Project Management by Functional Capability

SEPG North America Conference 2008

Fred Schenker
Software Engineering Institute

Bob Jacobs
Computer Systems Center Inc.
Introduction

• How many of your companies:
 – Manage projects?
 ▪ What size ($) , # people)?
 ▪ What technical scope (new development, modification, maintenance)?
 ▪ What domain?
 – Use a size estimation method?
 – Follow a “CMMI” Project Management process?

• How do you define your projects?
 – At what level of management is your Project Management process applied?
 – How do you aggregate projects?

• How many are in “Product Line” organizations?
 – How does this affect your Project Management process?
 – How is the wbs applied?
Goals of this Presentation

• To introduce Functional Capabilities (FCs) as a mechanism for managing work in a complex product development environment
 – An efficient way to communicate anticipated functionality to the user, the developer, and other stakeholders
 – A structure of discrete artifacts and flows that define product development lifecycle activities
 ▪ logical design
 ▪ system analysis, design and implementation, and integration
 ▪ testing
 – A scheme for planning, tasking, and tracking work
 – An effective generator of artifacts for CMMI
• To share experiences gained from initial deployment of this project management process
Functional Capability – Context

- Consider your *Program* to be a large amount of *functionality*, expressed as *capabilities*

- *Functional* decomposition will define increments of work to be accomplished, resulting in incremental *capability*

- We are proposing *functional capabilities* as a project management scheme to help deliver:
 - the right product
 - delivered on time and within budget

![Diagram of Functional Capability](image-url)
Agenda

- Problem Statement
- SIAP
- Program Performance
- Functional Capability Overview
- Functional Capability Elaboration
- CMMI Mapping
- Summary
Problem Statement

• Product developers routinely fail to execute their projects
 – GAO Report 05/301, 2005
 – Defense Acquisition Performance Assessment, 2006

• How do acquirers (or sponsors) gain insight into their project’s performance?
 – Does developer CMMI ML significantly affect project performance? If not, why not?

• How do contractors know they are producing what their customer wants?

• Do we need a different project context for Systems of Systems (SoS)?
Problem: Communication of Capability

• Capability must be expressed in user terms...
 What they want
 – Joint Capabilities Integration and Development System (JCIDS) is not sufficient
 – systems engineers need more expressive methods for requirements capture and development
• What they will get
 – “System” specifications (to drive developers) that users can relate directly to capabilities
• And how they know they are getting it
 – Earned value expressed in terms of capability, i.e., “earned capability”
 ▪ performance-based earned value
 ▪ assessment of functionality bow wave
Problem: SoS Development Practices

• SoS: Collaborating systems developed by collaborating system acquisition teams
 – highly autonomous systems and teams
• Process challenges in:
 – organizational ownership, responsibilities, and technical team interactions
 – systems:
 ▪ boundary definition
 ▪ legacy systems and continuous technology evolution
 ▪ continuous capability evolution
 – project definition, measurement, and reporting mechanisms
 – project execution processes
• Practical process methods are needed
Background: Single Integrated Air Picture

• Functional Capabilities (FCs) developed from experiences in SIAP
 – SIAP is a Software Intensive System
 – FCs should apply to SoS in general

• SIAP Capability
 – user viewpoint: common, correct, complete, continuous, timely track situation presentation
 – system viewpoint: state of data consistency among distributed, replicated data stores, for objects of peer interest

DISCLAIMER: This presentation makes no statement concerning current SIAP engineering practices.
SIAP – Capability Material Challenge

- SIAP requires interactions of networked peers, each an operational node hosting multiple integrated systems
- Network connections are weak, with ad hoc, dynamic configurations
SIAP – Capability Material Solution

- Executable Object Model transformable to code, with core required functionality
- Agile-development processes

Unpredictable Heterogeneous Set of Systems

Predictable, Logically Homogeneous Federation
The Value of Capability

• Functional Capabilities express functional requirements
 – manageable abstraction level for SoS
 – meaningful to user and developer
• An FC identifies a value-chain
 – tangible artifacts
 – framework for measuring program process performance
• An FC represents value that can be earned against a planned-performance baseline
 – an example of Performance-Based Earned Value®
Functional Capability – Earned Capability (Value)

<table>
<thead>
<tr>
<th>FC #</th>
<th>Description</th>
<th># Req</th>
<th># Use Cases</th>
<th># Scenarios</th>
<th># IPT Affected</th>
<th>Pol. Vis.</th>
<th>Total</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 1</td>
<td></td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Hot</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>FC 2</td>
<td></td>
<td>49</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>Hot Hot</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>FC 2.1</td>
<td></td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>Hot</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FC 2.2</td>
<td></td>
<td>22</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Hot Hot</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>FC 2.3</td>
<td></td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>Medium</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>FC 3</td>
<td></td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>Medium</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>FC 4</td>
<td></td>
<td>45</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>Hot</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>FC 4.1</td>
<td></td>
<td>33</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>Hot</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>FC 4.2</td>
<td></td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>Medium</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

