
© 2011 Carnegie Mellon University

Capability Maturity Model

Integration (CMMI) V1.3 and

Architecture-Centric

Engineering

Dr. Lawrence G. Jones

Dr. Michael Konrad

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-2612

2

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

3

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

4

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

How to Participate Today

Open and close your Panel

View, Select, and Test your audio

Submit text questions

Q&A addressed at the end of
today’s session

5

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

The Presenters

Larry Mike

6

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Architecture is Important

The quality and longevity of a software-reliant system is largely

determined by its architecture.

In recent studies by OSD, the National Research Council, NASA, and

the NDIA, architectural issues are identified as a systemic cause of

software problems in DoD systems.

7

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

The right architecture paves the way for system success.

The wrong architecture usually spells some form of disaster.

Why Is Architecture Important?

Represents earliest

design decisions

• hardest to change

• most critical to get right

• communication vehicle

among stakeholders

First design artifact

addressing

• performance

• modifiability

• reliability

• security

Key to systematic reuse
• transferable,

reusable abstraction

Key to system evolution
• manage future uncertainty

• assure cost-effective agility

8

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

People are Serious About Architecture

“Software Architect” was identified by CNN Money.com as the #1 “Best

Job in America.” (Oct 2010)1

The US Army has mandated that all Program Executive Offices appoint

a Chief Software Architect. (May 2009)2

1. http://money.cnn.com/magazines/moneymag/bestjobs/2010/snapshots/1.html

2. Memo by LTG N. Ross Thompson, Mil Dept of ASA (ALT) on May 26, 2009.

http://money.cnn.com/magazines/moneymag/bestjobs/2010/snapshots/1.html

9

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Webinar Learning Outcomes

After completing this webinar, attendees should

• know the meaning of the terms “architecture” and “quality

attribute”

• know that architecture is important to the achievement of

business, product, or mission goals

• know that quality attributes have a dominant influence on a

system’s architecture

• be familiar with essential architecture-centric engineering

activities

• know where architecture-centric activities and work products

are described in CMMI V1.3

• know where to find out more about architecture-centric

engineering practices and CMMI V1.3

10

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Conventions & Caveats for the Tutorial

The coverage of architecture-centric practices in CMMI V1.3 is broad,

focused on “products” and “solutions” – not just on software.

• But much of the tutorial material came from SEI assets whose focus was

software-intensive systems. Please bear this in mind. We believe the

principles apply beyond simply software.

Our focus in the tutorial will be on CMMI for Development because that

is where the architecture-centric practices are most deeply covered

but similar changes were also made to the other two CMMI models.

CMMI uses the term “product” to refer to what is delivered to the

customer or end-user. In this tutorial, we will often use the term

“system” to refer to the product.

This tutorial cannot completely convey everything you might like to learn

about architecture-centric engineering.

• References are provided at the end for you to learn more.

11

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering

Practices Changes

Architecture and its Importance

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion

12

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

CMMI in a Nutshell

CMMI is a collection of good practices and their characteristics that
provides guidance for improving an organization’s processes and ability
to manage the development, acquisition, and maintenance of products
or services.

CMMI organizes these practices into structures that help an organization

• assess its processes

• establish priorities for improvement

• implement these improvements

• learn what works and make further changes to improve
performance

“Improving processes for better products”

13

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

CMMI Models for Three Constellations

16 Core Process

Areas (PAs),

common to all

CMMI-DEV
CMMI-DEV provides

guidance for measuring,
monitoring and

managing development
processes.

CMMI-SVC
CMMI-SVC provides
guidance for those

providing services within
organizations and to
external customers.

CMMI-ACQ
CMMI-ACQ provides
guidance to enable

informed and decisive

acquisition leadership.

14

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

CMMI-DEV PAs by Category

Process Management
Organizational Innovation and Deployment (OID)

Organizational Process Definition (OPD)

Organizational Process Focus (OPF)

Organizational Process Performance (OPP)

Organizational Training (OT)

Support
Causal Analysis and Resolution (CAR)

Configuration Management (CM)

Decision Analysis and Resolution (DAR)

Measurement and Analysis (MA)

Process and Product Quality Assurance (PPQA)

Project Management
Integrated Project Management (IPM)

Project Monitoring and Control (PMC)

Project Planning (PP)

Quantitative Project Management (QPM)

Requirements Management (REQM)

Risk Management (RSKM)

(+) Supplier Agreement Management (SAM)

Engineering
Product Integration (PI)

Requirements Development (RD)

Technical Solution (TS)

Validation (VAL)

Verification (VER)
For the V1.3 release, REQM was moved from

“Engineering” to “Project Management.”

