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There is growing interest in using a structure of claims, arguments, and evidence to ex-

plain why all critical software hazards have been eliminated or adequately mitigated in mis-

sion-critical and safety-critical systems. Such a structure has been called a dependability 

case, an assurance case, or a (goal-structured) safety case. Dependability cases are sometimes 

viewed as adding no extra value, e.g., given an existing hazard analysis, what is the added 

value of a dependability case showing how the hazard is mitigated? In this paper we present 

an example to show the value a dependability case adds to a traditional hazard analysis.   

I. Introduction 

structure of claims, arguments, and evidence is being increasingly recommended as a good way to explain why 

all critical software hazards have been eliminated or adequately mitigated in mission-critical and safety-critical 

systems. A recent National Research Council report, “Software for Dependable Systems: Sufficient Evi-

dence?”
1
strongly recommended this approach. In addition, the increasing interest in this approach has led to the de-

velopment of an ISO technical report currently undergoing review as a Committee Draft.
2
 The claims-argument-

evidence approach has been called a dependability case,
1
 an assurance case,

2
 or a (goal-structured) safety case.

3
 The 

approach has been used in the UK for more than a decade to express safety cases for avionics, nuclear, and railway 

control systems.
4
  

In the best practice, an engineering organization will start a dependability case early in the development life 

cycle, using the case’s structure to influence assurance-centered actions throughout the life cycle. Constructing a 

case early in development can help determine what claims are most critical and hence, what evidence and assurance-

related activities are most needed to support such claims. Developing a dependability case early can also help guide 

design decisions that simplify the case, e.g., by making it easier to develop a convincing argument or convincing 

evidence that an important claim holds. (This might be called assurance-guided engineering.) In any case, the result-

ing product is useful for supporting certification (and re-certification) decisions, managing dependability resources 

and activities (by showing which activities have the most payoff for claims of particular importance), estimating the 

impact of design and requirements changes (by showing which portions of the case may be affected), and focusing 

and communicating engineering expertise.   

 Many safety-oriented development organizations already conduct some form of software hazard analysis. In 

this paper, we provide an extended example showing how a dependability case adds useful information to a hazard 

analysis. The example shows the power of the claims-arguments-evidence structure to clarify the hazards and show 

why the selected mitigations are effective. Reviewers and project engineers can better understand why a mitigation 

is effective, see the supporting evidence, and have more trust in the behavior of the system during operation. The 

example also shows how the engineering, safety, and dependability organizations can migrate toward the use of a 

common analysis product that addresses the needs of each. Although we focus in this paper on a particular form 

hazard analysis, a dependability case can similarly complement other forms such as fault tree analyses, failure mod-

es and effects analyses, Systems-Theoretic Accident Modeling and Processes (STAMP)-based hazard analyses 

(STPA), etc. 

A traditional software hazard report has several parts. For each identified hazard, the report includes a descrip-

tion of the cause of the hazard, a description of the effect of the cause along with a report of its severity and likeli-
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hood, an enumeration of the controls emplaced to mitigate the hazard, and a description of any verifications of the 

controls. In the past, the narrative or analysis in the report may have suffered from disconnects with actual engineer-

ing activities. The controls may in fact be implemented differently than described, or described in such a way that 

the connection to architecture, design, or test features is unclear. Accordingly, the verification description is likewise 

disconnected and potentially difficult to repeat. It remains implicit that the controls address the hazard. The result is 

an analysis that may lack credibility while purportedly offering trustworthiness. The creation of an explicit dependa-

bility case can correct these problems. 

The remainder of this paper is structured around an example dependability case, starting with analysis of an ex-

ample hazard report. We first discuss the hazard report and then explain the notation we will be using to document 

an associated dependability case. We then develop the case and discuss its implications. 