- Establish relative size measures for each capability
- Establish dependencies between capability projects
- Establish the approved list of capability (or value)
- Release work as appropriate and accrue “value” against the project capability “baseline” at Management reviews
- Measure project lifecycle task duration and effort to refine estimation process and establish project historical parametric data
- Capability can be “re-scoped”, but deviations from the baseline are easily recognizable as the “bow-wave” of functionality
Functional Capability Life Cycle

- Each FC advances through lifecycle phases, representing states of completion, defined by artifacts.
- Artifacts are reviewed at Quality gates, providing evidence of value.

![Diagram](image-url)

LEGEND

- **Activity**
- **Artifact (state)**
- **Quality Gate**
 - **Success Criteria**

Project Management by Functional Capability

Fred Schenker and Bob Jacobs

© 2008 Carnegie Mellon University
FC Artifacts and Value

ARTIFACTS:
- Functional Capability Planning Definition
- Functional Capabilities Description Document
- Component Development Specifications
- Working Software (e.g., xUML model)
- Tested SOS

USED FOR:
- Planning Basis of Estimate, WBS
- System Analysis and Design
- Development Team Work Packages
- Unit & Integration Testing
- Verification (& demo/sim)

IMPACT:
- System Functional Requirements Baseline
- Incremental Functional Baseline by FC
- Incremental Allocated Baseline by FC
- Incremental Component Product
- Incremental End-Item Capability

VALUE ACCRUED:
- Earned Capability Baseline

Project Management by Functional Capability
Fred Schenker and Bob Jacobs
© 2008 Carnegie Mellon University
Functional Capability – Overview

Project Management by Functional Capability
Fred Schenker and Bob Jacobs
© 2008 Carnegie Mellon University
Functional Capability – Functional Definition

Project Management by Functional Capability
Fred Schenker and Bob Jacobs
© 2008 Carnegie Mellon University
Functional Capability – Systems Analysis

<table>
<thead>
<tr>
<th>Para. #</th>
<th>Title</th>
<th>Affected Area</th>
<th>Type of Change</th>
<th>Work Ref. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As-Is

![AS-IS diagram]

To-Be

![To-Be diagram]

Legend

- **No Change**
- **New Change**
- **New Capability**

Project Management by Functional Capability

Fred Schenker and Bob Jacobs*

© 2008 Carnegie Mellon University
Connection to CMMI

Q: So what does this have to with CMMI anyway?

This is the SEPG North America conference, right?

A1: If you adopt the Functional Capability lifecycle, you get a lot of CMMI credit…

A2: If you managed your projects this way you could use CMMI practices (esp. M&A) to help you
 – Produce what your customers want
 – Make sure your contractor is performing
Functional Capabilities – CMMI Mapping

• Project Planning (SG 1, SG 2, SG 3)
 – Estimation of FC scope (size, complexity, effort, priority)
 – Standard FC WBS
 – Defined FC lifecycle
 – FC implementation risks
 – Stakeholder identification and involvement (FC prioritization)
 – FC Implementation Budget and Schedule (FC Owners ≈ CAMs)
 – Summation of FC Planning Definitions (Baseline Plan)
 – Commitments established between IPTs

• Project Monitoring and Control (SG 1)
 – Defined project milestones (Q-Gates)
 – “Earned” Capability to calibrate program performance
Functional Capabilities – CMMI Mapping

• **Requirements Development (SG 1, SG 2, SG 3)**
 – Stakeholder “needs” documented (or referenced) in FCDD, and validated via peer review
 – Context for requirement implementation and acceptance criteria provided in FCDD
 ▪ Basis for product component and interface requirements
 ▪ Definition of required functionality
 ▪ Basis for requirements validation
 – Use cases documented in the FCDD (Operational concepts and scenarios)

• **Technical Solution (SG 1, SG 2, SG 3)**
 – Alternative solutions documented in FCDD and propagated through System Analysis of FC
 – FCDD represents documentation of Functional design
Functional Capabilities – CMMI Mapping

• Requirements Management (SG 1)
 – FCDD helps to develop an understanding of requirements
 – FCDD to Requirements trace useful for identifying impact of changes

• Verification (SG 1, SG 2, SG 3)
 – Requirements Verification acceptance criteria defined in FCDD
 – Defined artifacts represent obvious opportunities for Peer Review