15

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

CMMI Coverage of Modern Engineering Approaches

Much of the engineering content of CMMI-DEV V1.2 is ten years old.

As DEV was a starting point for the other two constellations, no V1.2

model adequately addressed modern engineering approaches.

• For example, both RD SG 3 and RD SP 3.2 emphasized functionality and not

non-functional requirements.

Also, Engineering and other PAs rarely mentioned these concepts:

• Quality attributes

• Allocation of product capabilities to release increments

• Product lines

• Technology maturation (and obsolescence)

• Agile methods

16

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering

Practices Changes

Architecture and its Importance

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion

17

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Architecture is About Structure and Decisions

Structures result from decisions

• Business / mission goals provide a

reasoned basis for decisions.

• Each decision is a tradeoff that

enables something and precludes

other things.

• Tradeoffs are driven by quality

attribute requirements.

This is true regardless of the domain

– commercial or defense.

18

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

“Every system has an architecture…

…encompassing the key abstractions and mechanisms that define that

system's structure and behavior… In every case - from idioms to

mechanisms to architectures - these patterns are either

intentional

or

accidental”

- Grady Booch in the Preface to Handbook of Software Architecture

19

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Architecture and Strategy

An Intentional Architecture is the

embodiment of your business strategy

• Intentional Architecture links technology

decisions to business goals

An Accidental Architecture

limits strategy options
• Accidental Architecture

becomes your de facto

strategy

20

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Isn’t Architecting Expensive?!

Compared to what?

• Over-committing because you don’t have a blueprint

for the whole system?

• Inefficiency from inability to coordinate work?

• Late rework when defects found in test and

integration?

• Delivering late and over budget?

• Developing a failed product that doesn’t meet

stakeholder’s needs?

21

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

What Is an Architecture?

Informally, an architecture is the blueprint describing the

software structure of a system.

22

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Formal Definition of Software Architecture

“The software architecture of a program or computing

system is the structure or structures of the system, which

comprise the software elements, the externally visible

properties of those elements, and the relationships

among them.”1

1 Bass, L.; Clements; P. & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

23

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Formal Definition of System Architecture

A system architecture describes the elements and interactions of a

complete system including its hardware elements and its software

elements.

System Architecture: “The fundamental and unifying system structure

defined in terms of system elements, interfaces, processes,

constraints, and behaviors.”1

Systems Engineering is a design and management discipline useful in

designing and building large, complex, and interdisciplinary systems.2

1 Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Englewood Cliffs, NJ : Prentice-Hall,

1991.

2 International Council On Systems Engineering (INCOSE), Systems Architecture Working Group, 1996.

24

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Implications

Architecture is an abstraction of a system.

Architecture defines the properties of elements.

Systems can and do have many structures.

Every software-intensive system has an architecture.

Just having an architecture is different from having an architecture that
is known to everyone.

If you don’t develop an architecture, you will get one anyway –
and you might not like what you get!

25

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Structures and Views - 1

One house, many views

No single view accurately represents the house.

No single view can be used to build the house.

Although these views are pictured differently, and each has

different properties, all are related. Together, they describe the

architecture of the house.

Carpentry view

Plumbing view

Electrical view

Ductwork view

26

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

A human body

comprises multiple

structures.

a static view of

one human

structure

a dynamic view

of that structure

Structures and Views - 2

One body has many structures, and those structures have many

views. So it is with software.

27

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering

Practices Changes

Architecture and its Importance

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion

28

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

What is Architecture-Centric
Engineering?

Architecture-Centric Engineering (ACE) is the

discipline of using architecture as the focal point for

performing ongoing analyses to gain increasing

levels of confidence that systems will support their

missions.

