A Software Engineering
Body of Knowledge
Version 1.0

Thomas B. Hilburn
Iraj Hirmanpour
Soheil Khajenoori
Richard Turner
Abir Qasem

April 1999

TECHNICAL REPORT
CMU/SEI-99-TR-004
ESC-TR-99-004

blank page (to be thrown out immediately before production)

——————_ CarnegieMellon

—=— Software Engineering Institute

Pittsburgh, PA 15213-3890

A Software Engineering
Body of Knowledge
Version 1.0

CMU/SEI-99-TR-004
ESC-TR-99-004

Thomas B. Hilburn

Embry-Riddle Aeronautical University
Iraj Hirmanpour

Embry-Riddle Aeronautical University
Soheil Khajenoori

Embry-Riddle Aeronautical University
Richard Turner

Federal Aviation Administration
Abir Qasem

Embry-Riddle Aeronautical University

April 1999

Software Engineering Process Management

Unlimited distribution subject to the copyright.

This work is sponsored by the Federal Aviation Administration. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 1999 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L. Core Road;
PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free in the U.S. 1-800-547-8306 / FAX:
(304) 284-9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For
information on ordering, please contact NTIS directly: National Technical Information Service, U.S.
Department of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential
contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 /
Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800-225-3842.

http://www.asset.com/
mailto:sei@asset.com

Table of Contents

Acknowledgments
Foreword

Abstract

Introduction

1.1 Sources and Influences

1.2 Overview

1.3 Organization of This Report

Developing a Body of Knowledge
2.1 Background

2.2 Knowledge Architecture

2.3 Operational Definitions

Using This Body of Knowledge
3.1 Industrial Use

3.2 Academic Use

3.3 Professional Use

A Software Engineering Body of
Knowledge

Computing Fundamentals
The Algorithms and Data Structures Knowledge

Area

The Computer Architecture Knowledge Area
The Mathematical Foundations Knowledge Area

The Operating Systems Knowledge Area

The Programming Languages Knowledge Area

Software Product Engineeering

The Software Requirements Engineering
Knowledge Area

The Software Design Knowledge Area

The Software Coding Knowledge Area

Vil

o o1 o1 O N N DN P

o~~~

17

19
20
22

CMU/SEI-99-TR-004

The Software Testing Knowledge Area
The Software Operation and Maintenance
Knowledge Area

Software Management

The Software Project Management Knowledge
Area

The Software Risk Management Knowledge
Area

The Software Quality Management Knowledge
Area

The Software Configuration Management
Knowledge Area

The Software Process Management Knowledge
Area

The Software Acquisition Knowledge Area

Software Domains
5 Summary

References

23

25

27

29

30

31

32

33
34

35

37

39

CMU/SEI-99-TR-004

List of Figures

Figure 1: Levels of Abstraction in This SWE-BOK Architecture

CMU/SEI-99-TR-004

CMU/SEI-99-TR-004

Acknowledgments

Work on this report was done under contract in association with the U.S. Federal Aviation
Administration (FAA).

The authors would like to thank the following individuals for reviewing this report:
Barry Boehm (University of Southern California)
John Brackett (Boston University)
Robert Cannon (SEI)
Andrew Kornecki (Embry-Riddle Aeronautical University)
Nancy Mead (SEI)
Marsha Pomeroy-Huff (SEI)
Barbara Saragovitz (FAA)
Mary Lou Schaallman (Cambria Consulting)
Massood Towhidnejad (Embry-Riddle Aeronautical University)

We would also like to acknowledge Karen Forte of Embry-Riddle Aeronautical University
and Arnold Smith of TRW, who provided administrative support for the FAA contract work.

For further information about the topics discussed in this report, please contact
Thomas B. Hilburn
Department of Computing & Mathematics
Embry-Riddle Aeronautical University
Daytona Beach, Fl 32114
1-904-226-6889
hilburn@db.erau.edu

CMU/SEI-99-TR-004

mailto:hilburn@db.erau.edu

vi

CMU/SEI-99-TR-004

Foreword

One of the characteristics of a mature profession is a body of knowledge. When the Federal
Aviation Administration initiated a project to improve the software engineering competencies
of its technical and management staff, they were unable to find such a body of knowledge.
The result was a decision to develop a software engineering body of knowledge to use in de-
fining competencies and establishing a curriculum. This report presents that body of knowl-
edge. It can be of assistance to industries that increasingly need to assess and improve the
software engineering capabilities of their employees. In addition, academic institutions may
find the information useful as they define curricula for software engineering.

The Software Engineering Coordination Committee (SWECC), sponsored jointly by the As-
sociation for Computing Machinery (ACM) and the Institute of Electrical and Electronic En-
gineers (IEEE) Computer Society, is tasked with developing an international standard body of
knowledge for software engineering. The work described in this report will contribute to the
SWECC'’s task and represents the ongoing development of software engineering and its
maturation as a discipline.

Robert L. Cannon
Software Engineering Institute
April 1999

CMU/SEI-99-TR-004 vii

Viii CMU/SEI-99-TR-004

Abstract

Software engineering, both as a discipline and as a profession, is at a pivotal point in its evo-
lution. Although software has become critical in the development of most new human-created
systems, the concepts, principles, and methods for engineering software are still neither well
defined nor uniformly agreed upon. The lack of consensus regarding software engineering
practice and the requisite competencies creates confusion and has serious consequences for
the evaluation, acquisition, and application of software engineering knowledge. This report
presents an effort to organize and catalogue a body of knowledge for software engineering
and to provide a systematic, concise, and complete description of the software engineering
discipline. This body of knowledge can assist organizations in defining and improving the
software engineering competencies of their workforces; it can help educational institutions in
defining software engineering curricula; it can provide a basis for classifying academic and
industrial research and development efforts; and it can improve the understanding and prac-
tice of software engineering.

CMU/SEI-99-TR-004 iX

CMU/SEI-99-TR-004

1 Introduction

“Knowledge is of two kinds: we know a subject ourselves, or we know where we can find
information upon it.”

-Samuel Johnson

Software is playing an increasingly important and central role in all aspects of daily life—in
government, banking and finance, education, transportation, entertainment, medicine, agri-
culture, and law. The number, size, and application domains of programs being developed
have grown dramatically; as a result, billions of dollars are being spent on software develop-
ment, and the livelihood and lives of millions directly depend on the effectiveness of this de-
velopment. Unfortunately, there are severe problems in the cost, timeliness, and quality of
many software products; even more serious is the effect that quality problems can have on the
safety-critical elements of software that directly affect the health and welfare of humans.

It has been almost 30 years since the first organized, formal discussion of software engineer-
ing as a discipline took place at the 1968 North Atlantic Treaty Organization (NATO) Confer-
ence on Software Engineering. The term “software engineering” is now widely accepted by
industry, government, and academia: many thousands of computing professionals go by the
title “software engineer”; numerous publications, groups and organizations, and professional
conferences use the term “software engineering” in their names; and there are many educa-
tional courses and programs on software engineering. However, in spite of this widespread
acceptance, software engineering does not have a well-defined and universally accepted pro-
fessional content. Some would even dispute that it is engineering. A more generous attitude
might be that the discipline is new relative to the more traditional engineering fields and,
thus, software engineering simply is not yet fully mature. In spite of this immaturity (or
maybe because of it), there is a crucial need to define the knowledge and competencies re-
quired by software professionals.

In recent years, there have been a number of studies and commentaries on the state of the
software engineering profession [Ford 96, Gibbs 94]. All seem to agree that the profession is
not mature. In their study of the software engineering profession, Ford and Gibbs [Ford 96]
designate eight infrastructure components that can be used to evaluate a mature profession:
initial professional education, accreditation, skills development, certification, licensing, pro-
fessional development, a code of ethics, and a professional society. In 1996, their evaluation
of the software engineering profession was low for all components except “professional de-
velopment.” Although there has been progress in recent years, a significant problem in ad-
vancing the state of the software engineering “infrastructure components” is the lack of a
clear and comprehensive understanding of the nature and content of the software engineering

CMU/SEI-99-TR-004 1

profession. This document attempts to address this issue by providing a hierarchical descrip-
tion and decomposition of a body of knowledge for software engineering (SWE-BOK).

1.1 Sources and Influences

A number of key activities and sources have influenced the direction, framework, and content
of this work. Two publications that had an early influence on the structure and style of this
SWE-BOK were A Guide to the Project Management Body of Knowledge [PMI 94], pub-
lished by the Project Management Institute, and The Federal Aviation Administration Inte-
grated Capability Maturity Model ® [Ibrahim 97]. Also, the organization and content of two
widely-recognized computing curriculum models have been of major benefit to this project:
1S’97: Model Curriculum for Undergraduate Degree Programs in Information Systems
[Davis 97] and Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum
Task Force [Tucker 91].

In 1993, the IEEE Computer Society (IEEE-CS) and the Association of Computing Machin-
ery (ACM) established the IEEE-CS/ACM Joint Steering Committee for the Establishment of
Software Engineering as a Profession. (The steering committee has recently been replaced by
the Software Engineering Coordinating Committee.) In the past year, the activities of the
IEEE-CS and ACM in this area have accelerated. In 1997, the steering committee appointed a
task force on the software engineering body of knowledge. The task force recently published
a strategy [Dupuis 98] for developing a comprehensive body of knowledge for software engi-
neering; this is a multi-year project that is expected to be completed sometime in 2001. This
strategy, along with conversations with persons working on the IEEE-CS/ACM projects, has
been extremely useful in validating the content, scope, and conceptual organization of this
SWE-BOK as presented in this report.

1.2 Overview

This report presents an effort to organize and catalogue a body of knowledge for software
engineering and to provide a systematic, concise, and complete description of the software
engineering discipline. The material includes information about the methodology and
sources, as well as the anticipated uses of this body of knowledge. While the material pre-
sented here has been reviewed by a number of highly qualified experts, comments and sug-
gestions for future revision are welcomed. Contact information is provided in the Acknowl-
edgements section of this document.

1.3 Organization of This Report

This report is organized in four sections. Section 1 provides background and introductory
information. Section 2 describes the development of this body of knowledge in terms of
sources and methodologies. It also introduces the architecture selected for structuring this
information. Section 3 discusses various uses for this SWE-BOK in the areas of academic,
industrial, and professional practice. A body of knowledge is described in Section 4.

® Capability Maturity Model is registered in the U.S. Patent and Trademark Office.

