CMM helps organizations characterize the maturity of their workforce
practices, establish a program of continuous workforce development, set priorities for
improvement actions, integrate workforce development with process improvement, and establish
a culture of excellence.

Like other staged Capability Maturity Models developed at the SEI, the People CMM consists of
maturity levels that establish successive foundations for continuously improving workforce
competencies. These range from the Initial Maturity Level (Level 1), where workforce practices
are performed inconsistently or ritualistically and frequently fail to achieve their intended
purpose, to the Optimizing Maturity Level (Level 5), where everyone in the organization is
focused on continuously improving their capability and the organization’s workforce practices.
The architecture of the People CMM, Version 2, is shown in Figure 1.

Figure 1: People CMM Version 2, Architecture and Process Areas

44 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Adoption of the People CMM
The People CMM was originally released in 1995. In 2002, Version 2 of the People CMM was
released to add enhancements learned from seven years of implementation experience and to
integrate the model better with Capability Maturity Model Integration (CMMI®) and its
Integrated Product and Process Development (IPPD) extensions. Version 2 now initiates process-
driven Workgroup Development at Level 3. This is consistent with the placement of team-
building activities at Level 3 of CMMI-IPPD. Also, a specific institutionalization goal was added
to each process area to better align the goal structure with that used in CMMI. These
improvements make it easier for organizations to integrate People CMM improvements with
CMMI-based improvements.

Early adoption of the People CMM occurred primarily in organizations that had already adopted
the Capability Maturity Model for Software (SW-CMM). Among the earliest adopters were
aerospace companies such as The Boeing Company, Lockheed Martin Corporation, and GDE
Systems (now BAE Systems). More recently, government agencies such as the Federal
Emergency Management Agency have adopted the People CMM to address the government’s
objective of raising the performance and capability of the federal workforce.

Intel Information Technology, which supports the computing needs of more than 80,000
employees in some 70 sites worldwide, reported in 2003 on its implementation of the People
CMM. “After investigating several different ideas, we decided the People CMM was the most
appropriate for our objectives of developing a world-class workforce and organizational
capabilities for IT by strategically shaping our future workforce and influencing our partners and
industry. The People CMM assessment conducted in the third quarter of every year provides IT
with a strategic road map for implementing areas for improvement.”

Benefits Achieved
The benefits of implementing the People CMM differ by the maturity level attained.
Organizations achieving the People CMM Level 2 uniformly report increases in workforce
morale and reductions in voluntary turnover (see Figure 2). These results are not surprising, since
years of research have shown that one of the best predictors of voluntary turnover is employees’
relationship with their supervisors. The primary change at Level 2 is to help unit managers to
develop repeatable practices based on committed work for managing the people who report to
them and to ensure that the skill needs of their units are met.
Company Initial Turnover Level 2 Turnover
Company Initial Turnover Level 2 Turnover
Boeing BRS 1998

7%

1999
5%

Novo
Nordisk

1996
12%

2000
8%

GDE
Systems

1996
7.8%

1998
7.1%

Figure 2: Annualized Voluntary Turnover

news@sei interactive 2Q 2003 http://www.interactive.sei.cmu.edu 45

Organizations that achieve Level 3 experience productivity gains associated with developing the
workforce competencies required to conduct their business activities. For example, Infosys (see
Figure 3) reported a significant correlation of the level of competency among the members of
software development groups at Infosys with the project’s cost of quality (rework).

That is, the more competent the members of a development team are in the knowledge and skills
related to the technology and application on an effort, the less rework groups will experience.
At Level 4, an organization begins to achieve what W. Edwards Deming referred to as profound
knowledge about the impact of its workforce practices on its workforce capability and on the
performance of its business processes. This knowledge enables management to make strategic
decisions regarding future investments in workforce practices.

Figure 3: Correlation of Competencies with Cost of Quality at Infosys

Lessons Learned in Applying the People CMM
The CMMs that have been integrated into CMMI all concern behavior performed in or on behalf
of projects, whereas the People CMM concerns behavior performed throughout the organization.

Consequently, People CMM-based improvement programs should be conducted as part of an
overall organizational improvement strategy. A program based on the People CMM should not
be treated as a human resources initiative. Rather, it should be presented as a program for
operational management to improve the capability of its workforce. Professionals in human
resources, training, organizational development, and related disciplines can assist operational
managers in improving their workforce practices after an assessment. Nevertheless, the
responsibility for ensuring that an organization has a workforce capable of performing current
and future work lies primarily with operational management. The People CMM supplies the
roadmap that operational management can use to develop the workforce needed to meet their
strategic business needs.

46 http://www.interactive.sei.cmu.edu news@sei interactive 2Q 2003

Obtaining the People CMM

The People CMM is available as both a technical report from the SEI and as a book, The People
Capability Maturity Model®: Guidelines for Improving the Workforce, published by Addison-
Wesley. For more information, see the People CMM Web site.

For more information, contact—
Customer Relations
Phone
412-268-5800
Email
customer-relations@sei.cmu.edu
World Wide Web
http://www.sei.cmu.edu/cmm-p/?ns

