
Technical Report
CMU/SEI-93-TR-07
ESC-TR-93-184

The SEI and NAWC:
Working Together to Establish
a Software Measurement Program

James A. Rozum

December 1993

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-93-TR-07

ESC-TR-93-184
December 1993

The SEI and NAWC: Working Together
to Establish a Software Measurement Program

James A. Rozum

Software Process Measurement Project

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1993 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Suite C201, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-93-TR-7 i

Table of Contents

Preface v

Acknowledgments vii

1. Introduction and Background 1
1.1 Purpose and Audience 1
1.2 Report Organization 1
1.3 NAWC - Aircraft Division, Warminster, Pa. 2
1.4 Beginning A Measurement Program at NAWC 2
1.5 Criteria for the NAWC Measurement Process 3

2. Development Strategy for the Measurement Process 5
2.1 Software Measurement Process Action Team 5
2.2 SMPAT Action Plan and Implementation Strategy 6

2.2.1 Phase 1: Exploration and Planning 7
2.2.2 Phase 2: Establishing Key Management Concerns 8
2.2.3 Phase 3: Defining Measurement Data 8
2.2.4 Phase 4: Defining Data Collection and Analysis Processes 8
2.2.5 Phase 5: Pilot Testing the Measurement Process 9
2.2.6 Phase 6: Conducting Software Measurement Training and

Awareness Briefings 10
2.3 Identify Management Issues and Concerns 10

2.3.1 Resource Issues 11
2.3.2 Progress Issues 11
2.3.3 Quality Issues 11
2.3.4 Pre-Contract Award Issues 12

2.4 Description of Development Increments 13
2.4.1 Description of Increment Two Measures 15
2.4.2 Description of Increment Three Measures 16
2.4.3 Description of Increment Four Measures 17

3. Description of Increment One Measurement Processes 19
3.1 Issues to Address 19
3.2 Data Definitions 20
3.3 Data Collection Process 30

3.3.1 Collection of Staffing Data 31
3.3.2 Collection of Effort Data 31
3.3.3 Collection of Product Delivery (Milestones) Data 32
3.3.4 Collection of Work Progress Data 32
3.3.5 Collection of Size Data 32
3.3.6 Collection of Post Deployment Work Data 33

3.4 Data Analysis Process 33
3.4.1 Resource Issue Analyses 34
3.4.2 Progress Issue Analyses 43
3.4.3 Analyses of Technical Quality Issues 51

3.5 Reporting the Analysis Results 56

4. Piloting the Processes 57

ii CMU/SEI-93-TR-7

5. Software Metrics Office and Database 61
5.1 Software Metrics Office 61
5.2 Measurement Database 62

6. Lessons Learned 65

7. Future Directions and Conclusions 69

Bibliography 71

Appendix A — Acronyms 73

Appendix B — Data Definition Forms 75

Appendix C — Data Collection Forms 83

CMU/SEI-93-TR-7 iii

List of Figures

Figure 2-1 Linkage of SMPAT to Other NAWC Activities 6

Figure 3-1 Sample Staff Availability 35

Figure 3-2 Sample Staff Stability 37

Figure 3-3 Sample Cumulative Staff-Hour Data 38

Figure 3-4 Sample Monthly Staff-Hour Data 39

Figure 3-5 Sample Effort Distribution Chart 41

Figure 3-6 Sample Effort Distribution by Functional Area 42

Figure 3-7 Sample CSCI Software Size Tracking 43

Figure 3-8 Sample Milestone Commitment and Planning 44

Figure 3-9 Sample Analysis Using Multiple Plans 45

Figure 3-10 Sample Indicator for CSU Development Progress 47

Figure 3-11 Sample Milestone Completion Variances 48

Figure 3-12 Sample Functionality Allocation Plan 49

Figure 3-13 Sample Backlog Report of SPRs 50

Figure 3-14 Sample Progress Delays Due to Open SPRs 51

Figure 3-15 Sample SPR Density 52

Figure 3-16 Sample Pareto Analysis of CSCI Defects 54

Figure 3-17 Sample SPR Longevity Report 55

Figure 4-1 Pilot Project Timeline 58

Figure 5-1 List of Basic Indicators Produced Monthly 63

iv CMU/SEI-93-TR-7

CMU/SEI-93-TR-7 v

Preface

The software measurement program at the Naval Air Warfare Center (NAWC) at Warminster,
Pa., started in 1989 when the director of the Computer Systems and Software Department
recognized the need to improve the management insight and control of software projects.
With the guidance of Watts Humphrey and the SEI model for process improvement [PAULK],
NAWC soon realized that software measurement was also an important part of all software
processes.

In 1990, the NAWC at Warminster, Pa., with the help of the Software Engineering Institute
(SEI), initiated a software measurement initiative. The intent of the measurement initiative
was to provide quantitative methods that could be used to improve the management and
control of software systems development and maintenance at NAWC-Warminster.

With assistance from the SEI, the initiative has completed a software measurement guide
that details what specific measurement data to collect, how to collect the data, why the data
are being collected, and how the data will be used. The staff members working on the
initiative have also completed a measurement database, and pilot tested both a software
measurement database and the methods detailed in the guide.

This technical report is intended to share some of the success from this SEI joint effort with
the software community. The report describes how the effort was started and planned and
how the first of four increments of measures were implemented. An organization that is
about to start a measurement effort should find the level of detail in this report helpful in
determining how to plan its program and focus its initial effort. The lessons learned included
at the end of this report should also help organizations avoid some potential pitfalls.

vi CMU/SEI-93-TR-7

CMU/SEI-93-TR-7 vii

Acknowledgments

Of course, a joint effort such as the one between the SEI and NAWC that is described in this
technical report is the product of many individuals. Although there are too many to list all of
the contributions here, two key contributors were Mr. Watts Humphrey of the SEI and Mr.
Richard Mitchell of NAWC. Mr. Humphrey and Mr. Mitchell were the sponsors and
supporters of this effort. It was Mr. Mitchell's commitment to improvement that made the
entire effort possible. Another key contributor was Mr. Charles Koch of NAWC who was
responsible for organizing the effort and implementing it at NAWC. He also chaired the
software measurement process action team (SMPAT).

I thank my fellow SMPAT members and the contributions that they have made: Robert
Jankiewicz, Helen Ling, Tom Nguyen, James Rachiele, and Mien Wann.

I also thank the contributions of those who reviewed early versions of this technical report
and provided many useful comments to improve it: Anita Carleton, Wolfhart Goethert,
Donald McAndrews, and Robert Park.

Special thanks go to Suzanne Couturiaux who did an outstanding job editing this technical
report and helped to improve the early versions.

viii CMU/SEI-93-TR-7

CMU/SEI-93-TR-7 1

The SEI and NAWC:
Working Together to Establish a Software
Measurement Program

Abstract. In 1990, the Software Engineering Institute (SEI) and the then Naval
Air Development Center (NADC) in Warminster, Pennsylvania (now Naval Air
Warfare Center, Aircraft Division, Warminster) signed an agreement to jointly
develop a software measurement program for NADC - Warminster. To help with
that development, a software measurement process action team (SMPAT) was
formed with members from the SEI and NADC. The SMPAT's responsibility was
to plan, develop, and assist in the implementation of the measurement program.
The purpose of this technical report is to document and make available to the
software community the process and methods used, experience gained, and
some lessons learned in establishing the software measurement program at
NADC.

This report is meant to help organizations that desire to start a software
measurement program or have been struggling with such a program by providing
an example of one organization that has also struggled to establish a software
measurement program. To help an organization, real-life examples of how
software measures were defined, collected, and used to improve the management
process are included.

1. Introduction and Background

1.1 Purpose and Audience

The purpose of this report is to document and make available to the software community the
process and methods used, experience gained, and some lessons learned in establishing a
software measurement program at the Naval Air Warfare Center. The audience for this
report is potentially any software organization that has, or wants to establish, a software
measurement program of its own. The intent of this report is to help those organizations that
desire to start a software measurement program or have been struggling with such a
program by providing an example of one organization that has also been struggling to
establish a software measurement program. Through this real-life example, the SEI hope is
that an organization will be able either to "jump start" its measurement program or guide itself
through and around some of the obstacles in establishing a software measurement program.

1.2 Report Organization

The intent of this technical report is to give the complete process that was followed by the
SEI and NAWC in establishing the software measurement program at NAWC. Chapter 1
gives background information and a description of NAWC. Chapter 2 discusses the strategy
and plan to develop the measurement program. As part of that strategy, the measurement

2 CMU/SEI-93-TR-7

issues to be addressed by the measurement program were divided into four increments.
Chapter 3 discusses the processes and measures that were implemented as part of
increment one, including:

• Complete data definitions for the software measures.

• Details on how and where the data were collected.

• Examples of how the NAWC metrics office might analyze the software data to
address specific issues.

• Process of reporting the data analysis results back to the program manager.

Chapter 4 discusses the pilot test that was conducted to verify the processes in Chapter 3.
Chapter 5 describes the role of the NAWC metrics office and the software measurement
database developed. Chapter 6 discusses the lessons learned in establishing the
measurement program at NAWC.

1.3 NAWC - Aircraft Division, Warminster, Pa.

The software measurement program at the Naval Air Warfare Center (NAWC) in Warminster,
Pennsylvania started in 1989 when the director of the Computer Systems and Software
Department recognized the need to improve the management insight and control of software
projects. The Computer Systems and Software Department at NAWC-Warminster, or Code
70, is responsible for supplying computer and software technology to other projects. The
Code 70 director realized that software measurement would also have to be an important
part of all software processes.

NAWC-Warminster, formerly the Naval Air Development Center, is now part of the Naval Air
Warfare Center (NAWC) that includes navy laboratories throughout the United States
including: Pt. Magu and China Lake, California; Warminster, Pennsylvania; Patuxant River,
Maryland; Indianapolis, Indiana; and several other smaller sites.

NAWC-Warminster (hereafter, NAWC-Warminster will be referred to as simply NAWC) is the
primary navy laboratory responsible for anti-submarine warfare (ASW) subsystems and
avionics applications. Much of NAWC's ASW work requires extensive computer support both
during development and for the many electronic components embedded in ASW subsystems.
Typical tasks at NAWC include technical management and performance of ASW system
upgrades, new developments of avionics systems, and independent verification and
validation (IV&V) of major naval aircraft system upgrades.

1.4 Beginning A Measurement Program at NAWC

In the quest to improve its software capability, NAWC realized it needed to establish a
software measurement program. Since the objective was to improve the software process, it
was essential to be able to measure improvement both of the process and of the products
produced by the process. Without measurement, it would not be possible to determine

CMU/SEI-93-TR-7 3

objectively if a given process change is beneficial, detrimental, or has no effect. In examining
the SEI Capability Maturity Model (CMM) and its associated assessments, NAWC has
recognized the implicit requirement for software measurement to reach the repeatable level
of the CMM. Therefore, NAWC established a project to examine the measurement
possibilities, define a set of measures, and begin a measurement process on a pilot set of
projects. This project, performed by the Software Engineering Technology Branch of the
Computer Systems and Software Department, was to initiate software measurement
activities to support planning, control, improvement, management visibility, and tracking of
the software process at NAWC. The goal was to be able to provide insight—quantitatively—
into the issues and questions that software managers have about a specific project. It will
also provide a mechanism to monitor the continuing process of improvement in NAWC's
software capability. In August 1990, NAWC and the SEI signed an agreement to work jointly
toward improving, developing, and implementing a software measurement program at
NAWC.

In 1991, a Naval Air Systems Command (NAVAIR) task force, including two NAWC
personnel from Warminster, developed the NAVAIR Avionics Instruction for Metrics
[NAVAIR]. That document serves as a policy statement that mandates the collection of
software measurement data. The policy contains high-level descriptions of the measures
and leaves the details (e.g., definitions, collection methods, analysis) to the individual
projects. This serves the purpose of allowing maximum flexibility in implementing the
software measurement, without imposing requirements that could have an impact on the way
projects currently operate; it thus obviates large costs to implement the instruction. The
software measurement program described in this report was NAWC's implementation of that
policy at the laboratory level.

To help with that implementation, a software measurement process action team (SMPAT)
was formed in July 1991, to develop and implement a software measurement program at
NAWC.

The NAWC measurement program, to date, has been accomplished mostly on a "shoe-
string" budget. The SMPAT chairperson was only available part-time to work on software
measurement issues and was supported with minimal internal funding. The SMPAT
members were primarily volunteers, attending meetings and reviewing documents as they
could. NAWC has been able to provide a small amount of funding to the SEI for software
measurement support. Recently, NAWC has been able to fund a full-time member of its staff
to collect and analyze data on the pilot program and develop a database for measurement
data. This one person represented the beginning of a software metrics office at NAWC
[ROZUM93].

1.5 Criteria for the NAWC Measurement Process

NAWC realized early that the success of its measurement program would depend upon the
program's acceptance by the projects that will implement, collect, and analyze the measures.
To gain cooperation and acceptance, the NAWC users would need to be involved in the
definition and development stages of the program. Many measurement attempts of others

4 CMU/SEI-93-TR-7

have failed for lack of keeping that and the following in mind. Based on research by NAWC
personnel and previous experience, NAWC decided any measures that were to be included
in its set of measures should satisfy the following:

• Management issues should drive the measures and data collected. To avoid
collecting unconnected or non useful data, thereby unnecessarily burdening the
development process, the measures and data collected should be tightly coupled to
issues and problems that project management needs additional insight into to make
better decisions.

• The measures should be objective and repeatable. The measures should not be
subjective data, but instead, should be data that represent a quantification of the
process being measured. The data should be thoroughly well defined so that what it
represents and how it will be collected are clear and unambiguous. The measures
should not be 'invented' or 'created' as mathematical objects, and thus removed from
the actual software process. Through the definition of the data, the data collection
process should be repeatable so that when two or more people collect the same data,
the results will be the same.

• The indicators derived from the measures should imply goodness. For measures of
goodness, higher numbers should indicate a better process; and for measures of
errors/discrepancies, the lower the number the better the process.

• The measures should suggest corrective action when corrective action is needed.
The purpose of a measure is to improve the software development process.
Accordingly, the connection between the measures and the corrective action should
not be open to broad interpretation.

• The measures should be simple. With complex measures, there are often many
interactions and interdependencies, thus confusing the measures' meaning and
making it relatively easy for someone to misuse the measures. With a complicated
measure, it may be difficult to capture the underlying process.

• The measurement data should be both measurable and predictable. The
measurement data must be an artifact of the process and meaningful in terms of the
underlying process. And, measurement data must be predictable for management to
use it; just as schedule and budget are estimated and controlled, so should these
measures. Later measurement would then improve both planning and accuracy and
suggest corrective actions.

CMU/SEI-93-TR-7 5

2. Development Strategy for the Measurement Process

NAWC by working in cross-divisional teams, and with guidance from the SEI, established a
software measurement process action team (SMPAT) to develop the software measurement
process and methods for NAWC. The SMPAT began by developing a charter that described
its goals, membership, meeting logistics, and expected products. The charter was followed
by generation of the SMPAT action plan, which further defined the goals and described the
process by which the SMPAT would pursue those goals.

2.1 Software Measurement Process Action Team

The primary initial resources for accomplishing work on the software measurement project
were the SMPAT chair and the Software Engineering Institute representative. Additional
SMPAT members contributed to the extent possible. The SMPAT worked collaboratively with
members of the NAWC metrics office; all metrics office staff were included as members on
the SMPAT. Within this arrangement, metrics office staff members completed the primary
work items and metrics office members of the SMPAT provided an important service by
reviewing and commenting on software measurement products.

The SMPAT met for approximately two hours every two weeks. The purpose of the meetings
was to discuss status and issues. Meeting minutes were documented and distributed among
the members. Action items were noted and the status reviewed at each SMPAT meeting.
The meetings became an important key to the success of the measurement initiative at
NAWC by keeping the SMPAT members focused on software measurement and involved in
its development process.

The SMPAT linked itself to other NAWC efforts as shown in Figure 2-1. The link to NAWC
management provided the strategic direction and resources to move NAWC toward a higher
maturity level through process improvements. A key to process improvement was being able
to measure the process and its products in order to identify areas for improvement.
Management's role was to help guide and direct the measurement and definition efforts. The
SMPAT worked with the process definition effort to develop the "hooks" in the software
process for software measurement.

The SMPAT leveraged NAWC projects in three ways:

1. Explored what measurements the projects were already collecting and how the
projects were using measurement. The SMPAT used this information to help guide
its work and recommendations while working collaboratively with the metrics office to
develop measurement products.

