
Results of SEI Independent
Research and
Development Projects
and Report on Emerg-
ing Technologies and
Technology Trends

John Bergey
Sven Dietrich
Donald Firesmith
Eileen Forrester
Angel Jordan
Rick Kazman
Grace Lewis
Howard Lipson
Nancy Mead
Ed Morris
Liam O’Brien
Jeannine Siviy
Dennis Smith
Carol Woody

October 2004

TECHNICAL REPORT
CMU/SEI-2004-TR-018
ESC-TR-2004-018

Pittsburgh, PA 15213-3890

Results of SEI Independent
Research and
Development Projects
and Report on
Emerging Technologies and
Technology Trends

CMU/SEI-2004-TR-018
ESC-TR-2004-018

John Bergey
Sven Dietrich
Donald Firesmith
Eileen Forrester
Angel Jordan
Rick Kazman
Grace Lewis
Howard Lipson
Nancy Mead
Ed Morris
Liam O’Brien
Jeannine Siviy
Dennis Smith
Carol Woody

October 2004

SEI Director’s Office

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2004-TR-018 i

Table of Contents

Table of Contents ... i

List of Figures .. iii

List of Tables ... v

Abstract ... vii

1 Introduction ... 1

2 Levels of Anonymity and Traceability (LEVANT) .. 5

3 Architecture-Based Self-Adapting Systems.. 15

4 Eliciting and Analyzing Quality Requirements: A Feasibility Study........... 21

5 Enabling Technology Transition Using Six Sigma...................................... 33

6 A Method to Analyze the Reuse Potential of Non-Code Software Assets . 43

7 Emerging Technologies and Technology Trends.. 53

Appendix A: Bibliography for Emerging Technologies and
Technology Trends.. 77

Appendix B: OAR Activities.. 87

References... 89

ii CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 iii

List of Figures

Figure 1: Examples of k-anonymity .. 8

Figure 2: Anonymity–Traceability Negotiation Using a Naïve Protocol 9

Figure 3: Adding a Trusted Third Party to the Negotiation Protocol 10

Figure 4: Refined Protocol with Additional Negotiation Options............................ 10

Figure 5: The DiscoTect Architecture ... 17

Figure 6: Taxonomy of Safety-Related Requirements .. 27

Figure 7: Top-Level Process for Identification and Analysis of Safety-Related
Requirements ... 29

Figure 8: Overview of OAR Activities ... 49

iv CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 v

List of Tables

Table 1: Security Requirements Elicitation and Analysis Process 25

Table 2: Reusable Templates for Safety Requirements 28

Table 3: OAR Customization Required for Different Types of Non-Code Assets . 49

vi CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 vii

Abstract

Each year, the Software Engineering Institute (SEI) undertakes several Independent Research
and Development (IR&D) projects. These projects serve to (1) support feasibility studies in-
vestigating whether further work by the SEI would be of potential benefit, and (2) support
further exploratory work to determine whether there is sufficient value in eventually funding
the feasibility study work as an SEI initiative. Projects are chosen based on their potential to
mature and/or transition software engineering practices, develop information that will help in
deciding whether further work is worth funding, and set new directions for SEI work. This
report describes the IR&D projects that were conducted during fiscal year 2004 (October
2003 through September 2004). In addition, this report provides information on what the SEI
has learned in its role as a technology scout for developments over the past year in the field
of software engineering.

viii CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 1

1 Introduction

This document briefly describes the results of the independent research and development pro-
jects conducted at the Carnegie Mellon Software Engineering Institute (SEI) during the
2003–04 fiscal year. It also provides information about what the SEI has learned in its role as
a technology scout for developments over the past year in the field of software engineering.

1.1 Purpose of the SEI Independent Research and
Development Program

SEI independent research and development (IR&D) funds are used in two ways: (1) to sup-
port feasibility studies investigating whether further work by the SEI would be of potential
benefit and (2) to support further exploratory work to determine if there is sufficient value in
eventually funding the feasibility study work as an SEI initiative. It is anticipated that each
year there will be three or four feasibility studies and that one or two of these studies will be
further funded to lay the foundation for the work possibly becoming an initiative.

Feasibility studies are evaluated against the following criteria:

• Mission criticality: To what extent is there a potentially dramatic increase in maturing
and/or transitioning software engineering practices if work on the proposed topic yields
positive results? What will the impact be on the Department of Defense (DoD)?

• Sufficiency of study results: To what extent will information developed by the study help
in deciding whether further work is worth funding?

• New directions: To what extent does the work set new directions as contrasted with
building on current work? Ideally, the SEI seeks a mix of studies that build on current
work and studies that set new directions.

At a DoD meeting in November 2001, the SEI’s DoD sponsor approved a set of thrust areas
and challenge problems to provide long-range guidance for the SEI research and develop-
ment program, including its IR&D program. The thrust areas are survivability/security, inter-
operability, sustainability, software R&D, metrics for acquisition, acquisition management,
and commercial off-the-shelf products. The IR&D projects conducted in FY2004 were based
on these thrust areas and challenge problems.

2 CMU/SEI-2004-TR-018

1.1.1 Overview of IR&D Projects

The following research projects were undertaken in FY2004:

• Levels of Anonymity and Traceability (LEVANT)

• Architecture-Based Self-Adapting Systems

• Eliciting and Analyzing Quality Requirements: A Feasibility Study

• Enabling Technology Transition Using Six Sigma

• A Method to Analyze the Reuse Potential of Non-Code Software Assets

These projects are described in detail in this technical report.

1.2 Purpose of Technology Scouting

Technology scouting has always been an implicit activity of the Software Engineering Insti-
tute and is embedded in the SEI’s mission of technology transition. Because of the institute’s
small size relative to other research institutions, the SEI applies the most leverage to its active
initiatives, but it also watches for other emerging technologies, in the U.S. and internation-
ally.

The SEI has recently been asked to report on the state of the art of software technologies—
those that are pushing the frontiers of the SEI’s current programs and initiatives and also
those that transcend them.

1.2.1 Overview of the 2004 Report on Emerging Technolo-
gies and Technology Trends

In this report, we have provided descriptions of new or emerging technologies. These de-
scriptions include the technologies’ purpose and origin. Where possible, we have indicated
the technologies’ level of maturity and have provided information about related trends. The
following technologies are described:

• Open Grid Services Architecture

• Integrated Security Services for Dynamic Coalition Management

• Model-Driven Architecture

• Service-Oriented Architecture

• Automated Lexical and Syntactical Analysis in Requirements Engineering

• Q Methodology

CMU/SEI-2004-TR-018 3

• Emergent Algorithms for Interoperability

• Aspect-Oriented Software Development

• Generative Programming

• Software Assurance

• Recent Advances in Intrusion Detection Systems

• Applying Statistics in Software Engineering

• Advances in Software Engineering Processes

4 CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 5

2 Levels of Anonymity and Traceability
(LEVANT)
Howard Lipson, Sven Dietrich

2.1 Purpose

In the cyber world, the current state of the practice regarding the technical ability to track and
trace Internet-based attacks is primitive at best. Sophisticated attacks can be almost impossi-
ble to trace to their true source. The anonymity enjoyed by today’s cyber-attackers poses a
grave threat to the global information society, the progress of an information-based interna-
tional economy, and the advancement of global collaboration and cooperation in all areas of
human endeavor.

Society continues to migrate increasingly critical applications and infrastructures onto the
Internet, despite severe shortcomings in computer and network security and serious deficien-
cies in the design of the Internet itself. Internet protocols were designed for an environment
of trustworthy academic and government users, with applications that were oriented primarily
toward research and information exchange. In this era of open, highly distributed, complex
systems, vulnerabilities abound and adequate security, using defensive measures alone, can
never be guaranteed. As with all other aspects of crime and conflict, deterrence plays an es-
sential role in protecting society. Hence, the ability to track and trace attackers is crucial, be-
cause in an environment of total anonymity, deterrence is impossible, and an attacker can
endlessly experiment with countless attack strategies and techniques until success is
achieved. The ability to accurately and precisely assign responsibility for cyber-attacks to
entities or individuals (or to interrupt attacks in progress) would allow society’s legal, politi-
cal, and economic mechanisms to work both domestically and internationally, to deter future
attacks and motivate evolutionary improvements in relevant laws, treaties, policies, and engi-
neering technology. On the other hand, there are many legal, political, economic, and social
contexts in which some protection of anonymity or privacy is essential. Without some degree
of anonymity or privacy, individuals or entities whose cooperation is vitally needed may not
fully participate (or participate at all) in the use or operation of systems that support the criti-
cal functions of the global information society.

Hence, traceability and anonymity are attributes that are central to the security and surviv-
ability of mission-critical systems. We believe that principled, fine-grained tradeoffs between

6 CMU/SEI-2004-TR-018

traceability and anonymity are pivotal to the future viability of the Internet. However, such
tradeoffs are rarely explicitly made, the current capability to make such tradeoffs is extremely
limited, and the tradeoffs between these attributes have occurred on an ad hoc basis at best.
This study, which will carry over into FY2005, is investigating the feasibility of a disciplined
engineering design of Internet protocols (in the context of key policy issues) to allow opti-
mal, fine-grained tradeoffs between traceability and anonymity to be made on the basis of
specific mission requirements. We see this study as a first step toward the development of a
discipline of Internet engineering, which would translate traditional design and engineering
processes, such as thorough requirements gathering and attribute tradeoff analyses, into the
unique context of the Internet environment and its associated security and survivability risks
[Lipson 99].

2.2 Background

Malicious users exploit the severe weakness in existing Internet protocols to achieve ano-
nymity, and use that anonymity as a safe haven from which to launch repeated attacks on
their victims. However, Internet users often want or need anonymity for a variety of legiti-
mate reasons. On the other hand, service providers and other victims of cyber-attack want
and need traceability for accountability, redress, and deterrence. The engineering challenge is
to balance the apparently conflicting needs of privacy and security, and to allow considerable
flexibility in doing so by providing fine-grained “levels” of anonymity and traceability.

Existing Internet protocols were never engineered for today’s Internet, where the trustworthi-
ness of users cannot be assumed, and where high-stakes mission-critical applications increas-
ingly reside. Today’s Internet protocols were initially developed for a small prototype
ARPANET, and later for the research-oriented NSFnet, both of which supported communities
of highly trustworthy academic and government users. Our current track-and-trace capability
is limited in the extreme by the existing protocol and infrastructure design, and requires a
major reengineering effort from both technical and policy perspectives, as described in an
SEI special report funded by the U.S. State Department [Lipson 02].

2.3 Approach

In any Internet transaction, trust ultimately depends not on IP addresses but on particular rela-
tionships among individuals and their roles within organizations and groups (which may be
economic, political, educational, or social). Trust cannot be established while maintaining
total anonymity of the actors involved. It goes without saying that there is a great need for
privacy on the Internet, and it must be carefully guarded. However, trust and privacy trade-
offs are a normal part of human social, political, and economic interactions, and such trade-
offs can be resolved in a number of venues, for example in the marketplace. Consider the
telephone system, in particular the caller identification (caller ID) feature, which displays the

CMU/SEI-2004-TR-018 7

phone number, and often the name, associated with incoming calls. Caller ID is a feature for
which many customers are willing to pay extra in return for the privacy benefits associated
with having some idea of who’s calling before they answer a call. However, callers are some-
times given the option of being anonymous (i.e., not identifiable by the caller ID feature) by
default or on a call-by-call basis. To more fully protect their privacy, the caller ID customer
can choose to block all incoming calls from anonymous callers. The anonymous caller is no-
tified of this fact by an automated message. For callers that pre-arrange with their phone
company to be anonymous by default, the only way to complete the call is to enter a key se-
quence to remove the anonymity for this particular call and to redial. Customers that achieve
anonymity on a call-by-call basis (by entering a specific key sequence) can choose to redial
without entering the key sequence that denotes anonymity. This choice is a form of negotia-
tion between the caller and the intended recipient of the call, and it is a tradeoff between ano-
nymity and trust that is supported by the technology of caller ID and the marketplace. There
is no government mandate that all calls must be anonymous or that no calls are allowed to be
anonymous. The individual caller chooses whether or not to relinquish anonymity (or some
degree of privacy) in exchange for the perceived value of completing the call by increasing
the degree of trust as seen by the recipient.

One can envision next-generation Internet protocols supporting this kind of marketplace ne-
gotiation of trust versus privacy tradeoffs. For example, we are exploring the possibility of
third-party certifying authorities, which would serve as brokers of trust. These certifying au-
thorities would provide mechanisms whereby packets would be cryptographically signed
with very fine-grained authentication credentials of the sender. This is not the same as having
an individual digitally sign a message, as a digitally signed message may be too coarse-
grained for a particular scenario and may reveal too much. Another capability might be the
escrowing, by these certifying authorities, of complete identifying information for a specified
period of time, to be revealed in the event that one or more of a user’s packets have been
identified as participating in a confirmed attack.

We are investigating the feasibility of a disciplined engineering design of Internet protocols
(in the context of key policy issues) to allow optimal, fine-grained tradeoffs between trace-
ability and anonymity to be made on the basis of specific mission requirements. Our goal is
to provide an exemplar for the application of principled software and systems engineering
practices in the unique context of the Internet. A key part of this process is our exploration of
alternative designs for new Internet protocols that allow both the originator and the recipient
of an Internet transaction to decide what levels of anonymity to accept.

2.3.1 Meaning of k-anonymity

We say that a user is k-anonymous in a network context if the user is only traceable to a set of
measure k, where this could mean either a set of size k or a set of radius k in the topological

8 CMU/SEI-2004-TR-018

sense of the network (as shown in Figure 1). Latanya Sweeney originally defined the notion
of k-anonymity in the privacy context for medical patient data [Sweeney 02].

Figure 1: Examples of k-anonymity

As a caveat, we note that a contiguous set reveals information about the set itself. For exam-
ple, for a set that is contiguous with respect to university affiliation, knowing that one mem-
ber belongs to the Carnegie Mellon group allows you to infer that all members of the set be-
long to Carnegie Mellon. On the other hand, a disjoint set may be workable, but it is
nontrivial to express its properties (e.g., as a lattice, random sparse points in space, or a num-
ber of Chaumian mix-nets). An attached label may be sufficient, such as joining a “group,”
and cryptographic group signing could be used to identify the associated group.

2.3.2 An Initial Protocol for Anonymity and Traceability
Tradeoffs

A naïve protocol would implement an interaction between a user and a service, as shown in
Figure 2. A simple negotiation for anonymity will not work in this context, as the one-on-one
negotiation reveals the identity of the user.

Set of size k=10
Set of radius k=2

Meaning of “radius” depends on metric

CMU/SEI-2004-TR-018 9

Figure 2: Anonymity–Traceability Negotiation Using a Naïve Protocol

2.3.3 User and Service Provider Goals

Making effective anonymity and traceability tradeoffs requires an understanding of the spe-
cific goals of users and service providers.

The user goals may differ on a case-by-case basis. Some examples include:

• User may want to hide its location and identity entirely (large k)

• User may want to hide its location somewhat (e.g., reveal the city, but not street address)

• User may want to hide its location, but not its identity

Similarly, the service providers may have different goals and/or requirements. Some exam-
ples:

• Provider may want to know both user’s location and identity

• Provider may want to know user’s location somewhat

• Provider may want to know user’s identity, but does not care about user’s location

2.3.4 Refining the Initial Protocol

By rethinking the process, we add an introducer, or trusted third party (TTP), to act as an
intermediary in the protocol negotiation. In the examples, the TTP relays the message in the
direction shown, hiding the identity of the user from the provider. The refined protocols can
be seen in Figure 3 and Figure 4, and show the progressive introduction of interaction from
both the user and provider perspectives.

1. User Provider
I want k-anonymity

Provider 2a. User
OK, won’t trace beyond k users

Provider 2b. User
Too anonymous, won’t talk to you

10 CMU/SEI-2004-TR-018

Figure 3: Adding a Trusted Third Party to the Negotiation Protocol

Figure 4: Refined Protocol with Additional Negotiation Options

The refined protocol shown in Figure 4 allows for more sophisticated negotiations of ano-
nymity and traceability tradeoffs, on a case-by-case basis. Further development and refine-
ment of Internet protocols that support fine-grained negotiations of tradeoffs between ano-
nymity and traceability (on a mission-by-mission basis) requires a disciplined engineering

1. User

Provider 2a. User

Provider

OK, won’t trace
beyond k users

Too anonymous,
P won’t talk to you

Provider TTP
I want k-anonymity Accept k-anonymity?

TTP

OK, won’t trace
beyond k users

TTP

Too anonymous, won’t
talk to user; more input!

3. User TTP
I’ll give you input

Provider
Additional input

Provider 4. User

OK, k-anonymous
plus additional input

TTP

OK, k-anonymous
plus additional input

1. User TTP
I want k-anonymity

2a. User

OK, won’t trace
beyond k users

Too anonymous,
P won’t talk to you

TTP

TTP

Provider

Provider

Accept k-anonymity?

OK, won’t trace
beyond k users

Too anonymous,
won’t talk to user

Provider

2b. User

2b. User

CMU/SEI-2004-TR-018 11

approach involving requirements elicitation and refinement, development of protocol specifi-
cations, and validation of the protocol specifications (through modeling, prototyping, or other
means).

2.4 Collaborators

The principal investigators for the LEVANT project are Howard Lipson and Sven Dietrich,
who are both members of the CERT® Coordination Center (CERT/CC) at the SEI. The pro-
ject team also includes Ashish Shah, a doctoral student at the Department of Engineering and
Public Policy at Carnegie Mellon University.

In addition to the SEI IR&D funding, Howard Lipson and Sven Dietrich have been awarded
two consecutive Carnegie Mellon CyLab “seed grants” (sponsored by the Army Research
Office) for the LEVANT project. The first award provided support for our doctoral student
during the past academic year, and the second award will provide continued doctoral student
support for the 2004–05 academic year.

2.5 Evaluation Criteria

We have proposed the following long-term success criteria for this project:

• Our initial engineering design of new Internet protocols (that permit fine-grained ano-
nymity and traceability tradeoffs) sheds new light on how to improve the survivability of
Internet-based mission-critical systems.

• The proposed study leads to the discovery of significant insights into how traditional en-
gineering tools, techniques, and processes can be effectively applied in the context of the
Internet environment and the stringent security and survivability requirements of critical
infrastructures and other mission-critical systems.

• Our research papers are accepted in peer-reviewed venues (e.g., conferences and journals
in software engineering, privacy, security, and survivability).

• An ultimate long-term goal would be the adoption of our new protocols by Internet stan-
dards bodies, along with the broad recognition of the need to promulgate and adopt the
engineering techniques used to produce them.

2.6 Results

The LEVANT project feasibility study is a work in progress that will be completed during
FY2005. Other urgent CERT/CC business allowed us significantly less time during FY2004
than we had hoped to devote to the LEVANT project. Nonetheless, we are encouraged by our
progress in this challenging research area, and we have been awarded a second CyLab grant

12 CMU/SEI-2004-TR-018

for the LEVANT project that will fund our doctoral student to work on the project for an ad-
ditional year (September 2004–August 2005).

We have been working to establish a solid theoretical foundation on which to base principled
engineering tradeoffs between traceability and anonymity. Progress includes an extensive
examination of the research literature and work on a new conceptual model that helps clarify
the relationships between anonymity and traceability. We expect the model to continue to
evolve into a foundation for understanding and expressing the full range of engineering re-
quirements for the design of Internet protocols that support attribute tradeoffs and negotia-
tions, as well as help us to generate examples of specific user requirements for anonymity
and traceability that must be satisfied for particular applications, systems, or missions. A pri-
mary goal of our conceptual model is to help us better delineate the space of possible trade-
offs between traceability and anonymity, and to evaluate the feasibility of designing general-
purpose Internet protocols that implement the largest possible range of anonymity–
traceability tradeoffs. One of the key engineering requirements for the design of such proto-
cols is that they effectively support anonymity–traceability tradeoff negotiations between ser-
vice providers and their clients.

