Evaluating Hazard Mitigations with Dependability Cases

John B. Goodenough, Ph.D.!
Software Engineering Institute, Pittsburgh, PA, 15123

Matthew R. Barry, Ph.D.?
Software-Intensive Systems, Inc., Altadena, CA, 91001

There is growing interest in using a structure of claims, arguments, and evidence to ex-
plain why all critical software hazards have been eliminated or adequately mitigated in mis-
sion-critical and safety-critical systems. Such a structure has been called a dependability
case, an assurance case, or a (goal-structured) safety case. Dependability cases are sometimes
viewed as adding no extra value, e.g., given an existing hazard analysis, what is the added
value of a dependability case showing how the hazard is mitigated? In this paper we present
an example to show the value a dependability case adds to a traditional hazard analysis.

I. Introduction

Astructure of claims, arguments, and evidence is being increasingly recommended as a good way to explain why
all critical software hazards have been eliminated or adequately mitigated in mission-critical and safety-critical
systems. A recent National Research Council report, “Software for Dependable Systems: Sufficient Evi-
dence?”'strongly recommended this approach. In addition, the increasing interest in this approach has led to the de-
velopment of an ISO technical report currently undergoing review as a Committee Draft.” The claims-argument-
evidence approach has been called a dependability case,' an assurance case,” or a (goal-structured) safety case.’ The
approach has been used in the UK for more than a decade to express safety cases for avionics, nuclear, and railway
control systems.”

In the best practice, an engineering organization will start a dependability case early in the development life
cycle, using the case’s structure to influence assurance-centered actions throughout the life cycle. Constructing a
case early in development can help determine what claims are most critical and hence, what evidence and assurance-
related activities are most needed to support such claims. Developing a dependability case early can also help guide
design decisions that simplify the case, e.g., by making it easier to develop a convincing argument or convincing
evidence that an important claim holds. (This might be called assurance-guided engineering.) In any case, the result-
ing product is useful for supporting certification (and re-certification) decisions, managing dependability resources
and activities (by showing which activities have the most payoff for claims of particular importance), estimating the
impact of design and requirements changes (by showing which portions of the case may be affected), and focusing
and communicating engineering expertise.

Many safety-oriented development organizations already conduct some form of software hazard analysis. In
this paper, we provide an extended example showing how a dependability case adds useful information to a hazard
analysis. The example shows the power of the claims-arguments-evidence structure to clarify the hazards and show
why the selected mitigations are effective. Reviewers and project engineers can better understand why a mitigation
is effective, see the supporting evidence, and have more trust in the behavior of the system during operation. The
example also shows how the engineering, safety, and dependability organizations can migrate toward the use of a
common analysis product that addresses the needs of each. Although we focus in this paper on a particular form
hazard analysis, a dependability case can similarly complement other forms such as fault tree analyses, failure mod-
es and effects analyses, Systems-Theoretic Accident Modeling and Processes (STAMP)-based hazard analyses
(STPA), etc.

A traditional software hazard report has several parts. For each identified hazard, the report includes a descrip-
tion of the cause of the hazard, a description of the effect of the cause along with a report of its severity and likeli-

! Institute Fellow and System of Systems Software Assurance Initiative Lead, Software Engineering Institute, 4500
Fifth Avenue, Pittsburgh, PA, 15213, USA.
2 President, Software-Intensive Systems, Inc., 1575 Homewood Drive, Altadena, CA, 91001, USA.

1
American Institute of Aeronautics and Astronautics



hood, an enumeration of the controls emplaced to mitigate the hazard, and a description of any verifications of the
controls. In the past, the narrative or analysis in the report may have suffered from disconnects with actual engineer-
ing activities. The controls may in fact be implemented differently than described, or described in such a way that
the connection to architecture, design, or test features is unclear. Accordingly, the verification description is likewise
disconnected and potentially difficult to repeat. It remains implicit that the controls address the hazard. The result is
an analysis that may lack credibility while purportedly offering trustworthiness. The creation of an explicit dependa-
bility case can correct these problems.