2. Pilot tested its measurements and process on projects.

3. Provided guidance on implementing software measurement and support to projects.

6 CMU/SEI-93-TR-7

Process Definition
 Effort

Management

Warminster
 Projects

SMPAT

Non-Warminster
 Projects

Process Framework
for Measurement

Guidance and
Direction

Implementation
Guidance

Data Collection,
Analysis, and
Feedback

Metrics Office

Measurement Product
 Development

Training and Implementing
data collection, analysis, and

feedback processes

Historical Data

Figure 2-1 Linkage of SMPAT to Other NAWC Activities

2.2 SMPAT Action Plan and Implementation Strategy

The SMPAT developed an approach that used an adaptation of the goal-question-metric
paradigm [BASILI] to determine the end data items to be collected. So that the SMPAT did
not proceed haphazardly, it developed an action plan that included a six-phase approach
towards completing its work. (The six phases are discussed later in this chapter.) The six
phases were:

1. Research and planning.

2. Establishing key management concerns.

3. Defining measurement data.

4. Defining data collection and analysis process.

5. Pilot testing measurement process.

6. Conducting software measurement training and giving awareness briefings.

CMU/SEI-93-TR-7 7

After completing phases 1 and 2, the SMPAT divided its work into four increments which are
described in Section 2.4. The increments partitioned the SMPAT's work logically by
management concern. Each increment was to be developed using phases four through six.
These four increments were described in a short plan that accompanied the action plan.

The SMPAT then began working to the activities in its plan. Its first major technical product
was the NAWC software measurement guide, dubbed SR-1 [ROZUM 92b]. The purpose of
SR-1 was to define the first increment of software measures, describe a detailed data
collection process, and finally, describe the analysis that would be performed to make the
data useful to the projects.

The SMPAT wanted to evolve its products. It incorporated evolution into its process by
initially concentrating on a few key management issues, testing its recommended
measurements and process, then expanding by improving and elaborating existing products
and developing new ones. The SMPAT strategy consisted of the six phases identified earlier
and described in detail below.

2.2.1 Phase 1: Exploration and Planning

The primary objectives of the exploration and planning phase were (1) to plan the project and
its remaining phases, and (2) to determine the state of the practice in software measurement
in Department of Defense (DoD) organizations and the general software community. This
phase was necessary to use SMPAT members' time efficiently by avoiding duplication of
previous and existing efforts and by using the experience of others as leverage.

The primary product of this phase was the SMPAT's action plan. The action plan was the
vehicle for documenting the plan of the remaining activities for the measurement initiative.
The exploration and planning phase was initially used to explore other similar measurement
efforts; however, to improve NAWC's software measurement process continually, the project
planned to explore new methods and measurements as they became visible or when a need
was identified.

The SEI worked jointly with SMPAT members to perform a high-level assessment of current
measurement work (both at NAWC and throughout the industry) to prepare the measurement
project. A number of Warminster projects, other navy measurement efforts, as well as other
DoD related efforts were explored.

During this phase, the SMPAT developed its charter and action plan. In addition, it
developed other informal deliverables including:

• Report on other DoD measurement activities explored.

• Project library of relevant materials received.

• Project meeting minutes.

• Action item log.

• Members' trip reports on related topics.

8 CMU/SEI-93-TR-7

This phase started in August, 1991 when the SMPAT held its kickoff meeting. Although
activity in this phase never officially ceases, and hence, the phase never ends, the level of
activity needed to explore other measurement efforts was reduced when the data definition
phase (phase 3) started.

2.2.2 Phase 2: Establishing Key Management Concerns

To be successful, the measurements needed to be driven by the concerns and issues of
NAWC management. The intent of this phase was to produce a list of prioritized
management concerns.

The SMPAT drafted a strawman list of concerns and presented the list to management.
Through discussions, the list of concerns and issues was modified then prioritized by the
SMPAT and reviewed with NAWC Code 70 management. The SMPAT, using this prioritized
list, planned the scope of its remaining work in terms of the four incremental builds.

2.2.3 Phase 3: Defining Measurement Data

The objective of this phase was to identify and define, in detail, software measures that would
provide insight for each management concern identified in the previous phase. During this
phase the SMPAT developed a detailed definition of each software measure and traced that
measure to a management concern.

The goal of this phase was to have issues drive the software data that are collected. The
SMPAT first established what the key issues and questions were for NAWC software
managers. After determining the list of key management issues and questions, the SMPAT
defined software measures and data parameters to collect to help address those issues,
recognizing this was only an initial set of measures because not all issues or questions can
be predetermined. The SMPAT then used those definitions as the basis for determining how
to collect each of the data parameters.

This phase started with the completion of the action plan developed in phase 2. The phase
concluded when all identified management concerns of a particular incremental build had
software measures that were traceable to those concerns identified and defined.

2.2.4 Phase 4: Defining Data Collection and Analysis Processes

The objective of this phase was to define the processes to collect and analyze the data. After
the definition of the data to be collected, the SMPAT felt it was important to define the
process of collecting the data. The data collection process included:

• How the data would be collected (e.g., data collection forms, automated tools).

• Where the data would come from (e.g., contract data requirements list (CDRL) item
for data, other CDRL items, files, reviews).

• Who would collect the data (e.g., SMPAT, project, contractor, IV&V).

• When the data would be collected (e.g., monthly, weekly, periodically).

CMU/SEI-93-TR-7 9

The collection process was considered very important because if the defined data could not
be feasibly collected, the data definition was useless. Likewise, the SMPAT put an equal
importance on the process of how the data would be analyzed, because, if the data could not
be used to help program managers make decisions, it would be principally useless.
Examples of what was defined for the analysis process include: what indicators would need
to be generated to address program manager concerns and issues, what types of trends
could be determined, and what types of insight were needed by management to make
decisions.

This phase started with the completion of the software measurement definitions developed in
the previous phase and concluded when the processes for data collection and analysis were
defined.

During this phase, the SMPAT developed a guidebook that traced the management concerns
to the data collected, and then to the analysis of the data that addressed management
concerns. Specifically, the guidebook documented:

• Management concerns.

• Data definitions.

• Data collection process.

• Data analysis process.

• Analysis results/feedback process.

2.2.5 Phase 5: Pilot Testing the Measurement Process

Before final publication and release of its software measurement work, the SMPAT desired to
test its measures and processes on active NAWC projects. This would establish that the
measures and processes (1) addressed the issues and concerns of management, and (2)
worked within the NAWC environment.

The SMPAT identified three potential NAWC projects to apply the software measures and
processes. The SMPAT chose one of the projects and then worked closely with that project
and its contractors to tailor its processes to the processes already in use. The intent was to
implement the measures on the project, observe the results, and modify the measures or
measurement process as necessary. Chapter 4 discusses in more detail the pilot test and
results of this phase.

This phase started with the identification and selection of the project. During this phase, the
SMPAT developed pilot test plans and a data collection guide specific to the project. This
phase ended when NAWC began to accept the software measurement application role for
Navy projects on a fee-for-service basis.

10 CMU/SEI-93-TR-7

2.2.6 Phase 6: Conducting Software Measurement Training and Awareness
Briefings

After being satisfied that the process for the set of measures in an increment was relatively
stable and could be implemented throughout NAWC, the NAWC metrics office began to
develop materials for:

• Promoting awareness and understanding of its work.

• Encouraging other NAWC organizations to use software measurement.

• Training projects and individuals at NAWC to use the measurements and processes
defined by the SMPAT.

The products developed during this phase had two objectives: (1) to obtain and maintain
sponsorship of the SMPAT and the metrics office, and (2) to develop the materials for training
and solicitation of software measurement work from projects at Warminster and eventually
other Navy or DoD organizations.

This phase was planned to be continuous after pilot testing the processes and measures of
the first incremental build.

During this phase the SMPAT began developing:

• Status briefings.

• Various awareness briefings.

• Marketing briefings.

• Training materials.

2.3 Identify Management Issues and Concerns

During phase 2 (establish key management concerns), the SMPAT and NAWC management
worked together to assemble a list of management concerns and issues for the NAVAIR
community. NAVAIR and NAWC managers had an existing task of surveying the
management of the NAVAIR community to establish their concerns. The results of this
survey, along with other similar surveys, and SEI knowledge of persistent problems in
developing software, contributed to the initial list of issues discussed between the SMPAT
and NAWC management. That list was narrowed down and prioritized by the SMPAT.

As with the development of other system components, the key issues identified for software
development related to resource adequacy and expenditure, development progress and
schedule, and the quality of the interim and final products. Unlike the development of other
system components, however, the nature of software development causes these three areas
to be strongly related. Issues with software quality, for example, can in many cases be
directly attributable to schedule and resource constraints. This interrelationship between
process, schedule, and quality required that the software measurement process address the
relationships between seemingly disparate types of software data.

CMU/SEI-93-TR-7 11

2.3.1 Resource Issues

The resource issues revolved around the adequacy and expenditure of the resources. The
SMPAT intended that the following issues and concerns would be addressed by the software
measures. The items in bold italics were those addressed at least partially by the
measurement process developed in increment one:

• Staff availability and stability

• Funding adequacy

• Spending rate

• Allocation of resources to key activities (e.g., documentation, configuration
management, or testing)

• Productivity rate assumptions

• Size estimate accuracy

• Subcontractor allocations

• Computer resource adequacy

2.3.2 Progress Issues

The progress issues are intended to address a common concern of all software managers:
Will the contract be completed on schedule, and if not, when will it be completed? Questions
about the progress of software contracts that NAWC management typically asked included:

• Schedule (milestone commitments); is the contractor meeting commitments on
time and within a prescribed level of quality?

• Development progress; what is the true (objective) progress of the contract?

• Schedule and forecasts to completion; were they realistic?

• Functionality allocations; were they shifting from earlier to later builds?

• Productivity rate; was the planned productivity rate being achieved?

• Rework; were high levels of rework having an impact on progress?

2.3.3 Quality Issues

The technical quality issues included both the quality of products being produced and the
quality of the processes used to produce the products. The managers were concerned that
interim products be stable and complete so that successive processes using those products
did not compound mistakes (i.e., defects) and thereby drive up the cost through added
rework. Questions about the technical quality that NAWC managers have asked revolve
around:

12 CMU/SEI-93-TR-7

• Utilization of target computer resources (e.g., spare capacities and throughput).

• Problem reports (e.g., severity of problems, number of problems, timely
resolution of problems, or high density levels of problems in products or
processes).

• Completeness (e.g., product and process exit criteria).

• Product stability and volatility (e.g., requirements, design, and functionality
allocations).

• Process stability and volatility (e.g., procedures and standards conformance).

• Premature release of products (e.g., adequately testing the software before being
released).

• Rework (e.g., later processes finding defects caused by earlier processes).

2.3.4 Pre-Contract Award Issues

Before awarding a development contract, NAWC managers also have raised many concerns
and questions about the following:

• Is a particular bidder's proposal realistic?

- Did the most technically capable bidder get the contract?

- What was the technical scoring range?

- What was the cost scoring range?

- How did a bidder's scores compare to the expected or minimum scores required?

• Is the bidder capable of doing the job?

- How much risk is involved and what are the high risk areas?

- Was a software capability evaluation (SCE) used to identify risks?

- What risks did the SCE identify?

- Is there a management or mitigation plan for the risks?

• Are the software estimates credible?

- Were the estimates based on the contractor's historical data?

- Were the estimates based on industry "standards"?

- What were the underlying assumptions of the estimates?

- How does the program office's estimate compare to the contractor's?

- How does the government's independent estimate compare to the contractor's?

CMU/SEI-93-TR-7 13

• Is the program plan and technology mature enough to launch?

- Is the system feasible?

- Has the system concept been proven?

- Is there a similar precedent system?

- Are the system requirements defined?

- Are the system requirements properly allocated to hardware and software?

• Do the requirements satisfy the customer's/end-user's expectation?

- Has the customer/end-user signed off on requirements?

- How many questions or action items did the customer/end-user have?

- Are the customer/end-users involved with the source selection evaluation board
(SSEB)?

As stated earlier, the software measures in increment one did not address each and every
issue identified above. Additionally, the SMPAT conceded that this list of issues would not be
exhaustive. The above list would provide only the "target" areas on which the SMPAT would
focus its initial, and future, measurement development increments. Also, as the NAWC
metrics office gained experience analyzing data regarding identified issues, other, perhaps
more specific or critical, issues would become apparent, and additional data items and
analysis would be needed.

2.4 Description of Development Increments

So that the measurement process would be effective, the software measures chosen were
based on NAWC management issues and concerns. The data collected for the measures
would be used to establish trends and provide information to NAWC management so that it
could make decisions based on information about how the products and processes were
progressing, both qualitatively and quantitatively.

The SMPAT identified four increments for implementing the measures. The SMPAT
partitioned the increments logically by management issues. The first two increments were to
address management issues concerning the management and control of software intensive
contracts.

The first of these increments used measures described by the SEI in its technical report,
Software Measurement Concepts for Acquisition Program Managers [ROZUM92a]. The first
of these four increments was completed, and an SEI special report was written that
documented the data to be collected to support the measures, the analysis methods to be
used to analyze these measures, and the management issues and concerns those measures
address in the first increment [ROZUM92b]. The four increments and the general measures
that were or will be defined and implemented for each increment are:

14 CMU/SEI-93-TR-7

Increment 1 (Management - Tier 1):

Staffing

Effort

Work progress

Product delivery (milestones)

Size

Post deployment work

Increment 2 (Management - Tier 2):

Complexity

Computer resource utilization

Requirements and design stability

Supportability

Increment 3 (Pre-award/Launch Readiness):

Requirements feasibility

Estimate realism

Launch realism

Increment 4 (Development Process Improvement):

SEI capability maturity model (CMM) activities

The second increment of measures would also address management issues for managing
and controlling of software intensive contracts; however, the measures in the second
increment are more complex and not easily defined or collected. Therefore, these measures
were deferred to the second increment so that progress could be made on less complex
processes and methods. The third increment was to address NAWC management issues
that relate to pre-contract award or source selection. The fourth increment was to address
NAWC's desire to move toward higher maturity levels as described by the SEI's Capability
Maturity Model (CMM) [PAULK].

This incremental approach had three advantages: (1) NAWC could start to define and collect
data to pilot test measures more quickly by starting these measurement processes as soon
as the measure and a collection process for obtaining data was defined, (2) the approach
leveraged some known methods and did not require NAWC or the SEI to research
extensively or develop new measures, and (3) the increments defined a path that projects
and/or organizations not currently using software measurement could logically follow and
mature their measurement processes.

The SMPAT chose the six measures in increment one because knowledge was readily
available about each and the issues addressed by the measures were key NAWC
management concerns. Each of the measures in increment one is discussed in detail in
Chapter 3 of this report. Increments two to four were not developed at the time of this report,
but are described conceptually below.

CMU/SEI-93-TR-7 15

2.4.1 Description of Increment Two Measures

The measures and data to be collected for this increment are intended to further support
management issues regarding the management of a software development or maintenance
project.

The measures in increment two were included here rather than increment one for
predominantly one or both of the following two reasons:

1. The SMPAT felt that certain measures were straightforward and easy to develop.
This would allow the SMPAT to develop the processes to support a measure quickly
and show some successes early. Because of this, some measures were moved into
increment two because the SMPAT did not believe they could easily define the
measure or a method to collect the data necessary to support it.

2. The insight that an increment two measure provided was a lower priority than some
of the others. An example of an increment two measure that follows the second line
of reasoning is computer resource utilization.

The measures to be defined and collected for increment two then include:

• Complexity

• Computer resource utilization

• Requirements stability

• Design stability

• Supportability

Complexity

The complexity of the software would give the program manager additional information that
could be used with the increment one measures to provide more insight into the amount of
work that needed to be completed and the cost of that work. For example, with increment
one measures, the manager has insight into the size, effort, and amount of work that needs
to be completed. But by adding information on complexity, the manager would also have
information on why some software modules of comparable size to others might take longer or
be expected to have more errors.

Computer resource utilization

The computer resource utilization is intended to give the program manager early insight into
whether or not the requirements for computer resources will be met. For example, the
software may have performance requirements or may need to allow for future expansion all
within a known hardware configuration.

Requirements and design stability

The requirements and design stability measures are intended to give the program manager
insight into whether or not the products of the requirements analysis and design process are
stable. The stability of these products will directly affect the overall schedule and cost of the

16 CMU/SEI-93-TR-7

project if later products have to be reworked because of changes in the requirement or
design products (e.g., a design or requirement specification).

Supportability

The supportability measure is intended to give the program manager information about the
requirements (e.g., testing, cost, and schedule) to support a specific software product. The
intent of the SMPAT was to leverage work completed by the United States Army Material
Command's Missile Command [MOORE]. That work has developed an assessment model
that provides an index describing the supportability of a software system.