In order to better understand the anonymity–traceability tradeoffs that Internet protocols
should support, we have done an extensive review of the research literature that exists in the
anonymity and traceability space. We have also examined exceptionally relevant research on
trust negotiation, contract signing, oblivious transfer and privacy-preserving data mining. Our
literature search has included interoperable strategies in automated trust negotiation, proto-
cols that facilitate multiparty computations, protocols for signing contracts, and social match-
ing algorithms.

Finally, we have surveyed this research area from an economic and public policy perspective.
We have tried to better understand the economic aspects of personal privacy and the econom-
ics of anonymity and traceability. We have looked at the economic incentives and disincen-
tives for service providers to support various anonymity and traceability services.

2.6.1 Case Study in Anonymity–Traceability Tradeoffs:
A Comparative Analysis of Privacy Implications of
Transit Card Systems

A case study carried out by our doctoral student, Ashish Shah (with initial results submitted
as a class project report), surveyed the transit card architectures deployed in Washington,
D.C., New York City, and Hong Kong. Dependence on public transportation in the United
States and other parts of the world is expanding, with significant investment underway to
modernize and automate current fare-collection systems.

CMU/SEI-2004-TR-018 13

Transit cards often allow travelers to access multiple modes of transportation with a single
card, regardless of whether the transportation is administered by one agency or by multiple
agencies within a region. The card issuers also provide mechanisms for travelers to replace
lost cards. In addition, transit card advocates say, these systems are easy to use and the cards
could be used for other applications, such as payments at retail stores and parking lots. Be-
cause they are potentially linkable to individual travelers and to past trips, transit cards raise a
number of privacy concerns not raised by cash or token systems. These include the ability of
transportation authorities and other parties to track commuters and maintain a profile of their
travel habits. This information has value to law-enforcement agencies as well as to marketers.
It is not clear whether travelers are aware of the privacy risks associated with the transit
cards, or how they feel about the tradeoff of privacy for convenience. Typically, individual
travelers have limited ability to take steps to protect their own privacy if they want to use
these systems. Therefore, the decisions that are made about how these systems are imple-
mented and administered are central to the degree of privacy the system affords. The purpose
of the case study is to identify and discuss the privacy issues that arise due to the deployment
of transit card systems and to identify design alternatives and tradeoffs that might be consid-
ered to reduce privacy risks.

2.7 Publications and Presentations

We are in the process of writing a technical report that describes the initial research results of
the LEVANT project. This report will describe our conceptual model for anonymity and
traceability tradeoffs, and will also specify the engineering requirements for a general-
purpose Internet negotiation protocol that supports anonymity–traceability tradeoffs, based
on user and service-provider preferences that are specified at the time of a transaction.

Howard Lipson and Sven Dietrich have made presentations on the LEVANT project to Cy-
Lab industrial affiliates, the Army Research Office, and other potential sponsors. Ashish Shah
represented the LEVANT project at a poster session at a CyLab Corporate Partners Confer-
ence.

2.8 FY2005 Tasks

The LEVANT IR&D project tasks for FY2005 include publication of one or more technical
reports or papers, along with additional research to further develop and refine the conceptual
model upon which the tradeoff negotiation protocol will be based. We will also explore in
greater depth several of the economic and public policy issues relevant to this research area.

14 CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 15

3 Architecture-Based Self-Adapting Sys-
tems
Rick Kazman

3.1 Purpose

An increasingly important requirement for software-based systems is the ability to adapt
themselves at runtime to handle such things as resource variability, changing user needs,
changing demands, and system faults. In the past, systems that supported such self-adaptation
and self-repair were rare, confined mostly to domains like telecommunications switches or
deep space control software, where taking a system down for upgrades was not an option, and
where human intervention was not always feasible. However, today more and more systems
have this requirement, including e-commerce systems and mobile embedded systems.

For systems to adapt themselves, one of the essential ingredients is self-reflection: a system
must know what its architecture is, and what its status is, and it must be able to identify op-
portunities for improving its own behavior. For most complex systems it is crucial to have a
well-defined architecture. Such a definition provides a high-level view of a system in terms
of its principal runtime components (e.g., clients, servers, databases), their interactions (e.g.,
RPC, event multicast), and their properties (e.g., throughputs, reliabilities). As an abstract
representation of a system, an architecture permits many forms of high-level inspection and
analysis. Consequently, over the past decade considerable research and development has gone
into the development of notations, tools, and methods to support architectural design.

Despite advances in developing an engineering basis for software architectures, a persisting
difficult problem is determining whether a system as implemented has the same architecture
as was originally designed. Without some form of consistency checking that guarantees the
relationship between an architecture and the system as implemented, the benefits of the archi-
tecture will be hypothetical at best, invalidating the primary purpose of the architectural de-
sign.

However, there are a number of hard technical challenges in bridging the gap between the as-
designed and the as-implemented architecture. The most serious challenge is finding mecha-
nisms to bridge the abstraction gap: in general, low-level system observations do not map
directly to architectural actions. For example, the creation of an architectural connector might

16 CMU/SEI-2004-TR-018

involve many low-level steps, and those actions might be interleaved with many other archi-
tecturally relevant actions. Moreover, there is likely no single architectural interpretation that
will apply to all systems: different systems will use different runtime patterns to achieve the
same architectural effect, and conversely, there are many possible architectural elements to
which one might map the same low-level events. In this work we have created a technique to
solve the problem of dynamic architectural discovery for a large class of systems. The key
idea is to provide a framework that allows one to map implementation styles to architecture
styles. In this way we can provide a sound basis for discovering and reasoning about an ar-
chitecture, which is the necessary prerequisite to self-adaptation.

3.2 Background

Currently two principal techniques have been used to determine or enforce relationships be-
tween a system’s architecture and its implementation. The first is to ensure consistency by
construction. This can be done by embedding architectural constructs in an implementation
language (e.g., see Aldrich) where program analysis tools can check for conformance [Al-
drich 02]. Or, it can be done through code generation, using tools to create an implementation
from a more abstract architectural definition [Shaw 95, Taylor 96, Vestal 96]. While effective
when it can be applied, this technique has limited applicability. In particular, it can usually
only be applied in situations where engineers are required to use specific architecture-based
development tools, languages, and implementation strategies. For systems that are composed
out of existing parts, or that require a style of architecture or implementation outside those
supported by generation tools, this approach does not apply.

The second technique is to ensure conformance by extracting an architecture from a system’s
code, using static code analysis [Jackson 99, Kazman 99, Murphy 95]. When an implementa-
tion is sufficiently constrained so that modularization and coding patterns can be identified
with architectural elements, this can work well. Unfortunately, however, the technique is lim-
ited by an inherent mismatch between static, code-based structures (such as classes and pack-
ages), and the run-time structures that are the essence of most architectural descriptions [Gar-
lan 01]. In particular, the actual runtime structures may not even be known until the program
runs: clients and servers may come and go dynamically; components (e.g., DLLs) not under
direct control of the implementers may be dynamically loaded, etc.

A third, relatively unexplored, technique is to determine the architecture of a system by ex-
amining its behavior at runtime. The key idea is that a system can be monitored while it is
running. Observations about its behavior can then be used to infer its dynamic architecture.
This approach has the advantage that, in principle, it applies to any system that can be moni-
tored, it gives an accurate image of what is actually going on in the real system, it can ac-
commodate systems whose architecture changes dynamically, and it imposes no a priori re-
strictions on system implementation or architectural style.

CMU/SEI-2004-TR-018 17

Running System

Trace Engine

State
Engine

Architecture
Builder

Model

Figure 5: The DiscoTect Architecture

3.3 Approach

To address these concerns, we have developed a novel approach for extracting a system’s
architecture at runtime, without perturbing the system. To test this approach we have built the
DiscoTect system, illustrated in Figure 5.

Monitored events from a running system are first filtered by a trace engine to select out the
subset of system observations that must be considered. The resulting stream of events is then
fed to a state engine. The heart of this recognition engine is a state machine designed to rec-
ognize interleaved patterns of runtime events, and when appropriate, to output a set of archi-
tectural operations. Those operations are then fed to an architecture builder that incremen-
tally creates the architecture, which can then be displayed to a user or processed by
architecture analysis tools.

To handle the variability of implementation strategies and possible architectural styles of in-
terest, we provide a language to define new mappings. Given a set of implementation con-
ventions (which we will refer to as an implementation style) and a vocabulary of architectural
element types and operations (which we will refer to as an architectural style), we provide a
description that captures the way in which runtime events should be interpreted as operations
on elements of the architectural style. Thus each pair of implementation style and architec-
tural style has its own mapping. A significant consequence is that these mappings can be re-
used across programs that are implemented in the same style.

18 CMU/SEI-2004-TR-018

3.4 Collaborators

The collaborators on this research in 2003–04 were:

• Rick Kazman (SEI)

• David Garlan (Carnegie Mellon University School of Computer Science (SCS) faculty;
self-supported)

• Bradley Schmerl (Carnegie Mellon SCS systems scientist; partially supported by the
IR&D)

• Hong Yan (Carnegie Mellon SCS; supported by the IR&D)

• Jonathan Aldrich (Carnegie Mellon SCS; self-supported)

3.5 Evaluation Criteria

We have set ourselves four evaluation criteria for this work. These are

• at least one commercial or government system analyzed

• at least one journal or conference paper published on this research

• at least one technical report or technical note published on this approach

• clear guidance provided on the feasibility of the approach for future SEI investment and
involvement

We believe that we have met all of these criteria, as we will describe next.

3.6 Results

During the past year, we have achieved a number of significant results. We have built an ini-
tial version of DiscoTect and have used it to analyze systems in three different architectural
styles [Yan 04a, Yan 04b]. The most significant of these systems was implemented in Sun’s
Java 2 Enterprise Edition (J2EE), a commercial architectural framework [J2EE]. In each of
the three systems that we analyzed we were able to discover important facts about the archi-
tectures that were hitherto unknown. These facts were typically mismatches between the as-
documented and the as-implemented architecture. The discovery of these mismatches illus-
trates the power of the DiscoTect approach.

There are a number of advantages to the DiscoTect approach. First, it can be applied to any
system that can be monitored at runtime. In our case, we have done three case studies on sys-
tems written in Java and we have done our runtime monitoring using AspectJ. We have re-
cently experimented successfully with the use of AspectC to extract runtime information

CMU/SEI-2004-TR-018 19

from C and C++ programs. Second, we do not require any change to the system to allow it to
be monitoring. All of the monitoring code is contained in the aspects. Third, by simply substi-
tuting one mapping description for another, it is possible to accommodate different imple-
mentation conventions for the same architectural style, or conversely to accommodate differ-
ent architectural styles for the same implementation conventions. This means that DiscoTect
mappings will be highly reusable.

Building on these results, we have embarked upon an effort to try to make DiscoTect more
theoretically sound, more usable, and more easily transitionable to government and industry.
We have formulated a set of recommendations for future SEI investment and involvement
based on this effort.

3.7 Publications and Presentations

We published one paper and made a presentation to the International Conference on Software
Engineering [Yan 04a] and we have published one SEI technical report [Yan 04b] on Dis-
coTect in 2003–04.

20 CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 21

4 Eliciting and Analyzing Quality Require-
ments: A Feasibility Study
Nancy Mead, Carol Woody, Donald Firesmith

4.1 Purpose

4.1.1 The Need for this Feasibility Study

The vision of the SEI is “the right software, delivered defect free, on time and on cost, every
time.” The mission of the SEI is: “The SEI provides the technical leadership to advance the
practice of software engineering so the DoD can acquire and sustain its software-intensive
systems with predictable and improved cost, schedule, and quality.”

Proper requirements engineering is critical to the fulfillment of both the SEI’s vision and mis-
sion because the requirements determine

• what the right software is (i.e., requirements specify the right software, and requirements
validation determines if the right software was built)

• what a defect is (i.e., a failure to meet the requirements)

• the minimum cost and schedule of the acquisition

• the standard against which quality is measured

4.1.2 The Criticality of Requirements Engineering to Our Cli-
ents

It is well recognized in the industry that requirements engineering is critical to the success of
any major development project [Boehm 88, Willis 98]:

• As compared with defects found during requirements evaluations, defects cost

− 10-200 times as much to correct once fielded
− 10 times as much to correct during testing

• Reworking requirements defects on most software development projects costs 40-80% of
the effort.

22 CMU/SEI-2004-TR-018

• The percentage of defects originating during requirements engineering is estimated at 42-
64%.

• The total percentage of project budget due to requirements defects is 25-40%.

• A recent study by IBM’s System Sciences Institute found that the relative cost of fixing
software defects after deployment is almost 15 times greater than detecting and eliminat-
ing them in development, and Gartner estimates the cost of mitigating poor security is
twice as great as the cost of prevention. The National Institute of Standards and Technol-
ogy (NIST) reports that software that is faulty in the areas of security and reliability costs
the economy $59.5 billion annually in breakdowns and repairs. The costs of poor security
requirements show that there would be a high value to even a small improvement in this
area.

• By the time an application is fielded in its operational environment, it is very difficult and
expensive to significantly improve its security.

• Requirements problems are the number one cause of why projects

− are significantly over budget
− are significantly past schedule
− have significantly reduced scope
− deliver poor-quality applications
− are not significantly used once delivered
− are cancelled

4.2 Background

4.2.1 Previous SEI Work

The various initiatives and programs at the SEI deal with requirements engineering only to
the extent required for their needs. Thus, there is no complete or integrated approach to re-
quirements engineering at the SEI. This IR&D feasibility study draws on the following pre-
vious work regarding requirements engineering:

• The initial part of the SEI Architecture Tradeoff Analysis Method (ATAM) assumes that
adequate quality requirements have not been specified, and provides guidance on infor-
mally identifying representatives of the most critical types of quality requirements so that
major risks to and defects in the architecture can be identified. However, ATAM does not
address all quality requirements, nor does it address how to formally analyze and specify
them. Also, security and safety are not as central to ATAM as other quality requirements
such as performance, availability, and modifiability.

• SEI Quality Attribute Workshops (QAWs) provide a way to identify the most critical
quality requirements at the highest level of abstraction for the purpose of producing ar-
chitecture test cases (scenarios) in support of architecture evaluations. As with ATAMs,

CMU/SEI-2004-TR-018 23

QAWs do not address all quality requirements nor do they address how to formally ana-
lyze and specify them.

• In the early 1990s the SEI did some work in requirements engineering and analysis that
can provide some background material to this study. However, this work is somewhat
dated and did not address the same problems that are covered in this feasibility study.

• The SEI developed a transition package for requirements management, but this was gen-
eral in nature.

• The SEI developed and delivered a train-the-trainer course on requirements engineering
in the early 1990s, and also developed a requirements engineering course for Carnegie
Mellon University’s Master of Software Engineering. Both courses are available on
videotape from the SEI.

• Good operational practices used in the SEI Operationally Critical Threat, Asset, and Vul-
nerability Evaluation (OCTAVE) Method have been applied in an independent technical
assessment to “health check” a software development effort. This catalog of practices
was assembled from a broad range of sources, including the CERT Coordination Center
(CERT/CC) at the SEI, British Standards Institution (BSI), and NIST. To address the
quality requirement of security, the needs of the deployment environment must be con-
sidered, and the OCTAVE catalog of practices provides a good starting point.

• The e-Authentication Risk Assessment (e-RA) tool developed for the federal Electronic
Government (e-gov) effort focused on authentication requirements, a subset of security
requirements.

• Survivable systems analysis (SSA), developed in the SEI Networked Systems Surviv-
abilty (NSS) program has addressed client problems in architecture and requirements.

• Commercial off-the-shelf software (COTS) and product line work at the SEI addresses
tradeoffs between application requirements and the capabilities of COTS packages. The
Vendor Rating and Threat Evaluation (V-RATE) work in the NSS program addresses the
security risks of COTS software.

4.2.2 Previous Industry and Government Work
• ISAlliance issued the Common Sense Guide for Senior Managers, which established the

top 10 recommended information security practices (see <www.isalliance.org>). Practice
number 4 in this list calls for design of an enterprise-wide security architecture based on
satisfying business objectives, which influences security requirements and is impacted by
new development efforts.

• Industry contacts from ISAlliance (e.g., Nortel and Raytheon) have expressed interest in
improved quality requirements elicitation and analysis.

24 CMU/SEI-2004-TR-018

4.3 Approach

While much has been written about quality requirements in the abstract, the mechanisms to
translate the theory into practice have been unclear. If quality requirements are not effectively
defined, the resulting system cannot be effectively evaluated for success or failure prior to
implementation. Quality requirements are often missing in the requirements elicitation proc-
ess. The lack of validated methods is considered one of the factors.

In addition to employing applicable software engineering techniques, the organization must
understand how to incorporate the techniques into its existing software development proc-
esses. The identification of organizational mechanisms that promote or inhibit the adoption of
quality requirements elicitation can be an indicator of the quality level of the resulting prod-
uct.

Our literature search, focusing on safety and security software requirements engineering,
provided an interesting range of material. Safety requirements engineering is a much more
mature area with broad planning content, standards frequently focused on software for spe-
cific domains, and case studies that range over several years. Security requirements engineer-
ing has only been recently researched with much of the material assembled within the current
year. Neither area had techniques or templates for requirements elicitation. By assembling an
elicitation framework based on our initial research and applying it to a software development
effort, we were able to identify additional research areas and refine the framework through
further research.

If usable approaches to safety and security are developed and mechanisms to promote organ-
izational use are identified, then software quality with respect to safety and security can be
effectively characterized by an organization to assure the resulting product effectively meets
these requirements.

An elicitation process for security requirements was developed and applied in a client case
study. The case study results will be sanitized and published at a later time. The draft process
is shown in Table 1.

CMU/SEI-2004-TR-018 25

Table 1: Security Requirements Elicitation and Analysis Process

Number Step Input Techniques Participants Output

1 Agree on
definitions

Candidate
definitions from
IEEE and other
standards

Structured inter-
views, focus group

Stakeholders,
requirements
team

Agreed-to
definitions

2 Identify safety
and security
goals

Definitions,
candidate goals,
business drivers,
policies and
procedures,
examples

Facilitated work
session, surveys,
interviews

Stakeholders,
requirements
engineer

Goals

3 Select
elicitation
techniques

Goals, definitions,
candidate tech-
niques, expertise
of stakeholders,
organizational
style, culture, level
of safety and secu-
rity needed, cost
benefit analysis,
etc.

Work session Requirements
engineer

Selected elicitation
techniques

4 Develop
artifacts to
support
elicitation
technique

Selected
techniques,
potential artifacts
(e.g., scenarios,
misuse cases,
templates, forms)

Work session Requirements
engineer

Needed artifacts:
scenarios, misuse
cases, models,
templates, forms

5 Elicit safety
and security
requirements

Artifacts, selected
techniques

Joint Application
Design (JAD),
interviews,
surveys, model-
based analysis,
safety analysis,
checklists, lists of
reusable require-
ments types, docu-
ment reviews

Stakeholders
facilitated by
requirements
engineer

Initial cut at safety
and security
requirements

6 Categorize
requirements
as to level
(system,
software, etc.)
and whether
they are
requirements
or other kinds
of constraints

Initial
requirements,
architecture

Work session
using a standard
set of categories

Requirements
engineer, other
specialists as
needed

Categorized
requirements

7 Perform risk
assessment

Categorized
requirements,
target operational
environment

Risk assessment
method, analysis
of anticipated risk
against organiza-
tional risk toler-
ance, including
hazard/threat
analysis; Opera-
tionally Critical
Threat, Asset, and
Vulnerability
Evaluation
(OCTAVE)

Requirements
engineer, risk
expert, stake-
holders

Risk assessment
results, added
mitigation require-
ments to bring
exposure into
acceptable level

26 CMU/SEI-2004-TR-018

8 Prioritize
requirements

Categorized
requirements and
risk assessment
results

Prioritization
methods, such as
Triage, Win-Win

Stakeholders
facilitated by
requirements
engineer

Prioritized
requirements

9 Requirements
inspection

Prioritized
requirements,
candidate formal
inspection
technique

Inspection method,
such as Fagan,
peer reviews

Inspection team Initial selected
requirements,
documentation of
decision-making
process and
rationale

4.3.1 Safety Requirements

The taxonomy of safety-related requirements illustrated in Figure 6 was developed. As illus-
trated in Table 2, this resulted in a set of generic reusable templates for engineering safety
requirements. This taxonomy became a foundation for the development of a process for engi-
neering safety requirements (see Figure 7), because the process depends on the type of safety
requirements being engineered.