2 CMU/SEI-99-TR-004

The purpose of this report is to provide a single-source reference to the collection of knowl-
edge that constitutes the software engineering discipline. Since software engineering is a
rather young and somewhat immature discipline, there is a special need to capture and cate-
gorize the subdisciplines that collectively make up the field. Although new technologies will
emerge, and new methods and techniques will surface, the fundamental building blocks of
software engineering are known today. The SWE-BOK classification scheme that we propose
is intended to identify those elements that are invariant, while allowing for new knowledge to
be incorporated into its structure.

CMU/SEI-99-TR-004 3

CMU/SEI-99-TR-004

2 Developing a Body of Knowledge

2.1 Background

This SWE-BOK resulted from work sponsored by the U.S. Federal Aviation Administration
(FAA) as part of a project to improve its software acquisition, development, and maintenance
processes. This SWE-BOK provides the basis for establishing the skills and knowledge
needed for FAA personnel to perform their software-intensive system acquisition, develop-
ment, and maintenance roles.

There are several collateral factors that were considered in the development of this SWE-
BOK. One was the role of system engineering in software engineering. Since software is
typically developed to be part of more complex technological systems (that include comput-
ing and non-computing hardware, people, procedures, and processes), its body of knowledge
cannot easily be isolated from the other components of a total system. For the purposes of
this project and in order to reduce the complexity of our efforts, this SWE-BOK does not di-
rectly address the association and relationship between software engineering and system en-
gineering.

In addition, this SWE-BOK does not include areas of knowledge that may be supportive of
software engineering, but that do not play a direct role in software development. For exam-
ple, the following discipline areas were not included in this SWE-BOK: continuous mathe-
matics, the natural sciences, traditional engineering science, psychology, economics, and
business administration.

2.2 Knowledge Architecture

The SWE-BOK knowledge architecture in this report provides a hierarchical description and
decomposition of a body of knowledge for software engineering. For the purposes of this
work, the term “knowledge” is used to describe the whole spectrum of content for the disci-
pline: information, terminology, artifacts, data, roles, methods, models, procedures, tech-
niques, practices, processes, and literature. Figure 1 shows the three levels of abstraction
(knowledge categories, knowledge areas, and knowledge units) and the relationships that
were used in modeling this SWE-BOK.

Three levels of abstraction were chosen to achieve a balance between simplicity and clarity,
and the appropriate depth and detail of knowledge description. This architectural model was
influenced by a number of other models for organizing and structuring computing knowl-
edge. The operational definitions of terms used in our classification scheme are described in
Section 2.3.

CMU/SEI-99-TR-004 5

Software Engineering
Body of Knowledge

is partitioned into

Knowledge Categories

consist of

Knowledge Areas

consist of

‘ Knowledge Units I

Figure 1: Levels of Abstraction in This SWE-BOK Architecture

2.3 Operational Definitions

Knowledge: A term used to describe the whole spectrum of content for the discipline: infor-
mation, terminology, artifacts, data, roles, methods, models, procedures, techniques, prac-
tices, processes, and literature.

Body of knowledge (BOK): A hierarchical description of software engineering knowledge
that organizes and structures the knowledge into three levels of hierarchy: knowledge catego-
ries, knowledge areas, and knowledge units.

Knowledge category (KC): A subdiscipline of software engineering that is generally recog-
nized as representing a significant part of this body of software engineering knowledge.
Knowledge categories are high-level structural elements used for organizing, classifying, and
describing software engineering knowledge. A knowledge category is composed of knowl-
edge areas.

Knowledge area (KA): A subdivision of a knowledge category that represents software en-
gineering knowledge that is logically cohesive and related to the knowledge category through
inheritance or aggregation. A knowledge area is composed of a set of knowledge units.

Knowledge unit (KU): A subdivision of a knowledge area that represents a basic component
of software engineering knowledge that has a crisp and explicit description. For the purposes
of this activity, the knowledge unit is atomic; that is, it will not be subdivided into simpler or
more basic elements.

6 CMU/SEI-99-TR-004

3 Using This Body of Knowledge

This SWE-BOK can be used for a variety of purposes: it can help to solve problems and ad-
dress issues in industrial, academic, and professional settings. Most importantly, it can serve
as a general model for understanding and describing the software engineering profession.

3.1 Industrial Use

Although software engineering has become a major industrial and commercial activity in the
last 20 years, the nature and content of software engineering is still unclear in many of the
organizations involved in software development and acquisition. This SWE-BOK can help
such organizations to examine, categorize, and organize their software activities and can lead
to better definitions of software roles and software processes.

Software organizations that want to assess the knowledge of their engineers could use this
SWE-BOK in designing a competency evaluation system. Such a competency system could
use this SWE-BOK to help identify and judge what kind of software engineering knowledge
is required to accomplish the tasks associated with individual software-related roles. Such an
assessment might be coupled with the use of this SWE-BOK to design training programs and
to develop an overall effort to improve an organization’s software processes.

3.2 Academic Use

If the practice of software engineering is to advance, it is critical that the initial preparation
for software engineers be improved. Currently, most entry-level software engineers receive
their initial preparation in academic computing programs (computer science, computer engi-
neering, and information systems) or in non-computing engineering programs, such as elec-
trical engineering. There are an increasing number of academic institutions that are interested
in developing software engineering degree programs. In some cases, the programs will be
created as entirely new programs, but in most cases, they will represent the conversion of an
existing program in computing to one that emphasizes software engineering. Unfortunately,
many computing faculty members have little preparation or experience in software engineer-
ing. This SWE-BOK can provide faculty with basic information about software engineering
knowledge, and this will support the development of education curricula in software engi-
neering.

In addition, this SWE-BOK supports the development of more general guidelines for the de-
velopment and accreditation of software engineering programs by groups such as the Ac-
creditation Board for Engineering and Technology (ABET) and the Computing Sciences Ac-
creditation Board (CSAB). This SWE-BOK can also serve as a framework that can be used to
conduct research into software engineering methods, techniques, and practices. Research or-
ganizations could use this SWE-BOK to help organize, classify, and guide inquiry into soft-

CMU/SEI-99-TR-004 7

ware engineering. Finally, this SWE-BOK can also be used as a framework for designing
software engineering curricula.

3.3 Professional Use

This SWE-BOK provides the means for studying and addressing a number of issues related
to the software engineering profession. First, a body of knowledge could be used to define
the profession itself or, at least, to delineate the knowledge associated with the profession.
Such a definition is essential to the maturation of a discipline and is a necessary step in de-
termining the professional standards and procedures required for the effective practice of
software engineering. The definition and the professional standards could then be used to de-
velop criteria and assessment instruments for the certification and licensing of software engi-
neers. In addition, this SWE-BOK could be used by individual engineers to assess their own
knowledge about the software engineering profession and to provide a framework that they
can use to plan their professional development.

8 CMU/SEI-99-TR-004

4 A Software Engineering Body of
Knowledge

The following sections provide descriptions of each of the knowledge categories, and the cor-
responding knowledge areas and knowledge units of which they are composed. This body of
knowledge has varying levels of decomposition and exposition, depending upon the current
state of knowledge in a particular component.

There are several decisions about the organization and content of this SWE-BOK that require
comment:

e The knowledge areas in the Software Domains category are not partitioned into
knowledge units. We felt that this level of detail was sufficient for the purpose of this
project, since much of the knowledge for each Software Domain area is already included
in the Software Product Engineering category.

e There were a number of software engineering subjects that were considered for
incorporation in this SWE-BOK, but were not included because we felt that they were
covered sufficiently in other knowledge areas or knowledge units. For instance, formal
methods was not included in this SWE-BOK, but knowledge about it was covered in the
Mathematical Foundations area in the Computing Fundamentals category, and the
Verification and Validation knowledge unit in the Software Quality Management
knowledge area.

o Initial versions of this document included a great deal of information about specific
software engineering techniques and tools. After review and analysis, we concluded that
this type of knowledge would be difficult to keep current and complete, and was not
needed for the objectives of this project.

e Although software testing is typically considered to be part of verification and validation,
we chose to present the two in separate components (software testing in the Software
Product Engineering category and verification and validation in the Software Quality
Management knowledge area). This is in deference to the prominent role that software
testing currently plays in the product development life cycle.

Each of the following sections, numbered 1 through 4, contains a complete description of the
software engineering knowledge categories.

e The Computing Fundamentals knowledge category is concerned with knowledge,
concepts, theory, principles, methods, skills, and applications of computing that form the
foundation for the development of software and the discipline of software engineering.

e The Software Product Engineering knowledge category is concerned with a well-defined
and integrated set of activities to produce correct, consistent software products effectively
and efficiently. Software product engineering includes the technical activities of
producing a software product, such as requirements engineering, design, coding, and test.

CMU/SEI-99-TR-004 9

e The Software Management knowledge category deals with the concepts, methods, and
techniques for managing software products and projects. Software management includes
activities concerned with project management, risk management, software quality, and
configuration management.

e The Software Domains knowledge category concerns knowledge about specific domains
that involve computing and software engineering application or utilization. This category
includes the following software domains: artificial intelligence, database systems,
human-computer interaction, numerical and symbolic computing, computer simulation,
and software acquisition.

Each category description is followed by descriptions of the knowledge areas in that cate-
gory. Area descriptions are followed by descriptions of the knowledge units belonging to
each of the knowledge areas.

In the references section of this document, we identify the principal literature sources for our
research efforts. Within the various parts of this SWE-BOK, we have cited references that are
appropriate for a particular knowledge category, knowledge area, or knowledge unit. How-
ever, there are four references that provide comprehensive information about software engi-
neering knowledge [Dorfman 97, Marciniak 94, Pressman 97, Sommerville 95]. These refer-
ences were used as sources for describing knowledge in all of the knowledge categories and
in almost all of the knowledge areas and knowledge units. Consequently, for the sake of brev-
ity, we have not included individual citations for these four references within the body of this
SWE-BOK.

10 CMU/SEI-99-TR-004

Computing Fundamentals

Category Number

1

Category Name

Computing Fundamentals

Category Description

This category is concerned with knowledge, concepts, theory, principles, methods, skills, and
applications of computing that form the foundation for the development of software and the
discipline of software engineering.

