A Structured Legacy to SOA Migration Process and its Evaluation in Practice

Ravi Khadka
Amir Saeidi
Slinger Jansen
Jurriaan Hage
Agenda

- Background
- Problem Definition
- Objectives
- The structure process
- Evaluation
- Discussion
Caution

- We do not claim COMPREHENSIVENESS

- The conclusions drawn are suggestive, rather than conclusive.
Background

- **Legacy Systems**
 - Inflexible, higher maintenance cost, rigid…
 - Business critical, profitable systems, backbone system …

- **SOA**
 - Claimed benefits
 - Reusability, Maint. Cost reduction, loose coupling, etc

- **Legacy to SOA migration**
 - A plethora of research (>100 academic papers\(^1,2\))
Problem Definition

- General Observation
- 2 categories of solution

Is it feasible???

How ???
Eureka!!! It works 😊

Migration feasibility
Supporting technology
Objectives

1. To develop a structured process that combines feasibility and migration execution
 - 6 phased structured process

2. To identify rationale, current practices and challenges for each phase of the process
 - Rationale
 - Current Practices
 - Challenges
The Structured Process

- Target system understanding
- Migration feasibility determination
- Legacy system understanding
- Candidate service identification
- Implementation & management
- Deployment & provisioning
Legacy System Understanding

• Rationale
 ✓ a deductive process of acquiring knowledge about the “as-is” situation
 ✓ Consequences of lack of resources, (up-to-date) documentation, experts
 ✓ creating an inventory of the existing features
 ✓ maximizing reusability of legacy features

• Challenges
 ✓ Knowledge erosion problem
 ✓ Developing generic reverse engineering tools
 ✓ Maximizing automation of reverse engineering tools
Legacy System Understanding

- Current Practices
Rationale

- representation of the desired architecture of the “to-be” SOA
- major components of the SOA environment
- standards to be used
- quality of services expectations
- interaction patterns between services
- target architecture largely determine the reusability
Target System Understanding

Current Practices
- Not sufficient attention
- Guidelines for TSU – SMART
- Service design & orchestration - SOAMIG
- Standards for NFR (Maint., interop.) - Cuadrado et al.

Challenges
- Business-IT alignment
- Componentization - deconstruct, analyze and identify buss. Components
- Preserving NFR within TSU
- Infrastructure Engineering
Migration Feasibility Determination

• Rationale
 ✓ Feasibility based on from technical, economical and organizational perspectives
 ✓ technical feasibility – details on how to reuse
 ✓ Economical feasibility – cost and ROI
 ✓ Organizational feasibility- do higher management agree to invest PLUS Business goals
 ✓ “If ain’t broken, don’t fix it”
Migration Feasibility Determination

• Current Practices
 ✔ Cost-Benefit Analysis- Sneed (1995)
 ✔ Extended CBA for integration vs. migration –Umar & zordan (2009)
 ✔ Option Analysis for Re-engineering -SMART

• Challenges
 ✔ Automated toolsets – decision making tools for MFD
 ✔ Toolset integration with LSU and TSU to facilitate automation
Candidate Service Identification

- **Rationale**
 - ✓ Spaghetti code, lack of resources
 - ✓ Enables reusability & leveraging the existing legacy assets
 - ✓ An interesting area - uses various techniques
Candidate Service Identification

• Current Practices
 ✓ Top-down approach- modeling a business process and mapping to legacy functionalities
 ✓ Alahmari et al. (2010), Fuhr et al. (2011), Zillmann et al. (2011)
 ✓ Bottom-up approach- utilizes the legacy code to identify services using various techniques
 ✓ information retrieval, concept analysis business rule recovery, source code visualization

• Challenges
 ✓ Spaghetti code – difficulty to isolate business logic
 ✓ Determining optimal granularity of services
 ✓ service rationalization and service consolidation
Implementation

- **Rationale**
 - Execution of the migration of the legacy applications
 - depends- migration strategies, availability of tools/techniques etc.
 - Four realization strategies
Implementation

- Current Practices

- Challenges
 - Selection criteria for appropriate strategy
 - Testing and service versioning after exposing as a service
 - Service commonality
Deployment & Provisioning

• Rationale
 ✓ Management to facilitate life cycle for a service
 ✓ Infrastructure engineering – testing for correctness
 ✓ Service provisioning- publishing, discovering, NFC
 ✓ Objective is to ensure that the SOA environment operates reliably and efficiently

• Current Practices
 ✓ Research in (automated) publication & discovery
 ✓ Service evolution- Papazoglou (2008); Andrikopoulos et al. (2008);
 ✓ Service Versioning- Fang et al. (2007)
Deployment & Provisioning

• Challenges
 ✓ automated service discovery with minimal user involvement
 ✓ Service testing combined with run-time verification
 ✓ Service compatibility with versions of same services
 ✓ Service commonality
Evaluation

- Two simple/experimental case studies
- SrnaCalc & Java calculator suite applications

<table>
<thead>
<tr>
<th>Application</th>
<th>LSU</th>
<th>TSU</th>
<th>MFD</th>
<th>CSI</th>
<th>IMP.</th>
<th>D&P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrnaCalc</td>
<td>X</td>
<td>X</td>
<td>o</td>
<td>m</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Java Calculator</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>m</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X: performed
-: partially performed
m: manually done
Evaluation

Criteria

- High citation count
- Industrial or preliminary case study
Overview of the current practices, challenges and the possible solutions

<table>
<thead>
<tr>
<th>Phases</th>
<th>Current Practices</th>
<th>Challenges</th>
<th>Possible Solutions</th>
</tr>
</thead>
</table>
| **Legacy System Understanding** | Feature location
Software Metrics
Architecture recovery
Software visualization
Soft knowledge | Preventing knowledge erosion
Developing generic tooling for heterogeneous legacy understanding
Maximizing automation in reverse engineering process | Knowledge transfer programs
Model-Driven engineering
Utilizing the human feedback |
| **Target System Understanding** | Specific standards
Specific technology
Functional specification | Identifying optimal business-IT alignment
Maintaining non-functional characteristics | Componentization
Use of proper standards & technologies |
| **Migration Feasibility Determination** | Cost-Benefit Analysis
OAR
Code complexity
Reusability assessment | Automating migration feasibility determining toolset | Technical, economical & business value information based toolset |
| **Candidate Service Identification** | Modeling legacy process
Information retrieval
Concept analysis
Business rule recovery
Code visualization | Identifying functional areas in source code | Feature location
Trace visualization
Source code search |
| **Implementation** | Slicing
Code extraction
Wrapping
Code transformation
Refactoring
Redevelopment
Graph transformation | Selecting appropriate migration strategies
Tooling for developing generic toolset | Model-Driven engineering |
| **Deployment & Provisioning** | Discovery
Testing
Evolution
Publication | Automated service discovery
Testing with run-time verification
Addressing service versioning
Addressing service commonality | Use of semantic markup languages
Techniques to combine testing with run-time verification
Usage of service compatibility
Self-adaptive services |
Further

Participate in our legacy modernization survey, if you have not done yet. 😊

www.servicifi.org/legacy-survey
References