CMU/SEI-2004-TR-018 27

System
Requirements

Main Mission
Requirements

Safety System
Requirements

Functional
Requirements

Data
Requirements

Interface
Requirements

Quality
Requirements

Constraints

Safety
Constraints

Safety
Requirements

Non-Safety
Quality

Requirements

Protect
Valuable Assets
Requirements

Detect
Safety Incidents
Requirements

React to
Safety Incidents
Requirements

Asset / Harm
Requirements

Accident(s)
Requirements

Hazard
Requirements

Safety Risk
Requirements

Asset
Analysis

Accident
Analysis

Hazard
Analysis

Safety Risk
Analysis

Safety-Independent
Requirements

SIL = 0

Safety-Significant
Requirements

SIL = 1 - 5

Safety-Intolerable
Requirements

SIL = 5

Safety-Critical
Requirements

SIL = 4

Safety-Major
Requirements

SIL = 3

Safety-Moderate
Requirements

SIL = 5

Safety-Minor
Requirements

SIL = 5

Safety Integrity Level
(SIL)

identifies

Safety
Significance

Analysis

Safety
Control
Analysis

Safety
Engineering

Safety
Program
Planning

Safety
Analysis

Safety
Monitoring

Incident
Investigation

Safety
Compliance
Assessment

Safety
Certification

Figure 6: Taxonomy of Safety-Related Requirements

28 CMU/SEI-2004-TR-018

Table 2: Reusable Templates for Safety Requirements

Type of

Safety Requirement

Form of Parameterized Requirement

Prevention of Accidental

Harm to Valuable Asset

The system shall not [cause | permit to occur] [amount of a type of harm to a type of

asset] more than [a threshold of measurement].

Prevention of Safety

Incidents (esp. Accidents)

The system shall not [cause | permit to occur] [optional: accident severity] [type of

safety incident] more than [a threshold of measurement].

Prevention of Hazards The system shall not [cause | permit to occur] [type of hazard] more than [a thresh-

old of measurement].

Prevention of Safety Risk The system shall not [cause | permit to occur] a [harm severity category] [accident |

hazard] with likelihood greater than [probability | accident likelihood category].

No credible system [accident | hazard] shall represent a [threshold of measurement

= safety risk category] safety risk.

Detection of Violation of

Prevention

The system shall detect [accidental harm | safety incident | hazard | safety risk].

Reaction to Violation of

Prevention

When the system detects [accidental harm | safety incident | hazard | safety risk],

then the system shall [list of system actions].

CMU/SEI-2004-TR-018 29

Safety
Analysis

Asset
Analysis

Accident
Analysis

Hazard
Analysis

Safety Risk
Analysis

Asset
Safety

Requirements

Accident
Safety

Requirements

Hazard
Safety

Requirements

Safety Risk
Safety

Requirements

Safety
Requirements

Safety Team

Requirements
Team

performs
helps

perform

supports

Safety
Significance

Analysis

Safety-
Significant

Requirements

Safety-Related
Requirements

Safety System
Requirements

Safety
Constraints

identifies

Safety
Control
Analysis

Architecture
Team

helps
perform

supports

Figure 7: Top-Level Process for Identification and Analysis of Safety-Related Re-
quirements

4.4 Collaborators

The primary SEI team members were Don Firesmith (Acquisition Support Program), Nancy
Mead (Networked Systems Survivability [NSS] initiative), and Carol Woody (NSS). The fol-
lowing professionals agreed to be external collaborators:

• Dr. Natalia Juristo (Technical University of Madrid)

30 CMU/SEI-2004-TR-018

• Dr. Robyn R. Lutz (Jet Propulsion Laboratory)

• Mr. C.S. (Sekar) Chandersekaran (IDA)

The external collaborators provided advice and review of the work. They provided their own
support.

4.5 Evaluation Criteria

A large case study project was undertaken with an industry client to test the validity of the
proposed security requirements elicitation process. Seven Carnegie Mellon University gradu-
ate students worked on this project during the summer of 2004. Case study results were
evaluated initially by the IR&D investigators for consistency and effectiveness. Controversial
questions were shared with the external collaborators, other SEI staff members, and an exter-
nal requirements engineering newsgroup for additional input.

Management issues were presented in various conferences and shared with collaborators for
feedback and expansion.

4.6 Results

Draft processes for safety and security requirements were developed, as noted above. Man-
agement issues were surfaced and investigated. Although much work remains to be done, we
believe that this IR&D project advanced the state of the art in the area of security and safety
requirements. We would hope to see refinement of the draft processes and confirmation with
additional practical case studies. Prototype tools were also developed to support some aspects
of the processes.

There is much confusion surrounding terminology and no agreed-upon standard definitions.
There is a long list of terms (e.g., asset, harm, vulnerability, threat, risk, and impact) that
carry different meanings depending on the perspective of the user, which can vary by job
role, organizational level, organizational domain, development life-cycle stage, and other fac-
tors. The lack of an agreed-upon set of definitions can derail any effort to identify and agree
on requirements. Given the contextual nature of the definitions, the elicitation process must
first establish appropriate definitions for use of the process within an organization.

There are standards for levels of safety, many of which are domain specific, but these can be
measured at some level within a specific context. There is great disagreement on standards
for levels of security. Security measurement research has been heavily focused in the opera-
tional arena with limited applicability to development. Risk is considered a factor in both

CMU/SEI-2004-TR-018 31

quality areas, but the application differs. It is unclear if the difference between security and
safety levels is valid or the result of research limitations; further research is recommended.

The IEEE Standard for Software Safety Plans (IEEE Std 1228-1994) provides a framework
for inserting safety considerations into the software development life cycle. A standard
framework for addressing security across the SDLC does not exist. A possibility has been
suggested by Gary McGraw of applying best practices in security requirements (including
abuse cases), risk analysis, static analysis tools, and penetration testing [McGraw 04]. A
panel discussion at the European Software Engineering Process Group conference (listed in
the Publications and Presentations section, focused on the ability of current development
methods to produce a secure product and identified critical shortcomings of current SDLC
approaches. A case study incorporating the proposed requirements elicitation framework
along with considerations for operational security earlier in the life cycle has been initiated to
further analyze these ideas.

Early in the literature review, the potential conflict of quality efforts (perceived as time-
consuming) with organizational management direction (driven by time-to-market and cost
considerations) was identified. The importance of researching this conflict as a potential bar-
rier to adoption of improved elicitation techniques was based on consistency with issues
identified in the use of risk methodologies, such as OCTAVE for security considerations,
within the operational system environment. Also, issues identified in independent technical
assessments of major government software development projects supported concern about
conflicting organizational priorities. A portion of the feasibility effort was focused on the
identification of appropriate organizational behavior to foster the use of effective mechanisms
for eliciting and analyzing quality requirements.

The management areas for consideration included

• recognition of organizational risk

• creating a risk-aware environment

• establishing organizational support for quality

4.7 Publications and Presentations

The following recent publications were used:

• Graff, M. & van Wyk, K. Secure Coding Principles & Practices. O’Reilly, 2003.

• Hoglund, G. & McGraw, G. Exploiting Software: How to Break Code. Addison-Wesley,
2004.

During the course of the IR&D project, several reports were published by the investigators:

32 CMU/SEI-2004-TR-018

• Firesmith, Donald G. “A Taxonomy of Safety-Related Requirements.” Proceedings of
Requirements Engineering, 2004 Requirements for High Assurance Systems (RHAS)
Workshop. Kyoto, Japan. IEEE Computer Society, Washington, D.C., 6 September 2004.

• Mead, Nancy R. Requirements Engineering for Survivable Systems (CMU/SEI-2003-TN-
013). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University (2003).

Carol Woody, one of the IR&D investigators, participated in the following panel discussion,
presentation, and workshop. These activities were intended to present and initiate further dis-
cussion on the management issues:

• “Considering Operational Security Risks During Systems Development,” Software Engi-
neering Process Group Conference (SEPG 2004), Orlando, FL, March 9, 2004.

• “Can Secure Systems be Built Using Today’s Development Processes,” European SEPG,
London, England, June 17, 2004. Summary <http://www.cert.org/archive/pdf
/eursepg04.pdf>. Panel presentation <http://www.cert.org/archive/pdf
/EurSEPG405d.pdf>.

• “Considering Security Risks During the System Development Life Cycle,” Liberty Uni-
versity, Lynchburg, VA, August 6-8, 2004.

A workshop on Requirements for High Assurance Systems (RHAS04) was held in conjunc-
tion with the International Conference on Requirements Engineering on September 6, 2004.
The workshop co-chairs were Donald Firesmith and Nancy Mead, two of the IR&D investi-
gators. The focus of the workshop was safety requirements. Workshop proceedings were pub-
lished by the SEI. The papers will also be available on the RHAS Web site after the confer-
ence: www.sei.cmu.edu/community/rhas-workshop/.

CMU/SEI-2004-TR-018 33

5 Enabling Technology Transition Using
Six Sigma
Jeannine Siviy, Eileen Forrester

5.1 Purpose

The primary purpose of this project was to examine whether Six Sigma, when used in combi-
nation with another process improvement technology or technologies, makes the transition1
of that technology more effective. While we were interested first in the transition of SEI
technologies, what we learned also applies to non-SEI technologies, non-process technolo-
gies, and to Six Sigma users in general.

A secondary or implicit purpose of this project was to overcome a frequent misunderstanding
about Six Sigma. We realized that many practitioners do not get the transition advantage they
could from Six Sigma because they see it as a competitor with other improvement practices
and models, rather than as an enabler, and therefore do not recognize its potential.

5.2 Background

Six Sigma is an approach to business improvement that includes a philosophy, a set of met-
rics, an improvement framework, and a toolkit of analytical methods. Its philosophy is to im-
prove customer satisfaction by eliminating and preventing defects, resulting in increased
profitability. Sigma (σ) is the Greek symbol used to represent standard deviation, or the
amount of variation in a process. The measure six sigma (6σ), from which the overall ap-
proach derives its name, refers to a measure of process variation (six standard deviations) that
translates into an error or defect rate of 3.4 parts per million, or 99.9997 percent defect free.
In the Six Sigma approach, defects are defined as anything in a product or service, or any
process variation, that prevents the needs of the customer from being met.

1 By “transition” we mean all of the following: adaptation and introduction of technology by devel-

opers or champions, implementation of technology by organizations and change agents, and adop-
tion of technology by its intended users. Most of our research results from this project center on
implementation and adoption, but those results have profound implications for developers and
champions of technology.

34 CMU/SEI-2004-TR-018

During the 1990s, large manufacturing companies such as Motorola, General Electric, and
Allied Signal used Six Sigma processes to collect data, improve quality, lower costs, and vir-
tually eliminate defects in fielded products. Using both statistical and non-statistical methods,
the approach soon spread to several major service industries, and today software practitioners
are exploring ways to apply Six Sigma techniques to improve software and systems devel-
opment.

5.3 Approach

This project was conducted by two members of the SEI: Jeannine Siviy of the Software En-
gineering Measurement and Analysis initiative, and Eileen Forrester of the Technology Tran-
sition Practices and Capability Maturity Model Integration (CMMI) teams. Siviy is a “Black
Belt Practitioner”2 in Six Sigma, and Forrester is an applied researcher and consultant in tech-
nology transition. In learning about each other’s domains we concluded that Six Sigma and
technology transition are probably mutually reinforcing. In addition, we hypothesized that the
successful transition of Six Sigma itself meant that a persistent community of practitioners,
possibly more adept at adopting technology, exists and even pervades the software and sys-
tems community we serve. We wanted to discover if the community of Six Sigma practitio-
ners might be more receptive to and capable of adopting SEI technologies and other tech-
nologies, thereby serving as a de facto community of innovators and early adopters.

Our approach was to use a combination of case interviews and site visits, surveys, field ex-
perience, discussions with technology and domain experts, and literature review to examine
the use of Six Sigma as a transition enabler and to understand how organizations are using
Six Sigma with other technologies. Both the surveys and the literature review were used to
elicit hypotheses and candidate case studies. We also elicited hypotheses through interviews
and discussions with other researchers and practitioners (see the Collaborators section for
participants).

We used an inductive technique to generate our hypotheses, to be tested with qualitative field
experience, akin to the “grounded theory” method. Put simply, grounded theory calls for the
investigators to pose an explicit theory, observe field conditions to test the theory, revise the
theory based on that experience, observe again with the revised theory, and so forth. It is a
qualitative technique driven by data. We maintained a set of position statements throughout
the project that reflected our current theories, and, as the project advanced, added inferences

2 From isixsigma.com: Black Belts are the Six Sigma team leaders responsible for implementing

process improvement projects within the business—to increase customer satisfaction levels and
business productivity. Black Belts are knowledgeable and skilled in the use of the Six Sigma
methodology and tools. They have typically completed four weeks of Six Sigma training, and
have demonstrated mastery of the subject matter through the completion of project(s) and an
exam. They coach Green Belts and receive coaching and support from Master Black Belts.

CMU/SEI-2004-TR-018 35

and findings. We periodically reviewed these with other researchers and practitioners for
feedback, suggestions, and critique.

5.4 Collaborators

We included about a dozen members of SEI programs (including Software Engineering Proc-
ess Management, Dynamic Systems, Product Line Systems, and Survivable Systems) as we
performed the research, both to get the benefit of their expertise and to foster natural informa-
tion flows for the project results in other programs. We held interviews and discussions with
some to elicit and review our position statements as we progressed. With others, we collabo-
rated to consider how Six Sigma is applied to their domains, or how it could be applied.

Four SEI affiliates participated in scoping this project, setting the research direction and re-
fining survey questions and interview process: Lynn Penn, Lockheed Martin IS&S; Bob
Stoddard, Motorola; and Dave Hallowell and Gary Gack, Six Sigma Advantage. We appreci-
ate their contribution of time and multiple trips to Pittsburgh.

We engaged a small set of practitioners who are thinking about Six Sigma and architecture to
improve our potential direction in that domain. These included John Vu of Boeing, Lynn
Carter of Carnegie Mellon West, Dave Hallowell of Six Sigma Advantage, and Bob Stoddard
of Motorola.

Two members of the Information Technology Process Institute, Gene Kim and Kevin Behr,
reviewed our ideas for studying the IT operations and security domain.

The International Society of Six Sigma Professionals and isixsigma.com collaborated with us
to formulate and distribute the surveys, and their memberships are interested to hear the re-
sults of the project.

Additionally, we would like to acknowledge the time investment of the interviewees and sur-
vey respondents whose thoughtful responses provided a rich data set. We estimate their time
investment to exceed 150 hours.

5.5 Evaluation Criteria

This project was conceived as a feasibility study. SEI feasibility studies are undertaken to
examine the technical and transition issues associated with a promising technology or signifi-
cant engineering problem. These studies allow the SEI to consider a long-range direction for
new work and an assessment of what issues should be addressed if the new work is to be pur-
sued.

36 CMU/SEI-2004-TR-018

The criteria for evaluating feasibility studies are as follows:

• What is the problem in the practice of software or systems engineering or barrier that im-
pedes adoption of new practices?

• Is this unique or critical to software or systems engineering?

• What is the technical or business case for recommending further work by the SEI?

We posited that Six Sigma is a unique opportunity or enabler (rather than a barrier) that could
have the potential to improve transition generally for many software- and systems-related
technologies. If we were to express this as a barrier, then the barrier we saw was that too few
organizations were aware of—let alone taking advantage of—the possible enabler. Only a
few innovative top performers are using Six Sigma as an enabler and it is occasionally in use
serendipitously instead of strategically. The enabler is not unique to software and systems
engineering but is critical and significant to that domain and to related domains on which
software and systems engineering are dependent (administrative science and IT operations,
for example).

5.5.1 Evaluation of Project Data

The project data consisted primarily of language data: text from case study interviews, survey
responses, publications, and presentations. Surveys also yielded a limited amount of numeri-
cal and countable attribute data, most of which served to characterize the context of and
demographics associated with the responses.

The language data was processed qualitatively; each portion of text was evaluated against a
list of hypotheses created at the start of the project. This list was revised, as appropriate, us-
ing field and case study data.

Minimally, a hypothesis required one credible example of its application to be deemed “fea-
sible.” The example had to come from an organization that was at least progressing with one
or more variants of Six Sigma and one or more of the improvement models and practices un-
der study.

5.6 Results

Our findings in examining the efficacy of combining Six Sigma with other technologies to
get more effective transition are so clear that the technical and business case for further work
is simple. Given the field results when SEI technologies and other technologies are applied in
concert with Six Sigma, and the wide applicability to a range of SEI technologies that we are
uncovering, we see tremendous potential for Six Sigma to serve as a strategic amplifier for
SEI technology transition success. The same success should be available for other technolo-

CMU/SEI-2004-TR-018 37

gies and other organizations. If the success enjoyed by project participants using CMMI and
Six Sigma is emulated, the SEI and its community could have a repeatable transition accel-
erator for all of its technologies.

Although we faced an unfortunate challenge in gathering information and publishing our re-
sults, we see this as a testament to the value and power of Six Sigma: many companies regard
Six Sigma use as a competitive advantage and tightly control any information associated with
it. Several potential case or interview participants began discussions with us only to suspend
our discussions at the direction of their senior management or legal departments. Most of our
participants have placed stringent requirements on what we may publish or even share with
other SEI staff and collaborators about their use of Six Sigma. In several cases, these same
organizations share other data about themselves freely with us and with the community; their
treatment of Six Sigma is a departure. We theorize that this is an indirect confirmation of the
value of Six Sigma.

The following subsections describe the refined scope and scale of this project, a partial listing
of findings that have been abstracted from collected data, an overview of demographic and
contextual information, and recommendations for further work. Results are based on the pro-
ject data set, including information from 11 case study interviews, 8 partial case study inter-
views, and survey responses from more than 80 respondents, representing at least 62 organi-
zations and 42 companies (some respondents maintained an anonymous identity). Because of
the proprietary nature of our data and the non-disclosure agreements in place, the results in
this public report are intentionally at a high level. Numerous other findings will be docu-
mented separately. Additional publications, with additional detail, are planned, pending re-
view by project collaborators.

5.6.1 Refinement of Scope and Scale

Our initial project supposition was that Six Sigma might enable, accelerate, or integrate SEI
and other technologies. Through discussions and an initial project survey, we further theo-
rized that Six Sigma, used in combination with other software, systems, and IT improvement
practices, results in

• better selections of improvement practices and projects

• accelerated implementation of selected improvements

• more effective implementation

• more valid measurements of results and success from use of the technology

Based on a combination of SEI interest and community interest and technology readiness, as

38 CMU/SEI-2004-TR-018

evidenced through discussions and an initial project survey, we selected the following project
priorities:

• primary focus: CMMI adoption and IT operations and security best practices

• secondary focus: architecture best practices and design for Six Sigma

5.6.2 Primary Findings

Six Sigma is feasible as an enabler of the adoption of software, systems, and IT improvement
models and practices (also known as “improvement technologies”):

• Six Sigma is influential in the integration of multiple improvement approaches to create a
seamless, single solution.

• Six Sigma can accelerate the transition of CMMI (e.g., moving from CMMI Level 3 to
Level 5 in nine months, or from CMM Level 1 to Level 5 in three years, with the typical
time being 12-18 months per level rating). Underlying reasons are both strategic (change
in focus) and tactical (how the processes are implemented).

• Rollouts of process improvement by Six Sigma adopters are mission-focused as well as
flexible and adaptive to changing organizational and technical situations.

• When Six Sigma is used in an enabling, accelerating, or integrating capacity for im-
provement technologies, adopters report quantitative performance benefits, using meas-
ures that they know are meaningful for their organizations and their clients (e.g., returns
on investment of 3:1 and higher, reduced security risk, and better cost containment).

• Six Sigma is frequently used as a mechanism to help sustain (and sometimes improve)
performance in the midst of reorganizations and organizational acquisitions.

• Six Sigma adopters have a high comfort level with a variety of measurement and analysis
methods. They appear to be unfazed by “high maturity” or “high performance” behav-
iors, processes, and methods, even when they are at a “low maturity.”

