
Architecting The Future of Softw
are Engineering

A National Agenda for
Software Engineering
Research & Development

Software is vital to our country’s
global competitiveness, innovation,
and national security. It also ensures
our modern standard of living and
enables continued advances in defense,
infrastructure, healthcare, commerce,
education, and entertainment. As
part of its work as a federally funded
research and development center
(FFRDC) focused on applied research
to improve the practice of software
engineering, the Carnegie Mellon
University Software Engineering
Institute led the community in
creating this multi-year research and
development vision and roadmap for
engineering next-generation software-
reliant systems.

i

A National Agenda for Software Engineering Research & Development

Authors and Contributors
Lead Author Team Additional Authors (in alphabetical order)

Anita Carleton,
Study Lead
Director, Software
Solutions Division
(SSD), Carnegie Mellon
University (CMU)
Software Engineering
Institute (SEI)

Mark Klein
Principal Technical
Advisor and Principal
Researcher, SSD,
CMU SEI

John Robert
Deputy Director, SSD,
CMU SEI

Erin Harper
Strategic
Communications
Manager, SSD, CMU SEI

Rob Cunningham
Vice Chancellor for
Research Infrastructure,
University of Pittsburgh

Dio De Niz
Technical Director,
Assuring Cyber-Physical
Systems, SSD, CMU SEI

Ed Desautels
Senior Technical Writer
& Content Strategist,
CMU SEI

John Foreman
SEI Fellow and Principal
Engineer, SSD, CMU SEI

John Goodenough
SEI Fellow, Principal
Researcher, Director’s
Office, CMU SEI

James Herbsleb
Director and Professor,
Institute for Software
Research, CMU

Charles Holland
Principal Researcher,
SSD, CMU SEI

Ipek Ozkaya
Technical Director,
Engineering Intelligent
Software Systems, SSD,
CMU SEI

Doug Schmidt
Cornelius Vanderbilt
Professor of
Engineering, Vanderbilt
University

Forrest Shull
Lead for Defense
Software Acquisition
Policy Research, SSD,
CMU SEI

Advisory Board

Deb Frincke, Chair
Associate Laboratory
Director for National
Security Sciences,
Oak Ridge National
Laboratory

Sara Manning
Dawson
Chief Technology
Officer, Enterprise
Security, Microsoft

Jeff Dexter
Senior Director of
Flight Software &
Cybersecurity, SPACEX

Yolanda Gil
Director of Knowledge
Technologies,
Information Sciences
Institute, University of
Southern California

Vint Cerf
Vice President and Chief
Internet Evangelist,
Google

Penny Compton
Vice President for
Software Systems,
Cyber, and Operations,
Lockheed Martin Space

Tim McBride
President, Zoic Labs

Michael McQuade
Vice President for
Research, CMU

Nancy Pendleton
Vice President and
Senior Chief Engineer
for Mission Systems,
Payloads and Sensors,
Boeing Defense, Space
and Security

Tim Dare
Defense Business
Technical Director,
Booz Allen Hamilton

William Scherlis
Director Information
Innovation Office,
Defense Advanced
Research Projects
Agency (DARPA)

ii

Architecting the Future of Software Engineering

Table of Contents
Executive Summary 	 xiii

1 Introduction	 1

1.1 	 Software Enables Capability and Innovation	 1

1.2 	 Software Is an Achilles Heel 	 2

1.3	 Software Is the Backbone of Safety-Critical Systems 	 2

1.4	 Software Often Relies on Complex Supply Chains 	 2

1.5	 Software Is a Component of Critical Infrastructure	 4

1.6 	 Software Engineering Determines Software Quality	 4

1.7 	 Call to Action	 5

1.8 	 Scope		 5

1.9 	 Audience	 6

1.10 	Approach	 7

2 Exploring Emerging Trends and Technologies 	 9

2.1 	 Trends		 9

2.2 	 Emerging Technologies	 12

3 Findings	 15

4 Envisioning the Future of Software Engineering 	 19

4.1	 Future Scenarios	 19

4.2	 Vision for the Future of Software Engineering	 23

5 Research Focus Areas	 25

5.1 	� Advanced Development Paradigms 	 25

5.2 	 Advanced Architectural Paradigms 	 26

5.3 	 Research Roadmap	 26

5.4 	 AI-Augmented Software Development Research Focus Area	 27

5.4.1 	 Goals		 27

5.4.2 	 Limitations of Current Practice	 28

5.4.3 	 Topics for Research	 29

5.4.4 	 Research Questions	 34

5.4.5 	 Research Topics	 35

5.5 	 Assuring Continuously Evolving Software Systems Research Focus Area	 36

5.5.1 	 Goals		 36

5.5.2 	 Limitations of Current Practice	 36

5.5.3 	 Topics for Research	 38

5.5.4 	 Research Questions	 47

5.5.5 	 Research Topics	 48

iii

A National Agenda for Software Engineering Research & Development

5.6 	 Software Construction through Compositional Correctness Research Focus Area	 49

5.6.1 	 Goals		 49

5.6.2 	 Limitations of Current Practice	 50

5.6.3 	 Topics for Research 	 52

5.6.4 	 Research Questions 	 58

5.6.5 	 Research Topics	 60

5.7	 Engineering AI-Enabled Software Systems Research Focus Area	 61

5.7.1 	 Goals		 61

5.7.2 	 Limitations of Current Practice	 62

5.7.3 	 Topics for Research	 63

5.7.4 	 Research Questions	 66

5.7.5 	 Research Topics	 67

5.8 	 Engineering Societal-Scale Systems Research Focus Area	 68

5.8.1 	 Goals		 68

5.8.2 	 Limitations of Current Practice 	 69

5.8.3 	 Topics for Research	 70

5.8.4 	 Research Questions 	 76

5.8.5 	 Research Topics	 76

5.9 	 Engineering Quantum Computing Software Systems Research Focus Area	 77

5.9.1 	 Goals		 78

5.9.2 	 Limitations of Current Practice 	 79

5.9.3 	 Topics for Research	 80

5.9.4 	 Research Questions	 83

5.9.5 	 Research Topics	 84

6 Recommendations	 87

6.1 	 Research Recommendations	 87

6.2 	 Enactment Recommendations	 89

7 Conclusion	 93

Appendix A: Engaging the Software Engineering Community Through Workshops	 97

References	 119

v

A National Agenda for Software Engineering Research & Development

Foreword: Deb Frincke

Writing a foreword for this report has been both a privilege and
a challenge. As the chair of the project’s advisory board, I had the
opportunity to work with some of the most knowledgeable and
passionate individuals I have ever met. The resulting report is
important and will be impactful on the future of software engineering.
Consequently, it was a privilege to be associated with this work.

Software, and hence software engineering, problems contributed to
the personal challenges I had in writing this foreword because they ate
into my scheduled time to write. By chance, I was diverted three times
by issues that juxtaposed humans and software-reliant systems. First, I
was interrupted by technical challenges arising from ransomware in the
context of critical infrastructure protection. Second, I became involved in
key practical discussions about how to manage machine learning models
that drive important scientific algorithms. And finally, I had to engage in a
series of plaintive conversations with my air conditioning repair mechanic
because of a software fault that caused my air conditioning to fail during
one of the hottest weeks in the year. So while writing, I was actually
experiencing the reason that motivated the need for this report: Software
inadequacies resulting from inadequate software engineering are truly
with us everywhere!

As you read this document, think about how software touches you, and
everything around you, and what this implies for the future of software
engineering. You will inevitably find that software resilience remains
critical, and that software systems have become even more important to
our daily lives than ever before. You’ll also find that the increasing reliance
on societal/global-scale systems highlights even more complexities, such as
influence, social manipulation, and other challenges that emerge in these
system types. All of this raises the stakes for software engineering.

My hope is that you will find ways to leverage this important report and
the insights it contains, and that you will help enact its recommendations.
We each have a responsibility to contribute to making software more
trustworthy by advocating for investment in advancing the foundations and
practice of software engineering.

Deb Frincke, Associate Laboratory Director for National Security Sciences,
Oak Ridge National Laboratory

Advisory Board Chair for the National Agenda for Software Engineering
Research and Development Study

	

vii

A National Agenda for Software Engineering Research & Development

Foreword: The Honorable Heidi Shyu

Software is an essential, if not the central, part of every Department
of Defense (DoD) system. Our hardware has become increasingly
programmable, and software has become ubiquitous. Therefore, software
engineering is a critical enabler for everything that we do in the DoD.
To remain competitive, our weapon systems acquisition must migrate
away from the linear development and test cycle and evolve into a rapid
continuous update and continuous assurance environment. Consequently,
this software engineering technology roadmap is a guide for our research
and investment strategy that is vital for our national security. As we develop
new systems, we must go beyond model-based software engineering to
enable us to rapidly develop systems while reducing re-assurance and
sustainment costs. In the future, we will need rapid composition of new
capabilities that can operate in a highly contested and denied environment.
Integrating heterogeneous systems seamlessly and rapidly will enable us
to stay ahead of threats. We will need to exploit the promise of artificial
intelligence to increase capability not only in our fielded systems but also
in our development systems. This research roadmap should serve as the
starting point for a sustained effort to improve software engineering.
The DoD will continue to look to the Carnegie Mellon University Software
Engineering Institute as a leader in improving the state of the art and
practice in software engineering.

The Honorable Heidi Shyu, Under Secretary of Defense
for Research and Engineering

ix

A National Agenda for Software Engineering Research & Development

Acknowledgments

The world runs on software, and software engineering is the means for
enabling the capabilities on which we have come to depend. Although
advances in software have emerged incrementally and organically from
many sectors and enabled commercial advances that were unimaginable
twenty years ago, these current, fundamental piece-parts do not add
up to the level of capability that future systems will require. Without
a focused effort and continual investment and improvement in critical
software engineering knowledge, technologies, and foundational software
engineering research, next-generation applications may simply not be
possible. Consequently, we felt it was imperative to orchestrate the creation
of a National Agenda for Software Engineering Study to identify which
technologies and areas of research are most critical for enabling future
systems. The resulting roadmap is intended to guide the research efforts of
the software engineering community. As we developed this roadmap, we
asked ourselves, “How do we ensure that future software systems will be
safe, predictable, and evolvable?”

With that brief introduction to our study as a backdrop, I would like to
acknowledge the principal team of authors: Mark Klein, John Robert, Erin
Harper, Rob Cunningham, Dio De Niz, Ed Desautels, John Foreman, John
Goodenough, Charlie Holland, Ipek Ozkaya, and Forrest Shull, all from
the Carnegie Mellon University Software Engineering Institute (SEI), along
with James Herbsleb from the Carnegie Mellon University Institute for
Software Research and Douglas Schmidt from Vanderbilt University.
I am grateful for the opportunity to collaborate with this fabulous team
who worked with passion, creativity, and determination to devise a
compelling, thoughtful, and inspiring research roadmap for the future
of software engineering.

It is interesting to note that this study was performed entirely during the
global COVID-19 pandemic. That means that every part of the study was
accomplished in a virtual environment: from designing the study and
meeting with our advisory board, to the workshops we held to engage
with the software engineering research communities, to working with our
distributed team to assemble the study, all of it had to be done in a virtual
setting. I want to thank everyone for their commitment to making time for
this study and for finding creative ways to overcome the communication
barriers and have meaningful conversations that contributed to this
important topic.

x

Architecting the Future of Software Engineering

Our team has appreciated the opportunity to work with senior thought
leaders and luminaries in the field on our advisory board. It’s been very
helpful to have the breadth and depth of representation from different
parts of the community on our board, including representatives from
the Department of Defense (DoD), national labs, defense industrial base
organizations, tech organizations, and academic leaders in computer
science. We’ve been grateful for their enthusiastic participation and
guidance along the way. In the early part of the study, they were
instrumental in advising us on the research focus areas and helping us
connect with the right people to work with on the study. Going forward,
their attention has shifted to helping us think about who needs to know
about this study and how we can enact our roadmap. We were most
fortunate to have Dr. Deb Frincke as our advisory board chair. She
demonstrated amazing leadership and commitment to this study because
of her profound understanding of the critical importance of software
engineering. The stellar advisory board included Vint Cerf, Penny Compton,
Tim Dare, Sara Manning Dawson, Jeff Dexter, Yolanda Gil, Tim McBride,
Michael McQuade, Nancy Pendleton, and William Scherlis. They were
deeply committed to thinking about the future of software engineering and
provided inspiring and thoughtful guidance throughout the study.

Next, our sincere thanks go to the many individuals who took time from
their busy schedules to participate in or lead one of our virtual workshops.
Work of this kind would be impossible without their willingness to share
their experiences and ideas for the benefit of the software engineering
community. We specifically want to thank Michele Falce, who provided
critical ideas and contributions to enable all of the virtual workshops. We
also thank the leaders and facilitators of each the workshops, including
the following:

•	National Agenda for Software Engineering R&D Workshop: Software
Engineering Researcher Edition

Keith Webster (CMU) and Barbora Batokova

•	National Agenda for Software Engineering R&D Workshop: Voice of the
Customer Workshop

Harold Ennulat and Natalie Chronister

•	Future Scenarios Workshop: Developing Plausible Alternative Futures
Keith Webster (CMU)

•	National Agenda for Software Engineering R&D Workshop: DoD Senior
Leaders Workshop

John Robert

•	Software Engineering Grand Challenges and Future Visions Workshop
Forrest Shull, Sandeep Neema (Defense Acquisition Research Projects
Agency), Sol Greenspan (NSF), Christopher Ré (Stanford AI Lab)

xi

A National Agenda for Software Engineering Research & Development

Special thanks also go to the following people who shared their deep
knowledge of the field in our expert interviews: Bob Bonneau, Penny
Compton, Rob Cunningham, Tim Dare, Dio De Niz, Jeff Dexter, Deb
Frincke, Yolanda Gil, John Goodenough, Jim Herbsleb, James Ivers, Grace
Lewis, Ruben Martins, Michael McQuade, Ipek Ozkaya, Nancy Pendleton,
Dan Plakosh, Bill Scherlis, Doug Schmidt, Mary Shaw, Eileen Wrubel,
Hasan Yasar, and Robin Yeman. Jennifer Hykes and Marc Novakouski
were also gracious enough to share their imaginative ideas for our section
on future scenarios.