• Validation (SG 1, SG 2)
 – Defined artifacts are used to interpret, communicate and validate product design
 – Product lifecycle defines artifacts, essential for planning validation activities
Functional Capabilities – CMMI Mapping

- Integrated Project Management (SG 2)
 - FC Definition Document provides basis for management of stakeholder involvement, dependencies, and identification (and resolution) of coordination issues

- Measurement and Analysis (SG 1, SG 2)
 - FC baseline represents program commitment
 - Tracking of FC progress connects tasks execution to management information needs

- Quantitative Project Management (SG 1, SG 2)
 - FC baseline represents the program’s performance objective
 - Tracking of FC progress helps to determine whether the program’s objectives for performance are being satisfied, and are used to identify appropriate corrective actions
Summary

• Functional Capability provides a useful framework for managing projects
 – In a complex environment (SoS)
 – As a significant contributor of value-adding artifacts
 – As a starting point for introducing quantitative methods into the project management process
 – As a means of communicating capability, both desired and earned
 – As an effective means to deliver relevant technical and project management content to external stakeholders
 – As a method of assessing the “bow-wave” on a project, and calibrating the reported earned value
Thank You!

Thank you for your attention!!
Contact Information

<table>
<thead>
<tr>
<th>Fred Schenker</th>
<th>Robert Jacobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering Institute</td>
<td>Computer Systems Center Inc.</td>
</tr>
<tr>
<td>4500 5th Avenue</td>
<td>6225 Brandon Ave.</td>
</tr>
<tr>
<td>Pittsburgh, PA 15213-3890</td>
<td>Springfield, VA 22150</td>
</tr>
<tr>
<td>412-268-9145</td>
<td>703-866-4000</td>
</tr>
<tr>
<td>ars@sei.cmu.edu</td>
<td>bjacobs@csci-va.com</td>
</tr>
</tbody>
</table>
• Back-up
Functional Capability – Planning Definition

• Early in the Program Lifecycle, Functional Capability planning definitions are needed:
 – Based on End-to-End mission scenarios
 – No more than one or two pages per FC
 – Preliminary allocation of requirements
 – High-level textual description
 – Basis of estimates for effort, resource, and schedule planning (use cases, complexity, requirements, etc.)
 – Use historical data where possible (and practical)
 – Establish FC priority and FC-FC dependencies

• Use the planning definitions to establish Earned Capability baseline and to scope project deliverables and dates
Functional Capability – Functional Definition

• Refine the scenarios to specify the capabilities
• Finalize allocation of functional requirements to the notional FC
• Elaborate the FC
 – Create a contextual description of the functionality
 – Create sequence diagrams, use cases, behavior diagrams
 – Ensure the allocated requirements are explained adequately in the context of the functionality
 – Provide criteria for FC acceptance
• Validate the FC
 – Peer review
 – Customer review
 – Management review (Q-Gate)
Functional Capability – Systems Analysis

• Start with validated functional design
• Allocate functionality to legacy components
 – Identify and analyze design alternatives as necessary, especially for risk mitigation
 – Update existing / create new design documentation, component specifications
 – Create work packages to implement the new designs
 – Update previous estimates of effort and schedule
 – Identify task dependencies, establish need for commitments for inter-component deliverables
• Validate the Analysis
 – Peer review
 – Customer review
 – Management review (Q-Gate)
Functional Capability – Test Preparation

• Start with Functional Capability Definition
 Document requirements acceptance criteria
 – Review the acceptance criteria
 ▪ New scenarios that need to be instantiated
 ▪ New requirements that need to be verified
 ▪ Legacy requirements that have been further clarified
 – Develop/modify test cases based on the criteria
 – If necessary, create new scenario (data set)
 – Identify need for additional test tools, and develop those tools

• Validate the Test Preparation
 – Peer review test cases and scenarios
 – Management review (Q-Gate)
Functional Capability – Dev. & Int.

• Start with validated System Analysis
• Coordinate the tasks so that the Functional Capability is achieved
 – Identify and negotiate commitments between development teams
 – Establish development goals for the next increment of production (TimeBox)
 – Execute tasks in accordance with the plan
 – Perform verification tasks and pass on to integration
• Integrate the new products
 – Check interfaces, build new integrated product
 – Verify new build (smoke test)
• Validate the Development and Integration
 – Management Review (Q-Gate)
Functional Capability – System Test

• Start with stable production build
 – Regression test (with new test cases)
 – Log bugs/defects
 – Perform SoS simulated testing (if possible)
 – Evaluate performance bottlenecks; potential SoS issues
 – Produce test report

• Validate the results
 – Management review (Q-gate)