II. An Example 

We consider a portion of a software-related hazard report (Table 1) extracted from an actual product, with cer-

tain irrelevant identifying details omitted. The report deals with a system in which the possibility of a computer fail-

ure is so serious that the computers are replicated — if one computer fails, one of several backup computers will 

take over. The system controlled by these computers goes through a number of mission phases; failure of all the 

computers would be more critical in some phases than others. 

For the backup computers to be able to take over for a failing computer, they must exchange some data (e.g., to 

determine which computer is currently in control).  The potential fault of concern is the possibility that one comput-

er could send bad data to one or more of the other computers, eventually causing all interconnected computers to 

fail. 

To determine whether this hazard has been mitigated, we analyze the hazard report from the viewpoint of under-

standing what claims, arguments, and evidence are relevant to the hazards, controls, and verification actions. This 

analysis will show certain inadequacies in the report, but more importantly, will lead to a dependability case struc-

ture that is more convincing in explaining why certain controls and verification activities are relevant.  

A. Analyzing the Report 
The hazard/fault to be addressed is “Faulty data exchanged among redundant computers causes all computers to 

fail.” The second column in the report specifies the significance of this fault, namely, “Loss of operation of system 

during a critical phase, leading to loss of life.” The standard ways of characterizing the impact and likelihood of the 

Table 1. Example Hazard Analysis. 

Cause/Fault Tree 
Reference 

Effect/Severity/ 
Likelihood 

Controls Verification 

Faulty data exchanged 

among redundant 

computers causes all 

computers to fail.  

This could occur be-

cause of improper 

requirements, incorrect 

coding of logic, incor-

rect data definitions 

(e.g., initialized data), 

and/or inability to test 

all possible modes in 

the software (SW) 

Effect: Loss of 

operation of system 

during critical 

phase, leading to 

loss of life. 

Severity: Cata-

strophic 

Likelihood: Improb-

able 

Class: Controlled 

a) Software safeguards 

reduce, to the maximum 

extent feasible, the possi-

bility that faulty data sent 

among redundant com-

puters causes them to fail 

b) Program Development 

Specifications and Func-

tional SW Requirements 

c) Subsystem design and 

functional interface re-

quirements are used in 

the design and develop-

ment of the relevant SW 

d) … 

Extensive validation and testing are 

in place to minimize generic SW 

problems. The contractors must 

perform rigorous reviews throughout 

the SW definition, implementation, 

and verification cycles. These re-

view processes cover requirements, 

design, code, test procedures and 

results, and are designed to elimi-

nate errors early in the SW life 

cycle. 

After completing system level verifi-

cation, critical SW undergoes ex-

tensive integrated HW/SW verifica-

tion at facility XXX 

Extensive verification is indepen-

dently performed at facility XXX, 

using hardware and software main-

tained to duplicate the configuration 

of the fielded system 
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fault follow, together with a statement about the disposition of the hazard — “Controlled,” i.e., the system has been 

analyzed to ensure that this potential hazard is under control. 

The “Controls” column summarizes several approaches to eliminating the fault or reducing its likelihood or con-

sequence of occurrence. The first control states “a) Software safeguards reduce, to the maximum extent feasible, the 

possibility that faulty data sent among redundant computers causes them to fail.” The report does not indicate what 

these software safeguards are or how they might be effective in controlling the hazard, nor does the report point to a 

place where this information might be found. Even if the report were more specific about the nature of the safe-

guards, it would not necessarily be clear about what is being defended against. We will return to this point when we 

discuss the dependability case developed to address this hazard. 

The second and third controls are less informative: 
“b) Program Development Specifications and Functional Software Requirements” 

“c) Subsystem design and functional interface requirements” 

How do specifications and requirements control for this hazard? Which specifications? Which requirements? 

The verification paragraphs in the report are also uninformative: 
“Extensive validation and testing are in place to minimize generic software problems. The contractors must perform ri-

gorous reviews throughout the software definition, implementation, and verification cycles. These review processes cover 

requirements, design, code, test procedures and results, and are designed to eliminate errors early in the software life 

cycle.” 