We would also like to thank our SEI colleagues in the communication,
design, and production teams for their important roles in writing, editing,
creating graphics, and web production. We especially thank Cat Zaccardi
for her design team leadership and creativity, David Biber for his gorgeous
visuals and page design, Donald Kurt Hess for his beautiful graphics, and
Mike Duda for his print expertise and alacrity.

And most importantly, all of the authors of this study would like to
share their sincere gratitude for the critical support, sponsorship, and
contributions of the SEI Director’s Office, including Dr. Paul Nielsen,
Director and CEO; Mr. Dave Thompson, Deputy Director and Chief
Operating Officer; and Dr. Tom Longstaff, Chief Technology Officer. They
understood from the very beginning how challenging this activity would
be, but also recognized what a critical contribution it would make to
advancing the field of software engineering.

And finally, it has been a privilege for us to talk to so many software
leaders with industry, academia, and government perspectives. Without
exception, the discussions reaffirmed the critical importance of advancing
software engineering for national competitiveness and meeting the
increasing expectations of software across the globe. Recent news
headlines highlight current software engineering limitations and are early
indicators that software engineering is unprepared for the even greater
challenges ahead. With your help, this roadmap will bring about a new
era of multidisciplinary research and new partnerships to prepare us for
those challenges and enable ongoing community discussion to advance the
discipline of software engineering.

Anita Carleton, Software Solutions Division Director,
Carnegie Mellon University Software Engineering Institute

Executive Summary
Software Engineering as a Strategic Advantage
We live in an age of software-enabled transformation. Software, and all of
the software engineering processes, practices, technologies, and the scientific
domains that support it, makes our world-class healthcare, defense, commerce,
communication, education, and energy systems possible. It is also a key enabling
component in nearly every area of research, such as smart infrastructure
(nanotech), human augmentation (biotech), and autonomous transportation.
Our dependence on software, however, makes us vulnerable to its weaknesses.
Software weaknesses are a direct reflection of inadequacies in the state of the
art and practice of software engineering, and they can affect millions of people
without warning. Just recently, software issues caused the largest shut-down of
an oil pipeline in U.S. history and allowed attacks that paralyzed hundreds of
businesses on five continents [Satter 2021]. Software quality problems have also
led to loss of life in plane and car crashes, and expensive failures in the space
flight industry [Rhee 2020; CBS 2010].

Without a catalyst for investing in software engineering, the situation will
worsen as we increasingly depend on ever larger and more complex software-
reliant systems. This report is intended to be such a catalyst. Identifying the
critical technologies and areas of research that will enable future systems and
laying out a roadmap to guide research efforts is a crucial step toward making
software a competitive advantage. This study outlines efforts intended to make
future software systems safe, predictable, and evolvable. The Carnegie Mellon
University Software Engineering Institute (CMU SEI) engaged the software
engineering community and assembled an advisory board of visionaries
and senior thought leaders to ensure that the views of the broad software
engineering ecosystem were represented in this multi-year research and
development vision and roadmap.

Findings Reflect New Learnings, Challenges, and Research Needs
Without exception, the work that we surveyed for this study points to software
engineering research as a highly dynamic, fast-moving field where technologies can
arise quickly and grow to become integral parts of the infrastructure of modern
life. While that is perhaps unsurprising, the extent to which recent technology
trends are coming together and allowing the emergence of capabilities with both
speed and quality is remarkable. Many of these technologies and capabilities were
unimaginable even 10 years ago.

The following findings were derived from the state of software engineering practice,
new trends and emerging technologies that will help to advance the state of
software engineering practice, workshops held with software engineering research
communities, a literature survey, interviews with experts in the field, and input
from our advisory board. They summarize key learnings, key challenges, and new
research needed for the future of software engineering.

1.	 Maintaining national software engineering proficiency is a strategic
advantage. Software engineering affects everything because software is
everywhere, including in our nation’s infrastructure, defense, financial,
education, and healthcare systems. Our ever-growing dependence on software
systems makes it imperative to maintain our nation’s leadership and strategic
advantage in software engineering. We need to raise the visibility of software
engineering to the point where it receives the sustained recognition and
investment commensurate with its importance to national security and
competitiveness.

2.	 Maintaining national software engineering proficiency requires sustained
research. New types of systems will continue to push beyond the bounds of
what current software engineering theories, tools, and practices can support.
Future systems and fundamental shifts in software engineering require new
research focus in areas including smart automation, reassuring evolving
systems, understanding composed systems, and new system types, such as
AI-enabled systems, societal-scale systems, and quantum systems.

3.	 Maintaining national software engineering proficiency requires fostering
strategic partnerships. We will need to enable strategic partnerships and
collaborations to drive innovation in software engineering research among
industry, research laboratories, academia, and government.

4.	 Maintaining national software engineering proficiency requires sustained
investment. Policy makers must recognize the benefits of software engineering
and make it a critical national capability. Such recognition would imply a
sustained investment strategy.

5.	 The vision of software engineering needs to change. The current notion of a
software development pipeline will be replaced by one where AI and humans
collaborate to continuously evolve the system based on programmer intent.

6.	 Focusing on re-assuring systems will enable continuous and rapid
incorporation of new capability. Because software is ubiquitous, there is an
ongoing and increasing need for software to continuously evolve to incorporate
new capability. We therefore need to understand how to continuously re-assure
software reliant systems efficiently without doing harm to existing capability.
Elevating the importance of assurance evidence and assurance arguments
will be key.

7.	 New design principles are needed for societal-scale systems.
The growing recognition of software’s impact is generating new quality
attribute requirements for which software engineers will need to develop
better design approaches. In addition to the traditional ones (modifiability,
reliability, performance, etc.), there is a need to add a roster of new quality
attributes like transparency, influence, and so forth.

8.	 The software engineering workforce needs to be (re-)conceived.
Software-reliant systems are built for many different purposes by a broad
collection of people with very disparate skill sets, many of whom do not
have formal software engineering training. We need to better understand
the nature of the needed workforce and what to do to foster its growth.

A Guiding Vision and Roadmap for the Future of
Software Engineering
Our guiding vision, as described in our findings, is one in which the current notion
of the software development pipeline is replaced by one where humans and software
are trustworthy collaborators that rapidly evolve systems based on programmer
intent. To achieve this vision, we anticipate the need for new development and
architectural paradigms for engineering future systems.

Our study helped to inform new areas of research that must be met to advance
software engineering for future systems. In close collaboration with our advisory
board and other leaders in the software engineering research community, we
developed a research roadmap with six research focus areas. The following figure
shows those areas along with a list of research topics to undertake, and then short
descriptions of each of the research focus areas follow. A larger version of this figure
appears on the foldout after page 26.

Com
puting So�

w
are System

s
Engineering Q

uantum

ADVANCED ARCHITECTURAL PARADIGM
SAD

VA
NC

ED
 D

EVELOPMENT PARADIGMS

Compositional Correctness

So�ware Construction through

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

Evolving So�ware Systems

Ass
urin

g Contin
uously

Scale So�ware System

s

So�ware Systems

Engineering Societal-

Engineering AI-Enabled

So
�

w
ar

e
De

ve
lo

pm
en

t

AI
-A

ug
m

en
te

d

Research
Focus
Areas

Research
Topics

Research
Focus
Areas

Research
Topics

Re-envisioned so�ware
development lifecycle

Data & data models for
AI-augmented paradigms

Automated design,
evolution, and analysis tools

Scaled auto-code
generation & repair

Evidence of developer
acceptance

Theory for assured
composition of evidence

Modifiable
assurance
arguments

Assurance
argument
templates

Automatic detection if a
system change invalidates
an assurance argument

Automatic system update
recommendations based
on operational data

Tool chains for
combining evidence

to re-assure
a system

Theory of composability for
model-integrated computing
and quality attributes

Documented patterns and tools
for composition notations,
rules, & relationships

“Smart composition”
technologies

Integrated tool chains
to assure composed

behaviors at scale
before & during

runtime

Intelligent
interacting

formalisms &
assurance

capabilities

AI-enabled system
specification methods

Design and analysis methods
for AI-enabled systems

Testing practices for
AI-enabled systems

Data management in
support of
AI-enabled systems

Uncertainty
management
methods

Continuous
monitoring &
sustainment

New quality attributes
based on human
behavior at scale

System instrumentation to
monitor e�ects of system
on social behavior

Automated detection &
protection against misuse of
socio-technical platforms

Platforms for
continuously evolving
socio-technical
ecosystems

Expanded set of
quantum algorithms

Standardized
so�ware stack
interfaces

Debugging tools
& techniques

Hybrid classical
quantum algorithms

Domain-specific
languages

Profiling tools

New forms of
evidence of quality

�Software Engineering Research Roadmap with Focus Areas and Research Objectives (10–15 Year Horizon)

AI-Augmented Software Development. At almost every stage of the software
development process, AI holds the promise of assisting humans. By relieving humans
of tedious tasks, they will be better able to focus on tasks that require the creativity
and innovation that only humans can provide. To reach this important goal, we
need to re-envision the entire software development process with increased AI and
automation tool support for developers. A key challenge will be taking advantage of
the data generated throughout the lifecycle. The focus of this research area is on what
AI-augmented software development will look like at each stage of the development
process and during continuous evolution, where AI will be particularly useful in
taking on routine tasks.

Assuring Continuously Evolving Software Systems. When we consider the
software-reliant systems of today, we see that they are not static (or even infrequently
updated) engineering artifacts. Instead, they are fluid—meaning that they are
expected to undergo almost continuous updates and improvements and be shown
to still work. The goal of this research area is, therefore, to develop a theory and
practice of rapid and assured software evolution that enables efficient and bounded
re-assurance of continuously evolving systems.

Software Construction through Compositional Correctness. As the scope and
scale of software-reliant systems continues to grow and change continuously, the
complexity of these systems makes it unrealistic for any one person or group to
understand the entire system. It is therefore necessary to integrate (and continually
re-integrate) software-reliant systems using technologies and platforms that support
the composition of modular components. This is particularly difficult since many of
such components are reused from existing elements that were not designed to be
integrated or evolved together. The goal of this research area is to create methods
and tools that enable the specification and enforcement of composition rules
that allow (1) the creation of required behaviors (both functionality and quality
attributes) and (2) the assurance of these behaviors.

Engineering AI-Enabled Software Systems. AI-enabled systems, which are software-
reliant systems that include AI and non-AI components, have some inherently
different characteristics than those without AI. However, AI-enabled systems are,
above all, a type of software system. These systems share many parallels with the
development and sustainment of more conventional software-reliant systems.
This research area focuses on exploring which existing software engineering
practices can reliably support the development of AI systems, as well as identifying
and augmenting software engineering techniques for the specification, design,
architecture, analysis, deployment, and sustainment of systems with AI components.

Engineering Socio-Technical Systems. Societal-scale software systems, such as
today’s commercial social media systems, are designed to keep users engaged and
often to influence them. A key challenge in engineering societal-scale systems
is predicting outcomes of the socially inspired quality attributes that arise when
humans are integral components of the system. The goal is to leverage insights from
the social sciences to build and evolve societal-scale software systems that consider
these attributes.

Engineering Quantum Computing Software Systems. Advances in software
engineering for quantum are as important as the hardware advances. The goals of
this research area are to first enable current quantum computers to be programmed
more easily and reliably, and then enable increasing abstraction as larger, fully
fault-tolerant quantum computing systems become available. A key challenge is to,
eventually, fully integrate these types of systems into a unified classical and quantum
software development lifecycle.

Research and Enactment Recommendations Catalyze Change
Catalyzing change that advances software engineering will lead to more trustworthy
and capable software-reliant systems. The research focus areas shown in the
roadmap graphic previewed earlier in this section and on foldout following page
25 led to a set of research recommendations that are necessary to catalyze change,
which are followed by enactment recommendations that focus on people, investment,
and sustainment are needed.

The following research recommendations address challenges such as the increasing
use of AI, assuring changing systems, composing and re-composing systems, and
engineering socio-technical and heterogenous systems.

1.	 Enable AI as a reliable system capability enhancer. The software engineering
and AI communities should join forces to develop a discipline of AI engineering.
This should enable the development and evolution of AI-enabled software
systems that behave as intended and enable AI to be used as a software
engineering workforce multiplier.

2.	 Develop a theory and practice for software evolution and re-assurance
at scale. The software engineering research community should develop
a theory and associated practices for re-assuring continuously evolving
software systems. A focal point for this research is an assurance argument,
which should be a software engineering artifact equal in importance to
a system’s architecture, that ensures small system changes only require
incremental re-assurance.