• Some business sectors are realizing greater success than others regarding the use of Six
Sigma as a transition enabler.

Additional, CMMI-specific findings include the following:

• Six Sigma is effectively used at all maturity levels.

• Case study organizations do not explicitly use Six Sigma to drive decisions about CMMI
representation, domain, variant, and process-area implementation order; however, project
participants consistently agree that this is possible and practical.

• Project participants assert that the frameworks and toolkits of Six Sigma exemplify what
is needed for CMMI high maturity. They assert that pursuit of high maturity without Six
Sigma will result in much “reinvention of the wheel.”

CMU/SEI-2004-TR-018 39

Architecture-specific findings include the following:

• Many survey respondents are in organizations currently implementing both CMMI and
Six Sigma DMAIC3 and many are in organizations progressing or using Design for Six
Sigma (DFSS). Of the latter, the majority are at least progressing with CMMI (but some
are not using CMMI at all) and none are using the SEI Architecture Tradeoff Analysis
Method (ATAM). Note, however, that multiple organizations we studied are pursuing the
joint use of Six Sigma, CMMI, and ATAM, focusing on the strong connections among
DFSS, ATAM, and the engineering process areas of CMMI.

We found no supporting or refuting evidence for several hypotheses and we have several in-
ferences (conclusions derived inductively from evidence, but not supported directly by evi-
dence) that were not pursued because of time constraints. These will be described in future
documents.

5.6.3 Context of Findings

The following questions and answers provide context for our findings and should be helpful
for organizations considering the use of Six Sigma as a transition enabler.

What did the case study and survey organizations look like? (Or, more specifically, “Did they
look like my organization?”)

Generally speaking, the organizations that are achieving success in their use of Six Sigma as
a transition enabler ranged from low to high maturity, spanned nearly all commercial sectors,
ranged from medium to large in size, and included organic and contracted software engineer-
ing as well as IT development, deployment, and operations. (Note that “small” organizations’
use of Six Sigma remains on the project hypothesis list, having been neither refuted nor sup-
ported by project evidence.)

We did not set out with a research question about which domains were enjoying success—we
simply wanted to find evidence of successful use of Six Sigma to improve transition effec-
tiveness. That said, we have evidence from a wide range of organization types and domains,
with one exception: We do not have direct evidence from DoD organizations for use of Six
Sigma as a transition enabler, except from the field experience of the two researchers. (We do
have evidence from industry organizations that serve the DoD.) This does not mean DoD or-
ganizations are not employing Six Sigma and enjoying the same benefits, only that we do not
yet have evidence. In fact, this may point to an area of needed follow-on work.

3 DMAIC = Define-Measure-Analyze-Improve-Control, one of the improvement frameworks of Six

Sigma

40 CMU/SEI-2004-TR-018

What technologies did organizations deploy in conjunction with Six Sigma?

This project focused on organizations that were at least “progressing” both with one or more
variants of Six Sigma and with CMMI, Information Technology Infrastructure Library
(ITIL), and/or Control Objectives for Information and related Technology (COBIT). How-
ever, we gathered data on other technologies in use and they ran the gamut of Capability Ma-
turity Models other than CMMI, the People CMM, ISO standards, the SEI Team Software
Process (TSP), ATAM, Goal-Question-Indicator-Measurement (GQIM), and Electronic In-
dustries Association (EIA) standards. Demographic statistics will be presented separately.

Why and how did organizations use Six Sigma?

Frequently, Six Sigma was adopted at the enterprise level and the software, systems, or IT
organization was called upon to follow suit. In some cases, the adoption decision was made
based on past senior management experience (e.g., at the direction of a new senior manager
who was just hired from General Electric). In other cases, a “burning business platform”
(e.g., lost market share) drove the adoption decision. In all cases, senior management spon-
sorship was definitive.

Regardless of why Six Sigma was selected, successful organizations consistently deployed it
fully (i.e., the following were all present: senior management sponsorship, a cadre of trained
practitioners, project portfolio management, the philosophy, one or more frameworks, appro-
priate measures, and the analytical toolkit). Organizations tailored the focus of Six Sigma and
its improvement projects to target key performance measures and the bottom line. “Line of
sight” or alignment to business needs was consistently clear and quantitative. CMMI or ITIL
process areas were implemented based on business priorities and were integrated with the
organizational process standard (even at lower maturity). Organizations varied as to whether
CMMI or ITIL started first, Six Sigma started first, or they all started together; the variance
was sometimes strategic and sometimes an effect of enterprise and SEI timing. The other as-
pect of deployment that varied was whether Six Sigma practitioners and process improve-
ment group members were the same or different people and within the same or different or-
ganizational divisions. Organizations were successful either way.

Why does Six Sigma work as a transition enabler?

Based on our research and knowledge of both Six Sigma and technology transition, we find
that Six Sigma supports more effective transition because it requires alignment with business
drivers, garners effective sponsorship, supports excellent and rational decision making, aids
robust implementation or change management, and offers credible measures of results for
investment. The latter is particularly crucial for convincing majority adopters to transition,

CMU/SEI-2004-TR-018 41

and is often the sticking point in failed transitions (popularly labeled after Moore as failing to
“cross the chasm”4).

5.6.4 Path Forward

Below is a brief listing of several possible follow-on projects that have been identified as a
result of project findings and analysis. Pursuit of these areas will depend on available funding
and confirmation of value and interest. Additional details will be documented separately:

• the robustness of Six Sigma as a transition enabler, including examination of requisite
characteristics for organizational and technology fit, as well as appropriate measures of
transition progress (with specific attention to small, acquisition, and DoD organizations
and specific attention to both technology developers and technology adopters)

• the codification of DFSS and component-based development techniques to enable or-
ganizations to more effectively integrate and deploy multiple models and standards in a
way directly focused on mission success

• use of Technology Design for Six Sigma to contribute to the development of a holistic
architecture technology

• use of Technology Design for Six Sigma to harmonize IT models (or to provide “har-
monization guidance” to organizations)

• the application of Six Sigma’s analytical toolkit to advance the state of measurement and
analysis practice in software, systems, and IT—for instance, the integration of Critical
Success Factors, GQIM, and elements of Six Sigma for enterprise measurement and the
demonstration of methodologies for language and text data processing

• the ability of Six Sigma’s focus on “critical to quality” factors and on bottom-line per-
formance to provide resolution among peers with a similar rating and to provide visibility
into (or characterization of) the specific performance strengths of each. As an example,
with Six Sigma, an organization might be enabled to reliably make a statement such as,
“We can deliver this project in +/- 2% cost and we have capacity for five more projects in
this technology domain. If we switch technologies, our risk factor is “xyz” and we may
not be able to meet cost or may not be able to accommodate the same number of addi-
tional projects.”

5.7 Publications and Presentations

As of the publication date, the following publications and presentations have resulted from
this project. Conference presentations (e.g., Six Sigma for Software Development; CMMI
Users Group) and more detailed publications are planned for 2004 and 2005.

4 Geoffrey A, Moore. Crossing the Chasm. Harper Collins, 1991.

42 CMU/SEI-2004-TR-018

• Heinz, L. “Using Six Sigma in Software Development.” news@sei, 2004 No. 1
<http://www.sei.cmu.edu/news-at-sei/features/2004/1/feature-3.htm>.

CMU/SEI-2004-TR-018 43

6 A Method to Analyze the Reuse Potential
of Non-Code Software Assets
Dennis Smith, Liam O’Brien, Ed Morris, John Bergey, Grace Lewis

6.1 Purpose

The goal of reusing legacy assets has been an important one for both DoD and commercial
systems for the past 25 years. The Defense Science Board Task Force Report on Defense
Software cites an increasing focus on the integration of pre-existing parts or components as a
major driver of the professional services and software industries [DSB 2000]. Most current
work on reuse has focused on the reuse of code assets; current efforts in general have had
mixed results. While it is commonly accepted within software engineering that non-code as-
sets comprise the most valuable and resource-intensive software assets, most current work on
reuse has focused on code assets. As a result there is an important unfilled need to support
decision making on the critical non-code assets. This study has analyzed the issues of non-
code assets and has made extensions to the SEI Options Analysis for Reengineering (OAR)
method on a trial basis to determine its applicability to the problem. (See Appendix B for the
list of activities that compose SEI OAR.)

6.2 Background

6.2.1 Software Reuse Background

Software practitioners have long recognized that significant benefits may come from reuse;
however, the results in general have been mixed. On the positive side, there have been several
widely cited reuse success stories. Nippon Electric Company (NEC) achieved vastly im-
proved productivity (approximately 6.7 times improvement) and quality (2.8 times) through
reuse [Isado 92; Matsumoto 95]. On two projects, Hewlett-Packard (HP) reduced defects
76% and 24%, with productivity improvements of 40 to 50 percent. On the other hand, in a
study of 24 European companies attempting software reuse for the first time, Morisio, Ezran,
and Tully found that fully one-third failed in the attempt, even though the companies were
attempting to produce software with high commonality to previous work and employed rela-
tively sophisticated software processes in their other work [Morisio 2002]. The DoD and
other government agencies have supported a number of reuse efforts, including ASSET,
Mountainnet, CARDS, and Cosmic. While these efforts provided some value for

44 CMU/SEI-2004-TR-018

individual projects, they did not result in significant savings across a number of programs,
and they are no longer well supported.

The primary reasons for these mixed results include:

• Component reuse within reuse repositories tends to be at a low level of granularity; sub-
stantial savings from reuse requires substantial reuse of components at a high level of
granularity.

• The focus tends to be on the technical issues of describing and cataloguing a component;
there has been less effort aimed at providing motivation for reusing the components, and
at understanding the set of management and organizational issues that must be addressed.

• There has not been clear guidance on how to evaluate existing components for their reuse
potential.

• There has been insufficient attention to the requirements and architecture of the target
system. For example, a 2003 experiment conducted by the SEI with a major DoD effort
found that reuse estimates varied by as much as 30% depending on different assumptions
about the target architecture and its middleware.

• The initial focus has often revolved around one-time reuse; true savings occur with sys-
tematic reuse across multiple products.

6.3 Approach

6.3.1 Dimensions of Reuse

For this study we used a framework initially developed by Ruben Prieto-Diaz who distin-
guished factors that differentiate between reuse approaches [Prieto-Diaz 93]. We applied the
framework to more recent work and used it as a starting point for understanding the applica-
tion of non-code assets.

Prieto-Diaz identified the following aspects of reuse:

• substance—the category of the “thing” to be reused (e.g., ideas, concepts, artifacts, com-
ponents, procedures, skills, component models). The list of potentially reusable non-code
assets can include such artifacts as requirements; architecture and design documents;
plans for development, integration, test, management, and risk; manuals; tem-
plates/checklists for any asset; processes; use cases; schemas; data dictionaries; test
cases; and enterprise models.

Most assets that an organization creates more than once (particularly those that are cus-
tomarily created for projects) are potential candidates for reuse. In our study of the reuse
potential of non-code assets, we initially focused on assets that are closest to the code

CMU/SEI-2004-TR-018 45

level because they are more amenable to use by the OAR method. We also proposed
ways to expand this approach in the future.

• scope—the intent of reuse. Vertical reuse refers to reuse within a common domain, while
horizontal reuse refers to cross-domain reuse. Early reuse efforts tended toward horizon-
tal reuse of small-grained components across a wide range of domains. They provided
access to large numbers of general purpose source-code artifacts (e.g., searches, sorts, ab-
stract data types) that could be incorporated into an application. More recently, general
purpose (as well as domain- and application-type specific) component libraries have be-
come available for a variety of languages (e.g., Java, Visual C++, Ada).

An SEI experiment found widely varying reuse estimates depending on different assump-
tions made about the target architecture and its middleware, which suggests that in order
to maximize reuse, components must either be designed with the required architecture in
mind, or the architecture of the system must be influenced by the assumptions embedded
in the component.

• mode—how the reuse activity will be conducted. Reuse can be opportunistic (i.e., ad hoc
identification of components for a given project) or systematic (i.e., carefully planned,
with defined processes, guidelines, and metrics). Opportunistic reuse does not lend itself
to large returns on investment, because the costs are all borne by a single project. Recov-
ery of these additional costs is an unlikely proposition with ad hoc reuse. Nor is the or-
ganization likely to accrue other potential benefits of reuse (e.g., reduced cycle time, im-
proved quality) on the first attempt. As a result, most experts now believe that the real
benefits of reuse become apparent with systematic reuse across multiple products, such
as reuse within product lines.

Not surprisingly, much of the effort expended in making reuse work has been directed
toward solving the many technical issues involved in describing, cataloguing, and con-
necting components. Less effort has been directed at creating the organizational, manage-
rial, and motivational processes that are necessary for systematic reuse. While we should
be sensitive to attributing all reuse failure to reuse process failure, we do know that or-
ganizational structures and processes that encourage and support reuse are characteristic
of many organizations that succeed in implementing reuse programs. These organizations
embrace structures and processes that are sufficient to generate and maintain manage-
ment commitment, provide consistent execution of technical activities that encourage and
support reuse, provide training and incentives, and support the collection and analysis of
metrics that document reuse value.

• technique—the approach used to achieve reuse. Compositional approaches connect re-
used components into systems, and generational approaches employ system and compo-
nent models along with predefined points of variance to generate systems or parts of sys-
tems. However, more important than the choice of composition versus generation is the
degree to which the approach embodies a specific software architecture for resulting sys-
tems. Among the most successful reuse approaches are those that relate software archi-

46 CMU/SEI-2004-TR-018

tectures, components, and assembly/generation strategies in constructing software prod-
uct lines. In one study of an organization implementing a product line, verbatim code re-
use on new systems averaged almost 80% [CelsiusTech 96]. A second organization
achieved a startling 97% reuse rate—with further improvements expected [Salion 02].

• intention—whether the reuse component is to be treated as a black box and incorporated
as-is, or whether the component will be modified for better fit into the system. Both black
box and white box reuse can be successful. The choice of a black or white box approach
clearly depends on characteristics of the target system that necessitate the need for modi-
fications to the component, but also on whether the component can be efficiently changed
without affecting its basic nature. For example, it is normally unwise to change commer-
cial off-the-shelf (COTS) components, even when a vendor provides source code, be-
cause changes to a COTS component can defeat the very reasons for selecting a compo-
nent where someone else (i.e., the vendor) is responsible for component maintenance,
upgrade, and evolution.

With other types of reuse components where source code is available and modification
common, a key to successful reuse is a structured process that systematically analyzes the
component, the costs of modifying the component, and the long-term impact of the modi-
fications. OAR identifies one such process that addresses the inevitable limits to compre-
hension of the characteristics of unfamiliar large-grained code assets, and the equally
limited comprehension of the overall system when components are typically selected.

• product—the actual software products that will be reused. These include source code,
design, specifications, objects, text, architectures, and other types of artifacts.

• goal—the artifact that will be produced from the reused components or artifacts. For ex-
ample, one organization might reuse a general template for a software engineering plan in
generating a specific software engineering plan. Another may directly reuse a software
component.

• granularity—the size or range of the reuse product. For example, source code reuse may
involve anything from small artifacts such as individual subroutines to very large artifacts
such as complete subsystems and even systems (within a system of systems). Other reuse
products can have differing granularity as well. For example, a reused design may be for
something as simple as an algorithm to sort widgets, or as complicated as a design for a
complete command-and-control system.

6.3.2 Reuse of Non-Code Assets

There are several reasons why reusing non-code assets may offer significant benefit to or-
ganizations:

• Cost expenditure for software development (not including maintenance, which com-
monly dwarfs development costs) is normally allocated by the 40-20-40 rule: 40% of the
budget is spent prior to coding (e.g., on requirements analysis, architecture, and design),

CMU/SEI-2004-TR-018 47

20% is spent during coding, and 40% is spent after coding (e.g., on integration and test-
ing). By this rule of thumb, coding represents only a moderately sized fraction of total
development costs. The artifacts created during other phases of the development process
represent a greater share of the total cost of building a software system. Following this
line of reasoning, reuse of non-code assets offers at least as great a benefit as reuse of
code assets.

• Non-code assets carry much of the intellectual value of a program. For reuse to occur, the
intellectually valuable content should be incorporated in a reusable manner in the arti-
facts produced by architects and designers.

• Many non-code artifacts are potentially more readily reused than code-based artifacts.
This is because some non-code artifacts involve abstract representations of a code com-
ponent or of specific processes used to create the component. These abstract representa-
tions represent processes and software before incorporation of the situation-specific nu-
ances involved in development. Since these nuances are an impediment to reuse, an
abstract representation that excludes them should be easier to reuse.

There are also several reasons why reuse of non-code assets may be less beneficial than use
of code assets:

• Code assets are significantly more valuable than non-code assets, because the value asso-
ciated with code assets (from both a cost and intellectual standpoint) is a cumulative sum
of the values of its non-code predecessors. That is, a code asset incorporates the value of
good requirements work, good architecture, good design, and other tasks that led to the
code. Reusing a code component brings all of this cumulative value. This is effectively
like saying that if you reuse the code, you also reuse the architecture, design, and other
non-code assets, even if only indirectly.

• It is precisely the details that are incorporated only in the code that have the greatest
value for reuse. Yes, it is possible for an abstract representation to represent many sys-
tems, but that is a problem and not a benefit. Organizations typically want to reuse one
specific system or system component that allows them to circumvent significant devel-
opment work. The closer the details of that system or component are to those expected
for the new system, the greater the benefit of reuse. This explains why it is relatively easy
to reuse simple algorithms (searches, sorts, and such) but there does not seem to be sig-
nificant additional reuse benefit in doing so. So, while the devil may be in the details, so
is the profit.

6.3.3 Relevance of OAR Method

In recent years, large DoD acquisition programs, such as the Army’s Future Combat Systems
(FCS) and the Air Force C130 upgrade, have routinely mandated substantial reuse of legacy
assets. Both of these programs have a Lead System Integrator (LSI) with the responsibility to
integrate components provided by a large number of suppliers. Both have goals of extensive
reuse.

48 CMU/SEI-2004-TR-018

The assumption behind these goals is that if existing software has functionality similar to that
of the target system, substantial reuse can be obtained through minor adaptations to the exist-
ing code. However, many factors must be considered before decisions can be made about the
fit of legacy assets into new target systems, which requires an understanding of the con-
straints of the target architecture and an analysis of the interfaces and types of middleware
that are to be used. Despite these very real constraints and consequent risks, program manag-
ers have often made key decisions based on vague estimates given by potential suppliers.

For large-scale acquisitions, the risks of accepting supplier estimates for reuse are obvious.
However, until recently, the analysis of supplier estimates has been informal at best. Methods
for performing changes to components are available [Sneed 98; DeLucia 97]. Approaches to
identifying risks in reengineering projects have also been developed [Sneed 97].

The SEI Options Analysis for Reengineering (OAR) approach represents the first systematic
method to identify which components to mine and to determine the effort, cost, and risks of
the mining effort for code assets. In the study, we analyzed the OAR approach to determine
its applicability to non-code assets.

6.3.4 Synopsis of OAR

OAR is a systematic, architecture-centric method for identifying and mining reusable soft-
ware components within large and complex software systems. Mining involves rehabilitating
parts of an old system for use in a new system. Users of the OAR method can identify poten-
tial reusable components and analyze the changes that would be needed to rehabilitate them
for reuse within a software product line or new software architecture. They can also identify
mining options and the cost, effort, and risks associated with each option.

Successful mining requires an understanding of the types of components that are worth ex-
tracting and how to extract them. Once decisions are made on whether to extract, a set of
problems often must be addressed, including the fact that

• existing components are often poorly structured and poorly documented

• existing components differ in levels of granularity

• clear guidance is not yet available on how to perform the salvaging

The OAR method consists of five major activities with scalable tasks. These are outlined in
Figure 8.

Each of these activities has a set of tasks and subtasks that must be accomplished to meet the
goals of the activity. Many tasks have data templates that provide a starting point for data
items, as well as execution templates to guide the process. Each activity has a set of exit crite-

CMU/SEI-2004-TR-018 49

ria. In addition there is a feedback task at the end of each activity to analyze current progress
and to determine if the method should be tailored based on the current context. Appendix A
provides a brief summary of each of the activities.