The remainder of this paper is structured around an example dependability case, starting with analysis of an ex-
ample hazard report. We first discuss the hazard report and then explain the notation we will be using to document
an associated dependability case. We then develop the case and discuss its implications.

II. An Example

We consider a portion of a software-related hazard report (Table 1) extracted from an actual product, with cer-
tain irrelevant identifying details omitted. The report deals with a system in which the possibility of a computer fail-
ure is so serious that the computers are replicated — if one computer fails, one of several backup computers will
take over. The system controlled by these computers goes through a number of mission phases; failure of all the
computers would be more critical in some phases than others.

For the backup computers to be able to take over for a failing computer, they must exchange some data (e.g., to
determine which computer is currently in control). The potential fault of concern is the possibility that one comput-
er could send bad data to one or more of the other computers, eventually causing all interconnected computers to
fail.

To determine whether this hazard has been mitigated, we analyze the hazard report from the viewpoint of under-
standing what claims, arguments, and evidence are relevant to the hazards, controls, and verification actions. This
analysis will show certain inadequacies in the report, but more importantly, will lead to a dependability case struc-
ture that is more convincing in explaining why certain controls and verification activities are relevant.

Table 1. Example Hazard Analysis.

Cause/Fault Tree

Reference

Effect/Severity/
Likelihood

Controls

Verification

Faulty data exchanged
among redundant
computers causes all
computers to fail.

This could occur be-
cause of improper
requirements, incorrect
coding of logic, incor-
rect data definitions
(e.g., initialized data),
and/or inability to test
all possible modes in
the software (SW)

Effect: Loss of
operation of system
during critical
phase, leading to
loss of life.

Severity: Cata-
strophic

Likelihood: Improb-
able

Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the possi-
bility that faulty data sent
among redundant com-
puters causes them to fail

b) Program Development
Specifications and Func-
tional SW Requirements

¢) Subsystem design and
functional interface re-
quirements are used in
the design and develop-
ment of the relevant SW

d) ...

Extensive validation and testing are
in place to minimize generic SW
problems. The contractors must
perform rigorous reviews throughout
the SW definition, implementation,
and verification cycles. These re-
view processes cover requirements,
design, code, test procedures and
results, and are designed to elimi-
nate errors early in the SW life
cycle.

After completing system level verifi-
cation, critical SW undergoes ex-
tensive integrated HW/SW verifica-
tion at facility XXX

Extensive verification is indepen-
dently performed at facility XXX,
using hardware and software main-
tained to duplicate the configuration
of the fielded system

A. Analyzing the Report

The hazard/fault to be addressed is “Faulty data exchanged among redundant computers causes all computers to
fail.” The second column in the report specifies the significance of this fault, namely, “Loss of operation of system
during a critical phase, leading to loss of life.” The standard ways of characterizing the impact and likelihood of the

2
American Institute of Aeronautics and Astronautics



fault follow, together with a statement about the disposition of the hazard — “Controlled,” i.e., the system has been
analyzed to ensure that this potential hazard is under control.

The “Controls” column summarizes several approaches to eliminating the fault or reducing its likelihood or con-
sequence of occurrence. The first control states “a) Software safeguards reduce, to the maximum extent feasible, the
possibility that faulty data sent among redundant computers causes them to fail.” The report does not indicate what
these software safeguards are or how they might be effective in controlling the hazard, nor does the report point to a
place where this information might be found. Even if the report were more specific about the nature of the safe-
guards, it would not necessarily be clear about what is being defended against. We will return to this point when we
discuss the dependability case developed to address this hazard.

The second and third controls are less informative:

“b) Program Development Specifications and Functional Software Requirements”
“c) Subsystem design and functional interface requirements”
How do specifications and requirements control for this hazard? Which specifications? Which requirements?