2.4.2 Description of Increment Three Measures

The measures and data to be collected for increment three are intended to support
management during the pre-source selection phase, i.e., prior to the release of a request for
proposal (RFP). The measures in this increment would predominantly require research and
possibly the development of new measures, methods, and processes never performed
before. Each of the measures below was envisioned as an index with implications of the risk
involved in developing a proposed system. The measures for increment 3 include:

• Requirements feasibility

• Estimate realism

• Launch realism

Requirements feasibility

The requirements feasibility measure is intended to address issues regarding the precedence
of the software or functionality for the system to be developed. The intent is to determine
quantitatively whether or not the software requirements are "doable" and/or whether a risk
exists in assigning certain functionality to the software of the system. The idea is for NAWC
to ensure that software functionality requirements stated in an RFP are, in fact, feasible and
that software can be developed to meet its needs.

Estimate realism

The estimate realism measure is intended to address issues regarding risks in cost and
schedule overruns of systems. Of the three measures in increment three, this measure
would require the least research, but instead, require the buildup of historical data from
increments one and two from which comparisons and evaluations could be made with a
proposed system.

Launch realism

The launch realism measure is intended to address issues regarding the capability to
proceed with the a new system. The launch realism measures were envisioned as an index
and are based on:

CMU/SEI-93-TR-7 17

• Information about the capability of the technology required and available to develop
the system.

• Capability of the government program office including the funds to build the system
adequately.

• Capability of the contractor to develop the system based on its history of developing
similar systems, or complex and/or unprecedented systems.

2.4.3 Description of Increment Four Measures

The measures to be collected and analyzed for increment four would be based on the
Capability Maturity Model (CMM) developed by the SEI [PAULK]. The measures would
leverage work already completed by the SEI and support NAWC's efforts to improve its
software process.

18 CMU/SEI-93-TR-7

CMU/SEI-93-TR-7 19

3. Description of Increment One Measurement Processes

The first section in this chapter identifies the issues addressed by the measures in increment
one. The following sections describe how the data were defined, collected, and analyzed,
and how the results of data analysis were verified and then reported to the government
program manager. Note that, unlike typical measurement efforts that involve a government
agency and the contractor community, NAWC collected as much of the data as it could on its
own, i.e., without contractors delivering specific "metrics" data. The following were data
collected for each project participating: staff-hour data, dates of milestone reviews and
product deliveries, work progress data, problem report and change proposal data, and size
data.

3.1 Issues to Address

As discussed earlier, the issues in increment one were related to the government's
management and oversight of software projects. The issues were further partitioned into
resource issues, progress issues, and technical quality issues. The method(s) for analysis to
address each issue are described in the following sections. The specific issues that were
addressed (albeit to varying degrees) by the measures in increment one included:

• Resource issues

- Staff availability and stability.

- Spending rate.

- Allocation of resources to key activities (e.g., documentation, configuration
management, or testing).

- Size estimate accuracy.

• Progress issues

- Schedule (milestone commitments); was the contractor meeting commitments on
time and within a prescribed level of quality?

- Development progress; what was the true (objective) progress of the contract?

- Schedule and forecasts to completion; were they realistic?

- Functionality allocations; were they shifting from earlier to later builds?

• Technical quality issues

- Problem reports (e.g., severity of problems, number of problems, timely resolution
of problems, or high-density levels of problems in products or processes).

- Product stability and volatility (e.g., requirements, design, and functionality
allocations).

- Rework (e.g., later processes finding defects caused by earlier processes).

20 CMU/SEI-93-TR-7

3.2 Data Definitions

The SMPAT developed data definitions for the measures in increment one that described the
data in unambiguous terms. Each measurement definition would describe why a program
manager might want the data and how the measure supported specific management issues.

The definitions that follow were those preferred by the NAWC metrics office. However, the
metrics office would accept (at contract award time) a definition that was different or tailored
for a particular contract. The only constraint was that the data must have the capability to be
partitioned similar to that described in the preferred definition. For example, the metrics
office would accept a source line of code (SLOC) definition other than that defined in data
definition form number 3 as long as the SLOC data were partitioned by language and also by
whether it was new, modified, or reused. Data definition form 3 is included in Appendix B.

Staffing

The staffing measure provides the manger with insight into the staffing labor categories used
on the contract. This information was used to track the contractor's ability to maintain a
sufficient level of staffing to complete the contract [BOEHM] and to track the amount of the
contractor's staff turnover.

The contractor's full-time and part-time staff was tracked according to defined and agreed-
upon labor categories. Also tracked were the losses (staff turnover) and additions by labor
category. Losses that resulted in a higher than expected staff turnover for the project could
have jeopardized the project's quality and expected productivity rates because replacement
staff would need to be trained to become familiar with the software being developed and with
the decisions that had been made regarding that software.

To be counted as a full-time staff member, a person would have to expend more than 80 staff
hours on the contract within a single labor category in a calendar month. Each contractor
staff member who left the contract (e.g., the person is assigned to another contract or leaves
the contractor's organization or company) or a contractor staff member who did not expend at
least 10 staff hours on the contract in the current month and in the previous calendar month
(i.e., 10 hours in each month), was counted as a staff loss. Staff members who expended
effort on the contract, but could not be counted as full-time staff nor as losses, were counted
as part-time staff members.

The staffing measure also provided a manager with insight into the number of full-time and
part-time people working on the contract. When used along with the effort measure, the
staffing measure would indicate an approximate amount of overtime being worked
(regardless of whether or not it is compensated). The actual staff levels of the contractor's
labor categories were tracked and compared to the levels that were planned to be used.

The experience profiles of the labor categories for potential contractors to address were
documented in the request for proposal (RFP). To help define the labor categories, data
definition form 1 would be used. Typically, a minimum of four labor categories were defined
using data definition form 1 and were checked for consistency with the prime contractor's
statement of work (SOW). Data definition form 1 is included in Appendix B.

CMU/SEI-93-TR-7 21

Alternatively, the contractor could track staff levels by labor category using a work breakdown
structure (WBS). If a WBS was used, it would have to be used for the effort measure also.
Using this method, data would be collected for WBS elements at the level that software
activities were defined.

Effort

The effort measure tracked the staff hours being expended by the contractor during the
various development activities and for the entire project. Since software development is a
human-intensive and -dependent activity, the effort expended was typically the largest and
least controllable cost variable. The effort measure showed the relationship between
planned versus actual staff hours expended and was used to monitor whether work products
were being developed according to planned expenditures of resources. The effort measure
was particularly useful because it alerted managers to changes to and deviations from the
plan that could drive the cost up and cause the budget to be exceeded.

Each month, a contractor would report the actual staff hours expended for each labor
category and by functional area (software quality assurance, configuration management,
analysis, programming, etc.), using its in-house cost accounting system.

To further define the staff-hour data to be reported by contractors and subcontractors, data
definition form 2 was used.1 Data definition form 2 is included in Appendix B.

Product Delivery (Milestones)

The product delivery measure gave management a comparison of actual milestone
completions against established milestone commitments. This measure quantified the
contractor's performance toward meeting commitments for delivering products and
completing milestones. If individual schedule commitments were met, the whole project was
more likely to stay on schedule.

The product delivery measure helped to portray graphically planned delivery dates, revised
delivery dates, and the intermediate activities needed to meet the end delivery dates. Ideally,
each milestone would have at least one key interim activity per month. The product delivery
measure could also be used to track interim events defined in the software development
WBS leading up to the milestones, e.g., tool developments and government furnished
equipment (GFE) or information (GFI). These intermediate activities and events were not
standardized data items, but were project-specific items that were key deliverables for the
project to meet its commitments.

The product delivery measure tracked the completion of the following DOD-STD-2167A
milestone events when applicable on a contract:

1 This form is extracted from the SEI technical report, "Software Effort and Schedule Measurement: A
Framework for Counting Staff Hours and Reporting Schedule Information," CMU/SEI-92-TR-21
[GOETHERT]. See the technical report for further details and descriptions of the attributes on the
form.

22 CMU/SEI-93-TR-7

• Software specification review (SSR).

• Preliminary design review (PDR).

• Critical design review (CDR).

• Test readiness review (TRR).

• Formal qualification testing (FQT).

• Functional configuration audit (FCA).

• Physical configuration audit (PCA).

The delivery of the following software products were also tracked:

• Software requirements specification (SRS).

• Interface requirements specification (IRS).

• Software design document (SDD).

• Interface design document (IDD).

• Software test plan (STP).

• Software test description (STD).

• Software test report (STR).

• Software development plan (SDP).

The exit criteria for completing milestones were that the review was held and all significant
action items were closed from that phase. Exit criteria for the completion of the product was
the delivery of the product. Objective exit criteria for each intermediate event and activity are
defined and agreed to by the manager and the contractor, typically at contract award on a
project-by-project basis. Note that a level of quality was not part of the exit criteria for a
product. The quality of the product, or lack of it, was tracked through the post deployment
work measure. Analysis methods discussed in later sections describe how the measures
were correlated to determine impacts on the project and address management concerns. In
this case, if a product was delivered on time, but the level of quality was low, (e.g., there were
a large number of missing paragraphs or descriptions at too high of a level of detail), the
impact on the project would be determined through analysis of the product delivery measure
in conjunction with the post deployment work measure—and possibly others.

For each revision to the plans, associated schedule delays were calculated using the latest
approved plan as a basis. These delays were then tracked to determine the impact on the
project. The delays were with respect to the original plan and all approved plans superseding
the original.

CMU/SEI-93-TR-7 23

Work Progress

The work progress measure gave management a quantitative indication of the progress
toward completing activities. The measure used data on the planned and actual progress of
work items within software development activities. The data were used to assess whether an
activity was complete and the contractor was ready to proceed to successive activities.

The work progress measure tracked the progress of the development by quantifying and
tracking work items completed. For each activity, counts were made of work items that have
met defined exit criteria. This data, along with information on how many work items needed
to be completed for that activity, provided a quantitative method to determine how much work
remained. The work progress measure was applied across the major software development
process activities, i.e., requirements analysis, preliminary and detailed design, code and unit
test, integration and test, and formal test.2

As a minimum requirement, the following planned and actual data inputs were reported
monthly for each activity. Ideally, the manager and contractor defined additional work items
for each activity with objective exit criteria to better track work progress. Each of these
following inputs would be translated into entities that reflected the contractor's process:

• Requirements analysis.

- Number of software requirements documented in the SRS.

- Number of software requirements documented in the IRS.

• Preliminary design.

- Number of SRS and IRS requirements documented in the SDD.

- Number of SRS and IRS requirements documented in the IDD.

• Detailed design.

- Number of computer software units (CSUs) designed.

• CSU code and unit testing.

- Number of CSUs coded and unit tested.

• Computer software component (CSC) integration and testing.

- Number of CSC integration tests completed.

- Number of CSC regression tests completed.

- Number of CSUs integrated.

• Formal qualification tests.

- Number of FQT tests completed.

- Number of software requirements tested.

2 If a development model such as an incremental build or spiral model was used to develop the
software, then each increment would be tracked separately.

24 CMU/SEI-93-TR-7

The exit criteria for each of the above work items are described in Table 3-1 below. Note that
most of the exit criteria include a criterion for no open action items. In this technical report,
action items also includes formal tracking items such as software change proposals and
software problem reports as well as action items from reviews, walkthroughs, and
inspections.

Activity Work Items Work Item Exit Criteria

Requirements
analysis

Software
requirement
documented
in SRS

1) Review held (e.g., walkthrough) and reviewers agree
requirement adequately addressed in SRS.

2) No open action items that would impact that requirement.

Software
requirement
documented
in IRS

1) Review held (e.g., walkthrough) and reviewers agree
requirement adequately addressed in IRS.

2) No open action items that would impact that requirement.

Preliminary
design

SRS
requirements
documented
in SDD

1) Review held (e.g., walkthrough) and reviewers agree
requirement adequately addressed in SDD. Implies that
requirement is traceable from SRS to SDD.

2) No open action items that would impact that requirement.

IRS
requirements
documented
in IDD

1) Review held (e.g., walkthrough) and reviewers agree
requirement adequately addressed in IDD. Implies that
requirement is traceable from IRS to IDD.

2) No open action items that would impact that requirement.

Detailed
Design

CSUs
designed

1) Design walkthrough complete.

2) No open action items that would impact that CSU.

CSU code
and unit
testing

CSUs coded
and tested

1) CSU compiled without errors.

2) Unit test completed without errors.

3) Code inspection completed that included a review of unit test
results.

4) No open action items that would impact that CSU.

Table 3-1 Exit Criteria for Software Work Items

CMU/SEI-93-TR-7 25

Activity Work Items Work Item Exit Criteria

CSC
integration
and testing

CSC
integration
tests

1) Successful completion of all test steps in the software test
description for that CSC.

2) Review of test results completed.

3) No open action items that would impact that CSC or its CSUs.

CSC
regression
tests

Successful completion of identified tests.

CSUs
integrated

Successful completion of the CSC integration test.

Formal
qualification
testing

FQT tests 1) Successful completion of all test steps in the software test
description for that FQT test.

2) Review of test results completed.

3) No open action items that would impact that CSCI, or its
CSCs or CSUs.

software
requirements
tested

1) Requirement traced from SRS or IRS to a test step in the
software test description and that test step successfully
completed.

2) No open action items that would impact that software
requirement.

Table 3-1 Exit Criteria for Software Work Items (continued)

Size

Software size data gave the program manager an indication of the size of the software being
developed. Software size was used as an indication of the amount of work to be done and
the amount of resources needed to do the work. The size measure would alert the program
manager to changes in the estimate(s) and/or actual software size. As the size of the
software grew beyond that which was expected, the schedule and, therefore, the budget
would likely be exceeded.

The actual software size was tracked and compared to the estimate(s), then analyzed for
trends that the size of the software was growing or that functionality was moving from earlier
to later builds. Estimates of various size attributes were compared with new estimates or
actual code size monthly throughout the life cycle of the program.

26 CMU/SEI-93-TR-7

The size data consisted of the number of CSUs and source lines of code (SLOC). SLOC
was counted for each software language used during development. Each language was
further partitioned by new, modified, and reused SLOC.

NAWC defined SLOC (and what was included in SLOC) as follows:3

Source lines of code (SLOC): The lines of code that were generated by the software
developers and that can be classified as statements. Each statement separated by a
language-specific delimiter was counted as one SLOC, regardless of whether the
statement was contained on one line or continues across multiple lines. A single
SLOC statement may contain one or more embedded comments and still be counted
as one SLOC. Statements include: declarations, executable statements, format
statements, compiler directives, constructs, and data lines.

NAWC defined declarations, executable statements, format statements, compiler directives,
constructs, and data lines as follows:

Declarations: A declaration associates an identifier with an entity. Examples include
static initializations, type and bounds declaration, variable definitions, declarations of
constants, procedure headers and argument lists, function declarations, interface
specifications, import statements, and statements that declare or use generics.

Executable statements: Executable statements produce run-time actions or control
program flow. They contain the operational logic of the program. One characteristic
of executable statements is that they can be stepped through with interactive
debuggers. Also, debuggers can set breakpoints with respect to executable
statements.

Format statements: Format statements are statements that provide (often static)
formatting rules and textual labeling for information that was to be displayed on
screens, printed on output reports, or sent to files or other output devices. They are
also used to define the ways in which input information will be interpreted and edited.

Compiler directives: Compiler directives are special instructions to compilers, cross-
compilers, preprocessors, linkers, translators, etc.

Constructs: Constructs are those statements that provide some sort of control
structure. Constructs are usually reserved words within a language and include
statements such as: if-then-else, do-continue, goto, call(), with, procedure, function,
case, etc. Constructs such as begin-end, for-next, etc., are counted as one SLOC.

Data lines: Data lines are either (1) those statements that are used to specify an
initial value for variables, to fill an array with data elements, or (2) the data items of a
single database record. Each data line separated by a delimiter was considered one
SLOC.

3 The description for declarations, executable statements, format statements, and compiler directives
was adapted from "Software Size Measurement: a Framework for Counting Source Statements,"
CMU/SEI-92-TR-20 [PARK]. The description of constructs and data lines is adapted from Code
Counting Program Requirements Document, by Keystone Computer Associates, Inc. prepared for
NAWC, August 6, 1991.

CMU/SEI-93-TR-7 27

To further define SLOC reported by contractors and subcontractors, data definition form 3
was used to define what was included in the SLOC data.4 Data definition form 3 is included
in Appendix B.

The following guidelines were adapted or extracted from [JONES] and are specific examples
of how certain code syntax would be counted:

• Do not count commentary lines or statements that were used purely for information
purposes; i.e., the following statement would not be counted:

REM THIS ROUTINE CALCULATES GROSS PAY

• For strongly typed languages, count data definitions statements as one statement;
i.e., the following example counts as one statement:

WORKDAYs = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY)

• For weakly typed languages, count data definitions statements as one statement; i.e.,
the following example counts as one statement:

DATA = MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY

• Count assignment statements as one statement (i.e., A = B + C).