3.	 Develop formal semantics for composition technology. The computer science
community should focus on the newest generation of composition technology
to ensure that technologies such as dependency-injection frameworks preserve
semantics through the various levels of abstraction that specify system
behavior. This will allow us to reap the benefits of development by composition
while achieving predictable runtime behavior.

4.	 Mature the engineering of societal-scale socio-technical systems. The
software engineering community should collaborate with social science
communities to develop engineering principles for socio-technical systems.
Theories and techniques from disciplines such as sociology and psychology
should be used to discover new design principles for socio-technical
systems, which in turn should result in more predictable behavior from
societal-scale systems.

5.	 Catalyze increased attention on engineering for new computational
models, with a focus on quantum-enabled software systems. The software
engineering community should collaborate with the quantum computing
community to anticipate new architectural paradigms for quantum-enabled
computing systems. The focus should be on understanding how the quantum
computational model affects all layers of the software stack.

The above recommendations focused on scientific and engineering barriers to
achieving change. The following enactment recommendations focus on institutional
obstacles, including economic, human, and policy barriers.

6.	 Ensure investment priority reflects the importance of software engineering
as a critical national capability. The strategic role of software engineering
in national security and global market competitiveness should be reflected
in national research activities, including those undertaken by the U.S. White
House Office of Science and Technology Policy (OSTP) and Networking and
Information Technology Research and Development (NITRD). These research
activities should recognize software engineering research as an investment
priority on par with chip manufacturing and AI with benefits to national
competitiveness and security. Software engineering grand challenges
sponsored by DARPA, the National Science Foundation (NSF), and FFRDCs
are also suggested.

7.	 Institutionalize ongoing advancement of software engineering research.
Sustained advancements in software engineering requires institutionalizing
an ongoing review and reinvestment cycle for software engineering research
and its impact on software engineering practice. Maintaining national software
engineering proficiency requires research funding sources and institutes
working with industry and government leaders in the software engineering
community to periodically review the state of software engineering.

8.	 Develop a strategy for ensuring an effective workforce for the future of
software engineering. Currently, software engineering is performed by
a broad collection of people with an interdisciplinary skill set not always
including formal training in software engineering. Moreover, the nature of
software engineering seems to be changing in reaction to the fluid nature
of software-reliant systems. We need to better understand the nature of the
needed workforce and what to do to foster its growth. The software engineering
community, software industry, and academic community should create a
strategy for ensuring an effective future software engineering workforce.

Architecting Future Systems Requires Software
Engineering Advances
Due to the conceptual nature of software, it continues to grow, without bounds, in
capability, complexity, and interconnection. There seems to be no plateau in the
advancement of software. To make future software systems safe, predictable, and
evolvable, the software engineering community—with sufficient investment from
private and public sources—must work together to advance the theory and practice
of software engineering strategically to enable the next generation of software-
reliant systems.

1

A National Agenda for Software Engineering Research & Development

1 Introduction
We live in an age of software-enabled
transformation. Over the last half-century, software
has become profoundly intertwined in our
personal lives, and it is vital to our country’s global
competitiveness, innovation, and national security.
As society entrusts software with ever more
complex and critical functionality, our reliance
on future software systems will increase—yet
systems will be significantly more complicated
to build and maintain. Software engineering
is the discipline entrusted with building and
maintaining these pervasive software systems.

Through the application of engineering to software, the necessary theories,
tools, and practices are applied that enable the delivery and maintenance
of software systems that are capable, reliable, timely, and affordable
[Bourque 2014]. As systems continue to evolve, we can be almost certain
that new types of systems will push beyond the current bounds of software
engineering. We will not be able to develop and maintain future software
systems adequately unless appropriate research is done to overcome the
engineering problems inherent in new and emerging trends and software
technologies. Software offers unlimited potential that can only be realized
through advancements in software engineering.

1.1 	 Software Enables Capability and Innovation
Software provides the capabilities for many activities essential to modern
life. It enables the functionality of our cell phones, cars, medical equipment,
and much more. Software also enables innovation. In today’s cars, for
example, every component is connected to a central computer, and millions
of lines of code enable all the features we have come to expect
[McFadden 2021].

Software is in everything, and everything is in software. Software connects
decision makers to data, improves the flow of goods to customers, and
enables communication worldwide. We can connect with geographically
dispersed friends and family through social networks enabled by software.
We can easily access oil, gas, and electricity because software manages
their flow through pipelines and power grids. Thanks to software, we often
take for granted the appearance of these and other critical commodities in
our daily lives.

2

Architecting the Future of Software Engineering

1.2 	 Software Is an Achilles Heel
Although software is an enabler that society has grown to depend on,
our dependence has also made us vulnerable to its weaknesses. For
example, recent software quality problems have resulted in vulnerabilities
that allowed hackers to gain access to data from billions of individuals,
companies, and government offices [Tunggal 2021]. Software vulnerabilities
also caused the largest shutdown of an oil pipeline in U.S. history and
allowed attacks that paralyzed hundreds of businesses on all five continents
[Satter 2021]. Software quality problems have led to loss of life in plane and
car crashes, and expensive failures in the space flight industry [Rhee 2020;
CBS 2010]. In fact, the total cost of poor software quality in the United States
in 2020 was $2.08 trillion, according to the Consortium for Information and
Software Quality (CISQ) [Krasner 2021].

1.3	 Software Is the Backbone of Safety-Critical Systems
Many multi-national companies are experiencing the hard failures that
come when software engineering efforts do not reach the level of quality
demanded by their systems. For example, a major space initiative has been
plagued with faulty designs, software errors, and issues with assurance
practices [Pasztor 2021]. To identify the root cause of these mounting
problems, experts point to a lack of software engineering leadership and
discipline [McFall-Johnsen 2020]. Space initiatives are hardly alone in these
challenges. For example, unintended acceleration related to software in
several different automobiles is thought to have been involved in the deaths
of many people over the past decade, and additional problems with braking
control in cars can be traced to problematic and poor quality software
[Mitchell 2010].

1.4	 Software Often Relies on Complex Supply Chains
The modern software supply chain often includes a large number of
stakeholders that contribute to the content of a software product or have
the opportunity to modify its content. Therefore, the entire supply chain
is an important part of the ecosystem that must be considered when we
contemplate software quality. (See Figure 1 for an example of the complex
relationships that can exist in a supply chain for a DoD system.1)

The increasingly global nature of software development has raised
concerns about supply chain attacks.2 These types of attacks are rapidly
growing in number and scope, and they are made more effective by
increasingly interconnected systems and the lack of transparency in
software codebases and libraries.

1	 Figure modified from the SEI white paper by Dorofee et al., A Systemic Approach for Assessing Software
Supply-Chain Risk. Software Engineering Institute. February 2013.

2	 Supply chain attacks are cyberattacks that seek to damage an organization or gain access to information
by targeting less-secure elements in the supply chain. In this type of attack, hackers can infect a single
component that is then distributed downstream to many systems through legitimate software workflows
and patches or updates.

3

A National Agenda for Software Engineering Research & Development

?

?

?

? ? ? ?

Program
Office

Prime
Contractor

U.S.
Developers

Foreign
Developers

Supplier

Supplier

Supplier

Contractor

Develop
In-House

Develop
In-House

Develop
In-House

Acquire
COTS

Develop
in U.S.

Use Legacy
Software

Develop
Offshore

U.S.
Developers

Foreign
Developers

Develop
in U.S.

Develop
Offshore

Acquire

Acquire

Outsource

Outsource

Reuse

Reuse

Figure 1:	 Software Supply Chain Relationships Example

For example, in 2020 a U.S. company that develops software to help
businesses manage their networks and information technology
infrastructures proved to be an ideal target for the largest known supply
chain attack to date. By inserting malicious code into a routine software
update, Russian hackers were able to compromise third-party software
used by four-fifths of Fortune 500 companies (including Microsoft, Intel,
FireEye, and Deloitte) and many U.S. government agencies (including the
Department of Homeland Security, the Department of State, and the DoD).
Altogether, about 30,000 public and private organizations were using the
potentially infected software, which led to a web of compromised data,
systems, and networks [Turton 2020].

Understanding the functionality and quality of the code used, and
documenting and validating the supply chain, is important. Supply chain
integrity is critical, yet the reuse of code that is of low or unknown quality
is commonplace. Tracking the provenance of software is one way to combat
this problem, and developing techniques and tools for doing so would
contribute to improving software quality.

4

Architecting the Future of Software Engineering

1.5	 Software Is a Component of Critical Infrastructure
The development or reuse of poor quality software can introduce
vulnerabilities that allow cybercriminals to access the software that
controls our critical infrastructure and wreak havoc. One such high-profile
attack occurred in May 2021 on the Colonial Pipeline, which transports
approximately 100 million gallons of gasoline, diesel, and jet fuel daily,
supplying about 45% of all fuel consumed on the East Coast [Eaton 2021].
The hacker group DarkSide launched a ransomware attack3 against the
pipeline’s systems, causing the company to shut down all of its operations
to contain the attack. This incident is being characterized as one of the most
significant attacks on critical infrastructure in history. Ransomware attacks
increased by 715% in 2020 and are currently the fastest growing type of
cyberattack [Bitdefender 2020]. About 1,000 organizations per week are
being hit by ransomware attacks, with utilities the second-most-common
target, behind healthcare organizations [Lanowitz 2021].

Energy
Communications

Financial

$

Healthcare and
Public Health

Defense
Industrial

Base

Critical
Manufacturing

Government
Facilities

Transportation
Systems

While many of the long-term challenges in developing and deploying
secure software in critical infrastructure are known, the problems remain,
and poor quality software code continues to propagate vulnerabilities
throughout our infrastructure.

1.6 	 Software Engineering Determines Software Quality
Software failures are a direct reflection of inadequacies in how software
is developed and maintained [van Genuchten 2019; Shaw 2002]. That is,
poor quality software is the direct result of the current state of the art and
practice in software engineering. Some effects are highly visible, such as
the lives lost due to the loss of control of physical objects. Other effects are
less visible, such as when vehicle emissions systems perform poorly or
cell phone apps collect and share data without permission from the user.
Without a catalyst for investing in software engineering, the situation will

3	 The U.S. Cybersecurity and Infrastructure Security Agency (CISA) defines ransomware as “an ever-evolving
form of malware designed to encrypt files on a device, rendering any files and the systems that rely on them
unusable. Malicious actors then demand ransom in exchange for decryption.”

5

A National Agenda for Software Engineering Research & Development

worsen due to an ever-increasing dependence on increasingly large and
complex software-reliant systems. This report is intended to be such a
catalyst for making software engineering a strategic advantage.

1.7 	 Call to Action
Although advances in software have emerged incrementally and organically
from many sectors, and enabled advances that were unimaginable 20
years ago, they do not provide the levels of capability, safety, quality,
and evolvability that future systems will require. While sound research
in software engineering is being carried out, a focused effort, continual
investment, and improvement in critical software engineering technologies
are needed; otherwise, assured, next-generation applications may simply
not be possible.

This study identifies areas of research that are critical for enabling future
systems and provides a roadmap to guide the research efforts of the
software engineering community. As we developed this roadmap, we placed
primary importance on what is needed to ensure that future software
systems will be safe, predictable, and evolvable [DSB 2018; DoD 2018a; DoD
2018b; Office of the President 2017].

This report is a call to action that highlights the need for continual
investment in software engineering research to achieve the vision
described by the research roadmap. Research investment must be
commensurate with software engineering’s importance to national security
and competitiveness, and motivating industry and government investment
partnerships will be a key element of a successful plan.

1.8 	 Scope
This study addresses the following questions:

•	How will software systems of the future be rapidly developed, assured,
analyzed, and deployed?

•	What major open problems and “grand challenges” are important?

•	What software engineering research is needed to invent solutions for
these challenges?

•	How can we incentivize strategic partnerships and collaborations
between government, academia, and industry?

It is important to emphasize that software engineering cannot be
considered in isolation and requires a whole-system perspective, which
includes software, hardware, and people. We include elements of this
thinking in the report, but primarily focus our discussion on the software
engineering research agenda. It is also important to emphasize that this
study is intended to be applicable to all types of software-reliant systems,
such as safety-critical military and commercial systems; business and
logistics systems; and systems that support research of all types.

A focused
effort, continual
investment, and
improvements in
critical software
engineering
technologies
are needed;
otherwise, assured
next-generation
applications may
simply not be
possible.

6

Architecting the Future of Software Engineering

While software-engineering-enabled solutions have the potential for
transformative impacts across all sectors of society and the economy, there
are also concerns about the security and vulnerability of these systems.
This study does not directly address cybersecurity in depth because its
importance is already well established, and the SEI and others continue to
publish studies this area.

As the resources driving the AI revolution continue to grow, the
development and deployment of these technologies is poised not only to
continue but to accelerate. We have positioned our discussion around AI as
a capability enhancer as well as a source of engineering uncertainty, but we
do not propose a research agenda for AI. The SEI and others have significant
programs of research dedicated to machine learning and AI.

1.9 	 Audience
Some of the intended audiences for this study are described below:

•	 Industrial researchers, academic researchers, technologists, and
research laboratories may find interesting the identification of
important open problem areas where research solutions could be
particularly impactful, and where new modes of working across the
industry/academia divide could yield dividends.

•	Research funders, policy-makers, and legislative representatives may
appreciate the argument that investments in the areas identified have
the potential to broadly support important developments in research
and practice across numerous domains.