What does “extensive validation and testing” mean? What kinds of “rigorous reviews” will be conducted, and how 

are we to know whether the reviews eliminate the possibility of design or implementation errors leading to fatal ex-

changes of faulty data? What are the reviewers supposed to look for, and how could we be certain that the reviews 

have been done with sufficient care and completeness? 

Someone who is sufficiently well versed in the described system surely knows more than what the words in the 

report convey. The answers may be available elsewhere, in other documents, or in other parts of this hazard report, 

but we are left to find them for ourselves. Moreover, the controls and verification actions are only implicitly related 

to the cause/fault. But these ambiguities and suggestive connections make the certification assessment more diffi-

cult. The missing relationships can be made more explicit by constructing claims and evidence in a dependability 

case. 

B. The Notion of a Dependability Case 
A dependability case consists of a top-level claim supported by subclaims. Each subclaim is further decomposed 

into sub-subclaims, and so on, until a claim is directly supported by evidence, i.e., data that is sufficient to support a 

claim without further argument. Such evidence might consist of test results, analyses, information about the compe-

tency of personnel, etc. The quality of a case (i.e., its soundness and the extent to which it is convincing in support-

ing its top-level claim) depends on the claim structure and, of course, the quality of the presented evidence. 

A dependability case is somewhat similar in nature to a legal case. In a legal case there are two basic elements. 

The first is evidence, be it witnesses, fingerprints, DNA, etc. The second is an argument given by the attorneys as to 

why the jury should believe that the evidence supports (or does not support) the claim that the defendant is guilty (or 

innocent). A jury presented with only an argument that the defendant is guilty, with no evidence that supported that 

argument, would certainly have reasonable doubts about the guilt of the defendant. A jury presented with evidence 

without an argument explaining why the evidence was relevant would have difficulty deciding how the evidence 

relates to the defendant. 

The dependability case is similar. Suppose there are analyses and test results developed to support a claim of 

safety. Without an argument as to why the analyses and test results support the safety claim, an interested party 

could have difficulty seeing its relevance or sufficiency. With only an argument that a system was safe, but without 

supporting analyses and test results, again it would be hard to certify the system’s safety. 

In the dependability case example we will present, the top-level claim will be that the hazard addressed in Table 

1 has been adequately mitigated. From that claim will flow an argument that supports this mitigation claim. The 

argument will consist of one or more subsidiary claims that taken together give confidence in the truth of the top 

level claim. These lower-level claims will themselves be supported by additional claims until finally a subclaim is 

justified directly by evidence that clearly shows the subclaim to be true. 

To document a dependability case, we use Goal Structuring Notation (GSN).
3 

Fig. 1 illustrates the notation. 

Claims are specified in rectangular elements and are stated as predicates (i.e., true or false statements). Stating 

claims as predicates is very important—it sharpens thinking to state precisely what is to be proved with further ar-

gument or evidence. In the Figure, the top-level claim is labeled “Property X” and the claim is “Property X holds.” 

We will give system-specific claims in the example that is discussed later.  
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The “Property X” claim is amplified by a context element (a rounded rectangle). Context elements provide addi-

tional information to help others understand what is being stated, allowing the claim to be stated more simply, e.g., 

in a fashion that is clear to someone knowledgeable of the system. With respect to the “Property X” claim, the con-

text element provides a pointer to documents where the property is discussed in more detail. Some dependability 

case tools provide a hyperlink to such additional information.  

The “Property X” claim is also associated with an assumption element (an oval labeled with an “A”). These ele-

ments are useful for documenting assumptions that might otherwise not be obvious to reviewers. Also, characteriz-

ing something as an assumption simplifies the case by allowing the argument to focus on claims that require more 

attention and work to support. If a reviewer does not think an assumption is appropriate, then additional argumenta-

tion can be requested and documented in a separate dependability case in which the assumption is the top claim. 