The verification paragraphs in the report are also uninformative:

“Extensive validation and testing are in place to minimize generic software problems. The contractors must perform ri-
gorous reviews throughout the software definition, implementation, and verification cycles. These review processes cover
requirements, design, code, test procedures and results, and are designed to eliminate errors early in the software life
cycle.”
What does “extensive validation and testing” mean? What kinds of “rigorous reviews” will be conducted, and how
are we to know whether the reviews eliminate the possibility of design or implementation errors leading to fatal ex-
changes of faulty data? What are the reviewers supposed to look for, and how could we be certain that the reviews
have been done with sufficient care and completeness?

Someone who is sufficiently well versed in the described system surely knows more than what the words in the
report convey. The answers may be available elsewhere, in other documents, or in other parts of this hazard report,
but we are left to find them for ourselves. Moreover, the controls and verification actions are only implicitly related
to the cause/fault. But these ambiguities and suggestive connections make the certification assessment more diffi-
cult. The missing relationships can be made more explicit by constructing claims and evidence in a dependability
case.

B. The Notion of a Dependability Case

A dependability case consists of a top-level claim supported by subclaims. Each subclaim is further decomposed
into sub-subclaims, and so on, until a claim is directly supported by evidence, i.e., data that is sufficient to support a
claim without further argument. Such evidence might consist of test results, analyses, information about the compe-
tency of personnel, etc. The quality of a case (i.e., its soundness and the extent to which it is convincing in support-
ing its top-level claim) depends on the claim structure and, of course, the quality of the presented evidence.

A dependability case is somewhat similar in nature to a legal case. In a legal case there are two basic elements.
The first is evidence, be it witnesses, fingerprints, DNA, etc. The second is an argument given by the attorneys as to
why the jury should believe that the evidence supports (or does not support) the claim that the defendant is guilty (or
innocent). A jury presented with only an argument that the defendant is guilty, with no evidence that supported that
argument, would certainly have reasonable doubts about the guilt of the defendant. A jury presented with evidence
without an argument explaining why the evidence was relevant would have difficulty deciding how the evidence
relates to the defendant.

The dependability case is similar. Suppose there are analyses and test results developed to support a claim of
safety. Without an argument as to why the analyses and test results support the safety claim, an interested party
could have difficulty seeing its relevance or sufficiency. With only an argument that a system was safe, but without
supporting analyses and test results, again it would be hard to certify the system’s safety.

In the dependability case example we will present, the top-level claim will be that the hazard addressed in Table
1 has been adequately mitigated. From that claim will flow an argument that supports this mitigation claim. The
argument will consist of one or more subsidiary claims that taken together give confidence in the truth of the top
level claim. These lower-level claims will themselves be supported by additional claims until finally a subclaim is
justified directly by evidence that clearly shows the subclaim to be true.

To document a dependability case, we use Goal Structuring Notation (GSN).” Fig. 1 illustrates the notation.
Claims are specified in rectangular elements and are stated as predicates (i.e., true or false statements). Stating
claims as predicates is very important—it sharpens thinking to state precisely what is to be proved with further ar-
gument or evidence. In the Figure, the top-level claim is labeled “Property X" and the claim is “Property X holds.”
We will give system-specific claims in the example that is discussed later.

3
American Institute of Aeronautics and Astronautics



Assumption

Context

A: Property X
Ctxt: Property X Details

C: Property X

. . <Assumption simplifying the
Further information E\bOl{t statement or proof of Property
property X can be found in Property X holds X, e.g., system runs in stand-
document DD, p. yy alone mode>

A

To be instantiated

Ctxt: Hazards list

S: Strategy
Argue over hazards

to achieving property
X

<These are the
hazards to be
considered>

C: Hazard 1 C: Hazard 2

Hazard 1 is mitigated Hazard 2 is mitigated

To be developed

Ev: Evidence

<Evidence
showing

mitigation of

Hazard 1>

Figure 1. Example showing GSN shapes and their meaning.