Establish
Mining
Context

Establish
Mining
Context

Inventory
Components
Inventory

Components

Analyze
Candidate

Components

Analyze
Candidate

Components

Plan
Mining
Options

Plan
Mining
Options

Select
Mining
Option

Select
Mining
Option

Context-Driven Activities

Perform
Specialized

Task(s)

Perform
Specialized

Task(s)

Perform
Specialized

Task(s)

Perform
Specialized

Task(s)

Figure 8: Overview of OAR Activities

6.3.5 Applicability of OAR to Non-Code Assets

The focus of OAR is on mining software components and the related artifacts needed to gen-
erate and use these components. We initially focused on determining whether OAR could be
customized to make decisions on non-code assets. Our basic assumption was that OAR
would be most relevant for non-code assets that have a one-to-one correspondence to the
code. We identified a prospective set of non-code assets, and determined the amount of cus-
tomization to OAR that would be required to evaluate that type of asset. This initial analysis
is summarized in Table 3.

Table 3: OAR Customization Required for Different Types of Non-Code Assets

ASSET
(being mined)

One-to-One
Correspondence

Amount of Customization
Required to OAR Process

Software
Components

Reference
Point

NONE
(Baseline Capability)

YES MODERATE
Test Cases

NO MAJOR

YES MODERATE
Use Cases

NO MAJOR

YES MINOR to MODERATE Documentation
Artifacts NO MINOR to MAJOR

50 CMU/SEI-2004-TR-018

The reference point for Table 3 is the software component asset. Software components in-
clude all related artifacts needed to generate and execute the software component, such as
makefiles, scripts, and required data files.

From this analysis we initially selected the example of test cases and determined that the
types of modifications to OAR to accommodate mining test cases include:

• adding test cases to the elements being inventoried

• capturing test case characteristics

• reviewing test case documentation

• including test case characteristics in the screening process

• analyzing the changes (if any) required to rehabilitate the individual test cases

• estimating the corresponding cost, schedule, and risk of rehabilitating the individual test
cases and comparative costs

• capturing and maintaining all test case information

• including test cases in the mining options and selectively rolling up the cost, schedule,
risk, and comparative costs

We next made changes to the OAR process and templates to accommodate the test case ex-
ample. We also examined other types of non-code assets, such as use cases and documenta-
tion artifacts. We are currently completing the application of several asset classes and have
scheduled a pilot workshop with a DoD organization in October 2004.

6.4 Collaborators

The Carnegie Mellon/SEI team for this IR&D project consists of:

• Dennis Smith

• Liam O’Brien

• John Bergey

• Ed Morris

• Grace Lewis

This team has collaborated with a team from the Johns Hopkins University Applied Physics
Laboratory (JHU-APL). The JHU-APL team is focusing on the reuse of artifacts from re-
search prototypes and has provided insights on situations where these artifacts may be reus-
able. The JHU-APL team has also developed a model that focuses on how existing package
elements (including non-code assets, such as design artifacts, requirements, algorithms, and

CMU/SEI-2004-TR-018 51

documentation) may be assessed to support transition from their current environment to new
domains or applications. The revised OAR process represents a potential tool for making an
evaluation about the applicability of reuse.

The JHU-APL team consists of:

• Rose Daley

• Mark Moulding

6.5 Evaluation Criteria

Evaluation criteria include:

• a review of the relevant reuse literature

• development of modifications to OAR to accommodate non-code assets

• feedback from a workshop with a potential user of the method

• a report that summarizes the study and its implications

6.6 Results

A review of the relevant literature has been conducted. These results have been used to de-
termine modifications to the OAR method. The initial modifications have been made; addi-
tional modifications to accommodate other non-code assets will be completed before the con-
clusion of the study. These modifications have been done in conjunction with a pilot in the
SEI Acquisition Support Program, which has added a second phase for more detailed evalua-
tions and has broadened OAR to include COCOMO II (COnstructive COst MOdel) consid-
erations. A workshop is being negotiated for October with FCS participants.

52 CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 53

7 Emerging Technologies and
Technology Trends

Technology scouting has always been an implicit activity of the Software Engineering Insti-
tute and is embedded in the SEI’s mission of technology transition. Because of the institute’s
small size relative to other research institutions, the SEI applies the most leverage to its active
initiatives, but it also watches for other emerging technologies, in the U.S. and internation-
ally. The institute is currently organized into five programs with 10 initiatives.

The SEI has recently been asked to report on the state of the art of software technologies—
those that are pushing the frontiers of the SEI’s current programs and initiatives and also
those that transcend them. The SEI Independent Research and Development program, de-
scribed elsewhere in this document, is an example of explicit technology scouting at the SEI.
The activities of the SEI New Frontiers Group, including information collection and dissemi-
nation, are further examples.

The SEI has also recently established a new technology scouting vehicle called the Interna-
tional Process Research Consortium (IPRC). The purpose of the IPRC is to develop a com-
munity of practice that regularly collaborates to examine and codify future process research
opportunities and directions. IPRC members come from all over the world, bringing expertise
in process research and a vision for the trends, challenges, and needs for software-intensive
organizations over the next 5-10 years. Many IPRC members have ties to their regional gov-
ernments and industries, which provides an excellent opportunity to transition the learning
and recommendations that will come from the IPRC. Membership in the IPRC is limited to
40 individuals from academia, industry, and government. Deliverables over the next two
years will include proceedings from collaboration activities (e.g., workshops) and a Process
Research Roadmap detailing recommendations for process research covering the next 5-10
years. There will be six two- to three-day workshops between 2004 and 2006.

Another component of technology scouting involves watching technology trends, which re-
quires the collection and analysis of information, and the dissemination of the information
that the SEI considers relevant. All members of the SEI technical staff are indirectly, and of-
ten directly, involved in technology scouting when they engage in the activities of scientific
inquiry, including:

• researching the literature relevant to their own work

54 CMU/SEI-2004-TR-018

• conducting searches on the Internet in relevant subject areas

• navigating the SEI’s and other institutions’ Web sites to learn about activities in areas
other than their own. In the case of the SEI, this includes the Software Engineering In-
formation Repository (available at seir.sei.cmu.edu).

• giving invited talks

• assembling a special issue for a prominent software journal

• attending conferences. Ideally, every person attending a conference writes a field report
describing the new technologies, if any, that are the subject of presentations at the confer-
ence.

• participating on university advisory committees

• collaborating with customers

• participating in studios5 for programs such as the Master of Software Engineering (MSE)
at Carnegie Mellon University’s School of Computer Science, or similar programs at
other universities

In this report, we have provided descriptions of new or emerging technologies6. These de-
scriptions include the technologies’ purpose and origin. Where possible, we have indicated
the technologies’ level of maturity and have provided information about related trends. A bib-
liography for the technology descriptions is provided at the end of this report.

The following technologies are described:

• Open Grid Services Architecture

• Integrated Security Services for Dynamic Coalition Management

• Model-Driven Architecture

• Service-Oriented Architecture

• Web Services

• Automated Lexical and Syntactical Analysis in Requirements Engineering

• Q Methodology

• Emergent Algorithms for Interoperability

5 A “studio” is a laboratory where students apply knowledge gained from core and elective courses

in realistic, yet mentored, environments. In the case of the MSE program at Carnegie Mellon,
former and/or practicing professionals are selected to mentor each studio project. Mentors bring
their significant industrial experience to bear in guiding students in their application of methods,
techniques, and technologies learned in the classroom to real-world problems encountered in stu-
dio.

6 More detailed white papers, written by SEI technical staff members, are available for some of
these technologies. For more information, contact SEI Customer Relations at 412-268-5800.

CMU/SEI-2004-TR-018 55

• Aspect-Oriented Software Development

• Generative Programming

• Software Assurance

• Recent Advances in Intrusion Detection Systems

• Advances in Software Engineering Processes

• Applying Statistics in Software Engineering

7.1 Open Grid Services Architecture

The open grid services architecture (OGSA) is a non-proprietary effort by Argonne National
Laboratory, IBM, the University of Chicago, and other institutions, which combines grid
computing with Web services. The goal of this architecture is to enable the integration of
geographically and organizationally distributed components to form virtual computing sys-
tems that are sufficiently integrated to deliver a desired quality of service (QoS).

OGSA defines the mechanisms for creating, managing, and exchanging information among
entities, called grid services. The open grid services infrastructure (OGSI) defines the stan-
dard interfaces and behaviors of a grid service [GGF 03]. The Globus Toolkit is an open
source implementation of version 1 of the OGSI specification. Release 3.2 is available for
download from the Globus Alliance Web site [Globus 04, Sandholm 03].

As stated previously, OGSA represents everything as a grid service. Grid services are stateful
transient Web service instances that are discovered and created dynamically to form larger
systems [Foster 02a]. Transience has significant implications for how services are managed,
named, discovered, and used—and that is what makes a grid service different from a Web
service. A grid service conforms to a set of conventions, expressed as Web service definition
language (WSDL) interfaces, extensions, and behaviors, for such purposes as

• discovery; mechanisms for discovering available services and for determining the charac-
teristics of those services so that they can be invoked appropriately

• dynamic service creation; mechanisms for dynamically creating and managing new ser-
vice instances

• lifetime management; mechanisms for reclaiming services and state in the case of failed
operations

• notification; mechanisms for asynchronously notifying changes in state

As OGSA evolves it will include interfaces for authorization, policy management, concur-
rency control, and monitoring and management of potentially large sets of grid service in-
stances.

56 CMU/SEI-2004-TR-018

This emerging technology is currently being used mainly in e-science and e-business applica-
tions. However, there is great potential for its use in mission-critical systems, such as ena-
bling collaborative targeting among multiple users and multiple sites. There is increasing
support and research based on OGSA.

Given its growing industry support and the validity of its conceptual foundation, we believe
there is a large possibility that OGSA is a technology that will emerge as a standard for grid
computing.

7.2 Integrated Security Services for Dynamic Coali-
tion Management

Integrated security services for dynamic coalition management is a DARPA-sponsored pro-
ject managed by the U.S. Air Force Research Laboratory. It started in March 2000 with a du-
ration of 36 months. The work was done out of the University of Maryland under Professor
Virgil Gligor.

Coalitions are collaborative networks of autonomous domains where resource sharing is
achieved by the distribution of access permissions to coalition members based on negotiated
resource-sharing agreements—common access states. In a dynamic coalition, members may
leave or new domains may join during the life of the coalition. To support security in dy-
namic coalitions, this project had two goals: (1) to enable the creation and management of
coalitions with diverse and rapidly changing membership, dynamically, and (2) to provide
solutions to fundamental problems of integrating diverse access control policies, public key
infrastructure (PKI), and group communication technologies for dynamic coalition [Khurana
03].

The group at the University of Maryland developed a prototype of tools for coalition infra-
structure services. The prototype includes joint policy administration services, certificate ser-
vices, and group communication services. The tools support the joining, voluntary departure,
and involuntary departure of coalition members. Accomplishments that are important to fu-
ture systems include

• a definition of a common language to express access control policies using a role-based
access control (RBAC) policy model

• automatic computation of access control states using constraint language and computa-
tion

• dynamic adaptation of policies based on joining and exit of participants

The results of this work are very important for network-centric warfare, the vision for which
calls for dynamic coalitions sharing classified and unclassified information.

CMU/SEI-2004-TR-018 57

7.3 Model-Driven Architecture

Model-driven architecture (MDA)7 is a conceptual framework for software development cur-
rently under development by the Object Management Group (OMG) [OMG 03]. The goal of
MDA is to support software developers in separating business and application logic from the
underlying execution platform technology. Promised benefits of using MDA for the software
development process include reuse of higher-level artifacts (domain models), better imple-
mentation quality, improved portability of applications, and improved interoperability of ap-
plications and tools. MDA and related tools are not yet mature enough to predict the degree
to which this promise will be realized.

The OMG has so far developed the fundamental concepts of model-driven architecture and,
at the time of writing, working groups are defining new standards needed to realize the MDA
concepts in practice. MDA is compatible with established OMG standards such as Common
Object Request Broker Architecture (CORBA), Unified Modeling Language (UML), Meta
Object Facility (MOF), Common Warehouse Metamodel (CWM) and the XML Metadata
Interchange (XMI) as well as other industry standards (e.g., Web services and component
frameworks such as Sun’s J2EE and Microsoft’s .NET). However, the overall MDA approach
is vendor and technology neutral.

In the MDA approach, developers create platform-independent formal models—for example,
in UML—of software applications, and generate platform-specific details through transfor-
mations of these models all the way down to the implementation source code. Model trans-
formations rely heavily on the availability of sophisticated MDA tools, which are currently
still at an early stage of development. Future tools are expected to implement a common
model repository interface based on the OMG’s MOF to support model exchange between
tools through XMI, and to implement the upcoming QVT standard that will provide a tool-
independent description of model transformations and code generation.

7.4 Service-Oriented Architecture

The simplest way to define a service-oriented architecture (SOA) is: an architecture built
around a collection of services with well-defined interfaces—similar to the distributed com-
ponent object model (DCOM) or object request brokers (ORBs) based on the CORBA speci-
fication. A system or application is designed and implemented as a set of interactions among
these services.

7 The term “architecture” in MDA does not refer to “software architecture.” MDA is about model-

driven development.

58 CMU/SEI-2004-TR-018

A service is a coarse-grained, discoverable, and self-contained software entity that interacts
with applications and other services through a loosely coupled, often asynchronous, message-
based communication model [Brown 02]. Common communication models are:

• Web services using simple object access protocol (SOAP) and Web services description
language (WSDL)

• message-oriented middleware (MOM), such as IBM Websphere MQ

• publish–subscribe systems, such as Java Messaging Service (JMS)

What makes SOA different from DCOM or CORBA are the words “discoverable” and
“coarse-grained” present in the previous definition of a service. Services must be able to be
discovered at both design time and run time, not only by unique identity but also by interface
identity and by service kind. Services are also ideally coarse-grained, that is, they usually
implement more functionality and operate on larger data sets, as compared to components in
component-based design. A typical example of a service is a credit card validation service.

Examples of service-oriented architectures are Web services using SOAP and universal de-
scription, discovery and integration (UDDI), Hewlett Packard’s E-Speak, and Sun’s Jini and
ONE technologies.

Wrapping components and legacy systems as services is an approach to constructive interop-
erability.

Further descriptions of some elements of SOA follow.

7.5 Web Services

In its simplest definition, Web services are an instantiation of an SOA where service inter-
faces are described using WSDL, payload is transmitted using SOAP over HTTP, and UDDI
is used as the directory service. Other combinations of technologies are possible, but this is
the most common instantiation, which is why the terms SOA and Web services are often used
interchangeably.

The growing success of Web services is due to a number of factors. Among them are:

• software components interact with one another dynamically via standard Internet tech-
nologies

• software components are built once and reused many times

• software components can be written in any programming language

CMU/SEI-2004-TR-018 59

• consumers do not need to worry about firewalls because communication is carried over
HTTP

• systems can advertise their business processes so they can be consumed by other systems

• standards such as business process execution language for Web services (BPEL4WS),
WS-security, WS-routing, WS-transaction, WS-coordination, and Web services conversa-
tion language (WSCL) are working toward the automatic discovery and composition of
Web services

Because of the above, Web services are a widely used and proven approach to constructive
interoperability.

Web Services Description Language (WSDL)

WSDL is used to describe what a Web service can do, where it resides, and how to invoke it.
It is XML-based and supports simple and more complex transactions defined by message
exchange patterns [W3C 04].

Universal Description, Discovery and Integration Service (UDDI)

UDDI is an XML-based distributed directory that enables businesses to list themselves, as
well as dynamically discover each other [OASIS 02]. Businesses register and categorize the
Web services they offer and locate the Web services they want to use. UDDI itself is a Web
service. The directory contains three types of information, similar to a phone book:

• white pages, which contain basic information such as name, address, business descrip-
tion, and type of business

• yellow pages, which follow a categorization based on U.S. government and United Na-
tions standard industry codes

• green pages, which contain technical information about the services that are exposed by
the business that will help a client connect to the service

Simple Object Access Protocol (SOAP)

SOAP Version 1.2 is a lightweight protocol intended for exchanging structured information in
a decentralized, distributed environment. SOAP uses XML technologies to define an extensi-
ble messaging framework containing a message construct that can be exchanged over a vari-
ety of underlying protocols, such as HTTP or email [W3C 03-1]. The most prominent use of
SOAP over HTTP is to implement the message exchange mechanism for Web services.

SOAP is a stateless, one-way message exchange paradigm, but applications can create more
complex interaction patterns (e.g., request/response, request/multiple responses) by combin-

60 CMU/SEI-2004-TR-018

ing such one-way exchanges. SOAP is silent on the semantics of any application-specific data
it conveys, but it provides the framework by which application-specific information may be
conveyed in an extensible manner. Also, SOAP provides a full description of the required
actions taken by a SOAP node on receiving a SOAP message [W3C 03-0].

7.6 Automated Lexical and Syntactical Analysis in
Requirements Engineering (QuARS)

An SEI affliate, Giuseppe Lami, has developed an automated tool that uses lexical and syn-
tactical methods to analyze requirements and specifications. The output from the tool identi-
fies sentences that are defective or weak. The tool also has the capability to cluster require-
ments by identifying selected word usage with a small lexicon. The tool also reports the
distribution (physical location) of requirements throughout the document based on this lexi-
con.

Research into this tool is testing the following hypotheses:

• Faster cycle time for inspecting and accepting requirements
Cycle time for requirements may be judged from many viewpoints: from the beginning
of a project charter, from the start of customer interviews, or from the start of system
specifications. This work analyzes the process from the first formal review of require-
ments until the requirements have passed the final validation step.

• Fewer escaped defects
Several industry studies document the cost-ratio of fixing requirements versus fixing
fielded defects. Values for these ratios have been reported as low as 1:200 and range as
high as 1:1,000 or more. Organizations that analyze the root cause of defects can deter-
mine which defects were generated during requirements and specification.

• Reduced effort or cost for inspection
There is some evidence that a group of inspectors has a limited find rate regardless of the
defect density of the work product. Higher defect density then results in more hours of
inspection. The test hypothesis is that the total time required for inspection is less be-
cause of the lower defect density after using QuARS.

Potential research questions include whether the capability to cluster requirements based on a
small lexicon suggests investigating whether conflicting requirements can be more easily
identified using this capability. Also, the capability to cluster requirements based on a small
lexicon suggests the possibility of assisting domain experts with the identification of missing
requirements.

CMU/SEI-2004-TR-018 61

7.7 Q Methodology

Q methodology was invented in 1935 by British physicist–psychologist William Stephenson
and is most often associated with quantitative analysis because of its reliance on factor analy-
sis [Stephenson 53]. Statistical procedures aside, Stephenson was interested in providing a
way to reveal the subjectivity involved in any situation; for example in perceptions of risk,
appraisal of costs, perspectives on user requirements, and opinions on training. Q methodol-
ogy attempts to capture and ultimately measure life as lived from the standpoint of the person
living it. It is a method that allows researchers to examine the subjective perceptions of indi-
viduals on any number of topics. It also helps to identify commonalities and differences in
subjective perceptions across a sample group. In short, Q methodology is a research tech-
nique that allows the researcher (1) to identify, understand, and categorize individual percep-
tions and opinions, and (2) to cluster the perceptions in like groups.

The real utility of Q methodology lies in uncovering these opinion/perception clusters. Once
identified, they can be targeted for follow-up activities, such as further research or program-
matic activities. It is a combination of qualitative and quantitative research techniques that
allows researchers to identify individuals who share common opinions. Q is often used for
the following:

• identifying important internal and external constituencies

• defining participant viewpoints and perceptions

• providing sharper insight into preferred management directions

• identifying criteria that are important to clusters of individuals

• examining areas of friction, consensus, and conflict

• isolating gaps in shared understanding [Steelman 03]

The qualitative aspect of Q methodology is grounded in its ability to emphasize how and why
people think the way they do. The primary goal is to uncover different patterns of thought—
not to count how many people think the way they do [Valenta 97]. The quantitative aspect
involves using factor analytic techniques (specifically, principal components analysis [PCA])
as a means for grouping like-minded individuals (down to discerning statistically significant
variance of opinion from a single individual).