The SEI ACE Initiative
develops principles, methods,
foundations, techniques,
tools, and materials in
support of creating, fostering,
and stimulating widespread
transition of the ACE
discipline.

Architecture is of enduring importance because it is

the right abstraction for performing ongoing analyses

throughout a system’s lifetime.

29

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Principles of ACE

1. Regardless of scale, architecture is the appropriate abstraction for

reasoning about business/mission goal satisfaction.
• provides sufficient detail to reason about mission and business goal

satisfaction and constrain implementation

• provides sufficient abstraction for a relatively small number of architects to

conceptually understand the system

2. Quality attributes have a dominant influence on a system’s architecture.
• Quality attribute requirements stem from business and mission goals.

• Key quality attributes need to be characterized in a system-specific way.

• Scenarios are a powerful way to characterize quality attributes and

represent stakeholder views.

3. Architectural prescriptions must be demonstrably satisfied by the

implementation.
• Software architecture must be central to software development activities.

• These activities must have an explicit focus on quality attributes.

• These activities must directly involve stakeholders – not just the

architecture team.

• The architecture must be descriptive and prescriptive.

30

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

System Development

Functional
Requirements

If function were all that

mattered, any monolithic

implementation would do,

..but other things

matter…

• Modifiability

• Interoperability

• Availability

• Security

• Predictability

• Portability

The important quality attributes and their characterizations are key.

has these qualities

analysis, design, development, evolution

Quality

Attribute Drivers

Software &

System

Architectures

Software &

System

The Non-functional

Requirements

31

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Specifying Quality Attributes

Quality attributes are rarely captured effectively in

requirements specifications; they are often vaguely

understood and weakly articulated.

Just citing the desired qualities is not enough; it is

meaningless to say that the system shall be “modifiable”

or “interoperable” or “secure” without details about the

context.

The practice of specifying quality attribute scenarios can

remove this imprecision and allows desired qualities to

be evaluated meaningfully.

A quality attribute scenario is a short description of an

interaction between a stakeholder and a system and the

response from the system.

32

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Parts of a Quality Attribute Scenario

Response

RESPONSE

MEASURE

ENVIRONMENT

Stimulus

SOURCE

Artifact:

Process, Storage,

Processor,

Communication

33

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Example Quality Attribute Scenario

Response

RESPONSE

MEASURE

under 5

seconds

ENVIRONMENT

Database under

peak load

Stimulus

SOURCE

Remote user

Artifact:

Process, Storage,

Processor,

Communication

A “performance” scenario: A remote user requests a data base

report under peak load and receives it in under 5 seconds.

34

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Architecture-Centric Activities

Architecture-centric activities include the following:

• creating the business case for the system

• understanding the requirements

• creating and/or selecting the architecture

• documenting and communicating the architecture

• analyzing or evaluating the architecture

• implementing the system based on the architecture

• ensuring that the implementation conforms to the architecture

• evolving the architecture so that it continues to meet business and

mission goals

35

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Some SEI Techniques, Methods, and Tools
creating the business case for the system

understanding the requirements Quality Attribute Workshop (QAW) *
Mission Thread Workshop (MTW) *

creating and/or selecting the architecture Attribute-Driven Design (ADD)
and ArchE

documenting and
communicating the architecture

Views and Beyond Approach; AADL

analyzing or evaluating the architecture Architecture Tradeoff Analysis Method
(ATAM) *; SoS Arch Eval *; Cost Benefit
Analysis Method (CBAM); AADL

implementing the system based on the
architecture

ensuring that the implementation conforms to
the architecture

ARMIN

evolving the architecture so that it continues to
meet business and mission goals

Architecture Improvement Workshop
(AIW)* and ArchE

ensuring use of effective architecture
practices

Architecture Competence Assessment

* = indicates a software engineering method that has been extended to systems engineering

36

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Analyzing the Architecture – SEI’s Architecture
Tradeoff Analysis Method® (ATAM®)

The ATAM is an architecture evaluation method that focuses on multiple

quality attributes.

Architectural

Decisions

Scenarios
Quality

Attributes

Architectural

Approaches

Business

Drivers

Software

Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

37

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

View-Based Documentation

Views give us our basic principle of architecture documentation

The choice of views used depends on the nature of the system

and the stakeholder needs.