Another value in documenting assumptions is that when the system changes, the assumptions can be reviewed to see 

if they are still valid in light of the changes.  

In Fig. 1, the assumption element contains a meta-statement describing what a real assumption statement could 

contain. To show clearly that this is a meta-statement, we enclose the statement in brackets (<>) and indicate that the 

statement needs to be instantiated with an actual assumption by putting a triangle at the bottom of the element. The 

notion of instantiation is particularly useful when describing dependability case patterns, i.e., argumentation struc-

tures that occur often in constructing cases in certain domains, but it is also useful when giving an example case that 

is divorced from an actual system or for which actual details are not yet known. 

The “Property X” claim is supported by further argumentation.  A strategy element (a parallelogram) describes 

the argumentation approach that will be used in supporting the “Property X” claim. A strategy element is not actual-

ly part of the argument; instead, it helps the reader understand the line of thinking supporting a claim. Strategy ele-

ments are introduced when considered helpful in guiding reviewers. In the Figure, we propose to argue that each 

hazard relevant to property X has been eliminated or controlled. To further explain the strategy, we associate a con-

text element with the strategy, listing the hazards to be considered or referring to the portion of a document in which 

each of the hazards is discussed in more detail. Alternatively, we could associate the strategy with a justification 

Strategy

Assumption

Claim
Context

C: Property X

Property X holds

Ctxt: Property X Details

Further information about 
property X can be found in 
document DD, p. yy

A

A: Property X

<Assumption simplifying the 
statement or proof of Property 

X, e.g., system runs in stand-
alone mode>

S: Strategy

Argue over hazards 
to achieving property 
X

Ctxt: Hazards list

<These are the 
hazards to be 
considered>

C: Hazard 1

Hazard 1 is mitigated

C: Hazard 2

Hazard 2 is mitigated

Ev: Evidence

<Evidence 

showing 
mitigation of 
Hazard 1>

Evidence

To be developed

To be instantiated

 
 

Figure 1. Example showing GSN shapes and their meaning. 
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element (not present in Fig. 1). A justification element summarizes an argument explaining why the chosen strategy 

is considered appropriate. An example will be shown later. A justification element is an oval (like an assumption 

element), but labeled with “J” instead of “A.” 

The argument showing that Property X holds consists of two claims asserting that the two hazards considered re-

levant to Property X have been mitigated. For Hazard 1, evidence is provided that is considered to be sufficient to 

demonstrate that the hazard has been adequately mitigated. Evidence elements are shown as circles. For Hazard 2, a 

further argument needs to be developed. This is indicated by the diamond hanging off the bottom of the claim ele-

ment. 

There are other GSN shapes and structures, but they are not needed for the dependability case given in this pa-

per. 

C. A Dependability Case for the Hazard 

To develop a dependability case for the hazard described in Table 1, we start by developing a top-level claim 

stating that the hazard is mitigated (see Fig. 2). Since claims are expressed as predicates expressing what we want to 

be true about a system, we state what we mean when we say that the hazard has been mitigated, namely: 
The possibility that faulty data exchanged among redundant computers causes all such computers to fail (during critical 

mission phases) has been reduced ALARP [ALARP means “as low as reasonably practicable,” a term used to indicate 

that further effort to reduce risk would be significantly disproportionate to the amount of risk reduction that can be 

achieved.5]  

We have restated the Table 1 hazard slightly to say that we are primarily concerned with the occurrence of this ha-

zard during “critical” mission phases. The intended implication is that there are some periods of system operation in 

which failure of all computers would not be life threatening. By constraining the claim to certain phases of the sys-

tem’s operation, we ensure that assurance efforts are focused where they are needed the most. 

We use context elements in Fig. 2 to state additional relevant information, namely, where to find the definition of 

“critical” mission phases and the effect, severity, and likelihood of the hazard. Note how one of the context elements 

provides a pointer to a detailed discussion of what phases are critical. If later, during the project, there is a change to 

the set of critical phases, this context element provides a hook to show that support for this claim may have to be 

revisited. 