Knowledge Areas

4.6 Algorithms and Data Structures
1.2 Computer Architecture

1.3 Mathematical Foundations

1.4 Operating Systems

1.5 Programming Languages

References

[Aho 92], [Brookshear 94], [Denning 89], [Lethbridge 98], [Tannebaum 90], [Tucker 91],
[Woodcock 88]

Description of

the Computing Fundamentals Knowledge Areas

KA Number

11

KA Name

Algorithms and Data Structures

KA Description

This area is concerned with basic data structures, abstract data types, recursive algorithms, algo-
rithm analysis, sorting and searching, complexity and computability issues, problem-solving
strategies, and parallel and distributed algorithms.

KA Number

12

KA Name

Computer Architecture

KA Description

This area is concerned with methods of organizing efficient, reliable computing systems. It in-
cludes digital logic and digital systems, machine-level representation of data, assembly-level
machine organization, processor architecture, memory system organization, interfacing, com-
munications and networks, and alternative architectures.

KA Number

13

KA Name

Mathematical Foundations

KA Description

This area is concerned with the mathematical foundations of computing. This area includes
mathematical logic, proof systems, discrete mathematical structures, formal languages, combina-
torics, and probability and statistics.

KA Number

1.4

KA Name

Operating Systems

KA Description

This area is concerned with the history, evolution, philosophy, design, implementation, and use
of computer operating systems. This area includes elements such as tasking and processes, proc-
ess coordination and synchronization, scheduling and dispatch, physical and virtual memory
organization, device management, file systems and naming, security and protection, and distrib-
uted and real-time systems.

KA Number

15

KA Name

Programming Languages

KA Description

This area is concerned with the history, theory, design, implementation, and use of programming
languages. This area includes elements such as programming paradigms and related languages;
grammars, automata, and semantics; language translation systems; subprograms and modules;
and issues related to data types, program control, assignment and expressions, and run-time
performance.

CMU/SEI-99-TR-004

11

The Algorithms and Data Structures Knowledge Area

KA Number

11

KA Name

Algorithms and Data Structures

KA Description

This area is concerned with basic data structures, abstract data types, recursive algorithms, algo-
rithm analysis, sorting and searching, complexity and computability issues, problem-solving
strategies, and parallel and distributed algorithms.

Knowledge Units

1.1.1 Basic Data Structures
1.1.2 Design of Algorithms
1.1.3 Analysis of Algorithms

References

[Horowitz 83], [Sedgewick 88], [Tucker 91], [Weiss 94]

Description of

the Algorithms and Data Structures Knowledge Units

KU Number

111

KU Name

Basic Data Structures

KU Description

This unit is concerned with abstract data types, information hiding, modularity, and implementa-
tions using various data structures. Knowledge about basic data structures includes the defini-
tion, implementation, and applications of lists, arrays, tables, stacks, queues, trees, and graphs.
This unit also includes issues related to static and dynamic implementations and the tradeoffs
between different implementation strategies.

KU Number

1.1.2

KU Name

Design of Algorithms

KU Description

This unit is concerned with understanding and using problem-solving strategies such as greedy
algorithms, divide-and-conquer algorithms, and backtracking algorithms. This unit also includes
knowledge about the design and use of recursive algorithms, about algorithms related to solving
problems using the basic data structures, about sorting and searching algorithms, and about par-
allel and distributed algorithms.

KU Number

113

KU Name

Analysis of Algorithms

KU Description

This unit is concerned with time and space complexity and its use in analyzing algorithms.
Knowledge in this unit includes using algorithm and data structure analysis to make time-space
tradeoffs in selecting algorithm/data structures and using experimental methods to corroborate
theoretical complexity analysis. This unit also includes knowledge about complexity classes
(including P and NP) and about models of computable functions, undecidable problems, and
recursive functions.

12

CMU/SEI-99-TR-004

The Computer Architecture Knowledge Area

KA Number

1.2

KA Name

Computer Architecture

KA Description

This area is concerned with methods of organizing efficient, reliable computing systems. It in-
cludes digital logic and digital systems, machine-level representation of data, assembly-level
machine organization, processor architecture, memory system organization, interfacing, com-
munications and networks, and alternative architectures.

Knowledge Units

1.2.1 Digital Systems

1.2.2 Computer System Organization
1.2.3 Alternative Architectures

1.2.4 Communications and Networks

References

[Floyd 97], [Forouzan 98], [Hayes 88], [Heuring 97], [Mano 93], [Tannebaum 90], [Tucker 91]

Description of

the Computer Architecture Knowledge Units

KU Number

121

KU Name

Digital Systems

KU Description

This unit is concerned with the theory, analysis, and design of combinational and sequential
digital circuits. This unit also includes knowledge about the following topics: Boolean algebra,
combinational logic circuits, digital multiplexers, circuit minimization techniques, flip-flop stor-
age elements, shift registers, counting devices, sequential logic circuits, and integrated circuits.

KU Number

122

KU Name

Computer System Organization

KU Description

This unit is concerned with the Von Neumann computer architecture that includes processors,
memory, input/output (1/0), and transfer of information. This unit also includes knowledge on
the following topics: machine language organization, assembly language organization, processor
design, microprogramming, control unit, arithmetic logic unit, bus architecture, memory organi-
zation, 1/0 and interrupt interface, and peripheral devices.

KU Number

123

KU Name

Alternative Architectures

KU Description

This unit is concerned with the concepts, design, and evolution of non-Von Neumann computer
architectures. This unit also includes knowledge about the following topics: pipelining, reduced
instruction set computer (RISC) and complex instruction set computer (CISC) architectures,
multiprocessors and multicomputers, parallel programming, data flow architecture, interconnec-
tion networks, and neural networks.

KU Number

1.2.4

KU Name

Communications and Networks

KU Description

This unit is concerned with concepts, techniques, and applications in telecommunications. This
unit also includes knowledge about the following topics: network architectures, protocols and
standards, transmission techniques and devices, speed and quality tradeoffs, and security and
encoding algorithms.

CMU/SEI-99-TR-004

13

The Mathematical Foundations Knowledge Area

KA Number

1.3

KA Name

Mathematical Foundations

KA Description

This area is concerned with the mathematical foundations of computing. This area includes
mathematical logic, proof systems, discrete mathematical structures, formal languages, combina-
torics, and probability and statistics.

Knowledge Units

1.3.1 Mathematical Logic and Proof Systems
1.3.2 Discrete Mathematical Structures

1.3.3 Formal Systems

1.3.4 Combinatorics

1.3.5 Probability and Statistics

References

[Aho 92], [Grimaldi 94], [Guttman 71], [Tucker 91], [Woodcock 88]

Description of

the Mathematical Foundations Knowledge Units

KU Number

131

KU Name

Mathematical Logic and Proof Systems

KU Description

This unit is concerned with propositional logic, predicate logic, temporal logic, formal and rig-
orous proof techniques, mathematical induction, and automatic theorem proving.

KU Number

132

KU Name

Discrete Mathematical Structures

KU Description

This unit is concerned with the mathematical structure, operations, properties, and applications
of sets, relations, trees, and graphs. This unit also includes knowledge about algebraic systems
and their applications: Boolean algebra and switching functions, rings and modular arithmetic,
and groups and coding theory.

KU Number

133

KU Name

Formal Systems

KU Description

This unit is concerned with formal models of computation such as state machines and automata,
regular expressions, Turing machines and recursive functions, and the corresponding elements
of formal languages. This unit includes knowledge about the mathematical basis of computabil-
ity, the formal theory used in compiler design, and model-based and algebraic-based formal
specification languages.

KU Number

134

KU Name

Combinatorics

KU Description

This unit is concerned with the rules of counting, permutations, combinations, the principle of
inclusion and exclusion, generating functions, recurrence relations, and combinatorial algo-
rithms.

KU Number

135

KU Name

Probability and Statistics

KU Description

This unit is concerned with the elements of probability, descriptive statistics, discrete distribu-
tions, probability distributions, estimation of population parameters, hypothesis testing, confi-
dence intervals, regression analysis, analysis of variance, experimental design, and statistical
control.

14

CMU/SEI-99-TR-004

The Operating Systems Knowledge Area

KA Number

1.4

KA Name

Operating Systems

KA Description

This area is concerned with the history, evolution, philosophy, design, implementation and use
of computer operating systems. This area includes elements such as tasking and processes, proc-
ess coordination and synchronization, scheduling and dispatch, physical and virtual memory
organization, device management, file systems and naming, security and protection, and distrib-
uted and real-time systems.

Knowledge Units

1.4.1 Operating Systems Fundamentals
1.4.2 Process Management

1.4.3 Memory Management

1.4.4 Security and Protection

1.4.5 Distributed and Real-time Systems

References

[Silberschatz 94], [Tanenbaum 87], [Tucker 91]

Description of

the Operating Systems Knowledge Units

KU Number

141

KU Name

Operating System Fundamentals

KU Description

This unit is concerned with general operating system objectives, components, features, func-
tions, and structuring. This unit includes information about the history, evolution, and philoso-
phy of operating systems.

KU Number

142

KU Name

Process Management

KU Description

This unit is concerned with the process concept, and how processes are represented and con-
trolled. This unit includes knowledge about models of process creation and activation, coordina-
tion and synchronization of concurrent processes, and scheduling strategies and algorithms.

KU Number

143

KU Name

Memory Management

KU Description

This unit is concerned with memory management strategies and algorithms, the implementation
and use of virtual memory, the organization and management of file systems, and input/output
management and disk scheduling.

KU Number

1.4.4

KU Name

Security and Protection

KU Description

This unit is concerned with techniques for dealing with threats to the security of computer sys-
tem information and resources from unauthorized access, malicious destruction, or accidental
events. This unit also includes knowledge about mechanisms for protecting the access of pro-
grams, processes, and users to the resources of a computer system.

KU Number

1.45

KU Name

Distributed and Real-Time Systems

KU Description

This unit is concerned with operating system issues for distributed and real-time computing
systems. These includes knowledge about representation of time, process synchronization and
communication in distributed and real-time systems, distributed file systems, remote services,
control of shared resources, and client/server systems.

CMU/SEI-99-TR-004

15

The Programming Languages Knowledge Area

KA Number 15

KA Name Programming Languages

KA Description This area is concerned with the history, theory, design, implementation, and use of programming
languages. This area includes elements such as programming paradigms and related languages;
grammars, automata, and semantics; language translation systems; subprograms and modules;
and issues concerning data types, program control, assignment and expressions, and run-time
processes.