Architecture

for System

XYZ

View 1

View 2

View n

Documentation

beyond views
=

…

+

Documenting an architecture is a matter of documenting the relevant views,

and then adding documentation that applies to more than one view.

38

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Software Architecture Documentation Needs

Runtime views to show how software will handle:

• hazards, faults, and errors

• fault tolerance/reconfigurations

• performance

• data (e.g., quality, timeliness, ownership, access privileges)

• interface boundaries

Non-runtime views of software (vital to project planning, allocating work

assignments, designing for modifiability, reusability, portability,

extensibility, etc., facilitating incremental development, and a host of

other critical purposes)

Architectural decisions and the rationale/implications/impact of those

decisions on key system qualities

39

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering

Practices Changes

Architecture and its Importance

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion

40

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Modern Engineering Practices in CMMI

For Version 1.3, CMMI provides better guidance in support of architecture-

centric practices (where the practice is addressed in CMMI V1.3 is shown in

parentheses).

• creating the business case for the system (partially in RD)

• understanding the requirements (RD)

• creating and/or selecting the architecture (TS)

• documenting and communicating the architecture (RD, TS)

• analyzing or evaluating the architecture (RD, TS, VAL, VER)

• implementing the system based on the architecture (TS; A/PL notes)

• ensuring that the implementation conforms to the architecture (VER)

• evolving the architecture so that it continues to meet business and

mission goals (implicit in the changes made for V1.3 to the term “establish

and maintain”)

41

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Requirements Development

SG 1: Develop Customer Requirements

SP 1.1 Elicit Needs

SP 1.2 Transform Stakeholder Needs into

[Prioritized] Customer Requirements

SG 2: Develop Product Requirements

SP 2.1 Establish Product and Product Component

Requirements

SP 2.2 Allocate Product Component Requirements

SP 2.3 Identify Interface Requirements

SG 3: Analyze and Validate Requirements

SP 3.1 Establish Operational Concepts and

Scenarios

SP 3.2 Establish a Definition of Required

Functionality and Quality Attributes

SP 3.3 Analyze Requirements

SP 3.4 Analyze Requirements to Achieve Balance

SP 3.5 Validate Requirements

In SP1.2, added that customer

requirements should be prioritized

based on their criticality to the

customer and other stakeholders

“representing all phases of the

product's lifecycle … including

business as well as technical

functions.”

In SP 2.1, added a focus on

architectural requirements and quality

attribute measures.

In SP 2.2, added a subpractice

allocating requirements to delivery

increments.

Addressed “Quality attributes” (QAs) as

well as functionality in SG3 and SP 3.2

statements.

In SP 3.1, broadened emphasis to

“operational, sustainment, and

development” scenarios.

In SP 3.2, determined architecturally-

significant QAs from mission and

business drivers.

42

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Technical Solution

SG 1: Select Product Component Solutions

SP 1.1 Develop Alternative Solutions and
Selection Criteria

SP 1.2 Select Product Component Solutions

SG 2: Develop the Design

SP 2.1 Design the Product or Product

Component

SP 2.2 Establish a Technical Data Package

SP 2.3 Design Interfaces Using Criteria

SP 2.4 Perform Make, Buy, or Reuse Analyses

SG 3: Implement the Product Design

SP 3.1 Implement the Design

SP 3.2 Develop Product Support Documentation

Intro Notes: “QA models,

simulations, prototypes or pilots

can be used to provide additional

information about the properties of the

potential design solutions to aid in the

selection of solutions. Simulations can

be particularly useful for projects

developing systems-of-systems.”

In SP 1.1, Added an example

selection criterion, “Achievement of key

quality attribute requirements” and a

new subpractice: “Identify re-usable

solution components or applicable

architecture patterns.”.

In SP 2.1, described architecture

definition tasks such as selecting

architectural patterns and formally

defining component behavior and

interactions using an architecture

description language.

In SP 2.2, added subpractice to

determine views to document

structures and address stakeholder

concerns.