In short, Q methodology provides analysts with “a systematic and rigorously quantitative
means for examining human subjectivity” [McKeown 88]. Q methodology constructs typolo-
gies of different perspectives based on subjective viewpoints.

Little known in software engineering circles, Q methodology may be useful to system devel-
opment in many ways:

62 CMU/SEI-2004-TR-018

• understanding and mitigating pockets of resistance in system adoption

• targeting and tailoring system features, training needs, or security requirements

• isolating data standards requirements for system integration

• tailoring system performance measures and metrics

• understanding system risk elements

• tailoring checklists and criteria for understanding cost, schedule, and sizing estimates

• prioritizing requirements, risks, objectives, or other such factors in a group setting

• measuring group consensus

• revealing silent or minority voices in group settings

• measuring knowledge transfer between stakeholders

7.8 Emergent Algorithms for Interoperability

As systems become larger, with increasing numbers of autonomous components and greater
geographic distribution, problems inherent in large-scale physical systems of all kinds be-
come more prominent. Systems that were built and intended for specific limited purposes are
combined to form systems-of-systems that apply their component systems to uses that were
neither intended nor anticipated.

Problems that arise in the management, construction, and use of large-scale systems, distrib-
uted systems, and systems-of-systems are normally referred to as interoperability problems.
Traditional technical approaches to solving interoperability problems focused on strengthen-
ing centralized control, increasing the visibility and transparency of components, imposing
additional standards, and improving coordination among the organizations involved, so that
traditional closed systems solutions become more effective. Obvious as this approach is, it is
a losing battle. The continuing advance of memory, processor, and communications tech-
nologies ensures ever-increasing demands for systems and systems-of-systems that are more
complex, more geographically distributed, with more poorly understood and unknown com-
ponents, involving more and more organizations, and cooperating for purposes never antici-
pated by the component developers. Instead, effective solutions must be developed that rec-
ognize, act upon, and exploit the inherent characteristics of systems-of-systems.

Fortunately, problems of interoperability are not new. They are inherent in all physical sys-
tems whether biological, social, or economic. They are new only to software engineering and
computer science. Effective solutions exist in biological, social, and economic systems, but
those solutions frequently violate the traditions and methods commonly used in computer
science and mathematics. Software engineering has been more open-minded in this regard
with approaches such as Capability Maturity Modeling, which, in effect, reinterprets certain
software engineering problems as management problems where there are known effective

CMU/SEI-2004-TR-018 63

approaches. Management methods of necessity focus on processes of human interaction
drawn and refined from many centuries of history and the experience of complex social inter-
actions.

Emergent algorithms exploit a similar approach but on a broader and more technical basis. In
particular, research in emergent algorithms identifies, develops, and refines technical methods
applicable to software engineering. These methods and techniques are derived by analogy
from approaches that have been effective in social, biological, and economic systems. The
methods of emergent algorithms include cooperation without coordination, dynamic adapta-
tion, continuous trust validation, dynamic capability assessment, opportunistic actions, an-
ticipatory neighbor assistance, encouragement and influence, perturbation, and survivable
architectures. At the same time, emergent approaches demonstrate an aversion to tight cou-
pling of systems, to dependency on centralized control and data, and to hierarchical struc-
tures.

At their most fundamental level, emergent algorithms exploit cascade effects in loosely-
coupled contexts of dynamically changing, partially trusted neighbors to achieve a purpose
shared by a subset of the participants. Desired global system properties, often in the form of
continuity of services, emerge through the cumulative effects of the actions and interactions
of all participants. Although emergent algorithms can be viewed as consensus algorithms that
operate in the absence of needed information and effective control, this characterization is
somewhat misleading because, as in politics, the consensus need be only of a minority.

Only a limited repertoire of emergent methods has been identified and they are not fully un-
derstood. The positive and ill effects of cascades are incompletely known. Phase shifts are a
class of emergent effects that can occur in any physical system. They have seldom been stud-
ied, but offer the potential for both dramatic benefits and catastrophic failures. Initial research
in emergent algorithms at the SEI has been primarily in support of survivable systems, infra-
structure assurance, and Internet security.

There has been related research at other institutions for different purposes. Work in genetic
algorithms aims at discovery of non-obvious solutions through dynamic mutation of algo-
rithms. Decentralized thinking focuses on the mindset required to exploit the characteristics
of real world systems by observing and experimenting with loosely coupled algorithms. Re-
search in swarm intelligence has focused among other things on the development of specific
algorithms that use emergent methods to find better but nontraditional solutions to well
known problems.

To the best of our knowledge no other research has pursued emergent phenomena as a means
to develop methods generally applicable to interoperability problems. There has, however,
been a recent recognition of emergent characteristics in many quarters. Popular books such as

64 CMU/SEI-2004-TR-018

The Tipping Point and Normal Accidents discuss emergent phenomena in everyday life. The
emergent effects of epidemics, not just of diseases but of rumors and fads, are well known.

The principles of network-centric warfare (NCW) are very similar to those of emergent algo-
rithms but are specialized to a particular class of military operations. NCW also demonstrates
a willingness to embrace new radical methods with demonstrable benefits when the inherent
limitations of traditional approaches become apparent.

7.9 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) is a promising emerging technology. AOSD
addresses problems experienced with object-oriented development, but has much greater ap-
plicability across software development in general. This is not a mature technology but its
large-scale adoption by IBM promises to greatly accelerate its maturation.

The ability to build large, complex systems rests on the ability to separate concerns (because
the parts are less complex than the whole), and to encapsulate information about a concept so
that unnecessary dependencies are avoided [Parnas 72]. AOSD provides support for separat-
ing development concerns using different sets of partitioning criteria at the same time, and in
most of its forms, provides support for encapsulating information about that concern. Aspect-
oriented design provides the software engineer with options for finer-grained design elements
that can be implemented using aspect-oriented programming (AOP).

Prevailing design techniques, particularly object-oriented techniques, end up decomposing
the software based on a specific point of view. AOSD provides a means for additional de-
compositions from other points of view that cut across the original, primary decomposition.
Informally, those additional decompositions are aspects. Some implementations of AOSD
provide automated support for combining the additional decompositions with the primary
decomposition to produce a single program.

AOSD is a direct result of the practical experiences gained from object-oriented develop-
ments and the problems experienced there. There are certain behaviors that cannot be encap-
sulated conveniently within a single class, so the definition of these behaviors must be manu-
ally coordinated between classes and between the developers of those classes. AOSD
provides an extension to object-oriented design that gives an additional means of defining a
type of structure beyond the association and inheritance relationships between classes. This
additional dimension addresses cross-cutting behaviors.

Aspect-oriented design supports a number of design techniques. For example, it allows ob-
ject-oriented designers to achieve code normalization in a manner similar to database nor-
malization. Tim Ottinger has defined a set of normal forms for objects. This capability sup-

CMU/SEI-2004-TR-018 65

ports the independence of individual concerns and isolates each from changes in other con-
cerns that are composed in the same product [Ottinger 04].

AOP provides implementation capability for designs developed using aspect-oriented design.
AOP is supported mainly by extensions to existing object-oriented programming languages.
These extensions have been enabled by static code analysis techniques and dynamic reflec-
tion.

AOSD yields two primary benefits: an increase in flexibility and a reduction of complexity.
Software designed and implemented with aspects is more flexible because certain elements of
the design are bound later in the development process. AOSD achieves a reduction in com-
plexity because design concerns can be separated, maintained, and then integrated with a
minimum of interactions. Other benefits include finer-grained encapsulation, for greater con-
trol and consistency in the code, and enhanced reusability, through the reuse of aspects.

AOSD has implications for large, complex products such as Web servers, and even smaller,
simpler products that are being built en masse, such as printer drivers. Therefore, it is of in-
terest to both the software architecture and product line communities.

In organizations adopting the product line approach AOSD allows for capturing, managing,
and implementing product variations. The choice of a value at a variation point often affects
the implementation of several components in the product. An aspect provides a vehicle for
conceptually encapsulating the value while physically distributing that information across a
number of implementations.

AOSD has implications for the production planning activity in a product line. The product
production strategy defines concerns, related to the product line goals, which conceptually
cut across the definitions of the core assets. The concerns cut across the definitions because
the primary decomposition of the core assets relates to how the core assets are built but not
how products are built. Each product production concern can be mapped on to multiple pro-
duction aspects. Each aspect defines exactly how specific core assets must be defined to sup-
port the product production goals.

AOSD has an impact on software architecture by providing an additional approach to decom-
position and a different-sized building block for system definition. Aspects can be identified
during attribute-driven design of the architecture and then mapped forward to be imple-
mented as code-based aspects using AOP [Bass 04].

Finally, AOSD is of interest to the DoD community as an effective technique for implement-
ing large, complex systems. Decomposing a complex problem into a primary decomposition
and a set of aspects reduces the complexity of any one piece, allows for more concurrent de-

66 CMU/SEI-2004-TR-018

velopment, and supports mass customization of products. AOSD provides enormous flexibil-
ity to make changes. This facilitates prototyping and requirements investigations.

AOSD can have a great impact for DoD because it can be used in the development and main-
tenance of large, complex systems. However, AOSD requires a higher level of skill at design
and closer coordination of producers and consumers of pieces (in this case the aspects). Cur-
rent DoD development practices make this difficult to do.

Aspects provide an opportunity for implementing architectural design patterns rather directly
since they cut across multiple modules in a program. DoD-specific design patterns for con-
cerns such as security and error handling can be defined, reference implementations devel-
oped, and canonical solutions achieved.

Product production is the main DoD goal. The ability to develop production plans more
quickly, efficiently, and accurately should be a major benefit. This could particularly be im-
portant on projects in which multiple vendors are cooperating to produce the products.

AOSD is a promising new technology and bears continued monitoring. The AOSD commu-
nity has much in common with the early object-oriented community: a new technology born
of a programming language breakthrough; a small but fervent community focused on the
programming implications of that technology; and a splinter group within that community
investigating the wider implications of the technology [Northrop 97].

The commitment of industry including HP, IBM, and BEA may well hasten the maturation of
AOSD. Their use of the technology will more quickly uncover the gaps of knowledge that
only appear when solving industrial-strength problems. The focus on e-commerce and Web
servers will also hasten the discovery of relevant design patterns.

Because of the strong connections between aspect-oriented software development with soft-
ware architecture and software product lines, the SEI has been carefully monitoring devel-
opments in this field as it has evolved over the past few years. The Product Lines System
Program is already involved with the AOSD community. It needs to elicit their support to
make needed software tools a reality. Further investigation of the connections between AOSD
and software architecture and software product lines is required.

7.10 Generative Programming

Recent innovations in software modeling in languages for specific software domains, and in
the composition of systems from components are bringing generative programming from the
research lab forward to meet the practical needs of software development in a range of appli-

CMU/SEI-2004-TR-018 67

cation areas. While not yet state of the practice, generative programming in its various mani-
festations deserves further investigation and technology tracking. It may lead to ways for
programmers to automate the development process.

Generative programming (GP) captures the concepts of automated development based on
“modeling software system families such that, given a particular requirements specification, a
highly customized and optimized intermediate or end-product can be automatically manufac-
tured on demand from elementary, reusable implementation components by means of con-
figuration knowledge” [Czarnecki 00]. More simply stated, “generation is about writing pro-
grams that write programs” [Harrington 03]. The technologies of GP include templates that
are expanded like macros, the reflective facility in certain languages, domain specific lan-
guages, and model-driven approaches.

Generative programming is of interest to the software architecture and product line communi-
ties. The elementary reusable components used as the basis for generating products are de-
signed and implemented in the context of a specific architecture. Attribute-driven design can
have significant impact on the shape of the reusable components and likewise the nature of
generative programming can have an impact on the attributes that shape the architecture. In a
recent survey, 10 of 22 respondents stated that they used some form of automatic product
generation technique for product production in a product line [Chastek 04].

Generative programming can provide meaningful benefits to the DoD community. DoD sys-
tems often require a significant level of customization for specific configurations of hardware
or, in current plans for command and control, Web- or other service-oriented architectures.
GP provides a paradigm for system development acquisition of individual products, which
actually means acquisition of the capability of generating either customized components or
customized integrations of those components into systems. The DoD can rely on in-house
domain expertise or expertise in the field for collecting requirements that generators use to
produce products within the scope of a product line.

7.11 Software Assurance

The overall goal of software assurance efforts is to build confidence that software does what
it is supposed to do and does not do what it is not supposed to do. Discussions of software
assurance can be organized into four general focus areas:

1. People, including developer and team composition

2. Process, including high-level criteria (like those in Capability Maturity Models [CMMs]
and ISO-9000), design, and code review and inspection

3. Technology, including language evolution, automated verification, dynamic assurances,
and testing

68 CMU/SEI-2004-TR-018

4. Acquisition/business/return-on-investment, including efforts to add automated prod-
uct verification to common criteria as well as vendor and product evaluation techniques
and software-assurance-oriented enhancements to the purchasing process. There is also
strong support for defining a minimum set of verifiable product characteristics with an
eye toward creating an infrastructure like the “UL for software.”

Past progress in each of these areas has had some impact on the goal of the SEI’s software
assurance efforts. However, a focus on the key leverage points—efforts that can be shown to
be effective, adoptable, and sustainable in real-world projects—is likely to produce the most
rapid results. The most promising projects to satisfy these criteria are efforts that overcome
the shortcomings of past efforts that have shown partial success.

Focus of “people” efforts: improving relevant software-assurance information sources

There is a huge gap between the state of the art and the state of the practice, especially when
it comes to developers knowing how to avoid common security pitfalls. Effort is needed to
improve developer access to effective, adoptable, and sustainable information for use on real-
world projects. Ongoing research is needed to assure that the information is highly usable and
remains tied to the most troublesome vulnerabilities. The Department of Homeland Security
(DHS), through the U.S. Computer Emergency Readiness Team (US-CERT), is funding such
an effort. The work for this effort is being carried out by the SEI and Cigital, Inc.

Focus of “process” efforts: a psychologically sound, feedback-driven process

One such project is the SEI Team Software Process (TSP). TSP builds upon much of the
“what” defined by the various Capability Maturity Models and other process-evaluation crite-
ria and provides a specific “how” that has been shown to be highly effective. A key element
of TSP is its feedback loops, which mimic the continuous improvement foundation that has
been shown to be effective in other industries, such as the auto industry. TSP’s effectiveness
has been demonstrated by more than 10 years’ worth of data across thousands of projects. An
analysis of recent results from 20 real-world projects showed that TSP teams met their project
schedules while producing products that had 10-100-times fewer defects than typical pro-
jects. TSP was developed with acute attention to the psychology of individual programmers,
the behavior of working units, and the realities of the business world, thus making it adopt-
able and highly sustainable. Its ability to co-exist with popular process definitions like Ex-
treme Programming (XP) further enhances its adoptability.

Further work is needed to build upon the success of TSP to provide a culture of widespread
support in the form of process tools integrated into programmers’ daily development envi-
ronment. Research is needed to identify how best to integrate with the configuration man-
agement, task/defect tracking, and integrated development environment (IDE) tools that are
used today. Additional research is needed to identify how best to incorporate the benefits of

CMU/SEI-2004-TR-018 69

automated verification tools in a TSP-like process. Research is needed to explore the benefit
of slackening some of the more demanding aspects of TSP in exchange for a shorter ramp-up,
better leveraging today’s tools and much more wide-spread adoption. A 10-times improve-
ment would still be significant and might provide a stepping stone for the 100-times im-
provement that full TSP can provide. In addition, more effort is needed to increase awareness
of the effectiveness of TSP-like process definitions.

Focus of “technology” efforts: a new generation of automated verification tools

Code scanners have been around for almost as long as software. Formal methods came later,
but in their original forms, both suffered from adoptability problems. The high false-positive
rates of early code scanners frustrated programmers, and such tools soon become shelfware.
Many research tools in the area of formal methods did not scale to real-world-sized projects
and could not be applied to legacy code, which is involved in almost all projects today.

Recently, however, significant strides have been made in the area of automated verification.
Work at research universities, including Carnegie Mellon, Stanford, the University of Vir-
ginia, the University of Washington, and others, as well as at commercial labs such as Micro-
soft’s, have focused on the issues of scalability, adoptability, and applicability to legacy code.
Such tools are now effective at making assurances with respect to some attributes in million-
lines-of-code systems. Adoptability has been greatly enhanced, as a result of integration with
common integrated development environments (IDEs), taking advantage of the existing user
interface paradigms that are already familiar to the programmer, and a reduction in false-
positive rates. One such tool, the Fluid project at Carnegie Mellon, allows the developer to
incrementally evolve the tool’s understanding of the original design intent, all the while as-
suring the areas where the code complies with that design intent, and highlighting where it
does not. This incrementality allows the tool to be effective on real-world projects involving
legacy code. Furthermore, it takes away the feeling of hopelessness that developers invaria-
bly feel when a long list of “potential violations” is spit out of a static analysis tool.

Perhaps just as significantly, the focus has shifted from “finding potential violations” to mak-
ing positive assurances about an attribute of code. It is much more valuable to say that a
given body of code is sound with respect to some attribute (e.g., it has no potential for race
conditions) than to find a few instances where that attribute is non-conforming (e.g., here is a
race condition).

One of the key factors that distinguishes automated verification from other areas that have
been identified above is that it can have an impact even after the code is written. It can be
effective against problems that are hard to inspect and hard to test, like concurrency. This al-
ternative coverage, combined with its applicability even to released and legacy code, makes it
a good complement to the other focus areas described above. It should also be noted that the
expense of running an automated verification tool can be significantly lower than project-

70 CMU/SEI-2004-TR-018

wide adoption of the other measures mentioned. Such low cost—especially when combined
with high effectiveness, IDE, and process integration—should lead to sustained use by devel-
opers.

Significant additional research is needed to expand the breadth of attributes about which we
can make automated assurances. This research effort should be guided by reviews of the most
troublesome vulnerabilities and defects.

Focus of “acquisition efforts”: focus on the product; use automated verification

Most acquisition-oriented software assurance resources focus on evaluating the processes
used by the software vendor in producing the product. What is needed are tools for acquirers
to actually evaluate the product. Automated verification tools offer the best hope for provid-
ing this capability. The use of such tools is needed to complement the common criteria. Re-
search to define a minimum set of verifiable product characteristics is needed. This list will
start out focused on assurances against the most troublesome software security vulnerabili-
ties. This will later evolve to allow increasingly higher levels of assurance. The feasibility of
establishing the “UL for software” should be investigated.

7.12 Recent Advances in Intrusion Detection Sys-
tems

Network-based intrusion detection systems (NIDS) remain the best practice for most security
operations. This software monitors a network link to detect malicious behavior. While ap-
proaches to identify this malicious behavior have evolved over time and vary by product,
most detect attacks through content inspection, the modeling of protocols and observing state
violations, or through the modeling of the semantics or relationships in the communication. It
is common for a single product to implement multiple detection algorithms.

NIDS have historically been plagued with three problems: high false-positive rates, the in-
ability to detect new types of attacks, and the lack of scalability on high-speed networks. To
this end, the technology has evolved to not only minimize these concerns, but also to respond
to new threats and technologies. This improvement is primarily the result of advances in the
following three areas:

• Intrusion prevention systems (IPSs) have addressed the reaction time of the operations
centers. No longer merely passive devices, IPSs attempt to stop intruders and worms
from making inroads into a network either at detection time or after an initial compro-
mise has been discovered. As with an IDS, an IPS uses a detection engine to identify ma-
licious activity. However, by integrating into the switching or routing fabric of a network
(either in-line or through a command-and-control channel), the IPS can block certain traf-

CMU/SEI-2004-TR-018 71

fic deemed malicious, and as appropriate, make changes in the network by selectively
disabling the hardware ports associated with a compromised computer or network. IPSs
can provide traffic filtering that is significantly more sophisticated than is possible with a
firewall. IPSs are also capable of quarantining individual machines or entire networks to
contain damage. Despite the potential benefits of automated response, organizations
should be leery of relying too much on this capability. Given that many current IPSs have
detection engines similar to those found in IDSs, they suffer from comparable false-
positive rates. The implications of false positives in an IPS, when the response may entail
direct manipulation of the network, are significantly more acute. There is great danger in
allowing an attacker to force a change in the network infrastructure.