The “Property X claim is amplified by a context element (a rounded rectangle). Context elements provide addi-
tional information to help others understand what is being stated, allowing the claim to be stated more simply, e.g.,
in a fashion that is clear to someone knowledgeable of the system. With respect to the “Property X” claim, the con-
text element provides a pointer to documents where the property is discussed in more detail. Some dependability
case tools provide a hyperlink to such additional information.

The “Property X claim is also associated with an assumption element (an oval labeled with an “A”). These ele-
ments are useful for documenting assumptions that might otherwise not be obvious to reviewers. Also, characteriz-
ing something as an assumption simplifies the case by allowing the argument to focus on claims that require more
attention and work to support. If a reviewer does not think an assumption is appropriate, then additional argumenta-
tion can be requested and documented in a separate dependability case in which the assumption is the top claim.
Another value in documenting assumptions is that when the system changes, the assumptions can be reviewed to see
if they are still valid in light of the changes.

In Fig. 1, the assumption element contains a meta-statement describing what a real assumption statement could
contain. To show clearly that this is a meta-statement, we enclose the statement in brackets (<>) and indicate that the
statement needs to be instantiated with an actual assumption by putting a triangle at the bottom of the element. The
notion of instantiation is particularly useful when describing dependability case patterns, i.e., argumentation struc-
tures that occur often in constructing cases in certain domains, but it is also useful when giving an example case that
is divorced from an actual system or for which actual details are not yet known.

The “Property X claim is supported by further argumentation. A strategy element (a parallelogram) describes
the argumentation approach that will be used in supporting the “Property X claim. A strategy element is not actual-
ly part of the argument; instead, it helps the reader understand the line of thinking supporting a claim. Strategy ele-
ments are introduced when considered helpful in guiding reviewers. In the Figure, we propose to argue that each
hazard relevant to property X has been eliminated or controlled. To further explain the strategy, we associate a con-
text element with the strategy, listing the hazards to be considered or referring to the portion of a document in which
each of the hazards is discussed in more detail. Alternatively, we could associate the strategy with a justification

4
American Institute of Aeronautics and Astronautics



element (not present in Fig. 1). A justification element summarizes an argument explaining why the chosen strategy
is considered appropriate. An example will be shown later. A justification element is an oval (like an assumption
element), but labeled with “J” instead of “A.”

The argument showing that Property X holds consists of two claims asserting that the two hazards considered re-
levant to Property X have been mitigated. For Hazard 1, evidence is provided that is considered to be sufficient to
demonstrate that the hazard has been adequately mitigated. Evidence elements are shown as circles. For Hazard 2, a
further argument needs to be developed. This is indicated by the diamond hanging off the bottom of the claim ele-
ment.

There are other GSN shapes and structures, but they are not needed for the dependability case given in this pa-
per.

C. A Dependability Case for the Hazard
To develop a dependability case for the hazard described in Table 1, we start by developing a top-level claim

stating that the hazard is mitigated (see Fig. 2). Since claims are expressed as predicates expressing what we want to

be true about a system, we state what we mean when we say that the hazard has been mitigated, namely:
The possibility that faulty data exchanged among redundant computers causes all such computers to fail (during critical
mission phases) has been reduced ALARP [ALARP means “as low as reasonably practicable,” a term used to indicate
that furthser effort to reduce risk would be significantly disproportionate to the amount of risk reduction that can be
achieved.”]

Ctxt: Critical Phases

Critical phases of system
operation are X, Y, and Z
(as defined in document

DD, Section S)

C: Data Exchange Haz Mitigated

The possibility that faulty data
exchanged among redundant
computers causes all such computers
to fail (during critical mission phases)
has been reduced ALARP

Ctxt: Effect/Severity/Likelihood

Effect: Loss of operation of
system during critical phase,
leading to loss of life.
Severity: Catastrophic.
Likelihood: Improbable

Figure 2. Initial top-level claim.

