Motivation

First responders, soldiers and other front-line personnel operate in resource-constrained environments characterized by

- intermittent or no connectivity to traditional infrastructure;
- a fast-paced, highly-fluid and unpredictable environment;
- the potential of large amounts of raw data and information;
- resource challenges (i.e. power, computing, etc.); and
- periods of very high stress and cognitive load

Mobile systems in these environments must

- Provide situational awareness and data analysis even if disconnected from the enterprise
- Reduce cognitive load and complexity, particularly in situations of high stress
- Increase computing power, data access, and survivability of computing capabilities while reducing demands on person-carried resources
Architecture Patterns

In software engineering, a pattern represents a proven solution to a recurring design problem

• Gamma et al were the first to develop design patterns for object-oriented systems
• Buschmann et al were the first to present architecture patterns for large-scale applications that could be composed to promote certain system qualities

Architecture patterns have been developed for specific types of applications or domains, such as

• concurrent and networked systems
• enterprise applications
• distributed systems
• resource management

This presentation focuses on architecture patterns for mobile systems that address the challenges of resource-constrained environments
Data Source Integration Pattern — Problem

Motivation

• Situational awareness (SA) applications in the field must support the rapid creation of mashups from multiple sources that might not be known in advance

Problem

• Rapid incorporation of new data sources
• Minimized information overload
• User control of data sources, data volume and visualization
• Simple use
Data Source Integration Pattern — Solution

Unified user interface

User-defined data filters

Data filtered on server before sending to client

Server-side, separately defined data sources

Data access via higher-speed and bandwidth connections

Legend:
- System Boundary
- Custom Runtime Component
- Data Store
- File
- Call Return
- Data Read/Write

Mobile Patterns at the Edge
SATH 2013
© 2013 Carnegie Mellon University
Group Context Awareness Pattern — Problem

Motivation

• Individuals at the edge operate cooperatively in teams
• Crucial that every team member receives the right information at the right time in order to ensure their safety and effective actions

Problem

• Flexible enough to create, understand, and react to unpredictable events that were never imagined during planning
• Resilient to intermittent communication and opportunistic in using communication access as it sporadically becomes available
• Capable of managing mobile resources as efficiently as possible to maximize the availability of the system
• Address cognitive load by providing mechanisms for supporting the information needs of the group while requiring minimal attention and interaction
Group Context Awareness Pattern — Solution

Rule-based context engine determines resource utilization and information visualization

Rule sets for different mission profiles

Group context data model

Layered / MVC pattern

Generalized control of sensors and communication mechanisms

Layered / MVC pattern

Software Engineering Institute
Cloudlet-Based Cyber-Foraging Pattern — Problem

Motivation

• Applications that are useful in resource-constrained, mission execution environments (e.g., face recognition, speech recognition)
 – require great amounts of battery and computing power
 – might not be able to execute on the mobile device due to the complexity of the code

Problem

• Cyber foraging is a technique to enable resource-poor, mobile devices to leverage external computing power by offloading code to surrogate
• Most existing cyber-foraging solutions
 – Assume connectivity to the cloud
 – Tightly couple offloaded applications to the infrastructure
Cloudlet-Based Cyber-Foraging Pattern — Solution

Legend
- **System Boundary**
- **Custom Runtime Component**
- **3rd Party Runtime Component**
- **File**
- **Call**
- **File Read/Write**
- **Broadcast**

Cloudlet Host
- VM Manager
- Guest VM 1
 - Server 1
- Guest VM 2
 - Server 2
- ... (n-1)
 - Server n

Mobile Client
- Cloudlet-Ready Client App 1
- Cloudlet-Ready Client App 2
- ... (n-1)
 - Cloudlet-Ready Client App n

Cloudlet
- Client App 1 Metadata
- Client App 2 Metadata
- ... (n-1)
 - Client App n Metadata

Server
- Server 1
- Server 2
- ... (n-1)
 - Server n

VM Manager
- Guest VM 1
 - Server 1
- Guest VM 2
 - Server 2
- ... (n-1)
 - Server n

Server Offload Code
- Server 1 Offload Code
- Server 2 Offload Code
- ... (n-1)
 - Server n Offload Code

Cloudlet-Ready Client App
- Cloudlet-Ready Client App 1
- Cloudlet-Ready Client App 2
- ... (n-1)
 - Cloudlet-Ready Client App n

Cloudlet-Client
- Client App 1 Metadata
- Client App 2 Metadata
- ... (n-1)
 - Client App n Metadata

Cloudlet-Metadata
- Cloudlet-Metadata

Offload Code
- Offload Code

Cloudlet
- Cloudlet

Discovery Service
- Cloudlet Server
- Cloudlet Metadata

Paired application client and server

Discoverable

Cloudlet located in single-hop proximity

Only infrastructure requirement is a VM manager

Resource-intensive server code executes in the cloudlet

VM-based promotes survivability via VM migration

Can operate in disconnected mode
Current and Future Work

We have implemented these architecture patterns using current technologies to demonstrate their technical feasibility. Implementations have been taken to field experiments and operational exercises. Currently working on the combination of these patterns to support context-aware, rapidly deployed SA solutions.

- Data Integration Server is rapidly deployed from a mobile device onto a cloudlet using Cloudlet-Based Cyber-Foraging.
- Group-Context-Awareness is used to tailor the information that is retrieved and visualized on each mobile device.

We are also working on additional architecture patterns to account for dynamic environments.
Conclusions

We presented a set of architecture patterns for mobile systems in resource-constrained environments to support personnel operating in edge environments.

Architecture patterns are driven by flexibility, resource efficiency, and usability which are key quality attributes for systems at the tactical edge.

Goal of these patterns is to enable system architects to instantiate them using a variety of technologies that can meet functional and quality requirements.
Contact Information

Grace A. Lewis
Advanced Mobile Systems (AMS) Initiative

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Phone: +1 412-268-5851
Email: glewis@sei.cmu.edu
WWW: http://www.sei.cmu.edu/staff/glewis/