• Count equations as you would treat them in mathematics, (i.e., as a single unit or
line). The following expression counts as one statement:

A = ((B * C) / (D - E)) + ((F + G + H) * I))

however, the following would be counted as three statements:

A = B = C = Pi

• For languages that allow multiple logical statements per physical line, count the
logical statements similar to counting delimiters. The following example counts as
three statements:

BASE = 0: BASE = HOURS * RATE: PRINT BASE

Note: The two colons and the carriage return at the end of the line are the three
delimiters.

• Count procedure or function calls as one statement, (i.e., CALL PRINTDRV).

4 This form is extracted from the SEI technical report, "Software Size Measurement: a Framework for
Counting Source Statements," CMU/SEI-92-TR-20 [PARK]. See the technical report for further
details and descriptions of the attributes on the form.

28 CMU/SEI-93-TR-7

• Count IFs and THENs as one statement each. The following example would count as
two statements:

IF A OCCURS THEN UPDATE B

• Count IFs, THENs, and ELSEs as one statement each. The following example would
count as three statements:

IF A OCCURS THEN UPDATE B ELSE UPDATE C

• Count ELSEIF statements as one statement.

• Count CASE statements as separate statements. The following example would count
as five statements:

SELECT CASE NUMBER$

CASE "ONE": PRINT "1"

CASE "TWO": PRINT "2"

CASE "THREE": PRINT "3"

CASE "FOUR": PRINT "4"

END SELECT

• Count DO-WHILE constructs as 1 statement. The following example would count as
five statements:

WHILE J>10 DO

PRINT HEADER

PRINT LINENUM

PRINT MESSAGE

J = J + 1

LOOP

• Count FOR-NEXT constructs as one statement. The following example would count
as three statements:

FOR J=1 TO 10

PRINT HEADER

PRINT MESSAGE

NEXT J

• Count REPEAT-UNTIL constructs as one statement. The following example would
count as four statements:

REPEAT

PRINT HEADER

PRINT LINENUM

PRINT MESSAGE

UNTIL INDEX >10

CMU/SEI-93-TR-7 29

• Count nested constructs in accordance with the individual element rules. The
following example would count as six statements:

FOR J=1 TO 10

PRINT HEADER

FOR K=1 TO 3

PRINT NUMBER

NEXT K

PRINT LINENUM

PRINT MESSAGE

NEXT J

Post Deployment Work

The post deployment work (PDW) measure was used to track the evolving quality of the
products as measured by the number of closed and open software problem reports.5 Using
this measure, the manager could determine the level of resources needed, the progress
made, and the technical quality of the software and the processes used to develop the
software. This measure also gave the manager an early indication of the future requirements
to support the software.

The post deployment work measure also gave managers information on the readiness of the
software to proceed to the next phase by tracking the acceptability and problem content of
the products. The information on problem reports would be used to determine whether to
move products forward to the next development activity or to continue the current activity and
further mature the products. For example, if an inordinate number of SPRs were open at
TRR, a recommendation may include that the contractor needs to spend more time maturing
the software before continuing on to the formal qualification testing.

Software problem reports (SPRs) were discrepancies in a product noted during the
development process. The intent was to initiate and track SPRs for any product or work item
that had passed through its exit criteria and was counted as completed by the work progress
or product delivery metric. However, since NAWC is a government organization collecting
data on a contractor's process, this intent was not met in all cases. It is believed, though,
that when properly inserted on contract, the intent would be met. For the PDW measure,
data was collected on the total number of SPRs received, opened, and closed for the month
and overall. SPR data were also collected for the following:

5 Often, projects tracked software problem reports and software change proposals. When data on
software change reports were available, NAWC would collect and report the data similarly to the
software problem report data, but separately.

30 CMU/SEI-93-TR-7

• For each CSCI, SPRs were reported by priority.

• For each priority level, SPRs were reported by longevity.

• For each test source that can discover software problems and open SPRs, SPRs
were reported by priority.

An SPR was considered opened when it was received by the organization designated to
accept it. An SPR was closed after all signatures or approvals needed to close it were
obtained; the signatures and approvals minimally included the manager responsible for the
correction, the contractor's SQA or testing representative, and the government person
responsible for that project.

The following test sources were the process life-cycle phases where the software was when
an SPR originated:

• Pre-integration testing, i.e., all activities prior to integration testing.

• Integration testing.

• Preliminary formal qualification testing.

• Formal qualification testing.

• Independent verification and validation.

• Beta site testing.

• OT&E (operational testing and evaluation).

• Field (reported by the users in the field).

NAWC used the definition of priorities for SPRs in DOD-STD-2167A [2167A].

3.3 Data Collection Process

Each month, the NAWC metrics office collected data from participating projects. That data
included:

• Staff-hour data for the prime contractor and its subcontractors using data collection
form 2.

• Milestone review and product delivery data using data collection form 3.

• Work progress data using data collection form 4.

• Size data using data collection form 5.

• Problem report and change proposal data using data collection form 6.

In general, the NAWC metrics office collected the data from existing processes and sources.
That is, a separate CDRL item for delivering software measurement data was usually not
required. If needed, The NAWC metrics office would tailor its definition to be able to collect
the data in a format similar to that in data collection forms 1 to 6. The metrics office always
tried to get data in electronic form and then, using various methods, parse the information to

CMU/SEI-93-TR-7 31

obtain the data it needed. When this approach was applied, the data collection forms may
not actually be completed because the data were electronically transferred to the database.

Also, by not requiring a separate CDRL item for measurement data, the metrics office was
able to collect software measurement data at little or no additional cost to the contractor. The
primary cost that did exist was that needed to support the NAWC metrics office. This cost
was usually paid by the government program office responsible for the system being
developed. In return, that government program office received a proven software
measurement process and the benefit of a continually growing experience base of software
measurement practitioners.

3.3.1 Collection of Staffing Data

Monthly, NAWC received cost accounting data electronically from a contractor. These data
were then read into a database and, via macros, the data were parsed into the required
formats to support the staffing measure. If the data were not available electronically, the
prime contractor reported its staffing data and its subcontractor's staffing data to the NAWC
metrics office using data collection form 1. Data collection form 1 would be completed for the
prime contractor and each of its subcontractors separately. Additionally, a separate form
would be used for each build or delivery order.

Data reporting started at contract award and continued monthly for the life of the contract.
From the contractor's proposal and development plans, the NAWC metrics office received
the planned staffing levels for comparison with the actual data. The labor categories were
defined at contract award in the SOW and were also used by the effort metric.

3.3.2 Collection of Effort Data

For the effort metric, the NAWC metrics office used macros to parse the cost accounting data
received from a contractor by labor category for each functional area. The minimum
functional areas for which the contractor collected data were listed on data collection form 2.
If the data were not available electronically, the contractor reported its effort data and the
effort data from its subcontractor(s) to the NAWC metrics office using data collection form 2.
Data collection form 2 would be completed by the prime contractor and each of its
subcontractors separately. Additionally, a separate form would be used for each build or
delivery order.

Data reporting started at contract award and continued monthly for the life of the contract.
From the contractor's proposal and development plans, the program manager received the
planned staff-hour expenditure rates for comparison with the actual data. The labor
categories were defined at contract award in the SOW and were also used by the staff
measure.

32 CMU/SEI-93-TR-7

3.3.3 Collection of Product Delivery (Milestones) Data

Monthly, the NAWC metrics office recorded actual milestone completion dates and product
delivery dates using data collection form 3. Additionally, the metrics office would track interim
events and products when available.

The plan data for the product delivery measure were obtained from the contract CDRL.
Additional plan data were obtained from the SDP and at SSR, PDR, and CDR. When data
from multiple plans were available, data from superseded plans were still kept and used
during analysis to determine changes and impacts of replanning. For example, if milestone
plan data were obtained from SDP and again from the SSR, both sets of data were kept.
Even though the data from the SDP may be superseded by the data from the SSR, the
trends from replanning would be important information needed during data analysis.

3.3.4 Collection of Work Progress Data

The NAWC metrics office collected data for the work progress measure monthly using data
collection form 4. A minimum requirement was to have the planned and actual data inputs
reported monthly for each build, delivery order, release, etc. The following data were
collected:

Software requirements: The number of software requirements was obtained from the SRS
and IRS. The number of requirements documented in the SDD would be obtained from a
traceability matrix usually found in the SDD and the IDD.

CSUs: The planned number of CSUs was obtained from the SDD. The metrics office
obtained data on the actual number of CSUs that had met their exit criteria for being
designed and coded and unit tested from contractor status reports.

Integration tests: The planned number of integration tests for each incremental build was
obtained from the STP. The number of regression tests to be executed for each build was
obtained from either the STP, reported at the CDR, or recorded in the minutes of the CDR.
Data were obtained on the actual number of integration and regression tests completed and
the number of CSUs integrated from contractor status reports.

Formal qualification tests: The planned number of formal qualification tests and the number
of software requirements to be tested was obtained from the STP. Data were obtained on
the actual number of formal qualification tests completed from contractor status reports. If
the actual data were not available from contractor status reports, the contractor would
complete data collection form 4 each month.

3.3.5 Collection of Size Data

The NAWC metrics office collected data from contractor status reports on the number of
SLOC and CSUs by CSCI for each build. If the actual data were not available from
contractor status reports or software development files, the contractor would complete data
collection form 5 each month.

CMU/SEI-93-TR-7 33

The planned number of CSUs was obtained from the SDD. The original estimate for total
SLOC was obtained from the contractor's proposal and updated formally in the SDP and at
SSR, PDR, and CDR.

For each development language used within a CSCI, the number of actual SLOC under
configuration control for the build of a CSCI was counted as well as an estimate of the
number of SLOC remaining to complete the build for that CSCI. The actual and estimated
SLOC numbers were further partitioned by the amount of new, reused, and modified SLOC.
If possible, the NAWC metrics office would count the code. Often though, this was not
feasible and the contractor was responsible for counting the code and supplying the data to
the NAWC metrics office. The actual SLOC was usually obtained from the software
development folders using an automated counting tool approved by the NAWC metrics office.

3.3.6 Collection of Post Deployment Work Data

The primary data item for the post deployment work measure was the software problem
report (SPR). The SPR data were collected by the NAWC metrics office monthly using data
collection form 6. Ideally, the data were obtained from an automated database management
system that stored all SPR information for the project.

For the post deployment work metric, data inputs on SPRs were collected separately for the
total number received, opened, and closed since the last report as well as for the total to
date. Additionally, the SPR data were parsed as follows:

• Each CSCI has SPRs reported by priority (open only).

• Each test source has SPRs reported by priority (opened and closed).

• Each SPR priority level was reported by longevity (open only).

• Software change proposals (SCPs) were reported by longevity (open only).

3.4 Data Analysis Process

This section describes some suggested data analysis methods to specifically address the
management issues in increment one. These methods were documented in the NAWC
Software Measurement Guide [ROZUM 92b]. The methods were used to various extents on
each project for which measurement was applied. The decision on what methods to use
primarily depended on what issues and concerns were of priority to the program manager.
That is, a project might not use all of the methods described. Regardless of the methods
used, when briefed on the analysis results, projects were reminded that software measures
do not answer questions, but instead, provide insight into selected areas.

Sections 3.4.1 to 3.4.3 address key analysis methods for the three core issue areas that were
measured: resources, progress, and technical quality. The power of software measurement
comes not as much from the analysis of a single metric—though each can be important in its
own respect—but from the analysis of trends and impacts across a variety of measures and
how various analyses address the issues. For more examples of using other key

34 CMU/SEI-93-TR-7

measurement analyses in managing programs quantitatively, see [ROZUM 92a] and
[BAUMERT].

Some of the charts used for analysis include upper warning limits (UWL) and lower warning
limits (LWL). The warning limits, unlike statistical control limits, were not statistically
determined but were arbitrarily determined. They were simply an arbitrary percentage of
planned levels. Whenever the actual data curve falls outside the warning limits, potential
problems could be starting to show up and further investigation would be needed. Seemingly
good trends, such as the actual data curve being higher than the UWL, were also
investigated. As part of the analysis process, the NAWC metrics office investigated trends by
asking probing questions, analyzing the data and other contract information more closely,
and using other measures to determine the impacts of the trends on a program.

The examples shown in the following sections are only examples. They were not meant to
imply what a good or bad project would look like. They are not meant to represent NAWC,
nor were the examples taken from NAWC projects. These examples are fictional
representations of data. They are meant only to be samples that illustrate how a certain
chart could be constructed. Likewise, the analysis descriptions are examples of how the
charts can be used as indicators; they are not a step-by-step procedure for analyzing the
charts. The analysis of data was subjective; however, certain trends and indications would
normally be apparent. Because the analysis was subjective, it was very important to
correlate negative AND positive trends across indicators.

3.4.1 Resource Issue Analyses

The resource issues revolved around the adequacy and expenditure of the resources.
Management could use the measures in increment one to gain insight into the following
resource issues:

• Availability and stability of staff.

• Spending rate.

• Allocation of resources.

• Accuracy of size estimate.

Availability and Stability of Staff

To determine if the staffing levels were at planned levels and if the staff itself was stable, the
metrics office analyzed data from data collection form 1 to generate charts similar to Figures
3-1 and 3-2.

To analyze the staff availability, a chart similar to Figure 3-1 would be generated for full-time
staff and part-time staff for the prime contractor and each of the prime's subcontractors. The
UWL and LWL in Figure 3-1 are ±25% of the planned curve.

CMU/SEI-93-TR-7 35

 10

 20

 30

Planned

F
ul

l-T
im

e
S

ta
ff

M10M5 M6 M7 M8 M9M4

Months

Actual

UWL

LWL

Figure 3-1 Sample Staff Availability

When actual staffing levels exceeded the UWL and LWL for either the full-time or the part-
time staff charts, the NAWC metrics office would first inspect the staff chart that is not
exceeding the limits to determine if the other is making up the difference. For example, if the
actual curve of the full-time staffing chart is below the LWL, then is the actual curve of the
part-time chart above the UWL? To address this and other questions, the metrics office
analyzed the following situations:

• Case 1; full-time actual curve is less than LWL and the part-time actual curve is less
than LWL. This case is potentially the worst case example. The staffing levels are
not at the level which was planned to do the job. In this case, completing the project
on schedule would be in jeopardy. If the project appeared to be on schedule, the
quality of work being completed would be analyzed. The NAWC metrics office would
analyze data from the product delivery, work progress, and post deployment work
measures.

From the work product delivery and work progress measure, the NAWC metrics office
would inspect the data to determine if work is being completed as planned. The
NAWC metrics office would pay particular attention to the exit criteria for the various
data to ensure that milestones and work progress data items being reported were
actually meeting their exit criteria. The longevity of SPRs from post deployment
measure data would be analyzed to determine if rework was starting to accumulate.

• Case 2; full-time actual curve is less than LWL and the part-time actual curve is more
than LWL. This case also implies that completing the project on schedule would
probably be at risk. Similar to case 1 above, the NAWC metrics office would analyze
data from the product delivery and work progress measure to determine if the work
will be completed properly and on-time. Data from the post deployment work

36 CMU/SEI-93-TR-7

measure would also be analyzed to ensure that the amount of rework backlogged
would not be excessive.

• Case 3; full-time actual curve is more than UWL and the part-time actual curve is less
than UWL. This case would need to be analyzed carefully. If the work is being
completed at a rate that is commensurate to the increased level of staffing and the
technical quality level is sufficient, then the project should complete ahead of
schedule. If the work is not being completed at a rate equivalent to the increased
staffing level, but is being completed according to the original plan, the project may
complete on time, but probably over budget. Here, the NAWC metrics office would
also analyze the effort measures to determine if the spending rate had increased
significantly and if the budget was in jeopardy.

• Case 4; full-time actual curve is within the UWL and LWL, but the part-time actual
curve is more than the UWL. In this case, the NAWC metrics office would be
concerned about what happens when the part-time actual staff levels drop back
below the UWL. If the part-time staff were brought in for administrative duties to meet
the schedule, were planned to be brought in and just started earlier than planned, or
were just staying on, (i.e., were leaving the project later than planned), this is usually
not a problem, but the NAWC metrics office should carefully monitor the budget to
determine if the additional expenditures were having an excessive impact. However,
if the part-time staff were added to correct technical problems, the NAWC metrics
office would be concerned about what happened when the part-time staff leave the
project; will others still on the project know what was done to correct problems and
how to correct them in the future should they reappear?

• Case 5; full-time actual curve is within the UWL and LWL and the part-time actual
curve is also within its UWL and LWL. Here, the NAWC metrics office would monitor
the situation and ensure that compensating additions and deletions to the staff were
not what is keeping the staffing levels stable.

To analyze the staff stability, a chart similar to Figure 3-2 was generated for the staff of the
prime contractor and each of the prime's subcontractors.