• Flow analysis allows for greater scalability and the detection of new attacks. Flow analy-
sis concentrates not on details of the communication (i.e., packet payload), but on the
properties of the communication, making use of the protocol header fields. Such detec-
tion engines take into account factors such as timing, duration, and volumetric metrics of-
ten compared against a historical baseline of traffic. These approaches allow for the de-
tection of denial-of-service (DOS) attacks and reconnaissance (even when done
extremely slowly), and can be deployed on high-speed networks. The additional benefit
of this approach is that certain flow-analysis engines can identify previously unknown at-
tacks because they look for malicious patterns of behavior rather than specific attack
methodologies. While powerful in detecting certain classes of activity, flow analysis
should be used in conjunction with other approaches. Flow analysis is only able to assess
the behavior of an event rather than the event’s specific features, making it ideal for de-
tecting only pervasive activity, rather than activity of limited scope. Likewise, given its
behavior approach, trends will likely only be seen when observing a large network. Par-
tial instrumentation or access to only subsets of data also impact the effectiveness of this
analytical approach.

• Security event managers (SEMs) and other data-sharing systems have lowered false-
positive rates through the use of contextual information. In order to create a unified view
of security across an enterprise, SEMs and security information managers (SIMs) were
developed. This new class of technology aggregates, centralizes, and analyzes data from
many different types of technologies. SIMs will normalize similar data regardless of the
vendor, provide a framework in which to correlate the same activity detected across mul-
tiple devices, and potentially identify malicious activity not previously possible to detect
from the vantage point of only a single device. In addition to fusing the obvious security
information such as IDS, firewall, and access logs, SIMs also have the ability to incorpo-
rate contextual information to reduce false positives and set priorities based on organiza-
tional mission. SIMs often include vulnerability scanning, penetration testing, topological
information, and usage policy information into the analysis process. While SIMs have the
ability to provide an aggregated, high-level view, the quality of their analysis is based en-
tirely on the underlying data sources used. If the underlying security devices do not pro-
vide a sufficient level of detail or vary the frequency of their reporting, the analytical
value of SIMs is diminished.

72 CMU/SEI-2004-TR-018

Future Considerations

Neither flow analysis nor content inspection is a universal solution. The former scales to
high-speed networks, but only performs surface analysis. Content inspection provides deep
analysis, but cannot scale to all networks. The ideal deployment makes use of the strengths of
both of these approaches: deploying flow analysis at the border and content inspection to-
ward the leaves in the network, with attention-focusing mechanisms between the two. Flow
analysis can invoke content inspection to more closely examine suspicious activity. Content
inspection can use flow analysis to better monitor the communication of previously observed
suspicious actors.

Also, the analytical and detection capability of any security operation must mirror the adop-
tion of technology in the market. To this end, more comprehensive support for IPv6 and wire-
less technology is necessary in IDS technology. Many IDSs currently support IPv4 making
them completely unaware of any activity on an IPv6 overlay network. In short, detection en-
gines must be completely rewritten to support this protocol, and the new traffic patterns it
will imply after full adoption and during the transitional period from IPv4. Given the ease at
which physical and link-layer attacks can be made on wireless networks, the detection of this
activity must be shifted from specialized tools to more mainstream IDSs, or integrated into
operations through a SIM.

With the effective demise of a strict perimeter in the network through the use of VPNs, wire-
less networks, handhelds, and cell phones, the notion of “inside vs. outside” the network is
quite fluid. Given this fluidity, architectures that presuppose this old binary model must be
reevaluated with the goal of identifying the new attack vectors of a malicious outsider, while
also considering the largely ignored threat of a trusted insider. Furthermore, increased data
sharing, facilitated by IDSs and SIMs that support standard data exchange formats, sanitiza-
tion filters, and analysis algorithms that make sense of data that spans multiple policy do-
mains, can provide a more complete view of security for organizations by incorporating the
threat information provided by external parties.

A positive advance is the widespread adoption of anti-virus software and firewalls bundled
with operating systems. In order to differentiate themselves from their competitors, antivirus
vendors are increasing the sophistication of their software. No longer do they merely detect
viruses; they are branching out to become the equivalent of host-based intrusion detection
systems (HIDSs) with the preventive capabilities of IPSs. These tools monitor changes in the
file system, the execution of privileged operations, and network communication. This trend
will yield better security for the end-hosts. The challenge is making these tools properly inte-
grate into organizational network management and the security infrastructure.

IDS technology has evolved to provide a more proactive role in network defense. Likewise,
organizations have realized the importance of aggregating and correlating different types of

CMU/SEI-2004-TR-018 73

security and network-management information from inside and outside the organization. The
future of this class of technology lies in continuing to integrate it as seamlessly as possible
into larger security infrastructures, while understanding the security implications of newly
adopted or composed technology. It is clear that while automated tools such as IDSs can help
a trained security analyst, there is no substitute for an analyst’s skills and the consistent appli-
cation of best practices in managing the network infrastructure.

7.13 Applying Statistics in Software Engineering

The last decade or so has seen an increasing number of companies learn how to apply statisti-
cal concepts to software development. This is evidenced by the increase in organizational
maturity over that period (see the SEI Maturity Profile at www.sei.cmu.edu/sema
/profile.html), which stipulates more and better data collection and analysis.

In spite of this, there is still debate as to the applicability of statistical analysis to more than a
limited subset of the many development environments in existence today. There is not a full
understanding of how statistical methods can be applied in software engineering scenarios
and, to date, limited case studies and examples have been published.

As organizations seek to improve their software engineering processes, they are turning to
quantitative measurement and analysis methods. Statistical process control (SPC), a disci-
pline that is common in manufacturing and industrial environments, but has only recently
received attention as an aid for software engineering [Florac 99], has been generating some
interest, as have six-sigma applications, and capture/recapture methods. Hopefully, these will
be areas of further research and application that might yield results in the future. Effective
use of these applications requires a detailed understanding of processes and a willingness to
pursue exploratory analysis. As with anything new, there is a learning curve. To learn how to
use a specific method or technology, one needs to be willing to conduct research, try things,
make mistakes, and try again. Knowing and understanding the process is fundamental; con-
sistency in data collection and reporting is imperative; and clarifying and understanding how
the data is defined is crucial to knowing what the data represents.

Transitioning some of these concepts and techniques into actual software engineering prac-
tice remains a challenge. Many organizations do not collect appropriate data about their
products and processes. Good data is a prerequisite to good analysis. Also, software engineer-
ing curricula at universities need to emphasize data collection and analysis topics, perhaps
through joint efforts with statistics departments.

74 CMU/SEI-2004-TR-018

7.14 Advances in Software Engineering Processes

The movement to improve software engineering processes continues to make incremental
advances in a number of areas. Several notable advances and trends are described below.

Reducing Software Defects to Improve Security

Defective software is not secure. This is a position advocated by the SEI and a few other or-
ganizations (e.g., PRAXIS and Cigital), and has been accepted by the Department of Home-
land Security (DHS) Software Process Subgroup of the Task Force on Security. This position
is supported by the fact that the leading cause of software vulnerabilities is common defects
in software design and implementation (i.e., bugs). Also, tools for developing secure soft-
ware, although needed, are not sufficient and address only a small part of the problem. For-
mal methods, better processes, and training for software professionals will have more impact
and are critically needed. The DHS subgroup made the following recommendations:

• Principal short-term recommendations

− Adopt software development processes that can measurably reduce defects in soft-
ware specification, design, and implementation.

− Adopt practices for producing secure software.
− Determine the effectiveness of available practices in measurably reducing software

security vulnerabilities, and adopt the ones that work.
− The Department of Homeland Security should support the U.S. Computer Emer-

gency Readiness Team (US-CERT), the Information Technology Information Sharing
and Analysis Center (IT-ISAC), and other entities to work with software producers to
determine the effectiveness of practices that reduce software security vulnerabilities.

• Principal mid-term recommendations

− Establish a security verification and validation program to evaluate candidate soft-
ware processes and practices for effectiveness in producing secure software.

− Industry and the DHS should establish measurable annual security goals for the prin-
cipal components of the U.S. cyber infrastructure and track progress.

• Principal long-term recommendations

− Certify those processes demonstrated to be effective for producing secure software.
− Broaden the research into, and the teaching of, secure software processes and prac-

tices.

These recommendations are likely to have far-reaching impact on software development
practices, tools, training, and education. For example, attention to these recommendations
could reverse recent trends in software engineering that advocate less formal, and more de-
fect-prone development methods. The initial impact will likely be in the area of secure soft-
ware development, but safety-critical systems have similar characteristics. Research in the
security area should also interest the DoD and DoD contractor communities.

CMU/SEI-2004-TR-018 75

Use of Tabular Expressions

Part of a larger area called relational methods, tabular expressions are a way to formulate
software specifications and software design so that they are more easy to implement and re-
view and are less error-prone. This work, originally done by David Parnas, dates from the
late 1970s. More information is available at the Software Engineering Research Group Web
site at McMasters University, Canada [need reference]. There has been no experimental re-
search in industrial settings using high-quality, fully instrumented processes such as the SEI
Team Software Process (TSP).

Stratified Systems Theory

A formal theory of management, stratified systems theory, which incorporates some opera-
tional methods, has gained some traction in the general marketplace, including the U.S.
Army. It has potentially broad application in both a general technology transition sense and in
a more narrow software engineering management sense. What many practitioners have rec-
ognized intuitively (or from hard experience) as “hopeless” organizational situations might
actually be formally describable and potentially fixable by applying these methods. This
work is the brainchild of the late Eliot Jaques.

Model-Based Process Improvement

The value of model-based process improvement is becoming more widely recognized. Proc-
ess improvement is gradually expanding beyond the software and systems development
groups and IT/IS shops to other parts of the enterprise to encompass non-software/systems
portions of product and service development (i.e., hardware engineering). Indicators of pro-
gress in this area include

• operations and services are increasingly targeted by new standards

• safety and security are increasingly called for

• new industries are increasingly getting involved

Increasing Synergistic Use of Multiple Process-Improvement Technologies

Increasing synergistic use of multiple process-improvement technologies is gaining recogni-
tion. This includes

• deploying Six-Sigma, TSP/PSP and Agile with CMMI

• increasing use of the Project Management Body of Knowledge (PMBOK) to improve
management competencies

Increasing Efforts to Harmonize Various Systems and Software Standards

76 CMU/SEI-2004-TR-018

This is another recognizable trend. Indicators include

• efforts by IEEE to harmonize its standards with ISO and CMMI

• efforts by ISO to harmonize its standards related to quality as well as integrating systems
and software

Wider Use of Appraisal Methods

A broad spectrum of appraisal methods is increasingly in use, as indicated by the upsurge in
the use of the following SEI methods:

• SCAMPI Class A methods used to establish benchmark public ratings

• ARC Class B and C methods used to (1) motivate process improvement, (2) gain famili-
arity with the CMMI model, (3) ascertain progress in process improvement, and (4) de-
termine readiness for SCAMPI Class A appraisal

More Quantification of Process Improvement

There is an increasing desire to quantify the results of process improvement, including

• quantifying the cost and benefit of particular improvements

• sustaining process improvement funding

• establishing public benchmarks of organizational capability

CMU/SEI-2004-TR-018 77

Appendix A: Bibliography for Emerging
Technologies and Technology Trends

For further reading on the technologies described in Emerging Technologies and Technology
Trends, see the sources listed below. URLs are valid as of the publication date of this docu-
ment.

Open Grid Services Architecture

Foster, I.; Kesselman, C.; Nick, J. & Tuecke, S. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration <http://www.gridforum.org/ogsi-
wg/drafts/ogsa_draft2.9_2002-06-22.pdf> (June 2002).

Global Grid Forum—Open Grid Services Infrastructure Working Group. Open Grid Services
Infrastructure (OGSI) Version 1.0 <www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-
33_2003-06-27.pdf> (June 2003).

The Globus Alliance. <www.globus.org/ogsa/>.

Sandholm, T. & Gawor, J. Globus Toolkit 3 Core—A Grid Service Container Framework
<www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf> (July 2003).

Integrated Security Services for Dynamic Coalition Management

Khurana, H.; Gavrila, S; Bobba, R.; Koleva, R.; Sonalker A.; Dinu, E.; Gligor, V. & Baras, J.
“Integrated Security Services for Dynamic Coalitions.” Proceedings of the DARPA Informa-
tion Survivability Conference and Exposition. 2003.

Model-Driven Architecture

Bass, Len; Clements, Paul; Kazman, Rick. Software Architecture in Practice, Second Edition.
Addison-Wesley, 2003.

Brown, Alan. “An Introduction to Model Driven Architecture; Part 1: MDA and Today’s Sys-
tems.” The Rational Edge <www-106.ibm.com/developerworks/rational/library/3763.html>
(February 2004).

78 CMU/SEI-2004-TR-018

Clements, Paul & Northrop, Linda. Software Product Lines: Practices and Patterns. Addi-
son-Wesley, 2001.

Clements, Paul; Kazman, Rick & Klein, Mark. Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley, 2002.

Clements, Paul; Bachmann, Felix; Bass, Len; Garlan, David; Ivers, James; Little, Reed;
Nord, Robert; Stafford, Judy. Documenting Software Architectures: Views and Beyond. Addi-
son Wesley, 2003.

Cook, Steve. “Domain-Specific Modeling and Model Driven Architecture.” Business Process
Trends <www.bptrends.com> (January 2004).

Duggan, Jim; Driver, Mark; Feiman, Joseph; Light, Matt; Lanowitz, Theresa; Blechar, Mi-
chael; Vecchio, Dale; Sinur, Jim; Natis, Yefim; Andrews, Whit; Valdes, Ray; Fenn, Jackie;
Linden, Alexander; & Pezzini, Massimo. Hype Cycle for Application Development, 2004.
Gartner, Strategic Analysis Report, 25 June 2004.

Guttman, Michael. “A Response to Steve Cook.” Business Process Trends
<www.bptrends.com> (February 2004).

Institute of Electrical and Electronics Engineers. IEEE Std 1471-2000. Piscataway, NJ: IEEE
Computer Press, 2000.

Kleppe, Anneke G.; Warmer, Jos; & Bast, Wim. MDA Explained. Boston, MA: Addison-
Wesley, 2003.

McNeile, Ashley. “MDA: The Vision with the Hole?”
<www.metamaxim.com/download/documents/MDAv1.pdf> (2003).

Mellor, Stephen J. & Balcer, Marc J. Executable UML: A Foundation for Model-Driven Ar-
chitecture. Boston, MA: Addison-Wesley, 2002.

Mellor, Stephen J.; Scott, Kendall; Uhl, Axel; & Weise, Dirk. MDA Distilled. Boston, MA:
Addison-Wesley, 2004.

Object Management Group. MDA Guide Version 1.0.1. Document number omg/2003-06-01,
12 June 2003.

CMU/SEI-2004-TR-018 79

Selic, Bran. “The Pragmatics of Model-Driven Development.” IEEE Software 20, 5 (Septem-
ber/October 2003): 19–25.

Thomas, Dave. “MDA: Revenge of the Modelers or UML Utopia?” IEEE Software 21, 3
(May/June 2004): 15–17.

Wallnau, Kurt. Volume III: A Technology for Predictable Assembly from Certifiable Compo-
nents (CMU/SEI-2003-TR-009). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2003.

Wallnau, Kurt & Ivers, James. Snapshot of CCL: A Language for Predictable Assembly
(CMU/SEI-2003-TN-025). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003.

Weis,Torben; Ulbrich, Andreas; & Geihs, Kurt. “Model Metamorphosis.” IEEE Software 20,
5 (September/October 2003): 46–51.

Service-Oriented Architecture

Barry, D. Introduction to Web Services and Service-Oriented Architectures <www.service-
architecture.com/> (2004).

Barry, D. Web Services and Service-Oriented Architectures: The Savvy Managers Guide,
Morgan Kaufmann, 2003.

Brown, A; Johnston, S.; & Kelly, K. “Using Service-Oriented Architecture and Component-
Based Development to Build Web Service Applications.” Rational Software Corporation
<www-106.ibm.com/developerworks/rational/library/510.html> (2002).

Joint Vision 2020. <www.dtic.mil/jointvision/jvpub2.htm>.

Koch, Christopher. “The Battle for Web Services.” CIO Magazine, Oct. 1, 2003.

UDDI Version 3.0 <www.uddi.org/> (July 2002).

Ogbuji, Uche. “The Past, Present and Future of Web Services.” WebServices.Org, 07.10.2002
<http://www.mywebservices.org/index.php/article/view/663/>.

80 CMU/SEI-2004-TR-018

Paolucci, M. & Sycara, K. “Autonomous Semantic Web Services.” IEEE Internet Computing,
September/October 2003.

Papazoglou, M.P. & Georgakopoulos, D. “Service-Oriented Computing: Introduction.” Com-
munications of the ACM 46, 10 (2003): 24-28.

Web Services

W3C. “SOAP Version 1.2 Part 0: Primer.” W3C Recommendation 24 June 2003
<www.w3.org/TR/soap12-part0/>.

W3C. “SOAP Version 1.2 Part 1: Messaging Framework.” W3C Recommendation 24 June
2003 <www.w3.org/TR/soap12-part1/>.

W3C. “Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.”
W3C Working Draft 26 March 2004 <www.w3.org/TR/wsdl20/>.

W3C. “Working Group Note—Web Services Glossary” <www.w3.org/TR/ws-gloss/> (Feb-
ruary 2004).

Q Methodology

McKeown, B.F. & Thomas, D.B. Q Methodology. Newbury Park, CA: Sage, 1988.

Steelman, T.A. & Maguire L.A. “Understanding Participant Perspectives: Q Methodology in
National Forest Management,” <www.nicholas.duke.edu/faculty/maguire/env316/q5.htm>
(2003).

Stephenson, W. The study of behavior: Q-technique and its methodology. Chicago: Univer-
sity of Chicago Press, 1953.

Valenta, A.L. & Wigger, U. (1997). “Q-methodology: Definition and Application in Health
Care Informatics.” Journal of the American Medical Informatics Association 4, 6 (1997):
501–510.

Aspect-Oriented Software Development

AspectJ <www.aspectj.org> (2004).

Bachmann, Felix; Bass, Len & Klein, Mark. Deriving Architectural Tactics: A Step Towards
Methodical Architectural Design (CMU/SEI-2003-TR-004). Pittsburgh, PA: Software Engi-

CMU/SEI-2004-TR-018 81

neering Institute, Carnegie Mellon University <www.sei.cmu.edu/publications/documents
/03.reports/03tr004.html> (2003).

Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice, Second Edi-
tion. Boston, MA: Addison-Wesley, 2003.

Bonér, Jonas. “What are the key issues for commercial AOP use—how does AspectWerkz
address them?” Proceedings of the Third International Conference on Aspect-Oriented Soft-
ware Development (AOSD2004): 5–6. Lancaster, UK. ACM, March 2004.

Chastek, Gary; Donohoe, Patrick; Kang, Kyo Chul; & Thiel, Steffan. Product Line Analysis:
A Practical Introduction (CMU/SEI-2001-TR-001, ADA396137). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University <http://www.sei.cmu.edu
/publications/documents/01.reports/01tr001.html> (2001).

Chastek, Gary & McGregor, John. Guidelines for Developing a Product Line Production
Plan (CMU/SEI-2002-TR-006, ADA407772). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University <http://www.sei.cmu.edu /publications/documents
/02.reports/02tr006.html> (2002).

Chastek, Gary; Donohoe, Patrick & McGregor, John. Product Line Production Planning for
the Home Integration System (CMU/SEI-2002-TN-029). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University <http://www.sei.cmu.edu /publications
/documents/02.reports/02tn029.html> (2002).

Chastek, Gary; Donohoe, Patrick; Kang, Kyo Chul; & Thiel, Steffan. Product Line Analysis
for Practitioners (CMU/SEI-2003-TR-008). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University <http://www.sei.cmu.edu/publications/documents/03.reports
/03tr008.html> (2003).

Chastek, Gary; Donohoe, Patrick & McGregor, John. A Study of Product Production in Soft-
ware Product Lines (CMU/SEI-2004-TN-012). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University <http://www.sei.cmu.edu /publications/documents
/04.reports/04tn012.html> (2004).