In SP 2.3, mentioned exception and

error handling,

43

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Product Integration

SG 1: Prepare for Product Integration

SP 1.1 Establish an Integration Strategy

SP 1.2 Establish the Product Integration Environment

SP 1.3 Establish Product Integration Procedures and
Criteria

SG 2: Ensure Interface Compatibility

SP 2.1 Review Interface Descriptions for

Completeness

SP 2.2 Manage Interfaces

SG 3: Assemble Product Components and Deliver the
Product

SP 3.1 Confirm Readiness of Product Components

for Integration

SP 3.2 Assemble Product Components

SP 3.3 Evaluate Assembled Product Components

SP 3.4 Package and Deliver the Product or Product

Component

Revised the purpose to ensure

proper behavior instead of proper

function, thereby more implicitly

including quality attributes as well as

functionality.

Changed emphasis from

integration sequence to an emphasis

on integration strategy, i.e., the

approach to receiving, assembling,

and evaluating product components.

The architecture will significantly

influence the selection of a product

integration strategy.

In the PA notes, addressed:

interfaces to data sources and

middleware; APIs, automated builds,

continuous integration

44

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Validation

SG 1: Prepare for Validation

SP 1.1 Select Products for Validation

SP 1.2 Establish the Validation Environment

SP 1.3 Establish Validation Procedures and
Criteria

SG 2: Validate Product or Product Components

SP 2.1 Perform Validation

SP 2.2 Analyze Validation Results

Reinforced when validation occurs in

the product lifecycle: “validation is

performed early (concept/exploration

phases) and incrementally throughout

the product lifecycle (including

transition to operations and

sustainment).”

In VAL SP 1.1, included access

protocols and data interchange

reporting formats as examples of what

to validate.

Also, included incremental delivery

of working and potentially

acceptable product as an example

validation method.

45

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Verification

SG 1: Prepare for Verification

SP 1.1 Select Work Products for Verification

SP 1.2 Establish the Verification Environment

SP 1.3 Establish Verification Procedures and

Criteria

SG 2: Perform Peer Reviews

SP 2.1 Prepare for Peer Reviews

SP 2.2 Conduct Peer Reviews

SP 2.3 Analyze Peer Review Data

SG 3: Verify Selected Work Products

SP 3.1 Perform Verification

SP 3.2 Analyze Verification Results

In SP 1.1, added example verification

methods: software architecture

conformance evaluation and

continuous integration.

In SP 1.3, added example sources

of verification criteria:

customers reviewing work products

collaboratively with developers.

In SP 2.1, added example type of peer

review: architecture implementation

conformance evaluation

In SP 2.3, added examples of peer

review data that can be analyzed:

user stories or case studies

associated with a defect and the

end-users and customers who are

associated with defect

46

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 1

Allocated requirement

DEFINITION

Requirement that leviesresults from levying all or part of the performance and

functionality of a higher level requirement on a lower level architectural

element or design component.

More generally, requirements can be allocated to other logical or physical

components including people, consumables, delivery increments, or the

architecture as a whole, depending on what best enables the product or

service to achieve the requirements.

The improvements to the definition make the substance of the solution space

and allocation of requirements to it more explicit, allowing for superior

architectures and more insightful analyses (including verification) of

requirements and technical solutions.

47

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 2

Architecture

DEFINITION

The set of structures needed to reason about a product. These structures are

comprised of elements, relations among them, and properties of both.

In a service context, the architecture is often applied to the service system.

Note that functionality is only one aspect of the product. Quality attributes,

such as responsiveness, reliability, and security, are also important to reason

about. Structures provide the means for highlighting different portions of the

architecture. (See also “functional architecture.”)

This term and its use throughout the rest of the model is intended to

encourage use of proven, architecture-centric practices and the recognition

of “architecture” as a principal engineering artifact.

48

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 3

Definition of required functionality and quality attributes

DEFINITION

A characterization of required functionality and quality attributes obtained through

“chunking,” organizing, annotating, structuring, or formalizing the requirements

(functional and non-functional) to facilitate further refinement and reasoning about the

requirements as well as (possibly, initial) solution exploration, definition, and evaluation.

As technical solution processes progress, this characterization can be further evolved

into a description of the architecture versus simply helping scope and guide its

development, depending on the engineering processes used; requirements

specification and architectural languages used; and the tools and the environment used

[snip].