The NAWC metrics office would analyze the staff turnover data from data collection form 1
using a chart similar to Figure 3-2. Primarily, the NAWC metrics office would be concerned
that the contractor's staff is not changing excessively. Some changes are unavoidable and
necessary; too many changes could introduce a risk of completing the project on schedule as
well as a degradation in the overall quality of the products. All trends in the program's staff
stability chart also would be analyzed in conjunction with the trends in the staff availability
chart.

CMU/SEI-93-TR-7 37

 4

 12

Staff added

S
ta

ff

M10M5 M6 M7 M8 M9M4

Months

Staff lost

8

Figure 3-2 Sample Staff Stability

The trend that the NAWC metrics office would analyze carefully is when staff additions and
staff losses are about the same and the actual staff availability trends are within the UWL and
LWL (i.e., case 5 above). This scenario could be an early warning that the program may be
facing future schedule and budget problems. Also, the maintenance of the program may be
more tedious and therefore more costly and burdensome. The other various trends that the
NAWC metrics office look for include:

• Large staff losses and large staff additions. This trend is similar to the trend above;
however, the budget problems will occur sooner during development.

• Large staff losses and few staff additions. This is the worst case and is usually an
early indicator of potential future schedule, budget, and quality problems during
development. Additionally, the maintenance of the products may be particularly
difficult.

• Small staff losses and large staff additions. This trend usually indicates that the
project is behind schedule. When this trend appears, the schedule, budget, and
quality would typically be in jeopardy. This trend occurs when a project is in trouble
and trying to catch-up.

In general, the NAWC metrics office analyzes the above data and trends to determine if the
staffing levels are as planned and that the contractor's staff is stable. Any adverse trends
would be closely analyzed in conjunction with the remaining trends.

Spending Rate

To analyze the spending rate, the NAWC metrics office concentrated on the staff hours
expended because, typically, the effort expended is the largest cost variable on a project.
Because software development is a human-intensive and -dependent activity, the effort
expended is usually the least controllable cost variable. To analyze the spending rate, the

38 CMU/SEI-93-TR-7

metrics office used charts similar to Figures 3-3 and 3-4. The data for these charts come
from total staff-hours data on data collection form 2. The UWLs and LWLs in Figures 3-3 and
3-4 are ±10%.

Because Figure 3-3 is cumulative staff-hour data, any differences between the planned and
actual curves early in the project would be small. For this reason, small but steadily
increasing differences between the curves were considered warning signals. Also, because
this chart is cumulative data, the NAWC metrics office would be particularly wary of trends
that reverse. Here, the project strives for stability in the actual curve. The metrics office used
a chart similar to Figure 3-3 to analyze the following trends:

1000

2000

3000

4000

5000

Actual
Planned

M2 M3 M4 M5 M6M1

Months

UWL

LWL

S
ta

ff-
H

ou
rs

Figure 3-3 Sample Cumulative Staff-Hour Data

• Case 1: Actual curve is greater than UWL. Once the actual curve exceeded the
UWL, it would be difficult to complete the project within budget. The budget might be
met, though, if an equivalent rise in the work being completed was increasing at the
same rate. This implied that the project would be completed within budget and earlier
than planned. However, if the work is not being completed at a pace quicker than
planned, minimizing the budget overrun and still completing the project on time and at
a desirable level of quality would be difficult.

The NAWC metrics office would watch carefully for a reversal of this trend. If the
trend reverses, rather than stabilizes, less time will be spent on the project and now
completing the project on schedule would become a risk. Sometimes, in an attempt

CMU/SEI-93-TR-7 39

to complete the project within budget, functionality is removed from the project. In
this scenario, although the budget may be met in the near term, the project usually
costs more than planned when the removed functionality is eventually developed.
The NAWC metrics office would use trends from all of the remaining measures for
more insight into the status of the project.

• Case 2: Actual curve is less than the LWL. In this case, the spending rate is much
less than planned. Here, the NAWC metrics office would extrapolate data from the
product delivery and work progress measures to estimate if the project would be
completed as scheduled. Also, data from the post deployment work measure would
be analyzed to determine if future work was being backlogged. A reversal of this
trend would be analyzed to determine if the additional effort being expended is useful
towards completing the project and/or improving the quality of the products.

• Case 3: Actual curve is less than the UWL and greater than the LWL. In this case,
the budget is less of a risk. The NAWC metrics office would analyze the other
measures to ensure that the progress of the project is commensurate with the effort
being expended.

Figure 3-4 shows the chart of monthly staff-hour data expenditure. Because the data were
monthly and not cumulative, reversal of trends is not a concern, but is actually desired when
the current trend is the opposite of what is desired. If the actual curve is consistently above
the UWL and the work being completed is not rising equivalently (as seen in the product
delivery and work progress measure) or the backlog of work is not decreasing (as seen in the
post deployment work measure), then completing the project within budget would become a
risk. Just the opposite is true if the actual curve is less than the LWL; i.e., the budget is not a
risk, but completing the project on time is. Fluctuations in the chart in Figure 3-3 should also
be seen in Figure 3-4.

20

40

60

80

Planned Actual

M8M3 M4 M5 M6 M7
Months

M10M9

UWL

LWL

Figure 3-4 Sample Monthly Staff-Hour Data

40 CMU/SEI-93-TR-7

Allocation of Resources

When determining if the proper resources are being allocated, it is important to analyze that
the effort is being expended adequately by the appropriate labor categories for each
functional area. To analyze the allocation of labor, the metrics office uses data from data
collection form 2 to generate a bar chart similar to Figure 3-5.

For each project, a chart similar to the one in Figure 3-5 is generated each month to highlight
where the effort is being expended on the project. Charts are modified to better highlight
areas that may be of particular interest or risk to the program. For example, the "others"
labor categories or the "others" functional areas could contain items that need to be shown
separately.

The NAWC metrics office would analyze the following issues:

• Is a disproportionate number of staff hours being spent on later life-cycle functional
areas that depended on earlier functional areas? For example, in Figure 3-5, if the
project had not yet had its SSR (i.e., requirements review), there would be a concern
that a large number of staff hours were being spent in design, coding, and integration
and testing.

• Are an adequate number of staff hours being expended by SQA and configuration
management (CM)?

• If the "others" categories (either the labor category or the functional area) have a
larger than expected number of staff hours being expended, where and what are
those staff hours being expended towards?

In general, the NAWC metrics office would analyze the chart and determine if the distribution
of staff hours was appropriate considering where in the life cycle the project was.

CMU/SEI-93-TR-7 41

 25

 50

 75

 100

A&B (Management) C,D,&E (Systems Engineering)

F,G,&H (Software Engineering) Others

(850)

(1390)

(2010) (2420)

(1500)

(1160)

() = Total Staff Hours

S
ta

ff
H

ou
rs

 (
x1

0)

VI = SQA and CM

I = Requirements analysis & system design
II = High-level and detailed design

III = Code and unit test
IV = Integration and testing

V = Training

VII = Others

I II III IV V VI VII

(1900)

Labor Categories

Functional Areas

Figure 3-5 Sample Effort Distribution Chart

Additionally, each of the functional areas in Figure 3-5 should have a chart similar to Figure
3-6 to ensure that the expenditure of staff hours over time for each functional area is in line
with expectations. From this chart, the NAWC metrics office would look for spikes and dips in
the labor category bars. Spikes are where more effort is being expended during a particular
month than was spent in the months before and after the month in question. Likewise, a dip
is where less effort is expended during a particular month than was spent in the months
before and after the month in question.

42 CMU/SEI-93-TR-7

M8M3 M4 M5 M6 M7

Months

 100

 200

 300

 400

A&B (Management) C,D,&E (Systems Engineering)

F,G,&H (Software Engineering)Others

Labor Categories
H

ig
h-

 L
ev

el
 a

nd
 D

et
ai

le
d

D
es

ig
n

S
ta

ff
H

ou
rs

 (
x1

0)

Figure 3-6 Sample Effort Distribution by Functional Area

Accuracy of Size Estimate

The accuracy of the size estimate is important because the size estimate is usually the basis
for planning the amount of effort and time (schedule) needed to complete a project. An
increase in the expected size is an early indicator that the budget and the schedule for
completion may not be met. To track the size of the software with this type of indicator, a
chart similar to Figure 3-7 was generated monthly using the data from data collection form 5.

From the chart in Figure 3-7, the NAWC metrics office would look for growth in the estimated
size of the software. As actual data became available, the chart would have bars for the
actual SLOC, the amount of SLOC estimated to remain, and the sum of the two (i.e., total
SLOC). The total SLOC was then compared to the estimate to indicate variances.

CMU/SEI-93-TR-7 43

100k

200k

 300k

 400k

M2 M3 M4 M5 M6
Months

100

200

 300

 400

Computer software units (CSUs)

Source lines of code (SLOC)

CSCI A

C
S

U
s

S
LO

C

Figure 3-7 Sample CSCI Software Size Tracking

Figure 3-7 also shows the planned number of CSUs. The design, coding, integrating, and
testing of CSUs are the best indicators of the amount of effort and time needed to develop
the system schedule. Experiences at NAWC show that a better indicator of schedule
progress was an increase in the planned number of CSUs.

Another analysis of Figure 3-7 is to determine whether there is an equivalent increase in the
number of SLOC when the number of CSUs increase, and vice versa. For example, if the
estimated SLOC goes up 10%, does the number of CSUs go up 10%? If not, then the
program manager should investigate closely the estimation methodology as well.

3.4.2 Progress Issue Analyses

Although the progress issue is easier to articulate than the resource issue, it is more difficult
to address. The issue is: will the contract be completed on schedule, and if not, when will it
be completed? The measures in increment one that provided insight into the following
questions on progress were:

44 CMU/SEI-93-TR-7

• Schedule (milestone commitments); is the contractor meeting commitments on time
and within a prescribed level of quality?

• Development progress; what is the true (objective) progress of the contract?

• Schedule and forecasts to completion; were they realistic?

• Functionality allocations; were they shifting from earlier to later builds?

• Rework; were high levels of rework having an impact on progress?

Schedule Commitments

Planning and meeting individual interim schedule commitments is the key to completing the
overall project on time. The NAWC metrics office used charts similar to Figures 5-8 and 5-9
to analyze the individual commitments and determine how progress towards completing them
affected the overall schedule. The data for the chart in Figure 3-8 are from data collection
form 3; whereas the data for the chart in Figure 3-9 come from updates to the plans. These
updates could be formal updates (i.e., those discussed and agreed to by the contractor and
government) or the data could have been retrieved informally by being reported monthly
along with the actual data on data collection form 3.

Plan Month

M10 M11M4 M5 M6 M7 M8 M9

M8

M4

M5

M6

M7

= PDR = CDR = TRR= SSR

R
ep

or
t M

on
th

Figure 3-8 Sample Milestone Commitment and Planning

In Figure 3-8, the data from data collection form 3 is plotted monthly on the y-axis. The x-
axis corresponds to the current plan that the government program office is using for

CMU/SEI-93-TR-7 45

managing the project. Charts similar to Figure 3-8 would be generated for the milestone
data on data collection form 3 and for the product data on data collection form 3. Likewise,
other intermediate milestones agreed to by the contractor and government program manager
would have another similar chart.

To analyze the chart, the NAWC metrics office looks for early commitments that have slipped
and determines if future commitments are slipping an equivalent amount. For example, in
Figure 3-8, the SSR milestone has slipped four consecutive months before finally being
completed in month 7. However, the next immediate milestone, PDR, did not slip until the
third reported slip of the SSR. In month 4, the PDR was to be complete approximately one
and one-half months after SSR. In the latest report, month 7, the PDR is shown as
approximately a half month later. In a situation like this, the NAWC metrics office would
question how SSR could slip two months while TRR did not slip at all.

The chart in Figure 3-9 can be generated from any plan data on schedule commitments or
expected progress. To generate the chart, the NAWC metrics office selects key schedule
items and then graphs the various plans for each item on a separate chart. Often, schedule
progress is reported to be in line with the plan. By charting the various plans, the NAWC
metrics office could then ask, "in line with which plan?"

Months

C
S

U
s

C
od

ed
 a

nd
 U

ni
t T

es
te

d
(3

00
 T

ot
al

)

M7 M8 M9 M10 M11 M12 M13M6

50

100

150

200

250

300

Plan (Contract Award) Plan (SDP) Plan (PDR)

Actual

Plan (CDR)

Figure 3-9 Sample Analysis Using Multiple Plans

46 CMU/SEI-93-TR-7

From charts similar to Figures 3-8 and 3-9 for key program items, a project can better plan
and determine when the project will be completed and what future items will slip given the
slippage of earlier, dependent items.

Development Progress

Intermediate milestone completion and product deliveries are used to indicate if the project is
meeting its overall schedule. In addition, charts similar to the one in Figure 3-10 give better
insight into the progress of completing the work to be done. A chart similar to Figure 3-10
would be generated, when possible, for:

• Requirements related work items; with curves for requirements in the SRS,
requirements documented in the SDD/IDD, and requirements tested in FQT.

• Work items related to the CSU progress; with curves for CSUs designed, CSUs
coded and tested, and CSUs integrated.

• Testing related work items; with curves for regression tests, integration tests, and
FQT tests.

The data for each of these charts come from data collection form 4. The plan data are
always from the currently approved plan. Additionally, each curve could be generated as a
separate chart with a UWL and LWL. If generated, the UWL and LWL are generally around
±10 or 20% depending on the data item and the issue it is measuring.

To analyze a chart similar to Figure 3-10, the NAWC metrics office would look for variances
between the actual and planned curves of the work items. The work items all have defined
exit criteria that must be met before the work item can be included as data for the actual
curves. If the variances are small, the NAWC metrics office would validate the data being
included in the charts to ensure that the work items being reported as complete are meeting
the exit criteria.

CMU/SEI-93-TR-7 47

Months

M10 M11M4 M5 M6 M7 M8 M9

50

100

150

200

250

300

Designed

Coded

Integrated

Planned Actual

Figure 3-10 Sample Indicator for CSU Development Progress

Forecasts to Completion

The NAWC metrics office uses software measurement data to forecast when the project
would be completed. The forecasts use data from data collection forms 3 and 4 to generate
a series of charts similar to Figure 3-11. A chart is normally generated for:

• Milestones to be met.

• Products to be delivered.

• Work items to be completed.

The estimated slips in the charts are determined from the data collected or the information
provided by analyzing the development progress and schedule commitment issues above.
Additionally, information on the allocation of resources, staffing stability, testing SPRs,
functionality allocations, and effort expenditures are all used to determine the forecasts.

At a minimum, the forecasts for the milestones would be equal to the amount of slippage
seen in early milestones. Usually, additional information, including historical data when
available, would also be used to generate a forecast. A similar approach was taken for the
products to be delivered.

48 CMU/SEI-93-TR-7

+20

 0

1st quarter
CY 91

2nd quarter
CY 91

A = Milestone No. 1

B = Milestone No. 2

C = Milestone No. 3

D = Milestone No. 4

3rd quarter
CY 91

M
ile

st
on

e
V

ar
ia

nc
e

(D
ay

s)
La

te
 =

 (
-)

 a
nd

 E
ar

ly
 =

 (
+

)

-20

A

B
C

D
A B C

D
A B C D

= Actual

= Estimated

Figure 3-11 Sample Milestone Completion Variances

Functionality Allocations

The NAWC metrics office used a chart similar to Figure 3-12 to reveal the postponement of
functionality from early builds to later builds. Sometimes, such postponements were made to
achieve early schedule completion successes. Typically, this translated into overall budget
and schedule risks (and maybe a quality risk as well).

A chart similar to that in Figure 3-12 was generated for the project. The data for the chart
come from summing the CSU data shown on data collection form 5 for each CSCI.

To analyze the chart, the NAWC metrics office would look for:

• Decreases in the number of CSUs planned in early builds.

• Increases in the number of CSUs in later builds.

• The addition and deletion of entire builds.

• Growth in the number of CSUs planned for the project.

Of course, each trend was correlated to other measures. More importantly, when the number
of CSUs increased or decreased in builds, the metrics office would determine if planned
staffing levels and schedules also changed.

CMU/SEI-93-TR-7 49

M2 M3 M4 M5 M6M1

Months

 25

 125

 50

 75

 100

Build No. 1

Build No. 2

Build No. 3

Build No. 4

(170)
(190)

(270)

(275)

(370)

(460)

() = Total CSUs
C

om
pu

te
r

S
of

tw
ar

e
U

ni
ts

 (
C

S
U

s)

Figure 3-12 Sample Functionality Allocation Plan

Progress Impacts Due to Rework

The greatest impact on progress and completing the project on schedule, is the unplanned
time needed to rework products that were defective. Unlike a lot of industries where defects
are found and the entire product might be discarded, software is not easily discarded;instead,
defects in software must be fixed. To correct a defect properly, not only does the code itself
need to be corrected and retested, but the documentation needs to be corrected back to the
point where the defect originated. (For example, if the defect was a design error, then the
documentation for the design and testing, along with code, needs to be corrected.)