•	Software developers, practitioners, and program managers may find
useful the reminder of key challenge areas in the field today and may be
inspired to work with researchers to help address them more broadly.

•	Federally funded research and development centers (FFRDCs) may
be inspired to work together on some of these fundamental software
issues that will help address national priorities across the many
specific areas of focus for the various FFRDCs.

•	 Educators may appreciate the snapshot of the state of the practice today in
the field (and the articulation of its limits) for use in classes and curricula.

•	 Industry leaders may find areas of research and workforce
improvement that complement their needs and identify ways to work
with researchers on critical issues in the commercial realm.

7

A National Agenda for Software Engineering Research & Development

1.10 	Approach
Software engineering exists as a global ecosystem that includes many
stakeholders with different perspectives, including software developers,
software tool vendors, companies that integrate software into their
products, software researchers, and government sponsors of software
research. For this study, the CMU SEI engaged the software engineering
community and assembled an advisory board of visionaries and senior
thought leaders across commercial industry, academia, and government.
With their input, the study team worked to create the multi-year research
and development vision and roadmap for engineering next-generation
software-reliant systems in this document.

Coordination among these communities was vital to developing the
agenda and will also be needed to implement the results. Understanding
the diverse software engineering ecosystem, identifying future needs,
and determining ways to effect change required a range of activities, as
summarized in Figure 2.

Advisory Board
Computing Landscape
Emerging Technologies
Literature Review
Expert Interviews
Workshops
Future Scenarios

National Agenda Study:
Roadmap/Outcome

Thriving Software
Engineering Ecosystem

Assemble research focus areas,
findings, and recommendations

Enact
recommendations

Cast a wide net with input
from many communities

Figure 2:	 Approach for Developing This Study

As we developed this study, the team conducted background research and
literature surveys, held workshops, performed expert interviews, evaluated
computing and software trends and emerging technologies, developed
future scenarios, worked with our advisory board, and examined software-
related economic and business data. Appendix A provides additional
information on the workshops that were held to engage with software
engineering communities, including a cohosted workshop with the Defense
Advanced Research Projects Agency (DARPA).

9

A National Agenda for Software Engineering Research & Development

2 Exploring Emerging Trends
and Technologies
Advances in computing technologies continue
to be a key driver for U.S. leadership in science
and technology, national security, and economic
competitiveness [DIB 2019]. To anticipate the
research and development that will be needed to
support software engineering in the future, it is
important to keep a close watch on the emerging
trends and technologies that help to inform new
challenges and opportunities.

Although it is not possible to explore them all in one document, those
included in this section help to paint a picture of the technology landscape
that is impacting software engineering research.

2.1 	 Trends
Trends grow and change constantly in today’s fast-moving world. The
following paragraphs focus on several current trends that we believe are
important for envisioning how software systems will look in the future.

The software engineering pipeline is changing, accelerating the
production of code and the ability to deploy software at high velocity.
Private and public sector enterprises today face the challenges of a
rapidly changing competitive landscape, evolving security requirements,
and performance scalability. Enterprises are working to adopt rapid
development and deployment with innovation and confidence, bridging
the gap between operations stability and rapid feature development. At the
scale of large aerospace organizations or product organizations such as
Amazon, this often means thousands of independent software teams must
be able to work in parallel to deliver software quickly, securely, reliably, and
with zero tolerance for outages or errors. Rapid development practices, such
as continuous integration/continuous development (CI/CD) and DevSecOps,
are being used to deliver software features rapidly and reliably. Further
progressing on this rapid development/deployment continuum, the notion
of a software engineering pipeline is morphing into a fluid process through
which new capability is introduced into ever-evolving systems.

10

Architecting the Future of Software Engineering

New types of systems will continue to push beyond the bounds of what
current software engineering theories, tools, and practices can support
[Kim 2019; Murphy 2020; NITRD 2011; Weyuker 2021; Wing 2021]. For
example, trends already point toward the development and increasing use
of these system types:

•	Very adaptive mission defense systems. Software increasingly enables
new heterogeneous computing systems that combine intelligence,
weapons, human-machine teaming, and other capabilities.

•	Systems that perform large-scale data fusion. Whether for news or
intelligence, these systems take advantage of vast data streams,
including open source data. These data streams will also drive new
ways of constructing future systems.

•	Smart cities, buildings, roads, cars, and other transport. Software systems
are now integral to critical infrastructure in these domains, and they
need to handle integration at scale as well as deal appropriately with
safety and privacy concerns.

•	Personal digital assistants—that really assist. Software systems must
learn and adapt as part of their integration in home, business, and
national security workflows, as well as our personal lives.

•	Dynamically integrated healthcare. Devices from home, doctors’ offices,
and hospitals will be increasingly integrated in functionality and data
usage. This integration will result in better preventive, corrective, and
recovery care.

•	Societal-scale systems. These platforms, enabled by advances in
connectivity, AI, and data science, are becoming larger and more
influential. As these systems grow, they influence social behavior and
create impact at the societal level. The trend toward these types of
systems has exploded over the last decade, with 3.96 billion people
using social media worldwide [Dean 2021].

11

A National Agenda for Software Engineering Research & Development

Scale motivates the need for safe and resilient software composition.
The scope and scale of software-reliant systems is continuously changing
and growing [NRC 2010]. As improvements in computer hardware
enable the development of more complex, advanced software, and as
more devices connect to the network through sensors and the Internet
of Things (IoT), it becomes clear that increasing scale is a trend with no
sign of slowing down. Developing and sustaining software components
from scratch in these large, complicated systems is no longer realistic.
Consequently, a common trend is to integrate (and continually reintegrate)
software-reliant systems out of modular components, many of which are
reused from existing elements.

The development and sustainment of artificial intelligence (AI) systems
shares many parallels with building, deploying, and sustaining software
systems. AI has captured the public imagination, as well as extensive
investment and research dollars [Gil 2019]. The use of AI is an expanding
trend, as it is increasingly employed across industries. While AI is a field
unto itself with many sub fields and applications, it has great potential for
use in software development. AI-augmented software development holds
promise for automating common or tedious tasks and for making processes
more efficient, effective, and enjoyable for humans. Research programs in
software engineering will need to focus on the challenges that AI elements
bring to software analysis, design, construction, deployment, maintenance,
and evolution.

Data privacy and trust are increasingly important design considerations
for software systems. Data is now a strategic asset that is bundled, shared,
sold, and dispersed around the world. Appropriately using this data while
simultaneously protecting it and preventing its misuse presents serious
architectural and software engineering challenges related to privacy, trust,
and ethics. Technologies are being developed to help protect data, such as
those that allow differential privacy. These technologies are important for
things like the census, medical analyses, and other data analysis efforts
that involve gathering information about individuals. Trust is related to the
confidence you have in the data or output of a system, and is of particular
concern to society in systems that contain AI. Other technologies have the
potential to build trust, such as blockchain, a distributed ledger technology.
It is enabling new opportunities in software engineering, with applications
in software testing, quality, configuration management, and maintenance
[Demi 2021].

Research
programs
in software
engineering will
need to focus on
the challenges
that AI elements
bring to software
analysis, design,
construction,
deployment,
maintenance,
and evolution.

12

Architecting the Future of Software Engineering

2.2 	 Emerging Technologies
The robust technology ecosystem we have today means new technologies
are introduced constantly, and many more are on the horizon.
Understanding the capabilities these technologies can bring and how
to integrate them into systems quickly, securely, and with predictable
performance is key to making sure they are an asset to software systems
instead of a source of weakness or instability. In the following paragraphs,
we briefly highlight some technologies that directly impact software
engineering [Holland 2020].4

Advanced computing is creating new engineering challenges in
composing and evolving systems. Advanced computing generally refers to
a set of capabilities that are beyond the reach of desktop computers and
the general public. It often means using specialized software or hardware
to provide advanced technical capabilities that support massive, data-
intensive projects. Some examples of advanced computing include high-
performance computing (often for simulations and modeling), large cloud
computing implementations, and the use of quantum mechanics and
information theory.

The last decade has seen many developments in advanced computing
supported by new hardware, such as multicore chips, graphics processing
units, field programmable gate arrays, and application-specific integrated
circuits at the chip level. A long-term technological opportunity also
exists to develop a software ecosystem that enables scalable quantum
computing. Advanced computing underscores the fact that the computing
environment of the future will be increasingly heterogeneous, which
will create new challenges in composing and evolving systems across
computational foundations.

The smarter edge presents new challenges due to scale. The smarter edge
is a catch-all term for new advancements to push heterogeneous computing
power, applications, and data to the edge of the Internet. It goes beyond a
conventional computer network and incorporates devices at the edge of
the network such as sensors, IoT devices, and mobile phones. While the
concept of ubiquitous computing has existed for decades, there have been
recent advancements to accelerate the smarter edge, including hardware
improvements and the expansion of 5G networks. Edge data is growing
rapidly, thanks to ubiquitous sensing and the IoT, and the field of analytics
is creating innovative new ways for distributed data analysis using a
combination of edge devices and central processing. The future smarter
edge might even include more nontraditional devices, such as space-based
satellite mega-constellations to enable the next wave of connectivity.

4	 See the SEI paper by Holland and Tanenbaum, Emerging Technologies 2020: Six Areas of Opportunity, for
more information on the technologies in this section.

13

A National Agenda for Software Engineering Research & Development

Digital twins create new opportunities and challenges for assuring
systems. A digital twin is a high-fidelity digital or computer representation
of a physical object with some ability to reason about the object’s properties.
These types of models allow us to find out how real-world objects might
behave under a number of different conditions or requirements. Digital
twins have begun to incorporate the transmission of real-time data sensed
by the real-world object. This new, higher-resolution sensor data allows
the digital twin to reason about future behaviors, then transmit feedback
to the physical object. Digital twins create new opportunities for software
engineers to use data to develop and assure software systems, but they also
create new challenges in scale as digital twins are created for more and
more systems in the physical world.

Quantum-enabled systems create new challenges in combining disparate
computational models. Software engineering is a challenge for quantum-
enabled systems: Advances will be required in many areas, including
quantum algorithms, development tools, languages, computing platforms,
and testbeds. If we imagine that the hardware advances that permit scaling
in quantum computing are achieved, then these and many more advances
in software and software engineering will be required as well.

Extended reality provides new opportunities for human interaction and for
visualizing complex data and systems. Extended reality refers to augmented
reality (AR), virtual reality (VR), and combinations of the two. AR includes
the use of devices, such as specialized glasses that display supplementary
material, that allow the individual to see the real world, but with augmented
information. VR, in contrast, refers to the use of specialized devices that
enable a person to see only a virtual world. An essential quality of extended
reality is its power to radically reshape humanity’s reasoning about
information. These technologies could provide new interfaces for software
engineers to visualize complex data or systems and enable new interfaces
with greater productivity.

An essential quality
of extended reality
is its power to
radically reshape
humanity’s
reasoning about
information.

15

A National Agenda for Software Engineering Research & Development

3 Findings
The work that we surveyed for this study points
to software engineering as a highly dynamic,
fast-moving field where technologies can arise
quickly and grow to become integral parts of
the infrastructure of modern life. While that
is perhaps unsurprising, the extent to which
recent technology trends are coming together
and allowing the swift emergence of high-quality
capabilities is remarkable.

Although this was evident in our literature survey, it became even more
apparent as we held workshops and interviews with experts in the field.
The following findings summarize key learnings, key challenges, and new
research needed for the future of software engineering.

1.		Maintaining national software engineering proficiency is a
strategic advantage.

Software engineering affects everything, because software is everywhere,
including in our nation’s infrastructure, defense, financial, education, and
healthcare systems. Our ever-growing dependence on software systems makes
it imperative to maintain our nation’s leadership and strategic advantage in
software engineering. We need to raise the visibility of software engineering
to the point where it receives the sustained recognition and investment
commensurate with its importance to national security and competitiveness.
Software increasingly augments human interactions at ever-larger scales and with
ever-greater potential impacts. As our reliance on software increases, improved
software engineering technologies are needed that can handle the larger and
more complicated systems of the future.

16

Architecting the Future of Software Engineering

2.		Maintaining national software engineering proficiency requires
sustained research.

New types of systems will continue to push beyond the bounds of what
current software engineering theories, tools, and practices can support. Future
systems and fundamental shifts in software engineering require new research
focus in areas including smart automation, reassuring evolving systems, and
understanding composed systems. New system types, such as AI-enabled
systems, societal-scale systems, and quantum systems, also drive the need for
new research.
Predictable and pervasive use of AI will also lead to new software engineering
principles. Incorporating AI in software systems requires research in AI
engineering to enhance the necessary software engineering environments and
tools. Incorporating AI also requires an understanding of how AI and non-AI
components can work together for overall predictable system behavior. Software
engineering tools are a special kind of system, and incorporating AI into these
tools will enable more effective software engineering. Once we understand how
to do that in a predictable way, it will allow more responsibility to be shifted
to AI, and the collaboration between AI and humans will continue to enhance
software engineering.

3.		Maintaining national software engineering proficiency requires
fostering strategic partnerships.

We need to enable strategic partnerships and collaborations to drive innovation
in software engineering research among industry, research laboratories,
academia, and government. AI into these tools will enable more effective
software engineering.

Government

Industry

Research
Laboratories

Academia

4.		Maintaining national software engineering proficiency requires
sustained investment.

We must ensure policy makers recognize the benefits of software engineering and
make it a critical national capability. Such recognition would imply a sustained
investment strategy.