 
Figure 2. Initial top-level claim. 

 

Ctxt: Effect/Severity/Likelihood

Effect: Loss of operation of 

system during critical phase, 

leading to loss of life.         

Severity: Catastrophic. 

Likelihood: Improbable

Ctxt: Critical Phases

Critical phases of system 

operation are X, Y, and Z 

(as defined in document 

DD, Section S)

C1: Reliable Backup 

Computing

The likelihood of complete failure 

of primary and backup computers 

during a critical mission phase 

has been reduced ALARP

C3: SW Hazards Mitigated

SW hazards leading to 

complete failure of all 

redundant computers have 

been reduced ALARP

Ctxt: Hazards

Faulty data exchanged 

among the redundant 

computer set; incorrect 

data initializations, ...

C5: Data Initialization Hazard

Data initializations relevant to 

backup computing are correct 

xxxx xxxxx xxxxx xxxxx xxxxx 

xxxx xxxxx xxxxx xxxxx xxxx 

C4: Data Exchange Haz Mitigated

The possibility that faulty data 

exchanged among redundant 

computers causes all such computers 

to fail (during critical mission phases) 

has been reduced ALARP

C2: HW Hazards Mitigated

HW hazards leading to 

complete failure of all 

redundant computers have 

been reduced ALARP

 
Figure 3. A more comprehensive top-level claim (C1) showing the context in which the “C4: Data Ex-

change Haz Mitigated” claim sits. 
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Although this claim and its associated context elements suffice to capture key parts of the hazard report, this 

claim is only part of a larger claim about the survivability of the redundant computer set. To show the context in 

which the data exchange hazard control exists, we formulate a new top-level claim: “The likelihood of complete 

failure of primary and backup computers during a critical mission phase has been reduced ALARP.” We will attach 

Fig. 2’s context elements to this new top-level claim (see claim C1 in Fig. 3), and then address hardware and soft-

ware hazards in separate claims (C2 and C3). The original data exchange hazard (C4) is now shown to be only one 

of the software hazards relevant to achieving reliable backup computing. 

The structure in Fig. 3 shows a general stylistic pattern that is useful — the context for the claim “SW Hazards 

Mitigated” names the hazards. This allows a reviewer to consider if all relevant hazards have been identified before 

the reviewer gets into deciding if each hazard is adequately controlled individually. Alternatively, for complicated 

situations, the context element might refer to a separate dependability case supporting the claim, “All critical soft-

ware hazards have been identified.”  

All software hazards that cannot be eliminated and are worth controlling are addressed under the “SW Hazards 

Mitigated” claim. The example shows two software hazard mitigation claims, C4 and C5: one deals with faulty data 

exchanges and the other concerns data initialization hazards. The dependability case for mitigating the data ex-

change hazard is shown in Fig. 4. We’ll walk through this diagram to explain the argument. 

The two subclaims (C6 and C7) under the top-level claim C4 (Data Exchange Haz Mitigated) show the selected 

approach, which is based on an actual approach taken in one project.
6
 The approach is two-fold: 1) reduce the 

amount of data that needs to be exchanged among the redundant computer set, particularly during critical mission 

phases (“C6: Minimal Data Exchange”), and 2) build in safeguards that help ensure that generated faulty data will be 

rejected (“C7: Faulty Data Detected”).  