Obviously, the NAWC program manager would have liked to have defects reported to
him/her as early as possible. However, because of the nature and environment of contracts,
that type of information could not always be obtained. Increment one analysis, therefore,
assumed that the code had been delivered and some level of formal testing started when the
project obtained its first insight into the quality of the software. However, if possible, data on
walkthroughs, inspections, audits etc., would be obtained and used in a similar manner.

To determine if unplanned rework has or will have an impact on progress, the NAWC metrics
office used charts similar to Figures 3-13 and 3-14. The data for the charts came from data
collection form 6.

50 CMU/SEI-93-TR-7

To analyze the data in Figure 3-13, the metrics office would look at the net change in the
backlog of SPRs. At a minimum, the priority 1 SPRs were shown separately as in Figure 3-
13. Another, useful chart generated sometimes from this data was an x-y graph with the net
changes shown on the y-axis and time in months on the x-axis.

Priority 1

Reported
This

Month

Closed
This

Month

Open
Beginning
of Month

Net
Change

Type of
SPR

Others

3 2 1 +1

23 9 15 +14

Open
End of
Month

2

29

Figure 3-13 Sample Backlog Report of SPRs

The NAWC Metrics Office also analyzes the monthly overall trend of SPRs reported, closed,
and remaining open similar to Figure 3-14. It was helpful to have a chart for each of the test
sources identified on data collection form 6 as well as a chart for the entire project. With
these charts, the NAWC metrics office was looking for:

• The slope of the total reported curve to level off.

• The curve for the number of SPRs closed moving towards the curve for the number of
SPRs reported.

• The curve for the number of open SPRs trending toward zero.

However, such trends were not necessarily a sign that the quality of the products was
stabilizing; instead, it could be a sign that the search for defects had diminished. This is a
natural occurrence. Sometimes when many SPRs are backlogged, activities that uncover
defects, e.g., testing, are reduced while activities to correct defects are increased. To
determine if such a situation existed on a project, the NAWC metrics office looked at where
effort was being expended (e.g., in testing or in correcting known problems) and also
correlated the trend with the curves for the testing work items in the work progress metric.

CMU/SEI-93-TR-7 51

Total Open

Months Since the Start of FQT

M2 M3 M4 M5 M6M1

Total Reported

Total Closed

S
P

R
s

F
ou

nd
 D

ur
in

g
F

Q
T

 T
es

tin
g

Figure 3-14 Sample Progress Delays Due to Open SPRs

3.4.3 Analyses of Technical Quality Issues

The technical quality issues cover the quality of products being produced. The primary
concern of the technical quality is that interim products are stable and complete so that
successive processes using those products do not compound mistakes and thereby drive up
cost through added rework. The measures can provide insight into technical quality issues
such as:

• Problem reports (e.g., severity of problems, number of problems, timely resolution of
problems, or high density levels of problems in products or processes).

• Product stability and volatility (e.g., requirements, design, and functionality
allocations).

• Rework (e.g., later processes finding defects caused by earlier processes).

SPR Densities

The NAWC metrics office used a chart similar to Figure 3-15 to determine the density of
problems found within the code for a project. Software problem reports (SPRs) are always
expected. Likewise, a project would probably never discover all errors; "testing does not
ensure the absence of errors, only their existence." Discovering more errors than expected,
though, may be an indication of poor software and potential future problems. When too few
SPRs are found, it is possible that the project was not effectively looking for them (e.g.,
testing).

52 CMU/SEI-93-TR-7

 10

 20

 30

M7M2 M3 M4 M5 M6

Months Since Beginning of Integration Testing

In
te

gr
at

io
n

T
es

tin
g

E
rr

or
s

P
er

 1
00

0
S

LO
C

CSCI #1
UWL

LWL

M1

Expected Density

Actual Density

Figure 3-15 Sample SPR Density

In Figure 3-15, the data for the y-axis are the result of the total SLOC divided by the total
number of SPRs. Actual data come from data collection forms 5 and 6. Typically, the
tracking of SPR density starts after formal testing. However, when earlier error data are
available (e.g., data from inspections, walkthroughs, and audits), a chart for each is
generated also.

The UWL is +25% and the LWL is -10% of the expected curve. The expected SPR density
curve is subjectively determined and dependent on the key factors and goals of the project.
Criteria used to determine the expected number of SPRs includes:

• Historical data from past similar projects. The best method to determine how many
SPRs should be expected for a project is to analyze SPR density of past similar
projects.

• Criticality of the mission and the potential losses if the software fails. Depending on
the criticality of the mission, more or less rigorous development and assurance
methods may be applied in earlier development phases. For example, rigorous
inspections and walkthroughs may be performed during requirements analysis and
again during design if the system is life critical or requires a very high reliability.
Dependent on the criticality, the level of testing may be more or less rigorous also;
more rigorous testing will supposedly uncover more SPRs prior to delivery.

• Complexity and precedence of the system. The overall complexity of the system and
whether or not similar systems have been built before will also have an impact on the
number of problems that occur and are uncovered. The more difficult the system, the
more errors that should be expected.

CMU/SEI-93-TR-7 53

To analyze the SPR density charts, the NAWC metrics office primarily looks for trends away
from the expected curve, always remembering that the expected curve was subjectively
determined initially. The analysis is coordinated with other measures such as:

• Effort measure: to ensure that effort is being expended toward finding errors.

• Work progress measure: to determine what level of testing is being performed. Here,
the NAWC metrics office looks at the number of tests being performed in relation to
the number of requirements tested, CSUs existing, etc.

Product Stability and Rework

The stability of products is determined by the quantity and existing backlog of SPRs for the
project and the individual products. Individual products that have many SPRs reported (i.e.,
regardless of whether the SPRs were open or closed) should be investigated, and possibly
redeveloped given the criticality of the mission for that product and the system.

One stability issue is the total volume of SPRs reported for a product. Increment one
measures focused on the number of SPRs received for each CSCI. For each CSCI, a chart
similar to Figure 3-16 was produced. This chart would include a bar for the number of SPRs
for each module or CSC within a CSCI. Charts such as that in Figure 3-16 are commonly
called Pareto charts. They were used to determine where the majority of the errors in a
product were occurring. By determining where most errors occurred, the NAWC metrics
office would recommend more attention and scrutiny to those CSCs. This could be
accomplished by requiring more testing (or broader testing), recoding the module to optimize
it, or totally redeveloping the module.

The data for the chart in Figures 3-16 and 3-17 come from data collection form 6. Preferably,
the NAWC metrics office has the SPR data (or access to it) for the SPRs for each CSC within
a CSCI. If not, then the chart is produced at the CSCI level.

54 CMU/SEI-93-TR-7

5

10

15

20

25

30

35

42

38

10

5

3
1 1

0 0 0

S
of

tw
ar

e
T

es
tin

g
E

rr
or

s
F

ou
nd

 D
ur

in
g

IV
&

V

Computer Software Components (CSCs)
for CSCI #1

A B CD EF G HIJ

40

Figure 3-16 Sample Pareto Analysis of CSCI Defects

For further analysis, it is likely that additional data will be needed. The additional data could
be module defect densities, module complexities, etc. Because there could be many reasons
for more errors occurring in some modules as compared to others; it is difficult to
predetermine what extra data are needed for analysis, and requiring data for all possibilities
would not be cost effective. For example, the complexity of the modules may be higher in the
more error-prone modules; less experienced personnel may have developed the module;
personnel added after requirements and design may have coded the module without fully
understanding the module's mission; the module may have been the last completed and
done in a hurry to meet the schedule; the total size of the module may have been a
hindrance; the mission of the module may not have had a precedent; or the module may
interface with a complicated set of external hardware. The list of reasons can be long, but
whatever the reason for the errors, the NAWC metrics office would suggest extra attention to
those modules with the most errors.

CMU/SEI-93-TR-7 55

The metrics office would also produce a chart similar to Figure 3-16 showing where the errors
were being discovered in the process. This was accomplished by producing a bar (x-axis) for
the number of SPRs found for each testing process (e.g., IV&V testing, FQT testing). To
analyze these data, the NAWC metrics office looked at the total SPRs found, and the number
of SPRs found in the earlier testing processes compared to the number found in the later
processes. In this case, it was desirable to have the earlier processes finding the majority of
the errors. If a large number of errors were being found later in the process, then the NAWC
metrics office would recommend more and better testing in the earlier processes.

In summary, the NAWC metrics office would analyze a chart similar to Figure 3-16 to
determine where the majority of errors were occurring and where in the process they were
being uncovered. Another stability problem is the number of SPRs backlogged. To
determine this, a chart similar to Figure 3-17 is produced. Here, the NAWC metrics office
would be concerned with the amount of work that was being backlogged in the form of rework
that needed to be completed before the completion of the project. Excessive backlogs could
become budget and schedule risks, especially when little or no rework was budgeted in the
effort and schedule planning. Also, an excessive number of high-priority SPRs could
significantly reduce a system's mission capability. The key analyses were to look at the total
SPRs open by priority and the length of time the SPRs were open. If SPRs were open too
long, then other functionality dependent upon them may also suffer.

x £ 30 30 < x £ 60 60 < x £ 90 x > 90

Number of SPRs
That Have Been Open x Days

Priority 1

Priority 2

Priority 3

Priority 4

Priority
Levels Totals

Totals

2 1

3 1

3 2

12 9 6 5

1

1 1

 20 13 8 6

 3

 5

 7

32

47

Figure 3-17 Sample SPR Longevity Report

56 CMU/SEI-93-TR-7

3.5 Reporting the Analysis Results

The process to report data analysis results is considered the flow of information from the
NAWC metrics office to a government program manager who would use the information to
help manage his or her project.

There were two portions to the analysis process: (1) a data validation portion that used input
from the contractor to validate the findings, and (2) the presentation of the results to the
program manager.

For the data validation portion, the metrics office used the results from the analysis process
and developed a list of questions and/or risks that it would postulate from the data trends. It
first would take these questions and risks to the contractor responsible for developing the
software and go over questions with the contractor. This first step in validating the data was
to ensure that the metrics office had accurate and reliable data and to address some of the
trends to determine whether or not they were possible risks. The metrics office then used
additional information obtained from the contractor to develop an analysis report for a project
that would be presented to the program manager.

The analysis report was not intended to be used as a stand-alone report; it was merely to be
used to summarize the overall performance regarding predetermined issues. In fact,
because the analysis process was intended to be dynamic, the feedback of results using a
single report was impractical, illogical, and rarely used. Ideally, the NAWC metrics office
would have a program review with the program manager where the analysis report was
briefed along with other key indicators.

The measurement data reported and collected by the NAWC metrics office was always
treated as proprietary and confidential. Because of these process requirements, the metrics
office would provide feedback to the program manager or office regarding data on its project
only. Feedback to other required parties, including NAWC personnel, would only be done
anonymously. That is, projects would not be identified in analysis reports from the metrics
office, except to the government program manager or office for the project from which the
data were collected or reported.

CMU/SEI-93-TR-7 57

4. Piloting the Processes

As mentioned earlier, after developing a process, the SMPAT tested each process before
recommending that the process be implemented throughout NAWC.

When initially searching for a project to pilot test the processes, the SMPAT determined a set
of attributes that it wanted the project to contain. Although NAWC does not have a single,
typical project that represents any set of attributes, the SMPAT felt it needed a set of criteria
so that the chosen project could adequately test the process. The desired attributes
included:

• Coded in Ada for the majority of the software.

• Developed to DOD-STD-2167A guidelines.

• Contained between 100,000 and 500,000 lines of code.

• Had a clause in the contract to collect measurement data.

The Ada and 2167A attributes were needed because Ada and 2167A represent the DoD’s
desired development methodology. The size attribute was established because the SMPAT
did not want a project that was too small and that could invite criticism that the pilot test
results would not scale up. Nor did the SMPAT want a project so large that the mere
complexity due to its size would swamp its efforts. It also wanted to pick a project that
already had software measurement included in the contract so that it could eliminate or
greatly reduce possible legal and contracting issues.

Once the pilot was chosen and agreed upon by all parties, a plan was laid out that went from
a kickoff meeting to the first data collection cycle. A brief timeline of that plan is shown in
Figure 4-1. The plan had milestones for: a kickoff meeting, a meeting with the contractor,
production of a draft and a final report documenting the data collection process to be
followed, and the beginning of the first data collection cycle. The SMPAT met each milestone
on the original schedule. This greatly enhanced the SMPAT's credibility with the contractor
and its Navy sponsor.

The biggest obstacle for the SMPAT was learning the process and terminology of the pilot
project. The SMPAT then had to translate that terminology and find the hooks in the
contractor's process to capture the data it needed. This learning process became a major
coordination effort. The SMPAT had to communicate and coordinate its efforts with the
NAVAIR program office, the NAWC IV&V agent, the prime contractor, the NAVAIR
configuration management subcontractor, and the IV&V agent’s project management
consultant.

58 CMU/SEI-93-TR-7

May June July

B C D E F

A = (April 10) Kickoff meeting to familarize SEI with project (SEI and NAWC)
B = (May 22) SEI delivers pilot data collection guide
C = (June 2) SEI and NAWC review pilot data collection guide
D = (June 23) Review meeting to present the data collection process
 (SEI, NAWC, and contractor)
E = (July 1) Start first data collection cycle
F = (August 3) Data received from first data collection cycle

A

Figure 4-1 Pilot Project Timeline

The result of the pilot planning was a special report describing the details of the data
collection process that the SMPAT was to use. The data collection guide specifically
described what data were to be collected and how they were to be collected—in the project
and contractor’s terminology and within the bounds of the processes already in place.

The SMPAT goal was not only to test the process in the NAWC software measurement
guide, but to enlist complete cooperation of the prime contractor, without costing the program
office, the NAWC IV&V agent, or the prime contractor any additional money not already
allocated to software measurement.

The SMPAT met all of these goals. It was able to collect all data described to support the
measures in increment one. As it turned out, the prime contractor had just started to develop
its own software measurement program. So, the prime contractor was enthusiastic about
working with the SMPAT and learning what measures and data its customers were interested
in collecting. The data collection guide identified what every piece of data was and how it
was to be collected. The NAWC Software Measurement Guide showed how the data
collected were going to be used. Both documents further assured the contractor that there
would not be abuses of data collected in its project.

Regarding the cost, the NAWC Software Metrics Office collected all data from existing CDRL
items. Other than some informational exchange meetings, there was little or no additional
effort required on the part of the program office, the NAWC IV&V agent, NAWC
subcontractors, or the prime contractor.

Even though the SMPAT met all of its goals with a minimal additional cost, it still had some
difficulties. As expected, there were translation problems in determining how the contractor
was counting SLOC. Here, though, terminology was the problem. For example, the SMPAT
defined reused code as any code that was delivered, existed in a previous release, and was
not modified. But the prime contractor was not counting reused code using this method.

CMU/SEI-93-TR-7 59

When a CSU was modified, even if only one line was changed, the entire CSU was counted
as modified. Both definitions seemed logical, but the contractor who had to do the counting
chose a more practical implementation. Without a sophisticated set of tools and an equally
sophisticated process to accompany them, the SMPAT method might not have been
practical.

Another problem encountered was the laborious task of deciphering the cost accounting data
and trying to write macros to partition the data into the needed formats. All of the effort and
staffing information needed was included in the cost reporting system; it was the extraction of
the data that became tedious and time consuming.

The pilot project completed a full cycle of its measurement process for increment one
measures by having a feedback session with the program manager on the data analysis
results. As described earlier, the metrics office met with the contractor and reviewed the
results. From this meeting, additional information was gained that went into a final briefing to
the program manager. The feedback session was not a private session, but was actually a
larger program management review where the metrics office had a slot on the agenda. This
adjustment worked quite well and is now the metrics office's preferred method.

60 CMU/SEI-93-TR-7

CMU/SEI-93-TR-7 61

5. Software Metrics Office and Database

5.1 Software Metrics Office

As stated earlier, NAWC established a software metrics office. The purpose of the NAWC
software metrics office was to provide a focal point for the collection, analysis, and feedback
of the organization's and project's software data. Before it provided the data to the general
NAVAIR management, the NAWC metrics office sanitized the data to protect the identity of
the projects from which it came and to respect the confidentiality of (possibly) contractor-
sensitive data. Of course, projects that supplied data always had their results reported to
them and compared to an aggregate of other NAVAIR projects when aggregates were
available.

The metrics office had two primary functions. The first was to operate as a service group to
navy program offices that want to use a software measurement process to improve their
project management practices. As a service group, the metrics office tailored its methods to
the contractor's development process and the contract that the project operated under. In
this role, the metrics office defined, collected, analyzed, and delivered feedback to the
program office. The metrics office's other function was to provide consultation to other
projects that wanted information on how to use software measurement, but might not want to
enlist the services of the metrics office for one reason or another. The office could consult
directly by providing guidance on how to include software measurement into new contracts.
The office also planned to consult indirectly thorough training and workshops on software
measurement or by recommending new emerging measures to meet a project's unique
needs.