17

A National Agenda for Software Engineering Research & Development

5.		The vision of software engineering needs to change.

The current notion of a software development pipeline will be replaced by one
where AI and humans collaborate to continuously evolve the system based on
programmer intent.

6.		Focusing on re-assuring systems will enable continuous and
rapid incorporation of new capability.

Because software is ubiquitous, there is an ongoing and increasing need for
software to continuously evolve to incorporate new capability. We therefore need
to understand how to continuously re-assure software-reliant systems efficiently,
without doing harm to existing capability. Elevating the importance of assurance
evidence and assurance arguments will be key.

7.		 New design principles are needed for societal-scale systems.

The growing recognition of software’s impact is generating new quality attribute
requirements for which software engineers will need to develop better design
approaches. In addition to traditional ones (such as modifiability, reliability,
performance, etc.), there is a need to add a roster of new quality attributes, such
as transparency and influence.
Engineering societal-scale systems involves subtle judgments (for example, the
appropriate interaction between software systems and free speech principles).
One common characteristic of societal-scale systems is that humans are integral
components of the system. These systems should provide information or
communication channels that can predictably lead to desired outcomes (such as
engagement, accuracy, and so forth) from their users. As these systems proliferate,
more research is needed to enable such prediction and control of system behavior.

8.		The software engineering workforce needs to be (re-)conceived.

Software-reliant systems are built for many different purposes by a broad
collection of people with very disparate skill sets, many of whom do not have
formal software engineering training. We need to better understand the nature of
the needed workforce and what to do to foster its growth.
Society in general has expressed concern about the adequacy and availability
of software engineering talent. There appears to be growing concern about a
number of topics, including changing technology skillsets, global competition for
software engineering talent, and the role of software education. What seems to
be clear is that no matter what tools are provided or what level of abstraction we
use to construct systems, there will always be an important role for humans to
contribute in evolving software engineering.

19

A National Agenda for Software Engineering Research & Development

4 Envisioning the Future of
Software Engineering
Imagine it’s 2035. What will software engineering
look like? Perhaps we can imagine it as more of
a technical conversation between humans and
computers than a process of manually refining
specifications and code.

4.1	 Future Scenarios
Consider this scenario: The days of endless requirements and design
reviews are gone. A joint team of aeronautical engineers, pilots, and
software engineers together design the next space-capable craft by pitching
ideas, which are turned into viable designs based on access to extensive
codified knowledge about cyber-physical systems, as well as the limitations
of physics. These designs are displayed in real time, and the team compares
defensive and maneuverability capabilities on the fly using real-time

simulations of representative missions. The final design is selected based on
the most desirable balance of cost, capabilities, and timeline. Today’s notion
of a software development lifecycle might seem almost archaic compared to
this fluid, iterative process.

Developing software in the future is likely to become more about expressing
desired capability than writing code or having a mental repository of
algorithms. Software engineers will have to become adept at expressing
intent in a way that readily enables the computer to learn from experience.
“Elegant software” will no longer refer to clever code, but will rather be the

20

Architecting the Future of Software Engineering

result as humans work with automated and AI systems to implement the
best ideas humans can imagine in the most timely, affordable, ethical, and
secure ways.

Who can “program” and create complex systems will naturally expand as
well. Our conversations with computers will take place in the language
of our domains, with computational biologists, for example, developing
software capabilities by talking about sequencing and genes, not by
learning Python. Specialists of all types will be needed to inform the
computer properly, and how they interact will look significantly different
than it does today.

The use of simulation may turn today’s entire notion of test and evaluation
into an immersive experience. Imagine that a new hardware configuration
and software capabilities are planned for a series of space assets. In a
fully immersive virtual reality environment, the changes are emulated
with the full telemetry of the current assets feeding the environment.
Engineers can view the new space configuration from any vantage point,
and not only in a visual range. All the available data and metadata from
the current environment is also presented in real time. Where the desired
effect is not what was anticipated, the engineer makes changes and
immediately sees the impact on the holistic space environment. Moreover,
dozens or more additional engineers are observing and manipulating
the same environment in a shared experience. Communication between
the engineers, enabled by many types of media, and a shared decision
process assure that the system as a whole has no unintended or undesired
emergent behavior. This same environment will be used once the change is
made to support operator training and real-time mission rehearsal.

Once deployed, systems will also be much more adaptable and integrated.
Consider a scenario that involves a special forces team on a deployment,
and imagine a firefight breaks out. The squad is caught off guard,
communications have been disrupted, and they’re unsure of the weapons
being used against them. Fortunately, they are teaming with a set of
micro unmanned aircraft systems that proactively set up a mesh network

21

A National Agenda for Software Engineering Research & Development

using alternate communications channels to re-establish contact with
headquarters. Once that network is established, the squad directs the
devices to observe and profile the weapons on the battlefield covertly and
provide mitigation options while they take cover. As a result, they are not
only able to overcome the novel threat locally but also feed their real-time
experience to other units at the tactical edge that could be at risk. To make
this scenario a reality, software engineers will need to design architectures
that are nimble and allow adjustments to systems based on data from
operational sensors and other input from users in the field.

Animators designing the next movie might work differently as adaptive user
interfaces expand their capabilities. No longer expected to know coding and
scripting, they can take their creative design skills much further as they
develop fully immersive movies. In the “Age of the Holodeck,” they are able
to incorporate novel visual storylines, design clothes for next-generation
haptic feedback, and create events that react to the viewer’s input. As plot
possibilities are explored over time, the interactive experiences evolve and
improve to tailor to the preferences of the participants, building on the
intent of the artists that set it in motion.

Students of software engineering will also learn differently. The AI and
automation that help them craft their code might be largely invisible as
they focus on their primary job: learning how to best understand and
express what the software should (and should not) do. What is their
intent for the program? How can they be sure this intent will be carried
out over time? Is the end result not only functional, but also evolvable,
intuitive for users, and trustworthy? One example project might involve
a personalized web “browser” that tailors itself to an individual’s needs
while also self-updating robust layers of security to protect critical
data. The same system could still cultivate and share appropriate
information anonymously in real time to help other students working
on similar projects.

22

Architecting the Future of Software Engineering

As software engineers move into the workforce, they will no longer be
required to try to understand the ripple effects brought about by changes
in increasingly complex systems. As the systems are evolved by both
humans and AI assistants, problems will be identified and corrected before
implementation. Assuring that proposed changes won’t break the system
will be done automatically by analyzing the effects a change might have on
a system’s underlying and evolving assurance arguments, which have been
designed by skilled software engineers. Conformance to quality standards
will also be guaranteed by design, as part of sophisticated software
development frameworks that are put in place by expert engineers, yet
remain hidden from programmers who need not be concerned with those
aspects of the design.

Despite these advances in software engineering, complex systems of any
kind are unlikely to be perfect. In the future, specialized disciplines may
emerge, such as those that detect potential system problems, recover
capabilities when failures occur, and discover and eliminate the causes.
For example, a forensic software engineer might join a virtual meeting with
colleagues all over the world to analyze an exploit in a client’s security code
and determine what impact it may have had. Another engineer working
with a socio-technical ecosystem might be called by the system itself to
step in if it notices the general expression of sentiment is moving toward an
undesirable extreme. When problems such as these are detected, it’s the
job of specialized software engineers to discover the root causes. Was it a
weakly-trained machine learning algorithm, a poorly-expressed intent, a
component that was allowed to violate the architecture because it did not
account for a particular variable, or something else?

In all these scenarios, software engineering is everywhere, although it looks
and acts different than it does today. It enables all the capabilities described,
and it does so securely, predictably, and affordably. Future advances in
research will enable a diverse set of people to have broader access to

23

A National Agenda for Software Engineering Research & Development

creative development, but software engineering is what will ensure the
systems they create have superior capabilities, yet are largely free of the
problems and failures we see today.

4.2	 Vision for the Future of Software Engineering
While the exact roles that intelligent algorithms and humans will have
remains to be determined, the importance of software engineering to our
vision is clear: Humans and AI will be trustworthy collaborators that rapidly
evolve systems based on programmer intent.

As software engineers continually interact with smart software assistants,
computers and humans will be able to do what they both do best. Working
in this way, possibilities that we cannot even imagine today will become
reality. The research in this report provides the essential groundwork
for advancing the discipline of software engineering to ensure that the
necessary framework is in place to maximize the advantages these future
opportunities can provide.

A new vision for software engineering requires new development and
architectural paradigms, which also motivate the research focus areas
described in Section 5.

Advanced development paradigms, such as the following, will lead to
efficiency and trust at scale:

•	Humans leverage trusted AI as a workforce multiplier for all aspects of
software creation.

•	Formal assurance arguments are evolved to assure and efficiently
reassure continuously evolving software.

•	Advanced software composition mechanisms enable predictable
construction of systems at increasingly large scale.

Advanced architectural paradigms will enable the predictable use of new
computational models, as described below:

•	Theories and techniques drawn from the behavioral sciences are used
to design large-scale socio-technical systems, leading to predictable
social outcomes.

•	AI and non-AI components interact in predictable ways to achieve
enhanced mission, societal, and business goals.

•	New analysis and design methods facilitate the development of
quantum-enabled systems.

25

A National Agenda for Software Engineering Research & Development

5 Research Focus Areas
The fundamental shifts and needed advances
in software engineering described in this
report require new areas of research. In close
collaboration with our advisory board and other
leaders in the software engineering research
community, we developed a research roadmap
with six research focus areas.

This section describes the motivation for these six areas, which are closely
related to the findings in the previous section. In this section we also
provide a complete roadmap, followed by a discussion of each research
focus area in depth.

5.1 	� Advanced Development Paradigms
Trends toward the use of DevSecOps and digital twins are indicators that
the boundaries between fielded systems and development environments
are increasingly becoming porous. For example, through maturing AI
techniques, software is augmenting human decision making and becoming
very useful as a vehicle for improving performance by learning from
experience (i.e., data). Operational data is being combined with simulations
to give real-time insight into how systems behave. Continually changing
mission needs are driving almost continuous system evolution, requiring
both efficient system re-assurance and compositional approaches to system
development. These trends motivated the first three research focus areas,
which we consider fundamental to advanced development paradigms:

1.	 AI-Augmented Software Development: using maturing AI techniques
to augment human decision making in software engineering and to
enable learning from the vast amount of software engineering data

2.	 Assuring Continuously Evolving Software Systems: recognizing the
importance of efficient re-assurance of rapidly changing systems while
taking into consideration the many scientific domains and evidence
that will be needed to reason about future software-reliant systems

3.	 Software Construction through Compositional Correctness:
recognizing that the only viable way of developing and evolving
systems will be through technologies that enable compositional
development

26

Architecting the Future of Software Engineering

5.2 	 Advanced Architectural Paradigms
Some characteristics of future systems pose new and interesting problems
for software engineering. In particular, introducing AI components into
systems, considering humans as elements of a system, and effectively
exploiting quantum computing pose particularly important challenges
for future systems. In our vision of software engineering, advanced
architectural paradigms will enable the predictable use of these new
aspects of systems. These challenges motivated the following three
research focus areas that we consider fundamental to advanced
architectural paradigms:

4.	 Engineering Societal-Scale Software Systems: discussing the
challenge of modeling human behavior

5.	 Engineering AI-Enabled Software Systems: focusing on the challenge
of handling the uncertainty that AI components bring to a system

6.	 Engineering Quantum Computing Software Systems: considering
what aspects of the quantum computation should be hidden from or
exposed to higher levels of the software stack

5.3 	 Research Roadmap
The research areas we identified are meant to be mutually synergistic.
For example, AI-augmented software development needs to consider
continuously evolving systems and, ultimately, assurance arguments
need to be used by AI tools when they offer software development advice.
The relationship between software construction through compositional
correctness and assuring continuously evolving software systems is also
strong, because compositional technology and reasoning will be key
enablers of incremental re-assurance as systems evolve. Likewise, all of the
advanced development paradigms are applicable to each of the new system
types discussed under advanced architectural paradigms.

The graphic on the foldout following this page shows the research focus
areas and a suggested course of research topics to undertake.