Knowledge Units 1.5.1 Theory of Programming Languages
1.5.2 Programming Paradigms
1.5.3 Programming Language Design and Implementation

References [Appleby 91], [Sebesta 89], [Trembley 85], [Tucker 91], [Wilson 93]

Description of the Programming Languages Knowledge Units

KU Number 151

KU Name Theory of Programming Languages

KU Description This unit is concerned with the formal and theoretical elements of programming languages, in-
cluding fundamentals of formal languages, finite state automata and regular expressions, con-
text-free grammars and push-down automata, and programming language semantics (informal,
axiomatic, denotational, and operational).

KU Number 152
KU Name Programming Paradigms
KU Description This unit is concerned with programming paradigms and languages for these paradigms, includ-

ing the history of programming languages, the procedural language paradigm, the object-
oriented language paradigm, the functional language paradigm and the logic language paradigm.
This unit includes knowledge about writing programs in the various paradigms, and comparing
and contrasting the advantages and disadvantages of the various paradigms.

KU Number 153

KU Name Programming Language Design and Implementation

KU Description This unit is concerned with programming language design and implementation issues, including
the use of virtual machines in language understanding; representation of data types; sequence
control; data control, sharing, and type checking; run-time management; and language transla-
tion systems. This unit includes design and implementation of compiler and run-time systems
for high-level languages, and the interaction between language design, compiler design, and run-
time organization.

16 CMU/SEI-99-TR-004

Software

Product Engineeering

Category Number

2

Category Name

Software Product Engineering

Category Description

This category is concerned with a well-defined and integrated set of activities to produce correct,
consistent software products effectively and efficiently. Software Product Engineering includes
the technical activities of producing a software product, such as requirements engineering, de-
sign, coding, and test. These engineering activities involve documenting software work products
and maintaining traceability and consistency between them. This category includes knowledge
about the controlled transition between the stages of the software life cycle and the activities
needed to deliver high-quality software products to the customer.

Knowledge Areas

2.1 Software Requirements Engineering
2.2 Software Design

2.3 Software Coding

2.4 Software Testing

2.5 Software Operation and Maintenance

References

[Beizer 90], [Budgen 94] , [Davis 93], [IEEE 94], [Pigoski 97]

Description of

the Software Product Engineering Knowledge Areas

KA Number

2.1

KA Name

Software Requirements Engineering

KA Description

This area is concerned with establishing a common understanding of the requirements to be
addressed by the software product. It consists of a set of transformations that attempt to under-
stand the exact needs of a software-intensive system and convert the statement of the needs into
a complete and unambiguous description of the requirements, documented according to a speci-
fied standard. This area includes knowledge of the requirements activities of elicitation, analysis,
and specification.

KA Number

2.2

KA Name

Software Design

KA Description

This area is concerned with the transformation of the statement of requirements into a descrip-
tion of how these requirements are to be implemented. Software design consists of activities
such as architectural design, abstract specification and interface design, component design, data
structure design, and algorithm design. Software design uses a variety of techniques and forms
of representation, each providing a capability for capturing and expressing a different view of
the system.

KA Number

2.3

KA Name

Software Coding

KA Description

This area is concerned with knowledge about the construction of the software components that
are identified and described in the design documents. This area includes knowledge about trans-
lation of a design into an implementation language, program coding styles, and the development
and use of program documentation.

KA Number

2.4

KA Name

Software Testing

KA Description

This area is concerned with establishing that a correct solution to a problem, embodied in the
statement of the requirements, has been developed. Testing is a multi-stage process that consists
of activities for validating the software product, from the most primitive elements up to the fully
integrated system. This area includes activities such as unit testing, performance testing, integra-
tion testing, system testing, and acceptance testing.

CMU/SEI-99-TR-004

17

KA Number 25

KA Name Software Operation and Maintenance

KA Description This area includes concepts, methods, processes and techniques that support the ability of a
software system to change, evolve, and survive. It begins with initial development and configu-
ration of the system; proceeds through its installation, day-to-day operation, and maintenance;
and may eventually include re-implementing the system to increase its maintainability or be-
cause of major changes in system requirements. Knowledge in this category supports an under-
standing of how software systems evolve, the study and analysis of maintenance costs, the de-
velopment and use of processes that are needed for effective and efficient maintenance, and
strategies for dealing with legacy systems.

18 CMU/SEI-99-TR-004

The Software Requirements Engineering Knowledge

Area
KA Number 2.1
KA Name Software Requirements Engineering

KA Description

This area is concerned with establishing a common understanding of the requirements to be
addressed by the software product. It consists of a set of transformations that attempt to under-
stand the exact needs of a software-intensive system and convert the statement of needs into a
complete and unambiguous description of the requirements, documented according to a speci-
fied standard. This area includes information about the requirements activities of elicitation,
analysis, and specification.

Knowledge Units

2.1.1 Requirements Elicitation
2.1.2 Requirements Analysis
2.1.3 Requirements Specification

References

[Davis 93], [Faulk 96], [IEEE 94], [Jackson 95], [Loucopoulos 95], [Pfleeger 98]

Description of

the Software Requirements Engineering Knowledge Units

KU Number

2.11

KU Name

Requirements Elicitation

KU Description

This unit provides knowledge that supports the systematic development of a complete under-
standing of the problem domain. This unit also includes knowledge about methods and tech-
niques for uncovering, discovering, and communicating functional and non-functional require-
ments and constraints; it provides a foundation for decomposing a problem into intellectually
manageable pieces by using objects, functions, and states.

KU Number

2.1.2

KU Name

Requirements Analysis

KU Description

This unit provides knowledge about the modeling of software requirements in the information,
functional, and behavioral domains of a problem. This unit includes a tradeoff analysis of per-
formance requirements and the constraints on a system, along with all of the perceived primary
and derived requirements of a system, which highlight the effect on development cost and
schedule. The unit includes knowledge about various requirements modeling methods (e.g.,
structured analysis, object-oriented analysis), the use of prototyping to examine and assess re-
quirements, and domain analysis techniques.

KU Number

213

KU Name

Requirements Specification

KU Description

This unit is concerned with the representation of software requirements that result from require-
ments elicitation and requirements analysis. This unit includes knowledge about the principles of
defining system services and constraints, about the use of specification standards, and about the
application of specification methods that involve structured natural language, graphical and
symbolic notation, design description languages, and formal specification languages.

CMU/SEI-99-TR-004

19

The Software Design Knowledge Area

KA Number

2.2

KA Name

Software Design

KA Description

This area is concerned with the transformation of the statement of requirements into a descrip-
tion of how these requirements are to be implemented. Software design consists of activities
such as architectural design, abstract specification, interface design, component design, data
structure design, tasking design, and algorithm design. Software design uses a variety of tech-
niques and forms of representation, each providing a capability for capturing and expressing a
different view of the system.

Knowledge Units

2.2.1 Architectural Design
2.2.2 Abstract Specification
2.2.3 Interface Design
2.2.4 Data Structure Design
2.2.5 Algorithm Design

References

[Budgen 94], [DeMarco 79], [Dixon 96], [GE 86], [Garland 96], [Gomaa 93], [Hatley 87],
[IEEE 94], [Page-Jones 80], [Pfleeger 98], [Ward 85], [Yourdon 89]

Description of

the Software Design Knowledge Units

KU Number

221

KU Name

Architectural Design

KU Description

This unit is concerned with knowledge about developing a modular structure and representing
the control relationships between modules. The unit includes knowledge about identifying and
documenting the subsystems making up the overall system, and the relationships between and
among the subsystems. It also includes knowledge about design methods and techniques for
functional design, object-oriented design, real-time system design, and client-server system de-
sign.

KU Number

222

KU Name

Abstract Specification

KU Description

This unit is concerned with knowledge about producing an abstract specification of the services
provided by each software module and the constraints under which it must operate. The unit
includes specification notation and techniques for object-oriented designs, structured designs,
real-time system design, and client-server system design. This unit also includes knowledge
about partitioning the services provided by a subsystem across the components in that sub-
system and about how to optimize component independence. This includes knowledge about
module coupling and cohesion design concepts, and how to recognize and measure the degree of
component independence in a design.

KU Number

223

KU Name

Interface Design

KU Description

This unit is concerned with knowledge about the design and documentation of the interface be-
tween software subsystems and between the software system and the user. This unit includes
knowledge about interface design principles, task analysis and interface modeling, implementa-
tion tools, information presentation, design evaluation, and user documentation.

KU Number

224

KU Name

Data Structure Design

KU Description

This unit is concerned with knowledge about the specification and design of the data structures
to be used in the software implementation. This unit includes knowledge about how to translate
the data objects defined in the analysis and design models into data structures that reside within
the software system. This unit also includes knowledge about data dictionaries, data-flow dia-
gram, and entity relationship diagrams.

20

CMU/SEI-99-TR-004

KU Number 225

KU Name Algorithm Design

KU Description This unit is concerned with knowledge about the detailed specification and design of the algo-
rithms used to implement software functionality and services. This unit includes knowledge
about the representation of procedural detail in an appropriate notation or language such as flow
charts, box diagrams, decision tables, and program design languages.

CMU/SEI-99-TR-004 21

The Software Coding Knowledge Area

KA Number

2.3

KA Name

Software Coding

KA Description

This area is concerned with knowledge about the construction of the software components that
are identified and described in the design documents. This area includes knowledge about trans-
lation of a design into an implementation language, program coding styles, and the development
and use of program documentation.

Knowledge Units

2.3.1 Code Implementation
2.3.2 Code Reuse
2.3.3 Coding Standards and Documentation

References

[Booch 87], [Deimel 90], [Dijkstra 76], [Humphrey 95], [Pfleeger 98], [Wilde 90]

Description of the Software Coding Knowledge Units

KU Number

231

KU Name

Code Implementation

KU Description

This unit is concerned with knowledge about how to translate a software design into an imple-
mentation programming language. This unit includes knowledge about modular and incremental
programming, structured programming, and knowledge of various programming paradigms
(assembly, procedural, object-oriented, functional, and logic). It also includes knowledge about
how to use source code development tools and programming language translation tools.

KU Number

2.3.2

KU Name

Code Reuse

KU Description

This unit is concerned with knowledge about developing code by reuse of existing components
and about developing reusable code. This unit also includes knowledge about reusable libraries,
the inheritance mechanism, module referencing, and software portability issues and techniques.

