Diagnostic Software

What your Developer Doesn’t Know

Ted Marz
tfm@sei.cmu.edu

A presentation of paper CMU/SEI-2005-TN-035
Integrated Diagnostics: Operational Missions, Diagnostic Types, Characteristics, and Capability Gaps
http://www.sei.cmu.edu/publications/documents/05.reports/05tn035.html

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University
Motivation

• Involved in several software intensive systems development activities
• Observed a lack of operational knowledge on diagnostics in the system development teams
• Lack of knowledge in non-traditional developments
• Near total lack of integration between O-Level and I-/D-Level diagnostic and repair activities
• Seen how diagnostics can impact Life Cycle Cost
 - Increased Spares
 - CND / RTOK rates in the repair process
 - Manning / Staffing issues of operational systems
Diagnostic Software

The DoD is dependent on increasingly complex, software intensive, hardware/software hybrid systems to achieve their mission.

Assurance of mission capability is a primary operational need.

- Fault Detection (FD) supports that need
- Fault Isolation (FI) assists in assessing the impact of a failure

Diagnostic capabilities are a co-development problem.

Lack of effective FD/FI and Restoration practices impact system lifecycle cost in multi-dimensional ways.

FD/FI capabilities are not generally considered core requirements by the developers.
Diagnostic Operational Missions

• Verification of Operational Readiness
 Am I Mission Capable?

• Fault Detection (FD) and Characterization
 Have I failed mid-mission?
 What are the effects of failure? Can I continue?

• Fault Isolation (FI)
 What has failed? What do I need to replace?

• Diagnosis and Repair of Repairables
 FI at the lower component level; Repair verification

• Other Maintenance Actions
 Installation, Configuration, Alignment, Calibration, etc.
Logistics Support Cycle

System

- Operational Readiness Verification
- Operational System
- Fault Detection & Characterization
- Fault Isolation
- Degraded System
- Repair or Replace
- LRU Repair Verification
- Repair Verification
- Repair
- Repair of Repairables
- Fault Isolation
- SRU
- LRU
- Stores

Failure

In Situ

Depot

© 2005 by Carnegie Mellon University

Version 1.0
System Development Process

Systems Engineering
- System Design
 - Requirements Development
 - Requirements Allocation

Hardware Engineering
- Requirements Derivation and Refinement
- Preliminary Design
- Detailed Design
- Construction
- Verification

Software Engineering
- Requirements Derivation and Refinement
- Preliminary Design
- Detailed Design
- Construction
- Verification

Systems Engineering
- Systems Integration
- Systems Test

Co-Development
System Validation Activities

- Engineering Reviews at all levels are Validation events
- Acquisition Program Office MUST participate in validation events.
 - Balanced with other responsibilities
 - Resourced with appropriate capability

System Safety influence diagnostic maturity

Safety is a prime driver, as it is a major concern of the verification and validation efforts.

Domains with strong safety concerns exhibit more mature diagnostic environments
- Regulatory & Liability responsibilities drive activities
- System Safety Engineering Program
 - Failure Modes, Effects & Criticality
 - Undiagnosed failures lead to unsafe conditions
 - Recognized software safety standards applied

Example Domains
- Avionics & Flight controls
- Nuclear & other Power Generation
- Chemical Process Control
- Medical Instrumentation & Devices
- Telecom
Even Mature Environments Fail

Example – recent F-22 flight controls related crash.

Non-Traditional Environments Fail Spectacularly

Example – mission critical IT system

No verification of operational readiness
No online fault detection / isolation
Internet hosting service not doing system performance monitoring
Hardware BIT is not sufficient

Diagnostics is an Operational Mission need
 • Verify capability wherever it is implemented
 - Distributed, “Net Centric” & SOA systems
 - Programmable Hardware environments (FPGA, etc.)
 - Software implemented capabilities
 • Software component health has not been a significant concern to date
 - Ad Hoc methods
 - Spotty coverage
 - Inconsistent handling & reporting
 • Software health reporting should be part of the overall systems health management environment
What Developers Should Do

• Consider the Integrated Diagnostics and other System Sustainment and Support capabilities part of the core mission

• Explicitly treat Integrated Diagnostics as a co-development problem, with appropriate, multi-disciplinary Integrated Product Team support

• Fold software health management into the overall system health management environment

• Better consider integration of the in-situ and Depot diagnostics environments
What Program Offices Should Do

• Better integrate logistics support (diagnostics, test, maintenance, repair) in the development activities currently supported by the Hardware and Software validation teams

• Resource the validation teams to better support the acquisition effort
 - Be prepared to augment the developer with operations expertise from similar, legacy systems

• Create realistic diagnostic coverage requirements

• Better define the needs of the on-line and off-line diagnostics environments

• Create requirements for the integration of the in-situ and Depot maintenance environments
Contact Information

Ted Marz tfm@sei.cmu.edu