We have restated the Table 1 hazard slightly to say that we are primarily concerned with the occurrence of this ha-
zard during “critical” mission phases. The intended implication is that there are some periods of system operation in
which failure of all computers would not be life threatening. By constraining the claim to certain phases of the sys-
tem’s operation, we ensure that assurance efforts are focused where they are needed the most.

We use context elements in Fig. 2 to state additional relevant information, namely, where to find the definition of
“critical” mission phases and the effect, severity, and likelihood of the hazard. Note how one of the context elements
provides a pointer to a detailed discussion of what phases are critical. If later, during the project, there is a change to
the set of critical phases, this context element provides a hook to show that support for this claim may have to be
revisited.

C1: Reliable Backup Ctxt: Effect/Severity/Likelihood

Computing

Ctxt: Critical Phases
Effect: Loss of operation of
system during critical phase,
leading to loss of life.
Severity: Catastrophic.
Likelihood: Improbable

Critical phases of system
operation are X, Y, and Z
(as defined in document

DD, Section S)

The likelihood of complete failure
of primary and backup computers
during a critical mission phase
has been reduced ALARP

’/_/

C2: HW Hazards Mitigated C3: SW Hazards Mitigated

HW hazards leading to
complete failure of all
redundant computers have
been reduced ALARP

Ctxt: Hazards

Faulty data exchanged
among the redundant
redundant computers have computer set; incorrect
been reduced ALARP data initializations, ...

—

C4: Data Exchange Haz Mitigated C5: Data Initialization Hazard

SW hazards leading to
complete failure of all

Data initializations relevant to
backup computing are correct

The possibility that faulty data
exchanged among redundant
computers causes all such computers
to fail (during critical mission phases)
has been reduced ALARP

Figure 3. A more comprehensive top-level claim (C1) showing the context in which the “C4: Data Ex-
change Haz Mitigated” claim sits.

5
American Institute of Aeronautics and Astronautics



Although this claim and its associated context elements suffice to capture key parts of the hazard report, this
claim is only part of a larger claim about the survivability of the redundant computer set. To show the context in
which the data exchange hazard control exists, we formulate a new top-level claim: “The likelihood of complete
failure of primary and backup computers during a critical mission phase has been reduced ALARP.” We will attach
Fig. 2’s context elements to this new top-level claim (see claim CI in Fig. 3), and then address hardware and soft-
ware hazards in separate claims (C2 and C3). The original data exchange hazard (C4) is now shown to be only one
of the software hazards relevant to achieving reliable backup computing.

The structure in Fig. 3 shows a general stylistic pattern that is useful — the context for the claim “SW Hazards
Mitigated” names the hazards. This allows a reviewer to consider if all relevant hazards have been identified before
the reviewer gets into deciding if each hazard is adequately controlled individually. Alternatively, for complicated
situations, the context element might refer to a separate dependability case supporting the claim, “All critical soft-
ware hazards have been identified.”

All software hazards that cannot be eliminated and are worth controlling are addressed under the “SW Hazards
Mitigated” claim. The example shows two software hazard mitigation claims, C4 and C5: one deals with faulty data
exchanges and the other concerns data initialization hazards. The dependability case for mitigating the data ex-
change hazard is shown in Fig. 4. We’ll walk through this diagram to explain the argument.

The two subclaims (C6 and C7) under the top-level claim C4 (Data Exchange Haz Mitigated) show the selected
approach, which is based on an actual approach taken in one project.® The approach is two-fold: 1) reduce the
amount of data that needs to be exchanged among the redundant computer set, particularly during critical mission
phases (“C6: Minimal Data Exchange”), and 2) build in safeguards that help ensure that generated faulty data will be
rejected (“C7: Faulty Data Detected”).