KU Number

2.3.3

KU Name

Coding Standards and Documentation

KU Description

This unit is concerned with knowledge about the use of standards for style and documentation in
the construction of software. This unit includes knowledge about how to develop internal and
external program documentation.

22

CMU/SEI-99-TR-004

The Software Testing Knowledge Area

KA Number

2.4

KA Name

Software Testing

KA Description

This area is concerned with verifying that a correct solution to the problem, embodied in the
statement of the requirements, has been developed. Testing is a multi-stage process that consists
of activities for validating the software product, from the most primitive elements up to the fully
integrated system. This area includes activities such as unit testing, integration testing, system
testing, performance testing, and acceptance testing.

Knowledge Units

2.4.1 Unit Testing

2.4.2 Integration Testing
2.4.3 System Testing
2.4.4 Performance Testing
2.4.5 Acceptance Testing
2.4.6 Installation Testing
2.4.7 Test documentation

References

[Beizer 84], [Beizer 90], [IEEE 94], [Pfleeger 98]

Description of

the Software Testing Knowledge Units

KU Number

24.1

KU Name

Unit Testing

KU Description

This unit is concerned with knowledge about testing a program unit, typically developed by a
single individual, to determine that it is free of data, logic, or standards errors. This unit includes
knowledge of dynamic analysis (equivalent partitioning, boundary value analysis, cause-effect
graphing, logic-based testing, random testing, and syntax testing) and static analysis (complete
path testing, decision testing, condition testing, and data-flow testing).

KU Number

242

KU Name

Integration Testing

KU Description

This unit is concerned with knowledge about validating that software components, which have
been unit tested separately, interact correctly when they are put together to perform a higher
order function. This unit also includes knowledge about dependency checking for calls, data,
and processes, and about interface checking in terms of range, type compatibility, representa-
tion, number and order of parameters, and method of transfer.

KU Number

243

KU Name

System Testing

KU Description

This unit is concerned with knowledge about validating the specified functional requirements of
a system. This unit includes knowledge about techniques to design and enact an independent
testing process of all of the system’s functions described in the software requirements specifica-
tion.

KU Number

244

KU Name

Performance Testing

KU Description

This unit is concerned with knowledge about validating the performance requirements of a sys-
tem. This unit includes knowledge about techniques to instrument performance measures like
logging, event counts, event duration, and sampling. It also includes knowledge about methods
for tuning a system for optimum saturation, load, and throughput threshold.

KU Number

245

KU Name

Acceptance Testing

KU Description

This unit is concerned with knowledge about validating the functional and non- functional re-
quirements of a purchased or acquired system. This unit includes knowledge about techniques
for using the contract, the statement of work, the software requirements specification, and the
request for proposal to ensure that the delivered system meets all of the requirements (as per-

ceived by the purchasing or acquiring organization).

CMU/SEI-99-TR-004

23

KU Number

246

KU Name

Installation Testing

KU Description

This unit is concerned with knowledge about validating that a system will operate under all con-
figuration possibilities. This unit includes knowledge techniques to perform configuration com-
mand checking in terms of rotation, and permutation of all physical, logical, and functional enti-
ties of a system.

KU Number

247

KU Name

Test Documentation

KU Description

This unit is concerned with knowledge about test plan preparation, test design specification, test
case specification, test procedures specification, test item transmittal reports, test log specifica-
tion, test incident reports, and test summary reports.

24

CMU/SEI-99-TR-004

The Software Operation and Maintenance Knowledge

Area
KA Number 2.5
KA Name Software Operation and Maintenance

KA Description

This area includes concepts, methods, processes, and techniques that support the ability of a
software system to change, evolve, and survive. It begins with initial development and configu-
ration of the system; proceeds through its installation, day-to-day operation, and maintenance;
and may eventually include re-implementing the system to increase its maintainability to address
major changes in system requirements. Knowledge in this category supports understanding of
how software systems evolve, the study and analysis of maintenance costs, the development and
use of processes that are needed for effective and efficient maintenance, and strategies for deal-
ing with legacy systems.

Knowledge Units

2.5.1 Software Installation and Operation
2.5.2 Software Maintenance Operations
2.5.3 Software Maintenance Process
2.5.4 Software Maintenance Management
2.5.5 Software Reengineering

References

[Arnold 93], [Arthur 88], [IEEE 94], [Lano 94], [Lehman 85], [Pigoski 97]

Description of the Software Operation and Maintenance Knowledge

Units
KU Number 251
KU Name Software Installation and Operation

KU Description

This unit is concerned with the methods and techniques for installing a software product and the
continuing effective operation of that product. This unit includes provision for a smooth, orderly
transition of a system from the developer organization to the user organization, and the documen-
tation and training necessary for proper system operation.

KU Number

25.2

KU Name

Software Maintenance Operations

KU Description

This unit is concerned with the following types of maintenance: corrective maintenance, adaptive
maintenance, perfective maintenance, and preventive maintenance. Corrective maintenance entails
the identification and removal of faults in the software. Adaptive maintenance is concerned with
changing software so that it can operate in some new environment, such as on a different hardware
platform or for use with a different operating system. Perfective maintenance involves implement-
ing new functional or non-functional system requirements generated by software customers as
their organization or business changes. Preventive maintenance concerns changing software to
make it more maintainable.

KU Number

2.5.3

KU Name

Software Maintenance Process

KU Description

This unit is concerned with the process used in performing software maintenance. Such a process
would include phases similar to those in a process for developing a new software product. A main-
tenance process starts with a change request and a preliminary problem analysis. Next, a manage-
rial and technical analysis is undertaken to investigate and determine the cost of alternative solu-
tions. Then, the chosen solution is implemented and tested. Finally, the change is released to the
customer.

KU Number

254

KU Name

Software Maintenance Management

KU Description

This unit is concerned with the organizational, economic, and management issues involved in the
maintenance of software within an organization. This unit includes knowledge about different
organizational maintenance models, maintenance cost analysis and estimation, techniques for
management and execution of maintenance operations, and the examination and understanding of
program evolution dynamics.

CMU/SEI-99-TR-004

25

KU Number 255

KU Name Software Reengineering

KU Description This unit is concerned with the restructuring or reconstruction of a software system to improve
its quality, understandability, and maintainability. Software reengineering efforts are often fo-
cused on legacy systems. Software reengineering includes activities such as inventory analysis,
document restructuring, reverse engineering and code restructuring, data restructuring, and for-
ward reengineering.

26 CMU/SEI-99-TR-004

Software Management

Category Number

3

Category Name

Software Management

Category Description

This category deals with the concepts, methods, and techniques for managing software products
and projects. Software management includes activities concerned with project management, risk
management, software quality, and configuration management.

Knowledge Areas

3.1 Software Project Management

3.2 Software Risk Management

3.3 Software Quality Management

3.4 Software Configuration Management
3.5 Software Process Management

3.6 Software Acquisition

References

[Boehm 81], [Boehm 91], [Humphrey 89], [Thayer 88]

Description of the Software Management Knowledge Areas

KA Number

31

KA Name

Software Project Management

KA Description

This area is concerned with defining project objectives, assessing project needs and resources,
developing estimates for the work to be performed, establishing the necessary commitments, and
defining the plan for performing the work.

KA Number

3.2

KA Name

Software Risk Management

KA Description

This area is concerned with the concepts, methods, and techniques for managing risks that threaten
a plan for developing a software product. Risk management includes such activities as risk identi-
fication, risk analysis, monitoring risks, risk mitigation, and risk planning.

KA Number

3.3

KA Name

Software Quality Management

KA Description

This area is concerned with the concepts, methods, techniques, procedures, and standards for pro-
ducing high-quality software products. This area includes knowledge about quality planning and
control, verification and validation activities, measurement of product and process attributes, and
software dependability and reliability.

KA Number

3.4

KA Name

Software Configuration Management

KA Description

This area deals with the discipline of identifying the configuration of a system at discrete points in
time for systematically controlling changes to this configuration and maintaining the integrity and
traceability of this configuration throughout the life of the software system.

KA Number

3.5

KA Name

Software Process Management

KA Description

This area is concerned with the management of the technical aspects of the software development
process. This area includes knowledge about the following software process elements: activities,
methods, practice, and transformations that people use to develop and maintain software and asso-
ciated products. This also includes ensuring that the processes within an organization are perform-
ing as expected; that is, defined processes are being followed and improvements to the processes
are being made so as to meet organizational objectives. This area also includes knowledge about
establishing processes that are used and can act as a foundation for systematic improvement based
on the organization’s needs.

CMU/SEI-99-TR-004

27

KA Number 3.6

KA Name Software Acquisition

KA Description This area is concerned with knowledge about acquiring a custom software system by a contract-
ing agency from software developers independent of the agency. This area includes knowledge
about acquisition activities such as procurement, contracting, performance evaluation, and pro-
viding for future support of the software system.

28 CMU/SEI-99-TR-004

The Software Project Management Knowledge Area

KA Number

31

KA Name

Software Project Management

KA Description

This area is concerned with defining project objectives, assessing project needs and resources,
developing estimates for the work to be performed, establishing the necessary commitments, and
defining the plan for performing the work.

Knowledge Units

3.1.1 Project Planning
3.1.2 Project Organization
3.1.3 Project Forecasting
3.1.4 Project Scheduling
3.1.5 Project Control

References

[Paulk 93], [Thayer 88]

Description of

the Software Project Management Knowledge Units

KU Number

311

KU Name

Project Planning

KU Description

This unit includes knowledge about preparing a plan for a software project. This unit includes
knowledge about how to determine the project scope, select the objectives and goals of the pro-
ject, and decide on the strategies, policies, programs, and procedures for achieving the project
objectives.

KU Number

312

KU Name

Project Organization

KU Description

This unit includes knowledge about how to determine and itemize the activities required to
achieve the objectives of a software development project. This unit includes arranging these
activities into logical clusters and assigning these logical clusters to a project team, as well as
delegating responsibility and authority to the team members.

KU Number

313

KU Name

Project Forecasting

KU Description

This unit includes knowledge about how to anticipate future events (such as availability of per-
sonnel, predicted inflation rate, and availability of new computer hardware) and how to judge
the effect that these events will have on a software engineering project. This unit includes
knowledge about how to make an informed prediction of the effort, cost, time, and quality that
will be needed for developing, changing, and maintaining a software system.