In addition to these primary functions, the metrics office also developed and maintained the
software measurement database and established standard terminology for different projects.
The central database avoided duplication of effort and provided a stable platform for historical
software information and for research into better methods and processes for developing,
maintaining, and measuring NAWC software products. The data and information contained
in the database are not available to others outside of the metrics office, nor are there plans to
make them available.

A further incentive to establish an organization-wide software measurement office was to
facilitate the translation of terminology to maximize the usefulness of the measurement
process across projects. The common question was: Can the SMPAT or NAWC metrics
office develop common definitions of a module, a task, a CSCI, a CSU, a program, a unit,
etc.? And, did it need to?

62 CMU/SEI-93-TR-7

5.2 Measurement Database

During the early planning stages of the initiative, the SMPAT recognized the strong need for
a measurement database. The metrics office, along with the SMPAT, was made responsible
for creating and testing a database for storing software measurement data. To keep the
database as simple as possible and to get a prototype in place in time to store incoming data
from the pilot project, the metrics office developed the database using a popular,
commercially available spreadsheet.

The database was actually ten separate spreadsheet files. But, because the software was
able to link spreadsheets transparently, the system operated as a single database. Separate
spreadsheet files were created and maintained for data on:

• Staff (full-time and part-time staff head counts and full-time staff added and lost).

• Effort (staff hours by labor category for each functional area).

• Size (CSUs and SLOC).

• Milestones (planned and actual dates of major program reviews).

• Delivery (delivery dates of interim events, e.g., delivery of the SDD).

• Progress (planned and actual data on work items).

• Total defects.

• Open defects.

• Defects per CSCI.

• Defects per test source.

Raw data were either entered directly into the spreadsheets or macros were developed to
extract data from other electronic files (as in the case where staff-hour data were received
electronically from contractors).

Analysis of the data was done using yet more spreadsheets. First, rough data analysis and
calculations were executed using macros. For example, after the spreadsheet for staff data
extracted its information from the cost accounting data, then, in a separate spreadsheet,
additional macros determined staff information such as added personnel, the number of
personnel lost, and the number of full-time and part-time personnel used. Typically, the
analysis of each issue in the analysis section had a separate analysis process consisting of
one or more additional spreadsheets. Although this might appear to be "spaghetti" code and
quite complicated, the design was actually top-down, building on the basic data items, and
each issue analyzed was architecturally independent of other analyses. Due to the power of
today's commercially available spreadsheets, particularly the ability to link multiple
spreadsheets, the implementation, although difficult to explain, was actually quite simple.

Figure 5-1 lists the indicators that would be generated electronically each month for each
project having data collected for it. These indicators form a baseline set that were then used
to initiate analysis of the data. From this initial analysis, other indicators may be generated
from the data on an as needed basis.

CMU/SEI-93-TR-7 63

 Indicator Title X-Axis Y-Axis Indicator Type

1. Milestones Milestone plan date Report date x-y

2. Product delivery Deliverable plan date Report date x-y

3. Cumulative staff Report date a. Planned staff hours x-y
 hours b. Actual staff hours x-y

4. Staff stability Report date a. Full-time staff Bar
b. Part-time staff Bar
c. Full-time staff added x-y
d. Full-time staff lost x-y

5. SPR status Report date a. SPRs opened (monthly) Bar
b. SPRs closed (monthly) Bar
c. SPRs reported (monthly) Bar
d. Total SPRs open x-y
e. Total SPRs closed x-y

6. SPR/SCP SPRs open X days a. SPR priority Table
 Longevity report SCPs open X days b. SCP priority Table

7. CSUs designed Report date a. Planned (monthly) Bar
b. Designed (monthly) Bar
c. Planned (cumulative) x-y
d. Designed (cumulative) x-y

8. CSUs coded Report date a. Planned (cumulative) x-y
 and unit tested b. Planned, Rev. X (cumulative) x-y
 (CUT) c. CSUs CUT (cumulative) x-y

9. CSUs coded and Report date a. Planned (monthly) Bar
 unit tested (CUT) b. Planned, Rev. X (monthly) Bar

c. CSUs CUT (monthly) x-y

10. CSUs integrated Report date a. Planned (monthly) Bar
b. Planned, Rev. X (monthly) Bar
c. Designed (monthly) Bar
d. Planned (cumulative) x-y
e. Planned, Rev. x (cumulative) x-y
f. Designed (cumulative) x-y

11. Monthly staff Report date Curve for each functional area x-y
 hours by
 functional area

12. Cumulative staff Report date Curve for each functional area x-y
 hours by
 functional area

Figure 5-1 List of Basic Indicators Produced Monthly (Continued on next page)

64 CMU/SEI-93-TR-7

 - continued -

 Indicator Title X-Axis Y-Axis Indicator Type

13. Staff hours by Report date Curve or bar for each category x-y/
 labor category bar

14. SPRs by CSCI Report date Cumulative curve for each CSCI x-y

15. SLOC add/mod. Report date a. Planned (monthly) Bar
b. Planned, Rev. X (monthly) Bar
c. Designed (monthly) Bar
d. Planned (cumulative) x-y
e. Planned, Rev. x (cumulative) x-y
f. Designed (cumulative) x-y

16. SLOC by Report date a. Monthly for each language Bar
 language b. Total for each language x-y

17. CSUs per CSCI Report date Bar for each CSCI (monthly) Bar

18. CSUs per build Report date Bar for each build (monthly) Bar

Figure 5-1 List of Basic Indicators Produced Monthly - continued

Without question, the design was not optimal, but the database prototype was able to be
produced quickly and inexpensively, and it served NAWC needs for the pilot project. As the
metrics office grows and additional capacity is needed, it is not known whether or not the
spreadsheet-style database will continue to be used.

CMU/SEI-93-TR-7 65

6. Lessons Learned

Over the course of developing the measurement program, many varied lessons were learned
and some advice and postulations that had been made by others were confirmed. Some of
these lessons include:

• Start with issues, gather manager's questions related to the issues, then
develop measures that help address those questions. This was diametrically
opposed to picking "a few good or interesting metrics." The SMPAT found it very
helpful first to understand what the intentions of management were and what
problems they faced before determining what measures to use or develop. Still, the
measures in increment one were common to most software measurement initiatives.
The payoff for tracing the early data definitions to management issues was realized
during the analysis process. During the analysis process, having the traceability from
issues to measures helped by providing the architecture for what needed to be
addressed by the analysis process versus haphazard analysis to "see what we can
see." Having the traceability to the issues and questions also helped alleviate some
early contractor concerns of abusing the data. Showing the complete traceability
from issues through to the analysis process helped build a sense of trust and
willingness to cooperate with the contractor.

• Data definition must be rigorous and unambiguous. A well-defined data set
helped throughout the process. By being able to articulate what the data collected
represented, many questions and inconsistencies with other efforts that also had a
form of data (e.g., configuration management) were answered in a way that built
credibility for the NAWC measurement program rather than destroying its credibility.

• The data collection process must be very specific and well defined. Possibly
even more important than how the data were defined and what they represented was
how the data were collected. The NAWC measurement process specifically
addressed how and where each data item was collected. This helped the process in
two ways. First, those who might have resisted saw that data were being extracted
from common CDRL items and, therefore, they had little basis to question the
integrity of the data. The process was also helped by having common CDRL items
identified as data sources. The measurement program was no longer an extraneous
requirement, but instead augmented the existing process with little or no extra effort,
yet, added tremendous value to the process.

• Even for simple measures, data collection and analysis were difficult. After
about three months of planning and designing the pilot test for the NAWC software
measurement processes, an SMPAT member remarked, "collecting data for these
simple measures is difficult; what would we do if we had to do something hard?" The
data collection itself wasn't difficult though; instead, it was difficult to tailor the
definitions and collection process to an existing process so that data could be
collected unobtrusively and inexpensively, yet still add value to the process.

• An organization needs commitment to persevere until measurement becomes a
natural part of the overall software process. Many times it would have been

66 CMU/SEI-93-TR-7

easier to quit than to go on, especially within the SMPAT. But, the SMPAT chair
stayed committed and that kept the program going. To date, the measurement
program continues to make significant progress without becoming a natural part of
the NAWC software process. Eventually, though, the measurement process could
drive the shape of the software process.

• Measurement must be tailored to a project's processes and needs. Just like any
process or standard, measurement must also be tailored to the processes used by a
project as well as the needs of management for that project. The intent of the
measurement program at NAWC has always been to augment the existing
processes. To augment a process, the measures needed to be tailored to that
process. Tailoring, though, requires that the measurement process be well defined
because, at some point in time, NAWC intends to use the data collected and the
trends that materialize as a historical perspective.

• Ideally, data collection should be centralized in an organization and
independent of the development projects. The practice of having a group
independent of the development projects and centralized in the organization was
tested and proved to be very useful. A centralized group can grow its experience
base and accomplish more than a set of unconnected groups. They can accomplish
more by using their experience and tools as leverage to expand across many
projects. Having the group independent of the government's program management
group seemed to reduce some of the resistance of the contractor. In short, the
quality improved as the metrics office serviced more projects and its processes
became repeatable. As the process became repeatable, less time and resources
were needed to service projects, thereby driving the overall cost for software
measurement down.

• Nonattribution of data and analysis results outside the project was key to
participation and project buy-in. Another big help in reducing the resistance
between the contractor and the government's program management was ensuring
the complete confidentiality and nonattribution of the data collected. The metrics
office made the promise that data collected and the analysis results of that data for a
specific project would be reported only to the project sponsor. The metrics office did
reserve the right to use the data for examples, presentations, and comparisons in a
historical manner, but only on a nonattribution basis. In fact, if there was a chance of
a project being identified, the metrics office would not use the data. This pledge
helped get projects to buy-in and participate and even motivated some to cooperate
more than they may have without the pledge. It seems that nearly everyone we
spoke with wanted to have the metrics office's help, but there always seemed to be
concerns of retribution or abuses of the data once it left the control of the project or
contractor. Pledging nonattribution and following through on that pledge alleviated
those concerns.

CMU/SEI-93-TR-7 67

• It was difficult to implement measurement without "hooks" in the contract. One
item that led to the success of the pilot effort, and that everyone agreed would be
important in using software measurement on any contract, was the need for "hooks"
in the development process. For example, in increment one measures, this meant
"hooks" such as monthly reporting of staff hours for all contractor staff and
subcontractor staff, availability and regular updating of unit folders, etc. It also helped
to have some "hooks" in the contract SOW for software measurement.

• Measurement does not have to be expensive. The software measurement
program at NAWC was developed and implemented on a "shoestring" budget. Yet, in
spite of the financial limitations, it was developed, implemented, and added value to
the process. Now, the organization has a high-quality product and service it can
market and sell to other organizations for a relatively inexpensive price and be self-
supporting. The NAWC software measurement program was a fine example of how
organizations can invest in themselves and add value to the organization.

68 CMU/SEI-93-TR-7

CMU/SEI-93-TR-7 69

7. Future Directions and Conclusions

To date, the SMPAT has developed a set of measures and an accompanying software
measurement process and has tested the software measurement process on a pilot program.
NAWC has also started a software measurement office and has developed a prototype
measurement database. As of the summer of 1993, future plans and activities for the
measurement program included:

• Continue work on the analysis process: Despite having completed the planning stage
and actually starting to collect measurement data, the benefits from software
measurement derive not from the act of defining and collecting measurement data,
but from the information about the project that becomes available after analysis of the
data.

• Continue evolving increment one: Two other factors indicate an evolving process: (1)
as software technology matures, so will measurement technology; and (2) as the
NAWC software improvement process effort progresses, the ensuing stability of its
software process will enable the measurement initiative to include more sophisticated
measures.

• Develop training: As the software measurement processes in increment one become
more and more popular among NAWC projects, training will be needed. Initially,
training will be needed to teach projects how to get measurement on the contract,
how to collect data, and how to use the information provided by the metrics office.

• Implement increment two (then three, and then four): Software measurement is an
ongoing evolutionary part of software engineering. The SMPAT has outlined four
development increments for NAWC software measurement. Each increment is
increasingly complex and difficult to implement. So far, the SMPAT has concentrated
only on the first increment. The obvious next step is to have satisfactory results from
the pilot on the first increment and then begin work on the remaining measures.

The initial process that developed the processes for increment one needs to be
repeated for the remaining increments. For each of the additional measures
developed, detailed definitions, methods and forms for collecting the data, and the
required analysis to make them useful also need to be developed. New increments
will also affect the analysis of the previous increments as the analyses are merged
and provide more global information.

• Develop contracting tools: To ensure the availability of measurement data, NAWC
should have standardized language in its contracting documents and tools such as
the SOW and CDRL. Included in these documents would be language to further
allow the collection of software measurement data.

70 CMU/SEI-93-TR-7

Conclusions

If you don't measure where you are now, and can't measure where you are going, it is
impossible to tell if the changes made in the name of process improvement are actually
improving the process or deteriorating it. For these reasons, a software measurement project
should be an integral part of any software process improvement initiative.

Though the list of measures described in this report might seem simple, and possibly even
trivial to some, there is a significant effort involved to define each measure in an
unambiguous way and still be practical, to collect data consistently, and finally, to translate
the data into useful information. It only seems easy and trivial, until you have to do it!

CMU/SEI-93-TR-7 71

Bibliography

[2167A] Military Standard - Defense System Software Development, DOD-STD-
2167A, February 1988.

[BASILI] Basili, V. and H. D. Rombach. "The TAME Project: Towards Improvement-
Oriented Software Environment." IEEE Transactions on Software
Engineering, (June 1988).

[BAUMERT] Baumert, J. H. and M. S. McWhinney. Software Measures and the
Capability Maturity Model (CMU/SEI-92-TR-25). Pittsburgh, Pennsylvania:
Software Engineering Institute, Carnegie Mellon University, September
1992.

[BOEHM] Boehm, B., "Understanding and Controlling Software Costs." IEEE
Transactions on Software Engineering, (October 1988)

[GOETHERT] Goethert, W. B., E. K. Bailey, and M. B. Busby. Software Effort and
Schedule Measurement: A Framework for Counting Staff Hours and
Reporting Schedule Information (CMU/SEI-92-TR-21 ADA 258279).
Pittsburgh, Pennsylvania: Software Engineering Institute, Carnegie Mellon
University , September 1992.

[HUMPHREY] Humphrey, W. S. Managing the Software Process. Reading, MA: Addison-
Wesley Publishing Co., 1989.

[JONES] Jones, C. T. Applied Software Measurement-Assuring Productivity and
Quality. New York, NY: McGraw-Hill, Inc., 1991.

[MOORE] Moore, R. L. Methodology for the Management of Software Acquisition,
U.S. Army Missile Command, Redstone Arsenal, Alabama, June 1991.

[[NAVAIR] Naval Air Systems Command. Avionics Software Metrics. Department of
the Navy, AVION Instruction 5235.1, June 1992.

[PARK] Park, R. E. Software Size Measurement, A Framework for Counting Source
Statements (CMU/SEI-92-TR-20 ADA 258304). Pittsburgh, Pennsylvania:
Software Engineering Institute, Carnegie Mellon University, September
1992.

[PAULK] Paulk, M. C., B. Curtis, and M. B. Chrissis. Capability Maturity Model for
Software (CMU/SEI-91-TR-24). Pittsburgh, Pennsylvania: Software
Engineering Institute, Carnegie Mellon University, September 1991.

[ROZUM92a] Rozum, J. A. Software Measurement Concepts for Acquisition Program
Managers (CMU/SEI-92-TR-11 ADA 254177). Pittsburgh, Pennsylvania:
Software Engineering Institute, Carnegie Mellon University, June 1992.

72 CMU/SEI-93-TR-7

[ROZUM92b] Rozum, James A. NAWC Software Measurement Guide. Software
Engineering Institute, (SEI/NAWC-92-SR-1), October 1992 (available from
NAWC-AD Warminster).

[ROZUM93] Rozum, J. A. and C. F. Koch. "NAWC-AD Software Measurement
Program," Proceedings of the Fifth Annual Software Technology
Conference, Salt Lake City, Utah: April 1993.