Com
puting So�

w
are System

s
Engineering Q

uantum

ADVANCED ARCHITECTURAL PARADIGM
SAD

VA
NC

ED
 D

EVELOPMENT PARADIGMS

Compositional Correctness

So�ware Construction through

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

Evolving So�ware Systems

Ass
urin

g Contin
uously

Scale So�ware System

s
So�ware Systems

Engineering Societal-
Engineering AI-Enabled

So
�

w
ar

e
De

ve
lo

pm
en

t

AI
-A

ug
m

en
te

d

Research
Focus
Areas

Research
Topics

Research
Focus
Areas

Research
Topics

Re-envisioned so�ware
development lifecycle

Data & data models for
AI-augmented paradigms

Automated design,
evolution, and analysis tools

Scaled auto-code
generation & repair

Evidence of developer
acceptance

Theory for assured
composition of evidence

Modifiable
assurance
arguments

Assurance
argument
templates

Automatic detection if a
system change invalidates
an assurance argument

Automatic system update
recommendations based
on operational data

Tool chains for
combining evidence

to re-assure
a system

Theory of composability for
model-integrated computing
and quality attributes

Documented patterns and tools
for composition notations,
rules, & relationships

“Smart composition”
technologies

Integrated tool chains
to assure composed

behaviors at scale
before & during

runtime

Intelligent
interacting

formalisms &
assurance

capabilities

AI-enabled system
specification methods

Design and analysis methods
for AI-enabled systems

Testing practices for
AI-enabled systems

Data management in
support of
AI-enabled systems

Uncertainty
management
methods

Continuous
monitoring &
sustainment

New quality attributes
based on human
behavior at scale

System instrumentation to
monitor e�ects of system
on social behavior

Automated detection &
protection against misuse of
socio-technical platforms

Platforms for
continuously evolving
socio-technical
ecosystems

Expanded set of
quantum algorithms

Standardized
so�ware stack
interfaces

Debugging tools
& techniques

Hybrid classical
quantum algorithms

Domain-specific
languages

Profiling tools

New forms of
evidence of quality

�Software Engineering Research Roadmap with Focus Areas and Research Objectives
(10–15 Year Horizon)

27

A National Agenda for Software Engineering Research & Development

5.4 	 AI-Augmented Software Development
Research Focus Area
5.4.1 	 Goals
The need to improve the efficiency of software engineers and reduce
their cognitive load has driven and will continue to drive trends toward
improved automation and formalisms to support software development
tasks. Software engineers using AI-augmented approaches will also be
able to focus on tasks that require critical thinking and creativity. This
research area focuses on developing approaches for automating AI-
relevant software engineering tasks and accelerating the development of
reliable automation for engineering. Outcomes of this research area will
consequently enable the design, development, and deployment of reliable
software by further shifting the attention of humans to the conceptual
tasks that computers are not good at and eliminating human error from
tasks where computers can help.

Many of the automated approaches developed during the previous decade,
including model-based software engineering, DevSecOps tools, defect and
vulnerability analysis, automated bug fixing, modern code review, and
value stream management tools, were developed with the goal of improving
software development efficiency and quality [Lago 2015; Rahman 2017;
Morrison 2018; Le Goeus 2019; Sadowski 2018; Murphy 2019]. Despite these
advances in automation, failures, software security and quality issues,
and overspending continue to be the norm. To put the size of the challenge
in context, the U.S. government alone (excluding any private industry
spending) spent over $90 billion for system maintenance and operation in
2019 [GAO 2019].

So
�

w
ar

e
De

ve
lo

pm
en

t

AI
-A

ug
m

en
te

d

Data and data
models for
AI-augmented
paradigms

Re-envisioned
so	ware
development
lifecycle

New forms
of evidence
of quality

Automated
design,
evolution, and
analysis tools

Scaled
auto-code
generation
and repair Evidence of

developer
acceptance

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

28

Architecting the Future of Software Engineering

We need to create tools that allow software engineers to easily express the
changes they care about, including requirement and design trade-offs and
different solution options, and then trust that automation will correctly
resolve most, if not all, of the details at the programming language level. For
example, many systems would benefit from the development of tools to help
developers avoid, detect, and fix defects as they develop software. A range
of techniques that includes safer programming languages, better-designed
frameworks, cheap and easy automatically generated tests, and tools that
recommend fixes will collectively provide better results than relying on
any one technique alone. In the next decade, AI approaches will provide an
opportunity to rethink how we achieve programming goals, in particular by
providing improved capabilities for the elimination of trivial and repetitive
mistakes that later become hard to detect and fix.

These advances will inevitably drive a re-envisioning of the software
development process, with increased intelligence and support to
developers. Taking advantage of the data generated through the software
development lifecycle will be a beneficial and natural byproduct of the
process. Consequently, this research area asks the question: What will AI-
augmented software development look like in the future?

5.4.2 	 Limitations of Current Practice
Today, software development is human-intensive, test-intensive, and error
prone. In particular, current software development practices are hindered
by the following limitations:

•	Developers are expected to be experts in many topics (requirements,
architecture, design, programming languages, analytic models, a
dizzying array of technologies and frameworks, quality attributes,
testing approaches, platforms, and much more). Software engineers
often naively rely on software development processes that are not
followed properly to orchestrate these activities and the artifacts
created along the way.

•	From inception to deployment, a significant number of artifacts are
generated from requirements specifications, such as design documents,
analysis artifacts, test cases, and deployment scripts. Streamlining
these artifacts toward successful system delivery continues to be a
resource-intensive challenge.

•	Developers are expected to understand the ripple effects within
increasingly complex systems (in terms of size, distribution,
concurrency, etc.) without having effective tools.

•	Formal methods and model-based approaches have been created with
the promise of reliably generating code and evolving systems, but even
in safety-critical systems they do not scale beyond limited aspects of
the system.

Developers are
expected to

understand the
ripple effects

within increasingly
complex systems

without having
effective tools.

29

A National Agenda for Software Engineering Research & Development

•	Time spent designing and testing systems continues to be cut short
when schedule challenges hit, further jeopardizing the quality of the
systems developed.

•	System sustainability and evolution, especially for legacy systems,
continue to be manually driven, high-risk efforts.

•	Conformance to quality standards and intended architectures are not
guaranteed as part of the software development framework or tool chain.

5.4.3 	 Topics for Research
At almost every stage of software development, AI holds the promise of
assisting humans and making the process more efficient, effective, and
enjoyable. Each new generation of tools and advances toward this end will
find acceptance by developers and reach wider adoption if it can meet the
following goals:

•	Perform tasks that developers already do, but do them more efficiently
(e.g., test faster).

•	Perform tasks that developers already do, but do them better
(e.g., catch more bugs).

•	Perform tasks that developers are not able to do currently (e.g., leverage
new data to integrate new conformance checks or generate new tests).

•	Reduce hand-offs and integrate elements that are currently
disconnected (e.g., provide requirement traceability).

•	Teach developers how to do tasks better as they go (e.g., advise and/or
mentor with real-time feedback on implementation errors).

•	Help to scale what developers can already do (e.g., allow them to
consider more alternative design options).

30

Architecting the Future of Software Engineering

To best evaluate the efficacy of such new, automated tools and approaches
in practice, they also need to seamlessly augment and integrate with the
developers’ environments, even during the research stages. The AI-
augmented software engineering advances that we outline in the following
sections take advantage of continuous integration and deployment
environments for data collection, iterative feedback loops, and testing
developer buy-in.

5.4.3.1 	 AI-Supported Re-Envisioned Development Workflows
Agile and lean software development processes encourage elimination of
waste by helping developers focus on the top priorities and understand
what tasks stay in inventory [Reinertson 2019]. For example, test-driven
development workflows might advocate software requirements being
converted to test cases before the software is fully developed. Then software
development can be tracked by repeatedly testing the software against all
the test cases, which will drive significant improvements in the efficiency
of software development and improve system quality. In a similar analogy,
AI-supported development workflows will target data-intensive and tedious
activities, which might result in different task dependencies in the the
software development lifecycle. For example, developers may not need to
test for certain classes of bugs when AI-augmented bug fixing becomes a
reality at scale.

Incorporating AI-based developer support tools will also trigger the need to
envision more effective workflows for developers. For example, improved
real-time assistance in code quality conformance can reduce reliance
on the added static code analysis checks during testing and deployment,
improving the balance of local conformance analysis versus analysis of
system-wide, cross-cutting, and harder-to-conduct architectural quality and
runtime concerns. Today, system-wide analysis is often a manual effort that
is rarely supported by automation.

In an AI-augmented development lifecycle, the developers and the
AI assistant will both have a supervisory role. Developers will guide
and consequently improve the AI assistants. AI assistants will take
on a supervisory role by providing real-time feedback and, in time,
demonstrating repeated mistakes to developers. On a developer team, there
will always be some developers who you trust more than others (perhaps
due to experience, skill sets, or demonstrated performance). The AI-assisted
development workflows will trigger the need to think of AI “partners” in the
same way. In what roles do humans and AI perform most effectively as part
of an overall team that produces software of sufficient quality?

31

A National Agenda for Software Engineering Research & Development

5.4.3.2 	 Automated Code Repair
Automated code repair is a specialized application of auto code generation.
Code generation includes a broad collection of approaches and technology
that accomplish different tasks, and the precise meaning depends a lot
on what portion of a code base you are discussing. Code generation has
been available for decades to generate portions of code, such as class
declarations to match a unified modeling language (UML) diagram. Such
work is usually used as a starting point, with developers expected to take
over implementation details within this shell. There has been fragmented
research on several formalisms to drive code generation. Similarly,
existing computer-aided software engineering tools have limited code
generation capabilities.

The opportunity that AI poses for code generation is the ability to search
existing code and identify patterns that are similar to the intended new
code. Rather than starting from a specification, such as a UML model,
existing code can be used as an input and transformed to address specific
classes of problems. ML-based techniques can assist by generating similar
code to what is already available. This suggests opportunities for starting
small using AI-based code generation approaches to take advantage of
commonly repeated applications.

Automated code repair can similarly use existing code as input and then
transform it to address specific classes of repair problems [Oliveira 2018;
Klieber 2016]. The research gaps to fill include figuring out which parts the
user needs to specify for the program to generate usable solutions at scale
and how to generate partial, but acceptable, solutions to make incremental
progress. Other gaps involve determining whether code bases provide
relevant data to label and create ML models for complex code generation
tasks (in particular, those that can also resolve semantic inconsistencies)
and deciding how developers can determine whether what was generated
is appropriate.

The chances of human error increase with the exponential increase in the
volume of code and other software artifact data generated; the number of
overlooked bugs also increases simultaneously. AI, and in particular ML, is
good at recognizing patterns in huge amounts of data. Success will depend
on the ability to identify small, scalable portions of auto code generation and
repair problems [Kirbas 2021].

5.4.3.3 	 Eliminating the Design/Code Conformance Gap
Aligning the design of a system and its implementation improves product
quality and simplifies product evolution. Especially for DoD systems, the
ability to conform to particular architectural approaches, such as open
architectures, not only supports technical goals, such as the ability to
evolve easily, but also mission goals, such as the ability to integrate across
domains. The same challenges exist in industry systems as well,

In what roles do
humans and AI
perform most
effectively as part
of an overall team
that produces
software of
sufficient quality?

32

Architecting the Future of Software Engineering

such as in smart cities. Today, such conformance goals are achieved
through qualitative techniques. While developers are empowered with
AI-augmented tools and techniques that increasingly assist them in
implementation tasks, the abstraction gap between code and design limits
automation for conformance and design tasks. Code all too often diverges
from a system’s intended design and qualities designed into the system
are not realized, increasing maintenance effort. This could be prevented
if developers could confirm whether each code commit conformed to
the intended design and quality. To accomplish this in a scalable way,
automation is needed that can compare as-implemented designs to
as-intended designs as part of continuous integration pipelines. ML and
search-based algorithms provide an opportunity to revisit this otherwise
thorny problem.

5.4.3.4 	 Multi-Artifact System Analysis
There are opportunities—and dangers—in relying on AI assistants to
help developers find related examples in artifacts, code bases, defect
and vulnerability records, or documentation recommendations. For
example, many developers have copied insecure code, propagating
bad practices. AI assistants, however, when proactively designed to
safeguard for such errors, can contribute to reducing the risks posed
by such practices. For example, recommendations can incorporate
features from multiple artifacts, along with confidence ratings to
improve relevance. AI assistants that support multi-artifact analysis,
for example, can support engineering tasks during the planning phase,
when a project can take advantage of inputs from requirements,
analysis, and technology selection to improve contextualization of
reused code from other projects.

33

A National Agenda for Software Engineering Research & Development

The ability to combine information from multiple software engineering
artifacts, supported by ML approaches such as natural language
processing algorithms and boosting algorithms that turn weak learners
into strong learners, will open improved avenues of traceability in the
software development lifecycle. For example, if a developer is describing
something they are not that certain about, the system can continuously
rebuild aspects of itself based on human or AI intervention until the
description becomes clearer. In so doing, it can take advantage of features
potentially common to different software engineering artifacts that drive
the development of such learners.

The body of work in mining software repositories has progressed over
decades [Hassan 2008; MSR 2021], in particular in areas of defect analysis
and prediction, developer sentiment analysis, and code review practice.
This body of work provides a foundation to improve the traceability of
information shared within the artifacts, driving more timely and correct
decision-making support to developers.

5.4.3.5 	 Automated Evolution and Refactoring
Software design, development, and deployment is a trade-off-based
activity. Search-based software engineering techniques [Harman 2015]
show promise of accommodating the Pareto-optimal nature of software
design and, in fact, recommend multiple viable solutions representative
of the design trade-off space. Despite progress in providing software
engineers with tools that automate an increasing number of development
tasks, complex activities—such as redesigning and reengineering existing
software—remain resource-intensive or are supported by tools that are
error prone.

The vision for automated evolution and refactoring at scale calls for
automation that takes direction from developers in the language of
design and automates the code changes required to realize those changes
[Ivers 2020]. Questions to address include what portions of the process
can and should be automated and how AI approaches, such as search-
based algorithms, can reliably generate solutions. Automating tedious,
repetitive, and error prone activities (e.g., crawling through thousands
of dependencies) is a clear starting point. Should tools change the bare
minimum to achieve a refactoring goal, or should they create opportunities
to “clean things up” along the way to improve the system along general
quality improvement goals (e.g., introducing design patterns to improve
maintainability along with other top-priority quality concerns)? Can we
refactor data (e.g., database schema and stored procedures) together with
code? Tools should refactor test suites along with code. Can they also create
unit tests as a byproduct of refactoring at scale? Addressing these questions
will enable a future in which AI-augmented software development will also
be able to support more high-speed change.