The justification for minimizing data exchanges is shown in an attached “justification” element (“J: Minimize
Data Exchanges”). This element explains why we believe that minimizing data exchanges is part of a reasonable
approach for controlling the data exchange hazard, namely, that by reducing the amount and need for data exchanges
we reduce the opportunity for such exchanges to cause a cascading failure of the redundant computers. We can’t
eliminate all data exchanges — a certain amount of data must be exchanged to allow a backup computer to take over

C4: Data Exchange Haz Mitigated

The possibility that faulty data
exchanged among redundant
computers causes all such computers
to fail (during critical mission phases)
has been reduced ALARP

e —

J: Minimize Data Exchanges

data among the redundant
computers minimizes the

opportunities for adverse effects
caused by the data exchanges

Ctxt: Data Exchange
Rqmts

Functional or safety
requirement X and Y require
for data exchanges among
the redundant computers

Minimizing the need to exchange

C6: Minimal Data Exchange

Data exchanges among
redundant computers (during
critical mission phases) are
minimized

C8: SW Requirements

Functionality associated with each
requirement leading to data
exchanges among redundant
computers is critical and cannot be
eliminated

C7: Faulty Data Detected

Attempted transfers of faulty data
are detected and handled
appropriately (to the extent
practicable)

A —

C9: SW Design

SW design minimizes the
number of tasks that require data
exchanges among the redundant

C10: Requirement X C11: Requirement Y

Requirement X cannot
be eliminated

Requirement Y cannot
be eliminated

computers

S: Data Exchanges Minimized

Argue over each task requiring
data exchanges among the
redundant computers, showing
why the data exchanges cannot
be reduced or eliminated

Figure 4. Controls to minimize data exchanges among redundant computers.

6

American Institute of Aeronautics and Astronautics



for a failing primary computer.

We now develop the argument further. To reduce the number and amount of data exchanges, we need to show
that requirements causing data exchanges during critical mission phases are minimized (C8). In addition, we need to
ensure that the software design does not introduce unnecessary data exchange tasks during critical mission phases
(“C9: SW Design”). Because we list only these two claims in support of “C6: Minimal Data Exchange,” we imply
that the truth of C8 and C9 is sufficient to support the claim that data exchanges among redundant computers are
minimized.

Next consider the argument supporting the requirements claim, C8. The context element for this claim lists the
requirements that have been determined to require data exchanges among the redundant computers during critical
mission phases. (In this illustrative example, we suppose that only two requirements are relevant.) Subclaims C10
and C11 address each of these requirements in turn. The argument supporting each of these claims needs to be fur-
ther developed to show why each requirement cannot be eliminated. One might also add a claim that all relevant
requirements have been identified; the evidence supporting such a claim might consist of the process used to identify
data exchange requirements.

The determination that certain requirements cannot be eliminated is probably what was meant when the hazard
report mentioned “requirements” as a control. In any event, this dependability case shows how renegotiating re-
quirements can be a means to mitigate hazards when the requirements have an undesirable effect on safety, and this
was the approach taken by Hammett, et. al.®

C7: Faulty Data Detected

Attempted transfers of faulty data
are detected and handled
appropriately (to the extent
practicable)

' 3

C12: Output Validation Ctxt: Invalid data hazard C13: Input Validation
Each computer performs validit
Each computer detects The following types of data checks onpdata ir)eceived from g
and refuses to send faults are possible and can another computer and refuses to
invalid data be detected: <x, y, z> accept invalid data
S13: Tests/Code Review
Argue by appealing to test
results and results of
structured code reviews
C14: Data Validity C15: Code Review
Tests
No data validity tests Code reviews show no
fail validation coding errors

C16: Test Completeness

Evi5a: Code Review
Checklists

Test case selection strategy
is sufficient to detect
possible data validation
coding errors

Ev14: Data Validity
Test Results

Ev15b: Code Review
Results

<Document XXX
describing data
validity tests and
their results>

<Results showing
problems found and
corrected, modules

and versions
reviewed, etc.>

<Document describing
types of data validation
coding errors
considered in structured
code reviews>

Figure 5. Argument and supporting evidence for detecting faulty data transmissions.