The justification for minimizing data exchanges is shown in an attached “justification” element (“J: Minimize 

Data Exchanges”). This element explains why we believe that minimizing data exchanges is part of a reasonable 

approach for controlling the data exchange hazard, namely, that by reducing the amount and need for data exchanges 

we reduce the opportunity for such exchanges to cause a cascading failure of the redundant computers. We can’t 

eliminate all data exchanges — a certain amount of data must be exchanged to allow a backup computer to take over 

C6: Minimal Data Exchange

Data exchanges among 
redundant computers (during 

critical mission phases) are 
minimized

J

J: Minimize Data Exchanges

Minimizing the need to exchange 

data among the redundant 
computers minimizes the 

opportunities for adverse effects 
caused by the data exchanges 

C7: Faulty Data Detected

Attempted transfers of faulty data 
are detected and handled 

appropriately (to the extent 
practicable)

C8: SW Requirements

Functionality associated with each 
requirement leading to data 

exchanges among redundant 
computers is critical and cannot be 

eliminated

C10: Requirement X 

Requirement X cannot 

be eliminated

C11: Requirement Y

Requirement Y cannot 

be eliminated

C9: SW Design 

SW design minimizes the 

number of tasks that require data 
exchanges among the redundant 

computers

S: Data Exchanges Minimized

Argue over each task requiring 
data exchanges among the 

redundant computers, showing 
why the data exchanges cannot 

be reduced or eliminated

C4: Data Exchange Haz Mitigated

The possibility that faulty data 
exchanged among redundant 

computers causes all such computers 
to fail (during critical mission phases) 

has been reduced ALARP

Ctxt: Data Exchange 

Rqmts

Functional or safety 
requirement X and Y require 

for data exchanges among 
the redundant computers

 
 

Figure 4. Controls to minimize data exchanges among redundant computers. 
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for a failing primary computer.  

We now develop the argument further. To reduce the number and amount of data exchanges, we need to show 

that requirements causing data exchanges during critical mission phases are minimized (C8). In addition, we need to 

ensure that the software design does not introduce unnecessary data exchange tasks during critical mission phases 

(“C9: SW Design”). Because we list only these two claims in support of “C6: Minimal Data Exchange,” we imply 

that the truth of C8 and C9 is sufficient to support the claim that data exchanges among redundant computers are 

minimized. 

Next consider the argument supporting the requirements claim, C8. The context element for this claim lists the 

requirements that have been determined to require data exchanges among the redundant computers during critical 

mission phases. (In this illustrative example, we suppose that only two requirements are relevant.) Subclaims C10 

and C11 address each of these requirements in turn. The argument supporting each of these claims needs to be fur-

ther developed to show why each requirement cannot be eliminated. One might also add a claim that all relevant 

requirements have been identified; the evidence supporting such a claim might consist of the process used to identify 

data exchange requirements. 

The determination that certain requirements cannot be eliminated is probably what was meant when the hazard 

report mentioned “requirements” as a control. In any event, this dependability case shows how renegotiating re-

quirements can be a means to mitigate hazards when the requirements have an undesirable effect on safety, and this 

was the approach taken by Hammett, et. al.
6
 

C13: Input Validation

Each computer performs validity 
checks on data received from 
another computer and refuses to 

accept invalid data

C7: Faulty Data Detected

Attempted transfers of faulty data 

are detected and handled 
appropriately (to the extent 

practicable)

Ctxt: Invalid data hazard

The following types of data 
faults are possible and can 
be detected: <x, y, z>

C12: Output Validation

Each computer detects 
and refuses to send 

invalid data

C14: Data Validity 
Tests

No data validity tests 
fail

Ev14: Data Validity 
Test Results

<Document XXX 
describing data 

validity tests and 

their results>

C16: Test Completeness

Test case selection strategy 
is sufficient to detect 

possible data validation 
coding errors

C15: Code Review

Code reviews show no 

validation coding errors

Ev15a: Code Review 

Checklists

<Document describing 
types of data validation 

coding errors 
considered in structured 

code reviews>

Ev15b: Code Review 
Results

<Results showing 

problems found and 
corrected, modules 

and versions 
reviewed, etc.>

S13: Tests/Code Review

Argue by appealing to test 
results and results of 

structured code reviews

 
 

Figure 5. Argument and supporting evidence for detecting faulty data transmissions. 
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The “C9: SW Design” claim similarly addresses whether the design has minimized the number of data ex-

changes required during critical mission phases. This claim is supported by requiring an analysis of each of the ac-

tivities (tasks) requiring data exchanges, presenting claims and supporting evidence that the activity is necessary and 

cannot be eliminated (or the amount of data to be exchanged cannot be reduced). 