The term “definition of required functionality” that appeared in V1.2 has been

removed from CMMI because of the implicit suggestion that functionality be

addressed first or has higher priority. The term has been replaced with the

one above, which is intended to help ensure a sufficiently balanced focus

(functional and non-functional) in requirements analysis.

49

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 4

“Functional analysis” and “functional architecture”

These terms, which appeared in V1.2, are now “cul de sacs” in the

model.

The only place these terms now appear in CMMI-DEV V1.3 outside the

Glossary is in the first note of RD SP 3.2 and as an example work

product.

The note contrasts the approaches implied by these terms with “modern

engineering approaches” that encourage a more balanced treatment

of requirements, both functional and non-functional.

50

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 5

Product line

DEFINITION

A group of products sharing a common, managed set of features that satisfy

specific needs of a selected market or mission. and that are developed from a

common set of core assets in a prescribed way.

The development or acquisition of products for the product line is based on exploiting

commonality and bounding variation (i.e., restricting unnecessary product variation)

across the group of products. The managed set of core assets (e.g., requirements,

architectures, components, tools, testing artifacts, operating procedures, software)

includes prescriptive guidance for their use in product development. Product line

operations involve interlocking execution of the broad activities of core asset

development, product development, and management.

Many people use “product line” just to mean the set of products produced by a

particular business unit, whether they are built with shared assets or not. We call that

collection a "portfolio," and reserve "product line" to have the technical meaning given

here.

51

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 6

Quality attribute

DEFINITION

A property of a product or service by which its quality will be judged by

relevant stakeholders. Quality attributes are characterizable by some

appropriate measure.

Quality attributes are non-functional, such as timeliness, throughput,

responsiveness, security, modifiability, reliability, and usability. They have a

significant influence on the architecture.

This term is now included in the Glossary for the first time. This term is

intended to supplant others – especially those focusing on only a few

dimensions (e.g., “performance”) – to encourage a broader view of non-

functional requirements. The term was refined through much effort, as

neither ISO 25030 (SQuaRE) nor the original SEI definitions were quite

satisfactory. In addition, uses of the term “performance” throughout the

model were reviewed for clarity, and where appropriate, revised or qualified.

52

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 7

Establish and maintain

DEFINITION

Create, document, use, and revise . . . as necessary to ensure it remains they

remain useful.

The phrase “establish and maintain” means more than a combination of its component

terms; . . . plays a special role in communicating a deeper principle in CMMI: work

products that have a central or key role in work group, project, and organizational

performance should be given attention to ensure they are used and useful in that role.

This phrase has particular significance in CMMI because it often appears in goal and

practice statements . . . and should be taken as shorthand for applying the principle to

whatever work product is the object of the phrase.

The above term appears in many CMMI practices. This term was changed in V1.3 to

support the evolution of key artifacts so that they remain useful. Example from RD SP

2.1 note: “The modification of requirements due to approved requirement changes is

covered by the “maintain” aspect of this specific practice…” Likewise for architecture

(TS SP 2.2).

53

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

V1.3 Includes Notes on How to Address Agile
Methods and Product Lines

Other Informative Material Changes

Special notes for Agile and for Product Lines have been inserted in the

Intro Notes of various PAs in V1.3.

Changes Supporting Use of Agile Methods

Because CMMI practices are written for use in a broad variety of

contexts, business situations, and application domains, it is not

possible (even if it were appropriate) to advocate any specific

implementation approach.

However, Agile methods and approaches are now in wider use, and so

for V1.3, it seemed appropriate to identify how Agile approaches can

address CMMI practices and conversely, identify the value that CMMI

can bring to Agile implementations. And likewise for Product Lines.

54

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Addressing Agile – Example PA Notes

A note added in the RD Intro Notes:

In Agile environments, requirements are communicated and tracked through

mechanisms such as product backlogs, story cards, and screen mock-ups.

[snip] Traceability and consistency across requirements and work products is

addressed through the mechanisms already mentioned as well as during

start-of-iteration or end-of-iteration activities such as “retrospectives” and

“demo days.”