7
American Institute of Aeronautics and Astronautics



The “C9: SW Design” claim similarly addresses whether the design has minimized the number of data ex-
changes required during critical mission phases. This claim is supported by requiring an analysis of each of the ac-
tivities (tasks) requiring data exchanges, presenting claims and supporting evidence that the activity is necessary and
cannot be eliminated (or the amount of data to be exchanged cannot be reduced).

We now turn our attention to the second subclaim in Fig. 4, “C7: Faulty Data Detected” (see Fig. 5). Claim C7
expresses an approach to mitigating the hazard of transmitting or acting on faulty data. The chosen approach is
straightforward enough in principle — refuse to send or accept faulty data. Of course, not all data faults can be de-
tected, so a context element is used to capture what types of data faults are possible and can be detected. The idea is
that data output validation or input validation will address only these detectable faults. In the diagram, we only de-
velop the argument for C13, the “Input Validation” claim.

What claims and evidence are needed to validate “C13: Input Validation?” The argument put forth in the Figure
takes a dual approach (as expressed in the strategy element “S13: Tests/Code Review”) — support the claim by con-
sidering both test results and the results of code reviews. The idea is that a combination of analysis (code reviews)
and testing provides stronger support for the claim than either approach by itself.

The principle claim dealing with testing is that no tests fail (“C14: Data Validity Tests”). This claim is supported
by evidence (Ev14), namely, test results provided in some document; a reviewer of the case could go look at this
document to see that the “No data validity tests fail” claim is indeed supported by the documented results. Of course,
the lack of test failures is only significant to the extent the tests are sufficiently thorough. The subclaim, “C16: Test
Completeness” addresses this point, namely, that the selected tests are sufficiently thorough to detect possible errors
in the code that performs the validity checks. Support for this claim is to be developed further. Such further devel-
opment would include providing a context element explaining what “sufficient” might mean, e.g., that tests exist for
all detectable data errors, that tests check subtle aspects of the validation algorithms, etc. Putting the “Test Com-
pleteness” claim in our dependability case shows that attention is being paid to test quality as well as test results.

Finally, the second part of our approach for demonstrating that the validity checks are adequate is to perform
code reviews to see if the checks for each type of data validity error are adequate (C15). The evidence in support of
this claim is, of course, the results of the code review, E15b. This evidence element describes the information that
we want to see as part of the code review results, e.g., we don’t want to know just that the review was done, but that
it was done on the appropriate coding modules. It is also useful to know if the review found any problems, since this
provides some indication that the review was effective. Since we know that structured code reviews are the most
effective way of ensuring that the reviews detect problems, another item of evidence (E15a) is the code review in-
structions that indicate what kinds of errors are to be looked for, the review process, etc. Such evidence increases
our confidence that the code reviews were conducted effectively, and hence, the result that no errors were found is
significant.

D. Discussion

When we introduced the hazard report shown in Table 1, we pointed out a number of deficiencies in the descrip-
tion of controls for the hazard and the approach to be used for verifying the adequacy of the controls. In particular,
the original report mentioned analysis of requirements and specifications as a control, but was non-specific about
how this analysis would contribute to mitigating the hazard. We suggested that the use of a dependability case would
allow this information to be presented in a cogent, detailed manner. The example case we presented showed more
specifically how the analysis of certain requirements can contribute to mitigating the hazard (namely, by minimizing
the number of requirements leading to data transfers among the redundant computers). The case showed how a simi-
lar approach to analyzing the design can contribute to a reduction in data transfers (by minimizing the number of
tasks that require data transfers). The hazard report mentioned “incorrect coding” and “inability to test” as contribu-
tors to the fault without being specific about what types of coding errors needed to be addressed. The report men-
tioned “validation and testing” and “rigorous reviews” as a means of eliminating errors, without being specific about
what needed to be done. Again, the use of a dependability case allows this information to be communicated suc-
cinctly and in a manner that allows for review and discussion to determine whether the approach is adequate.