We now turn our attention to the second subclaim in Fig. 4, “C7: Faulty Data Detected” (see Fig. 5). Claim C7 

expresses an approach to mitigating the hazard of transmitting or acting on faulty data. The chosen approach is 

straightforward enough in principle — refuse to send or accept faulty data. Of course, not all data faults can be de-

tected, so a context element is used to capture what types of data faults are possible and can be detected. The idea is 

that data output validation or input validation will address only these detectable faults. In the diagram, we only de-

velop the argument for C13, the “Input Validation” claim.  

What claims and evidence are needed to validate “C13: Input Validation?” The argument put forth in the Figure 

takes a dual approach (as expressed in the strategy element “S13: Tests/Code Review”) — support the claim by con-

sidering both test results and the results of code reviews. The idea is that a combination of analysis (code reviews) 

and testing provides stronger support for the claim than either approach by itself.  

The principle claim dealing with testing is that no tests fail (“C14: Data Validity Tests”). This claim is supported 

by evidence (Ev14), namely, test results provided in some document; a reviewer of the case could go look at this 

document to see that the “No data validity tests fail” claim is indeed supported by the documented results. Of course, 

the lack of test failures is only significant to the extent the tests are sufficiently thorough. The subclaim, “C16: Test 

Completeness” addresses this point, namely, that the selected tests are sufficiently thorough to detect possible errors 

in the code that performs the validity checks. Support for this claim is to be developed further. Such further devel-

opment would include providing a context element explaining what “sufficient” might mean, e.g., that tests exist for 

all detectable data errors, that tests check subtle aspects of the validation algorithms, etc. Putting the “Test Com-

pleteness” claim in our dependability case shows that attention is being paid to test quality as well as test results. 

Finally, the second part of our approach for demonstrating that the validity checks are adequate is to perform 

code reviews to see if the checks for each type of data validity error are adequate (C15). The evidence in support of 

this claim is, of course, the results of the code review, E15b. This evidence element describes the information that 

we want to see as part of the code review results, e.g., we don’t want to know just that the review was done, but that 

it was done on the appropriate coding modules. It is also useful to know if the review found any problems, since this 

provides some indication that the review was effective. Since we know that structured code reviews are the most 

effective way of ensuring that the reviews detect problems, another item of evidence (E15a) is the code review in-

structions that indicate what kinds of errors are to be looked for, the review process, etc. Such evidence increases 

our confidence that the code reviews were conducted effectively, and hence, the result that no errors were found is 

significant. 

D. Discussion 

When we introduced the hazard report shown in Table 1, we pointed out a number of deficiencies in the descrip-

tion of controls for the hazard and the approach to be used for verifying the adequacy of the controls. In particular, 

the original report mentioned analysis of requirements and specifications as a control, but was non-specific about 

how this analysis would contribute to mitigating the hazard. We suggested that the use of a dependability case would 

allow this information to be presented in a cogent, detailed manner. The example case we presented showed more 

specifically how the analysis of certain requirements can contribute to mitigating the hazard (namely, by minimizing 

the number of requirements leading to data transfers among the redundant computers). The case showed how a simi-

lar approach to analyzing the design can contribute to a reduction in data transfers (by minimizing the number of 

tasks that require data transfers). The hazard report mentioned “incorrect coding” and “inability to test” as contribu-

tors to the fault without being specific about what types of coding errors needed to be addressed. The report men-

tioned “validation and testing” and “rigorous reviews” as a means of eliminating errors, without being specific about 

what needed to be done. Again, the use of a dependability case allows this information to be communicated suc-

cinctly and in a manner that allows for review and discussion to determine whether the approach is adequate. 