KU Number

3.14

KU Name

Project Scheduling

KU Description

This unit includes knowledge about how to develop a schedule for the completion of a software
project. This unit includes determining project tasks, allocating resources for completing the
tasks, determining task ordering and dependencies, scheduling start and completion times for
each project task, and establishing project milestone dates.

KU Number

3.15

KU Name

Project Control

KU Description

This unit includes knowledge about how to ensure that actual operations go according to plan.
This unit includes knowledge about measuring performance against goals and plans, determin-
ing when deviations exist, and initiating actions to correct deviations.

CMU/SEI-99-TR-004

29

The Software Risk Management Knowledge Area

KA Number

3.2

KA Name

Software Risk Management

KA Description

This area is concerned with the concepts, methods, and techniques for managing risks that
threaten a plan for developing a software product. Risk management includes such activities as
risk identification, risk analysis, monitoring risks, risk mitigation, and risk planning.

Knowledge Units

3.2.1 Risk Analysis
3.2.2 Risk Management Planning
3.2.3 Risk Monitoring

References

[Boehm 91], [Hall 98], [Karolak 96]

Description of

the Software Risk Management Knowledge Units

KU Number

321

KU Name

Risk Analysis

KU Description

This unit includes knowledge about how to identify sources of risk, how to classify risks as to
their causes and symptoms, how to assess the loss probability and loss magnitude for each risk,
and how to prioritize risk items using their probability of occurrence and the severity of their
impact. A software engineer who is knowledgeable in risk identification will be able to produce
lists of the product-specific risk items likely to compromise a project’s success.

KU Number

3.2.2

KU Name

Risk Management Planning

KU Description

This unit includes knowledge about how to develop a risk management plan. Such a plan lays
out the activities necessary to bring each risk item under control. This unit requires knowledge
about risk resolution strategies and how to make plans to mitigate or avoid the consequences
when a risk item occurs.

KU Number

3.2.3

KU Name

Risk Monitoring

KU Description

This unit includes knowledge about how to track the projects’ progress toward the resolution of
risk items, and how and when to take appropriate corrective action.

30

CMU/SEI-99-TR-004

The Software Quality Management Knowledge Area

KA Number

3.3

KA Name

Software Quality Management

KA Description

This area is concerned with the concepts, methods, techniques, procedures, and standards for
producing high-quality software products in an efficient and cost-effective manner. This area
includes knowledge about quality planning and control, verification and validation activities,
measurement of product and process attributes, and software dependability and reliability.

Knowledge Units

3.3.1 Software Quality Assurance
3.3.2 Verification and Validation
3.3.3 Software Metrics

3.3.4 Dependable Systems

References

[Brooks 95], [Fagan 76], [Gilb 93], [Gillies 92], [Grady 92], [IEEE 94], [Ince 94], [Kan 95],
[Levenson 97], [Musa 87], [Paulk 93], [Sheppard 92], [Woodcock 88]

Description of the Software Quality Management Knowledge Units

KU Number

331

KU Name

Software Quality Assurance

KU Description

This unit is concerned with software management functions and activities intended to ensure that
a software product conforms to its explicitly stated functional and performance requirements. It
includes knowledge about organization of quality assurance units, quality planning, oversight,
record keeping, analysis, auditing, and reporting. This unit also includes knowledge about qual-
ity assurance techniques such as Pareto analysis, trend analysis, statistical quality control, and
regression testing.

KU Number

3.3.2

KU Name

Verification and Validation

KU Description

This unit is concerned with knowledge about verification and validation (V&V) concepts, meth-
ods, activities, and deliverables associated with each phase in the software life cycle. This unit
includes knowledge about V&YV planning and organization; personal reviews, walkthroughs, and
inspections; traceability analysis; formal verification techniques; cleanroom techniques; and
software testing.

KU Number

3.33

KU Name

Software Metrics

KU Description

This unit is concerned with the formulation of software measures and metrics, the collection of
data required by the formulated metrics, the computation of metrics, and the analysis, interpreta-
tion, and feedback of metrics results. The unit involves knowledge about product metrics (for
requirements, design, and code), resource metrics (for human and technical resources), and pro-
cess metrics (for effort and schedule measures).

KU Number

334

KU Name

Dependable Systems

KU Description

This unit is concerned with knowledge about the development of software systems that must be
dependable (i.e., systems that have critical non-functional requirements for reliability, safety,
and security). This unit includes knowledge about the specification of reliable software, reliabil-
ity metrics, statistical testing, fault tolerance and avoidance, defensive programming and excep-
tion handling, and safety specification and assurance.

CMU/SEI-99-TR-004

31

The Software Configuration Management Knowledge

Area
KA Number 34
KA Name Software Configuration Management

KA Description

This area deals with the discipline of identifying the configuration of a system at discrete points
in time for the purposes of systematically controlling changes to this configuration and maintain-
ing the integrity and traceability of this configuration throughout the life of the software system.

Knowledge Units

3.4.1 Software Configuration Identification
3.4.2 Software Configuration Control

3.4.3 Software Configuration Audit

3.4.4 Software Configuration Status Accounting

References

[Bersoff 80], [Buckley 94], [Paulk 93]

Description of the Software Configuration Management Knowledge

Units
KU Number 341
KU Name Software Configuration Identification

KU Description

This unit is concerned with knowledge about defining a system’s baseline components and iden-
tifying updates to a particular baseline. It also includes knowledge about the incremental estab-
lishment and maintenance of a basis for control and status accounting for configuration items
throughout the life cycle of a software system.

KU Number

3.4.2

KU Name

Software Configuration Control

KU Description

This unit is concerned with knowledge about initiation, evaluation, coordination, approval or
disapproval, and implementation of changes to configuration items throughout the life cycle of a
software system.

KU Number

3.4.3

KU Name

Software Configuration Audit

KU Description

This unit is concerned with knowledge about verifying that all required configuration items have
been produced, that the current version agrees with the requirements specification, that the tech-
nical documentation completely and accurately describes the configuration items, and that all
change requests have been resolved.

KU Number

3.44

KU Name

Software Configuration Status Accounting

KU Description

This unit is concerned with knowledge about recording and reporting the information that is
needed to change a configuration effectively, including a listing of the approved configuration
identification, the status of proposed changes to the configuration, and the implementation status
of all approved changes.

32

CMU/SEI-99-TR-004

The Software Process Management Knowledge Area

KA Number

35

KA Name

Software Process Management

KA Description

This area is concerned with the management of the technical aspects of the software develop-
ment process. This includes knowledge about software process elements: activities, methods,
practice, and transformations that people use to develop and maintain software and associated
products. This also includes ensuring that the processes within an organization are performing as
expected; that is, defined processes are being followed and improvements to the processes are
being made so as to meet organizational objectives. This area also includes knowledge about
establishing processes that are used and can act as a foundation for systematic improvement
based on the organization’s needs.

Knowledge Units

3.5.1 Quantitative Software Process Management
3.5.2 Software Process Improvement

3.5.3 Software Process Assessment

3.5.4 Software Process Automation

3.5.5 Software Process Engineering

References

[Christie 94], [Hanrahan 95], [Humphrey 89], [Humphrey 92], [Paulk 93], [Paulk 95], [SPC 92]

Description of

the Software Process Management Knowledge Units

KU Number

351

KU Name

Quantitative Software Process Management

KU Description

This unit is concerned with quantitative control of process performance for a software project.
This includes knowledge about establishing software process performance goals, measuring the
process performance, analyzing process measurements, and making adjustments to maintain
process performance within acceptable limits.

KU Number

3.5.2

KU Name

Software Process Improvement

KU Description

This unit is concerned with knowledge about the use of artifacts, lessons, data, and general ex-
perience from software projects to improve software products and processes. This unit includes
knowledge about how to evolve a process from lower levels to higher levels of process maturity
and how to plan, develop, and implement changes to the software process.

KU Number

353

KU Name

Software Process Assessment

KU Description

This unit is concerned with knowledge about acquiring an understanding of a software develop-
ment organization’s state of software practice, identifying the key areas for improvement, and
initiating actions to make these improvements. This unit includes knowledge about how to use
an assessment as a diagnostic tool to aid organizational development.

KU Number

3.54

KU Name

Software Process Automation

KU Description

This unit is concerned with knowledge about how to integrate people in a software development
organization with the development process and the tools supporting that development. This unit

includes knowledge about how to provide or use computer-based real-time support and guidance
for the enactment of software development processes.

KU Number

355

KU Name

Software Process Engineering

KU Description

This unit deals with methodologies, tools, and techniques for the design and implementation of
software processes. This unit includes knowledge about representing the important characteris-
tics of a process as a coherent, integrated set of well-defined software engineering and manage-
ment processes for organizations, teams, and individuals.

CMU/SEI-99-TR-004

33

The Software Acquisition Knowledge Area

KA Number

3.6

KA Name

Software Acquisition

KA Description

This area is concerned with knowledge about acquiring a custom software system by a contract-
ing agency from software developers independent of the agency. This area includes knowledge
about acquisition activities such as procurement, contracting, performance evaluation, and pro-
viding for future support of the software system.

Knowledge Units

3.6.1 Procurement Process
3.6.2 Acquisition Planning
3.6.3 Performance Management

References

[Humphrey 89], [Marciniak 90]

Description of the Software Acquisition Knowledge Units

KU Number

3.6.1

KU Name

Procurement Management

KU Description

This unit is concerned with knowledge about the process for competitive procurement of soft-
ware systems. This unit includes knowledge about preparation and distribution of a solicitation
package, proposal evaluation and source selection, and contract negotiations and finalization.

KU Number

3.6.2

KU Name

Acquisition Planning

KU Description

This unit is concerned with knowledge about developing a life-cycle plan for acquisition and use
of a software system. This unit includes knowledge about project organization and communica-
tion, project budget and schedule, acquisition and development standards, subcontractor man-
agement, and software development planning.

KU Number

3.6.3

KU Name

Performance Management

KU Description

This unit is concerned with knowledge about assessing the developer’s performance in develop-
ing the system being acquired. This unit includes knowledge about management reviews, quality
assurance, test and evaluation, and metrics and performance indicators.

34

CMU/SEI-99-TR-004

Software

Domains

Category Number

4

Category Name

Software Domains

Category Description

This category is concerned with knowledge about specific domains that involve computing and
software engineering application or utilization. This category includes the following software
domains: artificial intelligence, database systems, human-computer interaction, numerical and
symbolic computing, computer simulation, and software acquisition.