Chastek, Gary & McGregor, John. “Early Product Production Aspects in Software Product
Lines.” Submitted to Early Aspects Workshop, Object-Oriented Programming, Systems, Lan-
guages, & Applications (OOPSLA 2004), 2004.

82 CMU/SEI-2004-TR-018

Clements, Paul & Northrop, Linda. Software Product Lines: Practices and Patterns. Boston,
MA: Addison-Wesley, 2002.

Clements, Paul & Northrop, Linda. A Framework for Software Product Line Practice, Ver-
sion 4.1. <http://www.sei.cmu.edu/plp /framework.html> (2003).

Concern Manipulation Environment Project <www.research.ibm.com/cme/>.

Cockburn, Alistair. “Goals and Use Cases.” Journal of Object-Oriented Programming 10, 5
(September 1997): 35–40.

Colyer, Adrian & Clement, Andrew. “Large-Scale AOSD for Middleware.” Conference Pro-
ceedings, 3rd International Conference on Aspect-Oriented Software Development
(AOSD2004): 56–65. Lancaster, UK. ACM, March 2004.

The Eclipse Project <www.eclipse.org/>.

Griss, Martin L. “Implementing Product Line Features by Composing Component Aspects.”
Proceedings of the First Software Product Lines Conference (SPLC1), 2000.

IBM <www-306.ibm.com/software/info1/websphere/index.jsp> (2004).

Jacobson, Ivar. “Four Macro Trends in Software Development Y2004.” Available under “re-
cent presentations” at <www.ivarjacobson.com>.

Jboss <www.jboss.org> (2004).

Kang, Kyo C.; Cohen, Sholom G.; Hess, James A.; Novak, William E.; & Peterson, A.
Spencer. Feature-Oriented Domain Analysis Feasibility Study (CMU/SEI-90-TR-021,
ADA235785). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University
<http://www.sei.cmu.edu/publications/documents/90.reports /90.tr.021.html> (1990).

Kiczales, Gregor; Lamping, John; Mendhekar, Anurag; Maeda, Chris; Lopes, Cristina; Lo-
ingtier, Jean-Marc; & Irwin, John. “Aspect-Oriented Programming.” Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241 (June 1997).

CMU/SEI-2004-TR-018 83

Kiczales, Gregor. “An Overview of AspectJ.” Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), Budapest, Hungary. Springer-Verlag LNCS 2072
(June 2001).

Kiczales, Gregor; Hilsdale, Erik; Hugunin, Jim; Kersten, Mik; Palm, Jeffrey; & Griswold,
William G. “Getting Started with AspectJ.” Communications of the ACM 44, 10 (October
2001): 59–65.

Lieberherr, Karl; Lorenz, David H.; and Wu, Pengchecg. “A case for statically executable
advice: checking the law of Demeter with AspectJ,” Proceedings of the Second International
Conference on Aspect-Oriented Software Development. Boston, Mass. ACM, 2003.

Northrop, Linda M. Chapter 6, “Object-Oriented Development,” 148-159. Software Engi-
neering, Volume 1: The Development Process, Second Edition. Dorfman, M. & Thayer, R.H.,
eds. Los Alamitos, CA: IEEE Computer Society, 1997.

Object Management Group. Unified Modeling Language <www.omg.org>.

Ottinger, Tim <c2.com/cgi/wiki?CodeNormalization> (2004).

Parnas, D.L. “On the Criteria to be Used in Decomposing Systems into Modules.” Communi-
cations of the ACM 15, 12 (December 1972): 1053–1058.

Sabbah, Daniel. “Aspects—from Promise to Reality.” Conference Proceedings, Third Inter-
national Conference on Aspect-Oriented Software Development (AOSD2004): 1–2. Lancas-
ter, UK. ACM, March 2004.

Spring Framework <www.springframework.org> (2004).

Tarr, Peri; Ossher, Harold; Harrison, William; & Sutton, Stanley M. Jr. “N Degrees of Separa-
tion: Multi-Dimensional Separation of Concerns.” Proceedings of the International Confer-
ence on Software Engineering (ICSE), Los Angeles, California, May 1999.

Yan, Hong; Aldrich, Jonathan; Garlan, David; Kazman, Rick; & Schmerl, Bradley. Discover-
ing Architectures from Running Systems: Lessons Learned (CMU/SEI-2004-TR016). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University
<http://www.sei.cmu.edu/publications/documents/04.reports/04tr016.html> (2004).

Generative Programming

84 CMU/SEI-2004-TR-018

Abrahams, D. “Generic Programming Techniques”
<www.boost.org/more/generic_programming.html> (18 August 2004).

Batory, D.; Sarvela, J.; & Rauschmayer, A. “Scaling Step-Wise Refinement.” Proceedings of
the International Conference on Software Engineering, Portland, Oregon, 2003.

Chastek, G.; Donohoe, P.; & McGregor, J. D. A Study of Product Production in Software
Product Lines (CMU/SEI-2004-TN-012). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University (2004).

Clement, P. & Northrop, L. Software Product Lines: Practices and Patterns. Boston, MA:
Addison-Wesley, 2002.

Czarnecki, K.; Eisenecker, U.; Glück, R.; Vandevoorde, D.; & Veldhuizen, T. “Generative
Programming and Active Libraries (Extended Abstract)” <osl.iu.edu/~tveldhui/papers
/dagstuhl1998/>.

Czarnecki, K. & Eisenecker, U. Generative Programming: Methods, Tools, and Applications.
Boston, MA: Addison-Wesley, 2000.

Czarnecki, K. “Generative Programming: Methods, Techniques, and Applications: Tutorial
Abstract.” Software Reuse: Methods, Techniques, and Tools: Seventh International Confer-
ence, ICSR-7, Austin, TX, April 15–19, 2002: 351.

Greenfield, J. & Short, K. “Software Factories: Assembling Applications with Patterns, Mod-
els, Frameworks, and Tools.” OOPSLA ’03, Anaheim, CA. ACM, 2003.

Harrington, J. Code Generation in Action. Greenwich, CT: Manning, 2003.

IBM. “Autonomic Computing” <www-306.ibm.com/autonomic/index.shtml> (18 August
2004).

IEEE Computer Society. IEEE standard computer dictionary: a compilation of IEEE standard
computer glossaries. Standards Coordinating Committee of the IEEE Computer Society.

Jones, N.D.; Gomard, C.K.; & Sestoft, P. Partial Evaluation and Automatic Program Gen-
eration. Englewood Cliffs, NJ: Prentice Hall, 1993.

CMU/SEI-2004-TR-018 85

“Metaprogramming.” Wikipedia. 2004 <en.wikipedia.org/wiki/Metaprogramming> (18 Au-
gust 2004).

Software Engineering Institute. “Software Product Lines.” <www.sei.cmu.edu/plp
/product_line_overview.html> (18 August 2004).

TenFold Corporation. “Tsunami” <tsunami.tenfold.com/> (18 August 2004).

Tristam, Claire. “Everyone’s a Programmer.” Technology Review. November 2003: 34–43.

Weiss, D. & Lai, C. Software Product Line Engineering: A Family Based Software Develop-
ment Process. Reading, MA: Addison Wesley, 1999.

Applying Statistics in Software Engineering

El Emam, Khaled & Carleton, Anita D., eds. “Applications of Statistics in Software Engi-
neering” (special issue). The Journal of Systems and Software 73, 2 (October 2004). Amster-
dam: Elsevier Publishing.

Florac, William & Carleton, Anita. Measuring the Software Process: Statistical Process Con-
trol for Software Process Improvement. Reading, MA: Addison-Wesley, 1999.

86 CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 87

Appendix B: OAR Activities

The following are activities of the SEI Options Analysis for Reengineering (OAR) method.

Establish Mining Context

Through the Establish Mining Context (EMC) activity, OAR users establishe an understand-
ing of the organization’s product line or new single system needs, legacy base, and expecta-
tions for mining legacy components. They develop a baseline of the goals and expectations
for the mining project and the component needs that mining is to address. They also deter-
mine the programmatic and technical drivers for making decisions, and select a set of poten-
tial candidate components for mining. These candidate components are analyzed and evalu-
ated in later OAR activities based on the drivers that are elicited in the EMC activity.

Inventory Components

In this activity, users identify the legacy system components that can potentially be mined for
use as product line components. In this activity, users identify the characteristics of the prod-
uct line component needs. Legacy components are evaluated based on these criteria and those
that do not meet the criteria are screened out.

Analyze Candidate Components

In this activity, users analyze the candidate set of legacy components to evaluate their poten-
tial for use as product line or new single system components. Users perform additional
screening on the candidate components and identify for each candidate component the types
of changes that are required to mine them.

Plan Mining Options

In this activity, alternative options for mining are developed, based on schedule, cost, effort,
risk, and resource considerations. Users perform a final screening of candidate components
and analyze the impacts of different aggregations of components.

Select Mining Option

In this activity users select the mining option or combination of options that can best satisfy
the organization’s goals by balancing programmatic and technical considerations. Each min-
ing option is evaluated and the optimal option or combination of options is selected. A sum-
mary report and justification for the selected option are prepared.

88 CMU/SEI-2004-TR-018

CMU/SEI-2004-TR-018 89

References

URLs are valid as of the publication date of this document.

[Aldrich 02] Aldrich, J.; Chambers, C.; & Notkin, D. “ArchJava: Connecting
Software Architecture to Implementation.” Proceedings of the In-
ternational Conference on Software Engineering, May 2002.

[Bass 04] Bass, Len; Klein, Mark; & Northrop, Linda. “Identifying Aspects
Using Architectural Reasoning,” Early Aspects Workshop, Third
International Conference on Aspect-Oriented Software Develop-
ment (AOSD2004). Lancaster, UK, March 2004. (unpublished).

[Bergey 01] Bergey, John; O’Brien, Liam; & Smith, Dennis. Options Analysis
for Reengineering (OAR): A Method for Mining Legacy Assets
(CMU/SEI-2001-TN-013). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2001.

[Bergey 02] Bergey, J.; O'Brien, L.; & Smith, D. “Using Options Analysis for
Reengineering (OAR) for Mining Components for a Product Line,”
316-327. Software Product Lines: Proceedings of the Second Soft-
ware Product Line Conference (SPLC2). San Diego, CA, August
19-22, 2002. Berlin, Germany: Springer Lecture Notes in Computer
Science Vol. 2379, 2002.

[Boehm 88] Boehm, Barry W. & Papaccio, Philip N. “Understanding and Con-
trolling Software Costs,” IEEE Transactions on Software Engineer-
ing 14, 10 (October 1988): 1462-1477.

[Brown 02] Brown, A; Johnston, S.; & Kelly, K. Using Service-Oriented Archi-
tecture and Component-Based Development to Build Web Service
Applications. Rational Software Corporation. 2002. Available
WWW: <http://www-
106.ibm.com/developerworks/rational/library/510.html>.

[Chastek 04] Chastek, G.; Donohoe, P. & McGregor, J.D. A Study of Product

90 CMU/SEI-2004-TR-018

Production in Software Product Lines (CMU/SEI-2004-TN-012).
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA: 2004.

[Clements 01] Clements, P. & Northrop, L. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[Czarnecki 00] Czarnecki, K. & Eisenecker, U. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Boston: 2000.

[De Lucia 97] De Lucia, A.; Di Lucca, G. A.; Fasolino, A. R.; Guerra, P.; &
Petruzzelli, S. “Migrating legacy systems towards object-oriented
platforms.” International Conference on Software Maintenance
(1997): 122–129.

[DSB 2000] Defense Science Board Task Force: Report on Defense Software.
<www.acq.osd.mil/dsb/defensesoftware.pdf> (November, 2000).

[Facemire 03] Facemire, J. & Silva, H. “Experiences with Leveraging Six Sigma
to Implement CMMI Levels 4 and 5.” Proceedings of NDIA and
CMMI Users Group, November 2003.

[Florac 99] Florac, William & Carleton, Anita. Measuring the Software Proc-
ess: Statistical Process Control for Software Process Improvement.
Reading, MA: Addison-Wesley, 1999.

[Foster 02a] Foster, I.; Kesselman, C.; Nick, J. & Tuecke, S. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration. June 2002. Available WWW:
<http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-
22.pdf>.

[GGF 03] Global Grid Forum—Open Grid Services Infrastructure Working
Group. Open Grid Services Infrastructure (OGSI) Version 1.0. June
2003. Available WWW: <http://www-unix.globus.org/toolkit/draft-
ggf-ogsi-gridservice-33_2003-06-27.pdf>.

[Globus 04] The Globus Alliance. http://www.globus.org/ogsa/

[Harrington 03] Harrington, J. Code Generation in Action. Manning, Greenwich,

CMU/SEI-2004-TR-018 91

CT: 2003.

[J2EE] Sun Microsystems.
<http://java.sun.com/docs/books/j2eetutorial/index.html>. URL
valid as of September 2004.

[Kazman 99] Kazman, R. & Carriere, S.J. “Playing Detective: Reconstructing
Software Architecture from Available Evidence.” Journal of Auto-
mated Software Engineering 6, 2 (1999).

[Khurana 03] Khurana, H.; Gavrila, S; Bobba, R.; Koleva, R.; Sonalker A.; Dinu,
E.; Gligor, V. & Baras, J. “Integrated Security Services for Dynamic
Coalitions.” Proceedings of the DARPA Information Survivability
Conference and Exposition. 2003.

[Lipson 99]
Lipson, Howard F. & Fisher, David A. “Survivability—A
New Technical and Business Perspective on Security.” Pro-
ceedings of the 1999 New Security Paradigms Workshop,
September 21–24, 1999, Caledon Hills, ON. Association for
Computing Machinery, New York, NY <www.cert.org
/archive/pdf/busperspec.pdf>.

[Lipson 02] Lipson, Howard. Tracking and Tracing Cyber-Attacks: Technical
Challenges and Global Policy Issues (CMU/SEI-2002-SR-009).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University <www.cert.org/archive/pdf/02sr009.pdf>, 2002.

[McKeown 88] McKeown, B.F. & Thomas, D.B. Q Methodology. Newbury Park,
CA: Sage, 1988.

[McMaster 04] http://www.cas.mcmaster.ca/serg/

[Murphy 95] Murphy, G.C.; Notkin, D.; & Sullivan, K.J. “Software Reflexion
Models: Bridging the Gap Between Source and High-Level Mod-
els.” Proceedings of FSE 1995 (1995).

[McGraw 02] McGraw, G. “Software Security.” IEEE Security & Privacy 2, 2
(March/April 2004).

[Northrop 97] Northrop, Linda M. Chapter 6, “Object-Oriented Development,”
148-159. Software Engineering, Volume 1: The Development Proc-
ess, Second Edition. Dorfman, M & Thayer, R. H., eds. Los Alami-

92 CMU/SEI-2004-TR-018

tos, CA: IEEE Computer Society, 1997.

[OASIS 02] UDDI Version 3.0. July 2002. Available WWW:
<http://www.uddi.org/>.

[OMG 03] OMG. MDA Guide Version 1.0.1. Available WWW:
<http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf>.

[Ottinger 04] Ottinger, Tim. c2.com/cgi/wiki?CodeNormalization, 2004.

[Parnas 72] Parnas, D.L. “On the Criteria to be Used in Decomposing Systems
into Modules.” Communications of the ACM 15, 12 (December
1972): 1053–1058.

[Sandholm 03] Sandholm, T. & Gawor, J. Globus Toolkit 3 Core—A Grid Service
Container Framework. July 2003. Available WWW: <http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf>.

[Shaw 95] Shaw, M.; Deline, R.; Klein, D.; Ross, T.L.; Young, D.M.; & Ze-
lesnik, G. “Abstractions for Software Architecture and Tools to
Support Them.” IEEE Transactions on Software Engineering 21, 4
(1995).

[Sneed 98] Sneed, H. & Majnar, R. “A Case Study in Software Wrapping.” In-
ternational Conference on Software Maintenance (1998): 86-93.

[Sneed 99] Sneed, H. “Risks Involved in Reengineering Projects.” Sixth Work-
ing Conference on Reverse Engineering (1999): 204–211.

[Steelman 03] Steelman, T.A. & Maguire L.A. “Understanding Participant Per-
spectives: Q Methodology in National Forest Management,”
<www.nicholas.duke.edu/faculty/maguire/env316/q5.htm> (2003).

[Sweeney 02] Sweeney, Latanya. “k-anonymity: A Model for Protecting Privacy.”
International Journal on Uncertainty, Fuzziness and Knowledge-
based Systems 10, 5 (2002): 557-570.

[Taylor 96] Taylor, R.N.; Medvidovic, N.; Anderson, K.M.; Whitehead, E.J.;
Robbins, J.E.; Nies, A.; Oriezy, P.; & Dubrow, D. “A Component-
and Message-Based Architectural Style for GUI Software.” IEEE

CMU/SEI-2004-TR-018 93

Transactions on Software Engineering 22, 6 (1996).

[Valenta 97] Valenta, A.L. & Wigger, U. (1997). “Q-methodology: Definition
and Application in Health Care Informatics.” Journal of the Ameri-
can Medical Informatics Association 4, 6 (1997): 501–510.

[Vestal 96] Vestal, S. MetaH Programmer’s Manual, Version 1.09. Technical
Report, Honeywell Technology Center, 1996.

[W3C 03-0] W3C. SOAP Version 1.2 Part 0: Primer. W3C Recommendation. 24
June 2003. Available WWW: <http://www.w3.org/TR/soap12-
part0/>.

[W3C 03-1] W3C. SOAP Version 1.2 Part 1: Messaging Framework. W3C Rec-
ommendation. 24 June 2003. Available WWW:
<http://www.w3.org/TR/soap12-part1/>.

[W3C 04] W3C. Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Working Draft. 26 March 2004.
Available WWW: <http://www.w3.org/TR/wsdl20/>.

[Willis 98] Willis, Ronald R., et al. Hughes Aircraft’s Widespread Deployment
of a Continuously Improving Software Process (CMU/SEI-98-TR-
006). Pittsburgh, PA: Software Engineering Institute, Carnegie Mel-
lon University, 1998.

[Yan 04a]

Yan, H.; Garlan, D.; Schmerl, B.; Aldrich, J.; & Kazman, R. “Dis-
coTect: A System for Discovering Architectures from Running Sys-
tems.” Proceedings of the International Conference on Software
Engineering (May 2004).

[Yan 04b]

Yan, H.; Aldrich, J.; Garlan, D.; Kazman, R.; & Schmerl, B. Dis-
covering Architectures from Running Systems: Lessons Learned
(CMU/SEI-2004-TR-016). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2004.

94 CMU/SEI-2004-TR-018

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Results of SEI Independent Research and Development Projects and
Report on Emerging Technologies and Technology Trends

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

John Bergey, Sven Dietrich, Donald Firesmith, et al.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TR-018

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2004-018

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

102
13. ABSTRACT (MAXIMUM 200 WORDS)

Each year, the Software Engineering Institute (SEI) undertakes several Independent Research and Develop-
ment (IR&D) projects. These projects serve to (1) support feasibility studies investigating whether further work
by the SEI would be of potential benefit, and (2) support further exploratory work to determine whether there
is sufficient value in eventually funding the feasibility study work as an SEI initiative. Projects are chosen
based on their potential to mature and/or transition software engineering practices, develop information that
will help in deciding whether further work is worth funding, and set new directions for SEI work. This report
describes the IR&D projects that were conducted during fiscal year 2004 (October 2003 through September
2004). In addition, this report provides information on what the SEI has learned in its role as a technology
scout for developments over the past year in the field of software engineering.

14. SUBJECT TERMS

software engineering research and development

15. NUMBER OF PAGES

107
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Results of SEI Independent Research and Development Projects and Report on Emerging Technologies and Technology Trends
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Levels of Anonymity and Traceability (LEVANT)
	3 Architecture-Based Self-Adapting Systems
	4 Eliciting and Analyzing Quality Requirements: A Feasibility Study
	5 Enabling Technology Transition Using Six Sigma
	6 A Method to Analyze the Reuse Potential of Non-Code Software Assets
	7 Emerging Technologies and Technology Trends
	Appendix A: Bibliography for Emerging Technologies and Technology Trends
	Appendix B: OAR Activities
	References