The vision for
automated
evolution and
refactoring at scale
calls for automation
that takes direction
from developers
in the language
of design and
automates the code
changes required
to realize those
changes.

34

Architecting the Future of Software Engineering

5.4.4 	 Research Questions
Questions derived from the research topics include the following:

•	How do we transform high-level specifications of what the program
should do into a low-level program that implements it (i.e., use abstract
logical reasoning to create programs that satisfy a given specification)?

•	 In what ways can AI be used to make specifications more precise and
resolve ambiguities, consistent with the needs of system stakeholders?
Are developers more or less error prone in writing specifications than
in writing code, and where can AI supplement gaps in both writing code
and specifications?

•	Are there new phases or activities that become part of the software
development lifecycle in an AI-assisted paradigm? Do we need to
rethink aspects of the lifecycle to incorporate the elicitation of intent?
Can the feedback obtained from AI-assistants be purposed for fostering
the skills of developers?

•	Can AI-assistants help developers orchestrate continuous system
evolution, since software will not be static and hard-coded as it is today
but rather will dynamically adjust to continuously fulfill its purpose?

•	What roles will AI-supported tools take on and what roles will be
retained by human developers?

•	How can AI-augmented software development tools generate the
metadata needed to efficiently verify or validate code?

•	Can AI capabilities support debugging code by instrumenting the
development environment (e.g., can automated analysis look at issue
logs in a critical system and understand how long it is taking to address
certain types of problems, then feed that forward to help with decision
making)?

•	What are the right levels of abstraction? We have developed higher-
level programming languages, architecture patterns, and so forth.
What new levels of abstraction are needed to support different
developer tasks?

•	What new software development data needs to be collected (ethically
and in a way that ensures security and privacy) to enable such future
research? What activities lack the traceability that could be established
if we collected such data?

Trust in AI-based solutions, whatever their form, boils down to a risk
assessment. What’s the probability that the result is correct? What’s the
impact if it’s wrong, and how can the associated risks be dramatically
reduced if AI makes the wrong recommendations? Developers will
initially have to take the driver’s seat, and initial progress will be slow;
however, advances in answering such questions will accelerate progress.

35

A National Agenda for Software Engineering Research & Development

AI-augmented software development research, consequently, will result
in creating reliable automation support for developers, improving their
efficiency, effectiveness, and the quality of the systems they develop.

5.4.5 	 Research Topics
To make progress in these areas, each area must be able to inform the
others, in particular by generating data and using that data to identify the
next relevant research steps. Progress will be iterative and incremental,
with the following milestones guiding success:

•	Re-envisioned software development lifecycle. The way that the software
development lifecycle will change in an AI-augmented paradigm needs
to be considered. As research progresses, it is important to clarify the
different roles that humans and AI-augmented tools perform, ranging
from AI as a trustworthy assistant to AI completely replacing some tasks.

•	Acquire data and developed data models for AI-augmented paradigms.
Data to model each stage or workflow of an AI-augmented paradigm
are needed. An assessment is needed to identify what additional data
would help, how to collect missing data with the least intervention, and
how to assemble this data ethically.

•	 Identify new forms of evidence of quality. There is a need to automatically
accumulate and carry along evidence of quality and to verify that
the results are correct. AI generates metadata to efficiently verify or
validate code and generate traceable evidence with code.

•	Automate design, evolution, and analysis tools. Reliable automated tools
that interact with developers using their vocabulary are needed to
assist with evolution and refactoring tasks.

•	Scale auto code generation and repair. Model-based techniques and
formal methods need to be augmented with AI techniques to increase
the scope and scale of their applicability.

•	Collect evidence demonstrating developer acceptance and efficacy of AI
assistance. Developers must accept the new forms of interactions with
confidence; empirical data demonstrates that developers spend the
most time on design tasks rather than on software complexity and
challenges to improved quality.

36

Architecting the Future of Software Engineering

5.5 	 Assuring Continuously Evolving
Software Systems Research Focus Area
5.5.1 	 Goals
This research area focuses on how to create an evolvable assurance
argument, which should only require incremental changes as incremental
changes are made to a system. Incremental modifications to a system
should also require less assurance than a complete de novo assurance
effort. In addition, the argument should be provably sufficient (i.e., the
only source of uncertainty in the argument should be deficiencies in
the evidence—the reasoning structure should be completely deductive,
providing correct conclusions to the extent that the evidence and inferences
from evidence are completely correct).

5.5.2 	 Limitations of Current Practice
The scope, scale, and pervasiveness of software-reliant systems continue to
grow and change. Incremental assurance is the only practical way to get a
system deployed and updated in a timely manner with adequate confidence
in its operational behavior. Providing such confidence is particularly
important for safety- and mission-critical systems in which software defects
can have catastrophic impacts on lives or property.

Systems today change incrementally and continuously. It is necessary
to move from a mindset of “build and assure” (i.e., a one-time event) to a
mindset of “rebuild and re-assure” (i.e., continual events). Moreover, today’s
software-reliant systems evolve, in part, by reusing components of varying
provenance in settings that were not necessarily considered and where
third parties are responsible for making updates. Therefore, addressing
limitations for assured composition of components and on efficient re-
assurance of evolving systems is important.

Ev
ol

vi
ng

 S
o�

w
ar

e
Sy

st
em

s

As
su

rin
g

Co
nt

in
uo

us
ly

Theory for
assured
composition
of evidence

Modifiable
assurance
arguments

Assurance
argument
templates

Automatic detection if a
system change invalidates
an assurance argument

Automatic system update
recommendations based on
operational data

Tool chains for
combining evidence to
re-assure a system

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

37

A National Agenda for Software Engineering Research & Development

5.5.2.1 	 Limitations in Assured Composition
Software-reliant systems are typically built today by incorporating third-
party components, mostly in the form of platforms (e.g., operating systems,
middleware, and graphical user interfaces), libraries, and frameworks (that
combine platforms and libraries). To allow developers to use third-party
components, component developers provide application programming
interfaces (APIs) that describe information, such as

•	how to call the functions of the components (e.g., name of the function
and what parameters to give)

•	what results to expect in return (e.g., the specific output value type and
high-level description of the computation)

•	what restrictions (if any) govern the sequencing of different functions
(e.g., to open a file before reading it)

Unfortunately, while APIs are often sufficient to perform code composition,
they are insufficient to perform assured composition. The reason APIs
are insufficient for this purpose is that they are designed for use by
programmers rather than for integration into assurance arguments.

5.5.2.2 	 Limitations in Reassuring Evolving Systems
Today’s approaches for assuring software-reliant systems focus primarily
on testing, simulation, and (limited) application of formal methods. Most
assurance in practice is accomplished by testing (e.g., automated regression
testing, stress testing, and penetration testing) and inspection (e.g., design
and code reviews).

For some enterprise and mission-critical systems, Agile development
and DevSecOps pipelines increasingly provide the basis for incremental
evolution. In these types of systems, it is common to use techniques that
provide quick feedback about possible errors. Various informal assurance
techniques are used, including

•	 test-driven development, which ensures that tests exist for new and
modified capabilities

•	continuous integration, which provides the opportunity to make and
test frequent small changes, thereby giving incremental increases in
confidence that system requirements are being met

•	continuous delivery, which ensures quick feedback on whether
incremental changes are meeting actual user needs (i.e., whether the
requirements need to change)

38

Architecting the Future of Software Engineering

In all of these methods, quality assurance engineers leverage regression
testing to gain evidence that previously assured system behavior is
maintained despite changes incorporated in a new release.

Assurance cases are increasingly being required for assuring critical
systems [Maksimov 2019; Denney 2018]. The assurance case concept,
however, focuses on arguing the properties of a system at a particular
point in time. The notion of evolving an assurance argument in parallel
with system evolution activities is not commonly discussed, even in large
research projects such as DARPA’s ARCoS project (which is focused on
developing assurance cases more quickly by automating some parts of the
process) [Richards 2019].

5.5.3 	 Topics for Research

5.5.3.1 	 Developing a Theory of Assured Software Evolution
Software-reliant systems are neither static nor infrequently updated
engineering artifacts, but rather are fluid engineering artifacts (i.e., artifacts
that are expected to undergo continuing updates and improvements).
Therefore, the effort required to re-assure and recertify an entire system
must be minimized by bounding the consequences of changing individual
components and subsets of composed components.

The overarching goal of this research topic is, therefore, to enable efficient
and bounded re-assurance of continuously evolving systems where most,
if not all, of the re-assurance effort is confined to the part or aspect of the
system that changed. Achieving this goal requires developing a theory
and practice of assured software evolution, including how to appropriately
structure a system and its assurance argument. Central to the theory is
an artifact that we will refer to as the “assurance argument,” which should
possess the following properties:

39

A National Agenda for Software Engineering Research & Development

•	Precision. The representation is amenable to automatic and
formal reasoning.

•	Soundness. A viable assurance argument must be based on explicit and
precise assumptions and be provably sufficient relative to claims about
the behavior the system must exhibit.

•	Multi-domain applicability. A viable assurance argument consists
of a large collection of interacting sub-arguments (e.g., about logical
correctness, timing correctness, and security), each of which must
be precise and sound, while accounting for interactions with other
sub-arguments.

•	Modularity. An assurance argument that supports efficient re-
assurance must bound the effects of change to avoid having to re-
assure all behavior every time the system changes. But in addition,
inter-module dependencies must be made explicit and traceable.

The next two sections discuss topics focused on overcoming limitations
associated with assured composition and efficient reassuring of
evolving systems.

5.5.3.2 	 Toward an Ecosystem Architecture and Proof System for
Argument Sufficiency
It is hard today to explain to what extent the combination of different
types of evidence (such as from testing, formal verification, simulation,
and digital twins) provides increased (and justified) confidence that a
system will meet its requirements (i.e., behave as expected). It is likewise
hard to explain when certain types of (potentially expensive) evidence are
not needed to obtain sufficient confidence in system behavior. Justified
confidence depends on developing and sustaining a well-structured
assurance argument that rigorously codifies how system behavior can be
inferred from a collection of evidence. To address this challenge, we propose
research on creating or refining theories, methods, and tools for combining
disparate evidence types into a sound assurance argument.

While we are motivated by the notion of an assurance argument actually
being a proof system, we are also aware that there are no irrefutable
arguments for practical systems. In particular, there is no absolute
certainty that an assumption wasn’t overlooked or that an inference from
every evidence type is always correct. Nevertheless, we believe that the
quest for sound arguments, while being mindful of important practical
considerations, will lead to rigorous—yet practical—techniques.

40

Architecting the Future of Software Engineering

5.5.3.3 	 Combining Disparate Evidence
An assurance argument uses evidence of different types. Consider the
need to assure that an autonomous system (such as driverless car or
drone) will never hurt humans. One type of evidence might come from
real-time analysis that can be applied to guarantee that deadlines for
timing-critical tasks are never missed. Another type of evidence might
be required to estimate the probability of the vision system correctly
recognizing humans. These different types of evidence—in addition
to other evidence—must be combined in ways that enable making
a formal assurance argument about human safety. Making a formal
assurance argument using evidence from different domains also requires
combining proof systems from the different domains. This leads to two
challenges: (1) determining whether there are dependencies between the
proof systems, and if there are dependencies, (2) determining what parts
of the original proof systems remain valid and what parts need to change.

The assurance argument must provide the appropriate guarantees, even if
empirical evidence is part of the argument. For example, in an airbag system
we may determine that it is not possible to guarantee that an adult-
detection module always detects whether an adult passenger is present.
In that case, it might be possible to determine that the probability of not
detecting a human should be kept under 0.001%. A sufficient argument
for achieving this level of precision would require designing experiments
with proper sampling mechanisms based on probability theory to prove
that the required probability-of-failure threshold can be reached. A
sufficient argument would also need to account for the possible mutual
effects of using probabilistic and deterministic reasoning in the same
assurance argument.

41

A National Agenda for Software Engineering Research & Development

5.5.3.4 	 Assured Composition
Assured composition will be key for combining disparate evidence and
producing rigorous assurance arguments. Achieving assured composition
requires expanding attention from code composition to assurance
argument composition. Discussing both programming and assurance
concerns requires using a more general definition of components and
interfaces.

We define a component as an encapsulation of a behavior that provides
a summary of such a behavior in an interface. This interface is sufficient
to combine components and create a new behavior. The specifics of
the behavior encapsulation and its summary depend on the type of
composition. For example, code composition will use code encapsulations
(e.g., libraries) and APIs, while assured compositions may use, for example,
value transformation formulas and post- and pre-conditions. Related
considerations include

•	Software composition is heavily focused on code composition in current
practice, which means that component interfaces focus on providing
information to programmers with little direct concern for assurance.
Some efforts have gone beyond this conventional approach by
incorporating some form of assumed and/or guarantee reasoning, such
as design-by-contracts schemes [Myer 1992].

•	Formal arguments are typically developed for particular domains without
considering cross-domain effects. This trend has led to component
and interface descriptions that only support, for instance, value
transformation claims and ignore other aspects, such as timing,
security, and the effects of faulty behavior. Other communities focus
on, for instance, timing behavior and ignore value transformations.
Such domain-specific interface descriptions capture only part of the
complete behavior of the component. These domain-specific claims
are actually key to scalable assurance within a specific domain. For
instance, the real-time task abstractions in rate-monotonic analysis
(which is a specific type of real-time analysis that only uses task
execution time, period, and priority in the simplest case) can lead
to analyses that are of linear complexity in the number of real-time
tasks. Adding additional information, such as computational state, can
lead to exponential analysis complexity (as for a timed automaton, for
example) [Alur 1992].