The creation of a dependability case does not necessarily cause new information (evidence) to be created, but it
does organize an explanation of why certain analyses and test results are relevant to mitigating a hazard. The case
explicitly documents claims that are otherwise implicit or unformulated, and thereby clarifies thought about what
evidence needs to be developed (before the system has been completed) or what evidence exists and its probative
value (after the system has been developed). The dependability case organizes information in a structure that can be
reviewed during system certification. It provides a vehicle for assessing the impact of proposed changes to a system
by showing what aspects of the argument may need to be revisited or revalidated.

8
American Institute of Aeronautics and Astronautics



By organizing information (connecting claims to evidence via argument), the dependability case provides an ex-
plicit and coherent rationale documenting why one should believe that critical hazards have been adequately miti-
gated. A dependability case is not necessarily needed for every aspect of a system, but for those aspects that are crit-
ical, it provides a succinct and understandable structure for documenting engineering rationale.

A dependability case does not always have to be developed from scratch. There are certain patterns of rationale
that occur again and again in particular domains. Documenting these patterns in dependability case templates pro-
vides an assurance-based engineering practice and provides a basis for constructing specific cases more quickly and
at lower cost.

III. Conclusions

A dependability case documents why a hazard analysis should be considered adequate and allows for indepen-
dent evaluation of the adequacy of hazard mitigations or controls. Because dependability cases capture and docu-
ment the argument in support of a claim, they can improve the rigor of an organization’s hazard analysis by focusing
efforts on explaining why hazards are adequately mitigated, thereby contributing concretely to the trustworthiness of
a safety-critical system. The case complements rather than replaces legacy engineering and safety analyses; it need
not upend existing processes and practices. Finally, when it comes time to make changes to such systems, the de-
pendability case provides information that helps in determining what aspects of the system cannot be affected by the
change, thus potentially reducing the cost and effort involved in recertifying a system.

Acknowledgements

We thank Chuck Weinstock for constructive comments helping us to improve this paper.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University” for the operation of the Software Engineering Institute, a federally funded research and
development center. The Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for
government purposes pursuant to the copyright license under the clause at 252.227-7013.

References

! Jackson, D., Thomas, M., and Millett, L.I. (eds.), Software for Dependable Systems: Sufficient Evidence?, The National
Academies Press, Washington, DC, 2007, URL: http://www.nap.edu/catalog.php?record id=11923 [cited February 20, 2009].

2 ISO/IEC CD 15026-2.2, “Systems and software engineering — Systems and software assurance — Part 2: Assurance case,”
Committee Draft, 2009.

? Kelly, T.P. “Arguing Safety — A Systematic Approach to Safety Case Management.” Ph.D. Dissertation, Department of
Computer Science, University of York, York, UK, 1998.

* Kelly, T. P. and Weaver, R. A. “The Goal Structuring Notation — A Safety Argument Notation,” Proceedings of the De-
pendable Systems and Networks 2004 Workshop on Assurance Cases, July 2004, URL: http://www-users.cs.york.ac.uk/
~rob/papers/DSNO4.pdf [cited February 20, 2009].

> ALARP definition and discussion, Wikipedia, URL: http://en.wikipedia.org/wiki/ALARP [cited February 20, 2009].

® Hammett, R., Schwartz, R. G., and Smithgall, W., “Preventing Data Pollution in the Space Shuttle Cockpit”, Digital Avio-
nics Systems Conference, 1EEE, Piscataway, NJ, 2003, URL: http://ieeexplore.ieee.org/iel5/8816/27907/01245807.pdf?
tp=&isnumber=&arnumber=1245807 [cited February 20, 2009].

*NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGE-
MENT.

9
American Institute of Aeronautics and Astronautics