CMU/SEI-93-TR-7 73

Appendix A — Acronyms

ASW Anti-submarine warfare

CDR Critical design review

CDRL Contract data requirements list

CM Configuration management

CMM Capability Maturity Model

COTS Commercial off the shelf

CSC Computer software component

CSCI Computer software configuration item

CSU Computer software unit

CY Calendar year

DoD Department of Defense

FCA Functional configuration audit

FQT Functional qualification test

GFE Government furnished equipment

GFI Government furnished information

IDD Interface design document

IRS Interface requirements specification

ITG Integration testing

IV&V Independent verification & validation

LWL Lower warning limit

NAVAIR Naval Air System Command

NAWC Naval Air Warfare Center

NAWCADWAR NAWC Aircraft Division - Warminster

PCA Physical configuration audit

PDW Post deployment work

PDR Preliminary design review

PFQT Preliminary functional qualification test

PITG Pre-integration testing

OT&E Operational test & evaluation

RFP Request for proposal

SCE Software capability evaluation

SCP Software change proposal

SDD Software design document

SDF Software development file (or folder)

SDP Software development plan

SEI Software Engineering Institute

SEPG Software engineering process group

SLOC Source lines of code

SPR Software problem report

SMPAT Software measurement process
action team

SOW Statement of work

74 CMU/SEI-93-TR-7

SQA Software quality assurance

SR Special report

SRS Software requirements specification

SSEB Source selection evaluation board

SSR Software specification review

STD Software test description

STP Software test plan

STR Software test report

TBD To be done (or designed or developed)

TR Technical report

TRR Test readiness review

TO&P Technical objectives & plan

UWL Upper warning limit

WBS Work breakdown structure

CMU/SEI-93-TR-7 75

Appendix B — Data Definition Forms

Data definition form #1: This form is used to define labor categories that are then used in the
staff and effort measures.

Data definition form #2: This set of forms is used to define what effort is included and
excluded in the staff-hour measures. In addition, it identifies what staff-hour measures are to
be collected.

Data definition form #3: This set of forms defines what is included and excluded in counting
source lines of code.

76 CMU/SEI-93-TR-7

NAWCADWAR Data Definition Form #1

Organization Project

Delivery #/Build #

Labor Category Experience (years)

A = Program Manager more than years

B = Technical Manager more than years

C = Sr. Systems Engineer more than years

D = Systems Engineer more than years

E = Jr. Systems Engineer more than years

F = Sr. Software Engineer more than years

G = Software Engineer more than years

H = Jr. Software Engineer more than years

I = Doc. Spec./Tech Writer more than years

___ more than years

more than years

more than years

CMU/SEI-93-TR-7 77

Definition Name: NAWC Aircraft Division - Warminster Date: 10/1/92
 Originator: SMPAT

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct ✔

Indirect ✔

Hour Information
Regular time ✔

Salaried ✔

Hourly ✔

 Overtime ✔

Salaried
Compensated (paid) ✔
Uncompensated (unpaid) ✔

Hourly
 Compensated (paid) ✔

Uncompensated (unpaid) ✔

Employment Class
Reporting organization

 Full time ✔

 Part time ✔

 Contract
 Temporary employees ✔

Subcontractor working on task with reporting organization ✔

Subcontractor working on subcontracted task ✔ ✔

Consultants ✔ ✔

Labor Class
 Software management

Level 1 ✔
Level 2 ✔

Level 3 ✔

Higher ✔

Technical analysts & designers
 System engineer ✔

 Software engineer/analyst ✔

 Programmer ✔

 Test personnel
CSCI-to-CSCI integration ✔

IV&V ✔

Test & evaluation group (HW-SW) ✔

 Software quality assurance ✔

 Software configuration management ✔

Program librarian ✔

Database administrator ✔

 Documentation/publications ✔

 Training personnel ✔

 Support staff ✔

NAWCADWAR Data Definition Form #2 (page 1 of 3)

78 CMU/SEI-93-TR-7

Definition Name: NAWC Aircraft Division - Warminster Page: 2 of 3

 Totals Totals Report
include exclude totals

Activity
Development ✔

Primary development activity ✔

Development support activities
Concept demo/prototypes ✔

Tools development, acquisition, installation, & support ✔

Non-delivered software & test drivers ✔

Maintenance ✔

Repair ✔

Enhancements/major updates ✔

Product-Level Functions

CSCI-Level Functions (Major Functional Element)

Software requirements analysis ✔

Design
Preliminary design ✔

Detailed design ✔

Code & development testing

 Code & unit testing ✔

Function (CSC) integration and testing ✔

CSCI integration & testing ✔

IV&V ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

Rework ✔

Software requirements ✔

Software implementation

Re-design ✔

Re-coding ✔

Re-testing ✔

Documentation ✔

Build-Level Functions (Customer Release)

CSCI-to-CSCI integration & checkout ✔

Hardware/software integration and test ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

IV&V ✔

NAWCADWAR Data Definition Form #2 (page 2 of 3)

CMU/SEI-93-TR-7 79

Definition Name: NAWC Aircraft Division - Warminster Page: 3 of 3

Product-Level Functions (continued) Totals Totals Report
 include exclude totals

System-Level Functions ✔

System requirements & design

System requirements analysis ✔

System design ✔

Software requirements analysis ✔ ✔

Integration, test, & evaluation ✔

System integration & testing ✔

Testing & evaluation ✔

Production and deployment ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Data ✔

Training
Training of development employees ✔

 Customer training ✔

Support ✔

NAWCADWAR Data Definition Form #2 (page 3 of 3)

80 CMU/SEI-93-TR-7

Measurement unit: Physical source lines
Logical source statements ✔

Statement type Definition ✔ Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence -> 1 ✔

2 Nonexecutable
3 Declarations 2 ✔

4 Compiler directives 3 ✔
5 Comments
6 On their own lines 4 ✔
7 On lines with source code 5 ✔

8 Banners and nonblank spacers 6 ✔
9 Blank (empty) comments 7 ✔

10 Blank lines 8 ✔
11 9 ✔

12 10 ✔

How produced Definition ✔ Data array Includes Excludes
1 Programmed ✔
2 Generated with source code generators ✔

3 Converted with automated translators ✔
4 Copied or reused without change ✔

5 Modified ✔
6 Removed ✔
7
8

Origin Definition ✔ Data array Includes Excludes
1 New work: no prior existence ✔
2 Prior work: taken or adapted from
3 A previous version, build, or release ✔
4 Commercial, off-the-shelf software (COTS) ✔

5 Government furnished software (GFS) ✔
6 Another product ✔

7 A vendor-supplied language support library (unmodified) ✔
8 A vendor-supplied operating system (e.g., UNIX) (unmodified) ✔

9 A modified or local language support library or operating system ✔
10 A commercial library ✔

11 A reuse library (software designed for reuse) ✔
12 Another software component or library ✔

13
14
Usage Definition ✔ Data array Includes Excludes
1 In or as part of the primary product ✔

2 External to or in support of the primary product ✔
3

NAWCADWAR Data Definition Form #3 (page 1 of 3)

Data Statements
Format Statements

CMU/SEI-93-TR-7 81

Delivery Definition ✔ Data array Includes Excludes
1 Delivered
2 Delivered as source ✔

3 Delivered in compiled or executable form, but not as source ✔
4 Not delivered
5 Under configuration control ✔

6 Not under configuration control ✔
7
8

Functionality Definition Data array Includes Excludes
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)

3
4

Replications Definition Data array Includes Excludes
1 Master source statements (originals)
2 Copies of master statements physically repeated in the master code

3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5
6

Development status Definition ✔ Data array Includes Excludes
1 Designed ✔
2 Coded ✔
3 Unit tests completed and unit under configuration control ✔

4 Integrated into components
5 Test readiness review completed
6 Software (CSCI) tests completed

7 System tests completed
8
9

10
11

NAWCADWAR Data Definition Form #3 (page 2 of 3)

82 CMU/SEI-93-TR-7

 Definition Definition
 Includes Excludes

Clarifications (general)
1 Nulls, continues, and no-ops Are assigned to type -> ✔

2 Empty statements (e.g., ;; and lone semicolons on separate lines) ✔

3 Statements that instantiate generics 1 ✔

4 Begin…end and {…} pairs used as executable statements 1 ✔

5 Begin…end and {…} pairs that delimit (sub)program bodies 1 ✔

6 Logical expressions used as test conditions 1 ✔

7 Expression evaluations used as subprogram arguments 1 ✔
8 End symbols that terminate executable statements ✔

9 End symbols that terminate declarations or (sub)program bodies ✔

10 Then, else, and otherwise symbols 1 ✔

11 Elseif statements 1 ✔

12 Keywords like procedure division, interface, implementation, etc. 2 ✔
13 Format Statements 9 ✔

14 Print Statements 1 ✔

15 Data Statements 10 ✔

16 Compiler Directives 1 ✔

17
Clarifications (language specific)
Ada

1 Null statements ✔

2 Statements that instantiate generics 1 ✔
3 End symbols that terminate declarations or (sub)program bodies ✔

4 Block statements (e.g., begin…end) 1 ✔

5
6

Assembly
1 Macro calls 1 ✔

2 Macro expansions ✔
3
4

FORTRAN
1 END statements ✔
2 Format statements 9 ✔

3 Entry statements 2 ✔

4
5
6

C and C++
1 Null statement (e.g., ";" by itself to indicate an empty body) ✔

2 Expression statements (expressions terminated by semicolons) 1 ✔

3 Expressions separated by semicolons, as in a "for" statement 1 ✔

4 Block statements (e.g., {…} with no terminating semicolon) 1 ✔

5 "{", "}", or "};" on line by itself when part of a declaration ✔

6 "{" or "}" on line by itself when part of an executable statement ✔

7

NAWCADWAR Data Definition Form #3 (page 3 of 3)

CMU/SEI-93-TR-7 83

Appendix C — Data Collection Forms

Data collection form #1: In the absence of electronic data reporting, this form is used to
collect data on the number of full-time, part-time, and total staff for a project. The data are
collected by labor class category.

Data collection form #2: In the absence of electronic data reporting, this form is used to
collect data on the number of staff-hours by labor category for each functional area.

Data collection form #3: This form is used to collect data on the planned and actual
completion dates of identified milestones and deliverables.

Data collection form #4: This form is used to collect data on the number of work items
completed and planned to be completed for identified time periods.

Data collection from #5: This form is used to collect data on the actual number of source
lines of code developed, modified, and reused as well as the estimated number of lines of
code remaining for each area by language.

Data collection form #6: This set of forms is used to collect data on the number of software
problem reports along various, identified characteristics.

84 CMU/SEI-93-TR-7

NAWCADWAR Data Collection Form #1

Organization Project

Delivery #/Build # Date of Data Collection

Labor
Class

Full-Time Staff Part-Time Staff Staff

Planned Actual Planned Actual Added Lost

A

B

C

D

E

F

G

H

I

CMU/SEI-93-TR-7 85

NAWCADWAR Data Collection Form #2

Organization Project

Delivery #/Build # Date of Data Collection

Functional Areas Staff Hours by Labor Category

A B C D E F G H I

System / Task Planning

System Integration and Test

Software Task Planning

Software Reqt. Anal. / Sys. Des.

Software High Level Design

Software Detailed Design

Software Code and Unit Test

Software Integration & Testing

Software Quality Assurance

Software Configuration Mgt.

Program Management

Test Support

Training

Tech Data / Tech Manuals

TOTALS

86 CMU/SEI-93-TR-7

NAWCADWAR Data Collection Form #3

Organization Project

Delivery #/Build # Date of Data Collection

Milestones Planned Actual

Software Specification Review (SSR)

Preliminary Design Review (PDR)

Critical Design Review (CDR)

Test Readiness Review (TRR)

Formal Qualification Testing (FQT)

Functional Configuration Audit (FCA)

Physical Configuration Audit (PCA)

Deliverables Planned Actual

Software Requirements Spec. (SRS)

Interface Requirements Spec. (IRS)

Software Design Document (SDD)

Interface Design Document (IDD)

Software Test Plan (STP)

Software Test Description (STD)

Software Test Report (SPR)

Software Development Plan (SDP)

CMU/SEI-93-TR-7 87

NAWCADWAR Data Collection Form #4

Organization Project

Delivery #/Build # Date of Data Collection

Work Item Previously
Completed

Completed
this Period

Planned
this period

Total
Completed

Total
Planned

Requirements in SRS N/A N/A N/A

SRS Reqts. in SDD N/A N/A N/A

SRS Reqts. in IDD N/A N/A N/A

CSUs Designed

CSUs Coded / Tested

Regression Tests

Integration Tests

FQT Tests

Reqts. Tested in FQT

88 CMU/SEI-93-TR-7

NAWCADWAR Data Collection Form #5

Organization Project

Delivery #/Build # Date of Data Collection

CSCI ID # of CSUs

SLOC

 New Modified Reused

Language Estimated

____________ Actual

Total

Language Estimated

____________ Actual

Total

Language Estimated

____________ Actual

Total

CMU/SEI-93-TR-7 89

NAWCADWAR Data Collection Form #6 (page 1 of 3)

Organization Project

Delivery #/Build # Date of Data Collection

SPRs

This Report To Date

Received

Open

Closed

Number of days SPRs are open

< 30 30 to 60 61 to 90 > 90 Total

Priority 1

Priority 2

Priority 3

Priority 4

Total

SCPs

90 CMU/SEI-93-TR-7

NAWCADWAR Data Collection Form #6 (page 2 of 3)

Organization:

Project:

Date of Data Collection:

SPRs Opened This Reporting Period (By Priority for Each CSCI)

CSCI 1 2 3 4 Total

TOTALS

CMU/SEI-93-TR-7 91

NAWCADWAR Data Collection Form #6 (page 3 of 3)

Organization

Project

Date of Data Collection

Test
Source

SPRs Opened This Reporting Period
(By Priority)

SPRs Closed This Reporting Period
(By Priority)

1 2 3 4 Total 1 2 3 4 Total

PITG

ITG

PFQT

FQT

IV&V

Beta

OT&E

Field

TOTALS

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-93-TR-07 ESC-TR-93-184

The SEI and NAWC: Working Together to Establish a Software Measurement Program

 December 1993 95 pp.

process action team
project management
software measurement
software process improvement

In 1990, the Software Engineering Institute (SEI) and the then Naval Air Development Center (NADC)
in Warminster, Pennsylvania (now Naval Air Warfare Center, Aircraft Division, Warminster) signed an
agreement to jointly develop a software measurement program for NADC - Warminster. To help with
that development, a software measurement process action team (SMPAT) was formed with members
from the SEI and NADC. The SMPAT’s responsibility was to plan, develop, and assist in the imple-
mentation of the measurement program. The purpose of this technical report is to document and
make available to the software community the process and methods used, experience gained, and
some lessons learned in establishing the software measurement program at NADC.

 James A. Rozum

ABSTRACT — continued from page one, block 19

This report is meant to help organizations that desire to start a software measurement program
or have been struggling with such a program by providing an example of one organization that
has also struggled to establish a software measurement program. To help an organization, real-
life examples of how software measures were defined, collected, and used to improve the man-
agement process are included.

	Table of Contents
	List of Figures
	Preface
	Acknowledgments
	Abstract
	1. Introduction and Background
	1.1 Purpose and Audience
	1.2 Report Organization
	1.3 NAWC - Aircraft Division, Warminster, Pa.
	1.4 Beginning A Measurement Program at NAWC
	1.5 Criteria for the NAWC Measurement Process

	2. Development Strategy for the Measurement Process
	2.1 Software Measurement Process Action Team
	2.2 SMPAT Action Plan and Implementation Strategy
	2.2.1 Phase 1: Exploration and Planning
	2.2.2 Phase 2: Establishing Key Management Concerns
	2.2.3 Phase 3: Defining Measurement Data
	2.2.4 Phase 4: Defining Data Collection and Analysis Processes
	2.2.5 Phase 5: Pilot Testing the Measurement Process
	2.2.6 Phase 6: Conducting Software Measurement Training and Awareness Briefings

	2.3 Identify Management Issues and Concerns
	2.3.1 Resource Issues
	2.3.2 Progress Issues
	2.3.3 Quality Issues
	2.3.4 Pre-Contract Award Issues

	2.4 Description of Development Increments
	2.4.1 Description of Increment Two Measures
	2.4.2 Description of Increment Three Measures
	2.4.3 Description of Increment Four Measures

	3. Description of Increment One Measurement Processes
	3.1 Issues to Address
	3.2 Data Definitions
	3.3 Data Collection Process
	3.3.1 Collection of Staffing Data
	3.3.2 Collection of Effort Data
	3.3.3 Collection of Product Delivery (Milestones) Data
	3.3.4 Collection of Work Progress Data
	3.3.5 Collection of Size Data
	3.3.6 Collection of Post Deployment Work Data

	3.4 Data Analysis Process
	3.4.1 Resource Issue Analyses
	3.4.2 Progress Issue Analyses
	3.4.3 Analyses of Technical Quality Issues

	3.5 Reporting the Analysis Results

	4. Piloting the Processes
	5. Software Metrics Office and Database
	5.1 Software Metrics Office
	5.2 Measurement Database

	6. Lessons Learned
	7. Future Directions and Conclusions
	Bibliography
	Appendix A — Acronyms
	Appendix B — Data Definition Forms
	Appendix C — Data Collection Forms