Knowledge Areas

4.1 Artificial Intelligence

4.2 Database Systems

4.3 Human-Computer Interaction

4.4 Numerical and Symbolic Computing
4.5 Computer Simulation

4.6 Real-Time Systems

References

[CACM 95], [Gomaa 93], [Hill 90], [Krishna 92], [Lethbridge 98], [Levi 90], [Maron 87],
[Pooch 93], [Proctor 94], [Rob 97], [Russell 95], [Trembley 85], [Tucker 91]

Description of

the Software Domains Knowledge Areas

KA Number

41

KA Name

Avrtificial Intelligence

KA Description

This area is concerned with basic models of behavior and the building of virtual and actual ma-
chines to simulate animal and human behavior. This area also includes knowledge about the
history and applications of artificial intelligence; problems, state spaces, and search strategies;
logical and probabilistic reasoning systems; knowledge engineering; robotics; learning theory;
neural networks; and natural language processing.

KA Number

4.2

KA Name

Database Systems

KA Description

This area is concerned with file systems, database systems, and database models. This area also
includes knowledge about the history and evolution of file and database systems, the relational
database model and the Structured Query Language, entity-relationship modeling, data normali-
zation, transaction management and concurrency control, distributed and client/server database
systems, and object-oriented database systems.

KA Number

4.3

KA Name

Human-Computer Interaction

KA Description

This area is concerned with user interfaces, computer graphics, and hypertext/ hypermedia. This
area also includes knowledge about input/output devices; the use and construction of interfaces;
graphical devices, models, and algorithms used in graphical systems, graphics packages, and
graphics applications; and hypertext/hypermedia concepts, environments, applications, and de-
sign.

KA Number

44

KA Name

Numerical and Symbolic Computing

KA Description

This area is concerned with methods for efficiently and accurately using computers to solve
equations for mathematical models. This area also includes knowledge about computer represen-
tation of numerical systems; classification, analysis, and control of numeric errors; iterative
approximation methods; numerical algorithms used in science and engineering; and the devel-
opment of mathematical software packages.

CMU/SEI-99-TR-004

35

KA Number

4.5

KA Name

Computer Simulation

KA Description

This area is concerned with the basic aspects of modeling and simulation. It includes knowledge
about statistical models, queuing theory, random variable generation, discrete system simulation,
simulation languages, graphic output with animation, and validation of simulation models.

KA Number

4.6

KA Name

Real-Time Systems

KA Description

This area is concerned with knowledge about the development of real-time software systems. It
includes knowledge about requirements, design, implementation, and basic properties of real-
time application software. This area also includes knowledge about concurrent programming,
process synchronization and scheduling, resource management, software reliability, real-time
programming languages, and real-time operating systems.

36

CMU/SEI-99-TR-004

S5 Summary

This SWE-BOK is a structured model that describes the knowledge and skills that constitute
the software engineering discipline. Materials from the ACM and IEEE-CS, the Project Man-
agement Institute, the FAA, and others [ACM 89, ACM 98, Davis 97, Dupuis 98, Ibrahim 97,
PMI 94, Tucker 91] have provided ideas, concepts, and perspectives. The resulting three-
tiered architecture, and the material that it organizes, corresponds with other similar ap-
proaches and will be easy to use and adapt to other related projects and activities.

The use of this body of knowledge in a wide variety of contexts will determine the extent to
which the breadth and depth of the discipline has been captured in a useful way. To that end,
and to support similar efforts aimed at maturing software engineering as a discipline, we an-
ticipate that this report will not only elicit comments and suggestions for enhancement and
extension, but will also encourage the broader use of this SWE-BOK throughout the software
community.

CMU/SEI-99-TR-004 37

38

CMU/SEI-99-TR-004

References

[ACM 89]

[ACM 98]

[Aho 92]

[Appleby 91]

[Arnold 93]

[Arthur 88]

[Beizer 84]

[Beizer 90]

[Bersoff 80]

[Boehm 81]

[Boehm 91]

[Booch 87]

ACM Task Force on the Core of Computer Science. “Computing as
a Discipline.” Communications of the ACM 32, 1 (January 1989): 1-
5.

Association for Computing Machinery. “The Full Computing Clas-
sification System, 1998 Version.” Computing Reviews 38,1 (January
1998): 8-62.

Aho, V. A. and Ullman, J. D. Foundations of Computer Science.
New York, NY: Computer Science Press, 1992.

Appleby, Doris. Programming Languages: Paradigm and Practice.
New York, NY: McGraw-Hill, 1991.

Arnold, R. S. Software Reengineering. Los Alamitos, CA: IEEE
Computer Society Press, 1993.

Arthur, L. J. Software Evolution. New York, NY: John Wiley, 1988.

Beizer, B. Software System Testing and Quality Assurance. New
York, NY: Van Norstrand Reinhold Company, 1984.

Beizer, B. Software Testing Techniques. New York, NY: Van Nor-
strand Reinhold Company, 1990.

Bersoff, E. H.; Henderson, V. H.; and Siegel, S. G. Software Con-
figuration Management. Englewood Cliffs, NJ: Prentice-Hall, 1980.

Boehm, B. W. Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

Boehm, B. W. “Software Risk Management: Principles and Prac-
tices.” IEEE Software 8, 1 (January 1991): 32-41.

Booch, G. Software Components with Ada: Structures, Tools and
Subsystems. Menlo Park, CA: Benjamin/Cummings, 1987.

CMU/SEI-99-TR-004

39

[Brooks 95] Brooks, F. P. The Mythical Man-Month, Essays on Software Engi-
neering, Anniversary Edition. Reading, MA: Addison-Wesley,
1995.

[Brookshear 94] Brookshear, J. Glenn. Computer Science: An Overview, 4™ edition.
Menlo Park, CA: Benjamin/Cummings, 1994.

[Buckley 94] Buckley, F. J. Implementing Configuration Management: Hard-
ware, Software, and Firmware. Los Alamitos, CA: IEEE Computer
Society Press, 1996.

[Budgen 94] Budgen, D. Software Design. Reading, MA: Addison-Wesley, 1994,

[CACM 95] Special Issue on “Designing Hypermedia Applications.” Communi-
cations of the ACM 38, 8 (August 1995).

[Cheney 85] Cheney, W. and Kincaid, D. Numerical Mathematics and Comput-
ing. Pacific Grove, CA: Brooks/Cole, 1985.

[Christie 94] Christie, A. A Practical Guide to the Technology and Adoption of
Software Process Automation, (CMU/SEI-94-TR-007, ADA
280916). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1994,

[Davis 93] Davis, A. Software Requirements: Objects, Functions & States.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

[Davis 97] Davis, G. B. et al. 1S’97: Model Curriculum for Undergraduate De-
gree Programs in Information Systems. Available WWW <URL.:
http://www.acm.org/education/curricula.html#1S97> (1997).

[Deimel 90] Deimel, L. and Naveda, F. Reading Computer Programs: Instruc-
tor’s Guide and Exercises (CMU/SEI-90-EM-3, ADA 228026).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

[DeMarco 79] DeMarco, Tom. Structured Analysis and System Specification.
Englewood Cliffs, NJ: Prentice-Hall/Yourdon Press, 1979.

[Denning 89] Denning, Peter J. et al. “Computing as a Discipline.” Communica-
tions of the ACM 32, 1 (January 1989): 9-23.

40 CMU/SEI-99-TR-004

http://www.acm.org/education/curricula.html#IS

[Dijkstra 76]

[Dixon 96]

[Dorfman 97]

[Dupuis 98]

[Fagan 76]

[Faulk 96]

[Floyd 97]

[Ford 96]

[Forouzan 98]

[Garland 96]

[GE 86]

[Gibbs 94]

[Gilb 93]

[Gillies 92]

Dijkstra, E. A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1976.

Dixon R. Client/Server and Open Systems. New York, NY: John
Wiley, 1996.

Dorfman, M. and Thayer, R., eds. Software Engineering. Los
Alamitos, CA: Computer Society Press, 1997.

Dupuis, R. et al. A Guide to the Software Engineering Body of
Knowledge, A Straw Man Version. Los Alamitos, CA: IEEE Com-
puter Society Press, 1998.

Fagan, M. E. “Design and Code Inspections to Reduce Errors in
Programs.” IBM Systems Journal 15, 3 (3" Quarter 1976): 219-248.

Faulk, S. Software Requirements: A Tutorial, Software Engineering.
Los Alamitos, CA: IEEE Computer Society Press, 1996.

Floyd, T. Digital Fundamentals, 6" edition. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

Ford, Gary and Gibbs, Norman E. A Mature Profession of Software
Engineering (CMU/SEI-96-TR-004, ADA 307889). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1996.

Forouzan, B. Introduction to Communications and Networking.
New York, NY: McGraw-Hill, 1998.

Garland, D. and Shaw, M. Software Architecture: Perspectives on
an Emerging Discipline. Englewood Cliffs, NJ: Prentice-Hall, 1996.

General Electric Company. Software Engineering Handbook. New
York, NY: McGraw-Hill, 1986.

Gibbs, W. “Software’s Chronic Crisis.” Scientific American 271, 3
(September 1994): 86-95.

Gilb, T. and Graham, D. Software Inspections. Reading, MA: Addi-
son-Wesley, 1993.

Gillies, A. C. Software Quality: Theory and Management. London:
Chapman & Hall, 1992.

CMU/SEI-99-TR-004

41

[Gomaa 93]

[Grady 92]

[Grimaldi 94]

[Guttman 71]

[Hall 98]

[Hanrahan 95]

[Hartmanis 92]

[Hatley 87]

[Hayes 88]

[Heuring 97]

[Hilburn 98]

[Hill 90]

[Horowitz 83]

[Humphrey 89]

Gomaa, H. Software Design Methods for Concurrent and Real-Time
Systems. Reading, MA: Addison-Wesley, 1993.

Grady, R. B. and Caswell, D. L. Practical Software Metrics for Pro-
ject Management and Process Improvement. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

Grimaldi, R. Discrete and Combinatorial Mathematics, 3™ edition.
Reading, MA: Addison-Wesley, 1994.

Guttman, I.; Wilkes, S.; and Hunter, J. Introductory Engineering
Statistics, 2" edition. New York, NY: John Wiley, 1971.

Hall, E. M. Managing Risk. Reading, MA: Addison-Wesley, 1998.
Hanrahan, Robert P. The IDEF Process Modeling Methodology.