The creation of a dependability case does not necessarily cause new information (evidence) to be created, but it 

does organize an explanation of why certain analyses and test results are relevant to mitigating a hazard. The case 

explicitly documents claims that are otherwise implicit or unformulated, and thereby clarifies thought about what 

evidence needs to be developed (before the system has been completed) or what evidence exists and its probative 

value (after the system has been developed). The dependability case organizes information in a structure that can be 

reviewed during system certification. It provides a vehicle for assessing the impact of proposed changes to a system 

by showing what aspects of the argument may need to be revisited or revalidated.  
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By organizing information (connecting claims to evidence via argument), the dependability case provides an ex-

plicit and coherent rationale documenting why one should believe that critical hazards have been adequately miti-

gated. A dependability case is not necessarily needed for every aspect of a system, but for those aspects that are crit-

ical, it provides a succinct and understandable structure for documenting engineering rationale. 

A dependability case does not always have to be developed from scratch. There are certain patterns of rationale 

that occur again and again in particular domains. Documenting these patterns in dependability case templates pro-

vides an assurance-based engineering practice and provides a basis for constructing specific cases more quickly and 

at lower cost. 

III. Conclusions 

A dependability case documents why a hazard analysis should be considered adequate and allows for indepen-

dent evaluation of the adequacy of hazard mitigations or controls. Because dependability cases capture and docu-

ment the argument in support of a claim, they can improve the rigor of an organization’s hazard analysis by focusing 

efforts on explaining why hazards are adequately mitigated, thereby contributing concretely to the trustworthiness of 

a safety-critical system. The case complements rather than replaces legacy engineering and safety analyses; it need 

not upend existing processes and practices. Finally, when it comes time to make changes to such systems, the de-

pendability case provides information that helps in determining what aspects of the system cannot be affected by the 

change, thus potentially reducing the cost and effort involved in recertifying a system. 

Acknowledgements 

We thank Chuck Weinstock for constructive comments helping us to improve this paper. 

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 

Carnegie Mellon University
a
 for the operation of the Software Engineering Institute, a federally funded research and 

development center. The Government of the United States has a royalty-free government-purpose license to use, 

duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for 

government purposes pursuant to the copyright license under the clause at 252.227-7013.
3
  

References 
1 Jackson, D., Thomas, M., and Millett, L.I. (eds.), Software for Dependable Systems: Sufficient Evidence?, The National 

Academies Press, Washington, DC, 2007, URL: http://www.nap.edu/catalog.php?record_id=11923 [cited February 20, 2009]. 
2 ISO/IEC CD 15026-2.2, “Systems and software engineering — Systems and software assurance — Part 2: Assurance case,” 

Committee Draft, 2009. 
3 Kelly, T.P. “Arguing Safety – A Systematic Approach to Safety Case Management.” Ph.D. Dissertation, Department of 

Computer Science, University of York, York, UK, 1998. 
4 Kelly, T. P. and Weaver, R. A. “The Goal Structuring Notation — A Safety Argument Notation,” Proceedings of the De-

pendable Systems and Networks 2004 Workshop on Assurance Cases, July 2004, URL: http://www-users.cs.york.ac.uk/ 

~rob/papers/DSN04.pdf [cited February 20, 2009]. 
5 ALARP definition and discussion, Wikipedia, URL: http://en.wikipedia.org/wiki/ALARP [cited February 20, 2009]. 
6 Hammett, R., Schwartz, R. G., and Smithgall, W., “Preventing Data Pollution in the Space Shuttle Cockpit”, Digital Avio-

nics Systems Conference, IEEE, Piscataway, NJ, 2003, URL: http://ieeexplore.ieee.org/iel5/8816/27907/01245807.pdf? 

tp=&isnumber=&arnumber=1245807 [cited February 20, 2009]. 

 

 

                                                           
a NO WARRANTY  

 THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN 

“AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, 

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, 

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGE-

MENT. 