A note added in the TS Intro Notes:

In Agile environments, the focus is on early solution exploration. By making

the selection and tradeoff decisions more explicit, the Technical Solution

process area helps improve the quality of those decisions, both individually

and over time. [snip] When someone other than the team will be working on

the product in the future, release information, maintenance logs, and other

data are typically included with the installed product. To support future

product updates, rationale (for trade-offs, interfaces, and purchased parts) is

captured so that why the product exists can be better understood. [snip]

55

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Addressing Product Lines – Example Notes

An example of a note added in the RD Intro Notes:

For product lines, engineering processes (including requirements

development) may be applied to at least two levels in the organization. At an

organizational or product line level, a “commonality and variation analysis” is

performed to help elicit, analyze, and establish core assets for use by projects

within the product line. At the project level, these core assets are then used

as per the product line production plan as part of the project’s engineering

activities.

An example of a note added in the TS Intro Notes:

For product lines, these practices apply to both core asset development (i.e.,

building for reuse) and product development (i.e., building with reuse). Core

asset development additionally requires product line variation management

(the selection and implementation of product line variation mechanisms) and

product line production planning (the development of processes and other

work products that define how products will be built to make best use of these

core assets).

56

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Overview and Context for Modern Engineering

Practices Changes

Architecture and its Importance

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Conclusion

57

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

The quality and longevity of a software-intensive system is

largely determined by its architecture.

Early identification of architectural risks saves money and time.

There are proven practices to help ensure that suppliers and

acquirers can develop and acquire systems that have

appropriate architectures.

CMMI V1.3 has a new emphasis on architecture.

The efficacy of the architecture has a direct impact on

program or mission success, and customer satisfaction.

Summary & Conclusions

58

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

References - 1

Software Architecture in Practice, Second Edition

Bass, L.; Clements, P.; & Kazman, R. Reading, MA:

Addison-Wesley, 2003.

Evaluating Software Architectures: Methods and Case

Studies

Clements, P.; Kazman, R.; & Klein, M. Reading, MA:

Addison- Wesley, 2002.

Documenting Software Architectures: Views and Beyond,

Second Edition

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.;

Little, R.; Nord, R.; & Stafford, J. Reading, MA:

Addison-Wesley, 2010.

Software Product Lines: Practices and Patterns

Clements, P.; Northrop, L. Reading, MA: Addison-Wesley,

2001.

59

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

References - 2

You can find a moderated list of references on the “Software

Architecture Essential Bookshelf”

http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm

Grady Booch: Handbook of Software Architecture (currently only an

on-line reference):

http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

CMMI for Development, Version 1.3

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

(also available as a book from the SEI Series on Software Engineering)

Chrissis, Mary Beth; Konrad, Mike; & Shrum, Sandy. CMMI: Guidelines for

Process Integration and Product Improvement, 3rd Edition. Boston:

Addison-Wesley, 2011.

http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

60

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Six Courses

Software Architecture

Principles and Practices*

Documenting

Software Architectures

Software Architecture

Design and Analysis

Software Product Lines

ATAM Evaluator Training

ATAM Leader Training

ATAM Observation

Software
Architecture
Professional

ATAM
Evaluator

ATAM
Leader

Three Certificate Programs

The SEI Software Architecture Curriculum

: required to

receive certificate

*: available through

e-learning

61

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Contact Information

U.S. Mail:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-3890

World Wide Web:

http://www.sei.cmu.edu/productlines

SEI Fax: 412-268-5758

Mike Konrad

SEPM

Telephone: 412-268-5813

Email: mdk@sei.cmu.edu

Larry Jones

Research, Technology, and Systems

Solutions Program

Telephone: 719-481-8672

Email: lgj@sei.cmu.edu

http://www.sei.cmu.edu/productlines

62

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

Questions

63

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

64

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

65

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

http://www.sei.cmu.edu/training/elearning/

http://www.sei.cmu.edu/training/elearning/

66

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

CERT's Podcast Series:

Security for Business Leaders

www.cert.org/podcast/

67

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

68

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

69

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

70

CMMI V1.3 and Architecture-Centric

Engineering
© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO

ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM

USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the

rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely

distributed in written or electronic form without requesting formal permission. Permission

is required for any other use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center. The

Government of the United States has a royalty-free government-purpose license to use,

duplicate, or disclose the work, in whole or in part and in any manner, and to have or

permit others to do so, for government purposes pursuant to the copyright license under

the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