Available WWW <URL.: http://www.stsc.hill.af.mil/crosstalk/ >
(1995).

Hartmanis, Juris and Lin, Herbert, eds. Computing the Future.
Washington, D.C.: National Academy Press, 1992.

Hatley, Derek and Pirbhali, Imtiaz. Strategies for Real-Time System
Specification. New York, NY: Dorset House, 1987.

Hayes, J. Computer Architecture and Organization, 2" edition.
New York, NY: McGraw-Hill, 1988.

Heuring, V. and Jordan, H. Computer Systems Design and Architec-
ture. Reading, MA: Addison-Wesley, 1997.

Hilburn, T.; Bagert, D.; Mengel, S.; and Oexmann, D. “Software
Engineering Across Computing Curricula,” Proceedings of Sixth
Annual Conference on the Teaching of Computing. Dublin, August
1998.

Hill, F. Computer Graphics. New York, NY: Macmillan, 1990.

Horowitz, E. and Sahni, S. Fundamentals of Data Structures. New
York, NY: Computer Science Press, 1983.

Humphrey, W. S. Managing the Software Process. Reading, MA:
Addison-Wesley, 1989.

42

CMU/SEI-99-TR-004

http://www.stsc.hill.af.mil/crosstalk/

[Humphrey 92]

[Humphrey 95]

[Ibrahim 97]

[IEEE 94]

[Ince 94]

[Jackson 95]

[Kan 95]

[Karolak 96]

[Krishna 92]

[Lano 94]

[Lehman 85]

[Lethbridge 98]

[Leveson 97]

Humphrey, W. S. Introduction to Software Process Improvement
(CMU/SEI-92-TR-7, ADA 253326). Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University, 1992.

Humphrey, W. S. A Discipline for Software Engineering. Reading,
MA: Addison-Wesley, 1995.

Ibrahim, L. et al. The Federal Aviation Administration Integrated
Capability Maturity Model, Version 1.0. Washington, D.C.: Federal
Aviation Administration, November 1997.

IEEE. Software Engineering Standards, 1994 Edition. Los Alami-
tos, CA: IEEE Computer Society Press, 1994.

Ince, D. ISO 9001 and Software Quality Assurance. New York, NY:
McGraw-Hill, 1994.

Jackson, M. Software Requirements and Specifications: A Lexicon
of Practice, Principles and Prejudices. Reading, MA: Addison-
Wesley, 1995.

Kan, S. H. Metrics and Models in Software Quality Engineering.
Reading, MA: Addison-Wesley, 1995.

Karolak, D. W. Software Engineering Risk Management. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

Krishna, M. K. Real-Time Systems: Abstractions, Languages and
Design Methodologies. Los Alamitos, CA: IEEE Computer Society
Press, 1992.

Lano, K. and Haughton, H. Reverse Engineering and Software
Maintenance. New York, NY: McGraw-Hill, 1994,

Lehman, M. and Belady, L. Program Evolution: Processes of Soft-
ware Change. San Diego, CA: Academic Press, 1985.

Lethbridge, T.C. “A Survey of the Relevance of Computer Science
and Software Engineering Education.” Proceedings of 11" Confer-
ence on Software Engineering Education & Training. Los Alamitos,
CA: IEEE Computer Society Press, 1998.

Leveson, N.G. Safeware: System Safety And Computers. Reading,
MA: Addison-Wesley, 1997.

CMU/SEI-99-TR-004

43

[Levi 90]

[Loucopoulos 95]

[Mano 93]

[Marciniak 90]

[Marciniak 94]

[Maron 87]

[Musa 87]

[Page-Jones 80]

[Paulk 93]

[Paulk 95]

[Pfleeger 98]

[Pigoski 97]

[Pooch 93]

[Pressman 97]

Levi, S. and Agrawala, A. Real-Time System Design. New York,
NY: McGraw-Hill, 1990.

Loucopouslos, P. and Karakostas, V. Systems Requirements Engi-
neering. New York, NY: McGraw-Hill, 1995.

Mano, M., Computer System Architecture, 3" edition. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

Marciniak, J. J., and Reifer, D. J. Software Acquisition Manage-
ment. New York, NY: John Wiley, 1990.

Marciniak, J. J., ed. Encyclopedia of Software Engineering. New
York, NY: John Wiley, 1994.

Maron, M. Numerical Analysis, A Practical Approach. New York,
NY: Macmillan, 1987.

Musa, J. D.; lannino, A.; and Okumoto, K. Software Reliability:
Measurement, Prediction, Applications. New York, NY: McGraw-
Hill, 1987.

Page-Jones, Meilir. The Practical Guide to Structured Systems De-
sign. Englewood Cliffs, NJ: Prentice-Hall/Yourdon Press, 1980.

Paulk M. et al. Capability Maturity Model, Version 1.1, (CMU/SEI-
93-TR-24, ADA 263403). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

Paulk M. et al. The Capability Maturity Model Guidelines for Im-
proving the Software Process. Reading, MA: Addison-Wesley,
1995.

Pfleeger, S. Software Engineering Theory and Practice. Englewood
Cliffs, NJ: Prentice-Hall, 1998.

Pigoski, T. M. Practical Software Maintenance. New York, NY:
John Wiley, 1997.

Pooch, U. and Wall, J. Discrete Event Simulation. Boca Raton, FL:
CRC Press, 1993.

Pressman, Roger S. Software Engineering: A Practitioner’ Ap-
proach, 4" Edition. New York, NY: McGraw-Hill, 1997.

44

CMU/SEI-99-TR-004

[Proctor 94]

[PMI 94]

[Rob 97]

[Russell 95]

[Sebesta 89]

[Sedgewick 88]

[Sheppard 92]

[Silberschatz 94]

[Sommerville 95]

[SPC 92]

[Tannebaum 90]

[Thayer 88]

[Trembley 85]

[Tucker 91]

Proctor, R. and Zandt, T. Human Factors. Boston, MA: Allyn and
Bacon, 1994,

PMI Standards Committee. A Guide to the Project Management
Body of Knowledge (PMBOK). Available WWW <URL.:
http://www.pmi.org/publictn/pmboktoc.htm > (1994).

Rob, P. and Coronel, C. Database Systems, 3" edition. Boston, MA:
Boyd & Fraser, 1997.

Russell, S. and Norvig, P. Artificial Intelligence, A Modern Ap-
proach. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Sebesta, Robert W. Concepts of Programming Languages. Menlo
Park, CA: Benjamin/Cummings, 1989.

Sedgewick, R. Algorithms, 2" edition. Reading, MA: Addison-
Wesley, 1988.

Sheppard, M. Software Engineering Metrics. New York, NY:
McGraw-Hill, 1992.

Silberschatz, A. and Galvin, P. Operating System Concepts. Read-
ing, MA: Addison-Wesley, 1994.

Sommerville, I. Software Engineering, 5" edition. Reading, MA:
Addison-Wesley, 1995.

SPC. Process Definition and Modeling Guidebook (SPC-92041-
CMC). Boston, MA: International Thomson Computer Press, 1992.

Tannebaum, Andrew S. Structured Computer Organization, 3" edi-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1990.

Thayer, R. H. Software Engineering Project Management: A Top-
Down View. Tutorial: Software Engineering Project Management.
Los Alamitos, CA: IEEE Computer Society Press, 1988.

Trembley, J. and Sorenson, P. The Theory and Practice of Compiler
Writing. New York, NY: McGraw-Hill, 1985.

Tucker, Allen B., ed. Computing Curricula 1991: Report of the
ACM/IEEE-CS Joint Curriculum Task Force. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

CMU/SEI-99-TR-004

45

http://www.pmi.org/publictn/pmboktoc.htm

[Ward 85]

[Weiss 94]

[Wilde 90]

[Wilson 93]

[Woodcock 88]

[Yourdon 89]

Ward, Paul and Mellor, Stephen. Structured Development for Real-
Time Systems Volume 1, 2, and 3. Englewood Cliffs, NJ: Prentice-
Hall/Yourdon Press, 1985.

Weiss, M. Data Structures and Algorithm Analysis in C++. Read-
ing, MA: Addison-Wesley, 1994.

Wilde, N. Understanding Program Dependencies (CMU/SEI-CM-
26, ADA 235700). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1990.

Wilson, Leslie B. and Clark, Robert G. Comparative Programming
Languages. Reading, MA: Addison-Wesley, 1993.

Woodcock, J. and Loomes, M. Software Engineering Mathematics.
Reading, MA: Addison-Wesley, 1988.

Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs,
NJ: Prentice-Hall/Yourdon Press, 1989.

46

CMU/SEI-99-TR-004

REPORT DOCUMENTATION PAGE OV N 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Software Engineering Body of Knowledge Version 1.0 C — F19628-95-C-0003

6. AUTHOR(S)
Thomas B. Hilburn, Iraj Hirmanpour, Soheil Khajenoori, Richard Turner, Abir Qasem

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . . REPORT NUMBER
Softwar'e Engineering Institute CMU/SEI-99-TR-004
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
HQ E.SC/DIB ESC-TR-99-004
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

Software engineering, both as a discipline and as a profession, is at a pivotal point in its evolution. Although software has
become critical in the development of most new human-created systems, the concepts, principles, and methods for engineer-
ing software are still neither well defined nor uniformly agreed upon. The lack of consensus regarding software engineering
practice and the requisite competencies creates confusion and has serious consequences for the evaluation, acquisition,
and application of software engineering knowledge. This report presents an effort to organize and catalogue a body of
knowledge for software engineering and to provide a systematic, concise, and complete description of the software engineer-
ing discipline. This body of knowledge can assist organizations in defining and improving the software engineering compe-
tencies of their workforces; it can help educational institutions in defining software engineering curricula; it can provide a
basis for classifying academic and industrial research and development efforts; and it can improve the understanding and
practice of software engineering.

14. SUBJECT TERMS body of knowledge, Federal Aviation Administration (FAA), knowledge area, 15. NUMBER OF PAGES
55

knowledge units, software engineering, software engineering capabilities, software engineering cur- |16. PRICE CODE
riculum

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	A Software Engineerng Body of Knowledge Version 1.0
	Abstract
	Foreword
	Acknowledgments
	List of Figures
	Table of Contents
	1 Introduction
	2 Developing a Body of Knowledge
	3 Using This Body of Knowledge
	4 A Software Engineering Body of Knowledge
	5 Summary