•	Cross-domain dependencies. When a claim is made in a particular
domain (e.g., to verify value transformation properties), modification to
this claim can affect claims in different domains (e.g., claims about the
worst-case execution time of a task, the heat dissipation of a processor,
or failure independence in a fault-tolerant replication structure). These
effects stem from cross-domain dependencies, which are often ignored
or treated informally.

42

Architecting the Future of Software Engineering

•	Scalable multi-domain compositions. To deal with the cross-domain
dependencies, some research efforts have merged multiple domains
to address different cross-domain concerns simultaneously [Alur
1992, 1993]. Unfortunately, these efforts tend to lead to unscalable
assurance procedures. Consequently, the challenge is to preserve
the scalability of independent domains while accounting for the
cross-domain dependencies in a sound manner. Work by Chaki et al.
achieves scalable assurance of concurrent real-time systems in two
domains: concurrent systems and real-time schedulability [Chaki
2011]. Exploiting assumptions of real-time schedulability analysis
(specifically, the periodicity of job arrivals) greatly reduced the number
of possible process interleaving that needed to be checked in periodic
concurrent systems.

5.5.3.5 	 Argument Sufficiency
A sound assurance argumentation system should be capable of
automatically proving that the provided arguments are sufficient to
demonstrate that the system behaves as intended, assuming there are
no deficiencies in supporting evidence. However, most methods used by
practitioners today use surrogate criteria (such as branch coverage or range
coverage), which provide inadequate evidence for assurance sufficiency
and rely on human judgment. This might be unavoidable, since it might
not be possible or practical to reason about behaviors exhaustively (e.g.,
all possible values of the software variables and all interleaving of thread
executions). However, a sound assurance argument should provide a way to
pinpoint where evidence deficiencies impact confidence in claims.

Unfortunately, the ever-increasing complexity of software-reliant
systems—particularly safety- and mission-critical systems—has long
escaped the human capacity to judge argument sufficiency. Moreover,
this judgment not only must be done within each behavioral domain, but
across domains. Clearly, the argumentation system must be practical,
scalable, and largely automatable to support the increasing complexity of
software-reliant systems.

Such an argumentation system should allow us to prove whether or not
arguments are missing. For instance, consider a simplified airbag system
that requires proving three logical behavior claims: (1) presence of an
adult passenger, (2) occurrence of a crash, and (3) trigger inflation if and
only if (1) and (2). The analysis of an assurance argument should be able to
deduce insufficiency (e.g., it should be able to identify the lack of a timing
behavior claim and the corresponding physics behavior claim). In this case,
the missing claims are from other behavioral domains, but this can also
occur within a single domain. Deducing insufficiency will require domain
and cross-domain proof templates; canonical arguments for typical classes
of systems that can be instantiated for specific systems and help identify
missing elements of an argument.

Experience gained
from observing,

experimenting and
a sound assurance

argumentation
system should

be capable of
automatically

proving that the
provided arguments

are sufficient to
demonstrate that

the system behaves
as intended.

patterns can be
used to trigger re-

assurance or bound
re-assurance

43

A National Agenda for Software Engineering Research & Development

5.5.3.6 	 Representing Assurance Arguments
A general and sound verification argumentation framework needs to both
(1) explain to humans why we have confidence in the argument, and (2)
allow the full formal and automatic integration of all the arguments that
comprise the case.

As presented in our airbag example above, different technical domains
use formalisms for deductive reasoning that abstracts away (or
deletes) some information. For instance, logical verification (e.g., model
checking) models the value transformation nature of computation.
However, its models do not contain information about elapsed time or
execution time. It can therefore reason about value transformation but
not computation time.

Similarly, real-time scheduling models for timing verification reason
about elapsed time and execution time but ignore values that the
computation produces. As a result, these models cannot reason about
value transformation. Finally, physical models using differential equations
completely ignore that computation takes time or that algorithms
represent numbers in different formats or number of bits. Hence, these
models cannot reason fully about the value transformation correctness or
computation time.

Some combinations of multiple disciplines (such as hybrid and embedded
systems) have been developed over the years to model transformations of
values in computation and the evolution of physical variables in a combined
model [Alur 1993]. However, these combinations often tend to increase the
complexity of the assurance and move away from practicality.

An alternative direction was proposed by Benveniste et al., who developed
a framework to specify Assume/Guarantee contracts on sets of behaviors
[Benveniste 2015]. In this case, the specific formalism applied to capture the
behaviors is left undefined. However, the framework can define a contract
algebra based on set theory that reasons about composable verification. For
example, the framework can define how to combine guarantees of modules
to verify a global property and how to verify that a modification to a module
does not modify the assumptions it makes or the guarantees it provides.

The formalisms to define the behaviors to support the low-level description
of the modules can come from different scientific disciplines, as soon as
the set operations of the contract algebra are properly implemented (e.g.,
set intersections, inclusion, and union). Moreover, these operations can
be carefully designed to minimize the interaction across formalisms and
avoid a complexity explosion. Benveniste et al. conducted some initial work
in this direction [Benveniste 2015]. These properties allow changing one
part of an assurance argument without having to reverify any other parts
of the argument that interacts with this module. This approach supports
assuring software evolution through composition reasoning, which is

44

Architecting the Future of Software Engineering

important for reassuring a system as it evolves. Ruchkin presented other
research performed on architectural models combining different types of
analyses [Ruchkin 2014].

5.5.3.7 	 Ecosystem Architecture
Combining evidence relies on the structure of the system, which in turn
imparts structure on the system’s assurance argument. The structure of
the argument should influence the development–assurance pipeline. What
is needed, therefore, is a proof system and supporting infrastructure that
includes notions of what evidence is needed, how the evidence is gathered,
how to ensure that the evidence is acceptably valid, where it’s stored,
when it’s updated, what dependencies exist, and so forth [Richards 2019].
In particular, the dependencies between the assumptions and guarantees
of components in the system and the dependencies of different types of
evidence in the assurance argument must be precise.

These relationships suggest a notion of architecture that includes the
relationships described above, which we refer to as the “ecosystem
architecture.” In this context, ecosystem architecture is defined as
the aggregate structure of the software-reliant system, the assurance
argument, the DevSecOps pipeline, and the development organization.
It is not surprising that these structures are related and interact, since it
is well-known that quality attributes impact software architectures
[Bass 2012].

5.5.3.8 	 Reassuring Evolving Systems
For a system that continuously evolves, there is a natural tension between
the speed at which new capabilities and fixes are deployed and the
comprehensiveness of assurance. In particular, it is hard to have speedy
deployment with assurance due to the time it can take to decide how to
modify an existing test so it satisfies some sufficiency criterion for the
test suite as a whole. Likewise, it can be hard to understand how the
consequence of change propagates through a system, particularly if the
system is composed of modules developed and evolved independently
(especially if these modules are provided by third-party suppliers only in
binary form).

However, reducing re-assurance effort for a changed system is important.
We know that for some safety-critical systems today, little or no changes
are allowed after they pass certification. The reason for this restriction
is that the only accepted way to ensure that no critical flaws have been
introduced by a change is to recertify the entire system (e.g., by re-running
all operational tests, which can take months). Due to such recertification
challenges, some systems are not upgraded for years, which is clearly at
odds with other requirements, such as upgrades to meet rapidly evolving
threats or applying security patches to fix vulnerabilities.

For a system that
continuously

evolves, there is
a natural tension

between the speed
at which new

capabilities are
deployed and the

comprehensiveness
of assurance.

45

A National Agenda for Software Engineering Research & Development

5.5.3.9 	 Bounding Propagation
A theory of software evolution will provide a basis for (1) determining
(and bounding) change propagation, and (2) suggesting or anticipating
the need for change that is based (at least in part) on system behavior,
changes in requirements, changes in operational environments, and so
forth. Changes to a system as it evolves are obviously not conducted in
isolation, but rather are performed in the context of an existing system
(even greenfield software development can be viewed this way). For any
system—and especially large-scale systems and systems-of-systems—it
can be hard (if not nearly impossible) to fully comprehend the future
consequences of any given change.

For example, has a change inadvertently introduced a new failure mode or
vulnerability? Complex feature spaces are too hard for humans to keep in

mind. When the “distance” from a change to the place where an error
manifests is large, it is nearly impossible for humans to anticipate resulting
problems. Moreover, when the consequence of a change propagates across
different “technical domains” (such as from security to real-time
performance to material stress analysis) finding newly introduced problems
can be very hard. AI- and ML-enabled components in systems exacerbate
this problem, because it is not always possible to anticipate or detect
changes in the environment that affect the system (such as a change in the
distribution of data from that originally used to train a classifier).

5.5.3.10 	Reassuring Emergent Properties
It can be hard to regain confidence in non-functional or emergent properties
of a system after a change has been made, because such properties typically
depend on interactions between functionally independent parts of a
system. For example, unless a system is carefully architected, changes can
unintentionally impair a system’s security or timing properties. Likewise,
changes to a system’s external environment may invalidate or weaken

46

Architecting the Future of Software Engineering

assumptions underlying assurance claims about functional and non-
functional behaviors. Similarly, changes in usage patterns (e.g., a change
in the mix of requests to a system) can stress a design, leading to behavior
that is unacceptable in the changed environment. In general, current re-
assurance practices are not robust when it comes to assessing the possible
effects of changes on desired quality attributes.

5.5.3.11 	 Assured Multi-Behavior Composition
As more software-reliant systems are developed using component-based
technologies and platforms (many of which are provided by third parties),
we need theories of composability—along with the associated methods
and automated tools—that enable the specification and enforcement of
composition rules that both allow (1) the creation of required behaviors in
all the behavioral domains (i.e., functional and non-functional) required
by the system (logical, timing, control, safety, security, etc.), and (2) the
assurance of these behaviors, both during initial deployment and during
subsequent evolutions. These theories, methods, and tools must be capable
of reasoning about the consequences of integrating components within
each behavioral domain and across domains, especially as their structure
and functionality evolves dynamically over time.

5.5.3.12 	 Reassuring Systems Using Reusable Components
Assurance practices have not been focused on assurance efficiencies
that may be possible when a system is composed largely from reusable
components (such as product line systems). For example, it is not necessarily
clear how argument fragments associated with such components can be
reliably and efficiently composed and reused to lessen the assurance effort
for the composed system.

5.5.3.13 	 Learning from Operational Experience
If an evolving system is already operational, then data may exist about
its reliability, safety, and so forth. AI and ML could make use of this data
in at least two ways. First, it could be used to detect deviations from
normal; such techniques have been used to analyze network traffic for
cybersecurity (using macro-level statistical indicators), but could also
be used to monitor other indicators, such as order queue lengths for
e-commerce systems (e.g., Amazon.com). Second, in the spirit of Netflix’s
chaos monkey, hypothetical changes could be imposed on the system,
and AI or ML tools could determine patterns of propagation for different
types of change. This analysis could be used to characterize potentially
problematic classes of change.

Generally, we posit that the experience gained from observing the system
in operation, experimenting with it, and examining patterns of change that
invalidate sufficiency arguments can be used to trigger re-assurance or
bound re-assurance. Operational experience also evinces confidence in the
sufficiency of a system’s assurance argument.

Experience gained
from observing,

experimenting, and
examining change

patterns can be
used to trigger re-

assurance or bound
re-assurance.

47

A National Agenda for Software Engineering Research & Development

5.5.4 	 Research Questions
•	What are suitable representations of an assurance argument?

A formal and automatable representation of an assurance argument must
be developed that can handle the numerous domains of assurance (e.g.,
logical correctness, timing correctness, and security correctness) and
their interactions. An overall argumentation mechanism must be devised
that uses proof systems from all of the relevant domains to prove the
properties of interest and demonstrate the extent to which the available
evidence supports the arguments.

More specifically, this overall mechanism should show that (1) the
collection of arguments is sufficient to prove the properties for all of
the relevant domains, and (2) that all possible effects that one domain
can have on the other domains have been considered. An overall
argumentation mechanism must also support the discovery of missing
assumptions and inadvertently omitted domains. Argumentation
templates or patterns could help with this.

To make this concrete, an assurance argument itself can be reasoned
about formally (e.g., is it sound?; are its assumptions consistent?; and
does it appropriately account for all aspects of the system?). Providing a
representation that can address these issues is a foundational challenge
for assuring an evolving system.

•	What are patterns of evolvable assurance arguments?

Given a generalized assurance argument about a system and a
subsequent change to the system, determining the extent to which the
assurance argument needs to change to account for the system change,
while otherwise remaining sound, is a challenge. For continuously
evolving systems, bounding the cost of re-assuring will be especially
important. Just as for software architecture, bounding the effect of change
depends on the structure of the argument. Structuring arguments will
require developing notions of interface and encapsulation for assurance
arguments.

•	Are there opportunities to use ML to automatically detect needed
changes in assurance arguments?

Automatically learning from operational experience (i.e., actual use)
can be used to predict the need for changing the system by discovering
patterns of operational behavior that indicate that assurance assumptions
have been violated by new, possibly unanticipated operating conditions or
by discovering patterns of argument that might be flawed.

48

Architecting the Future of Software Engineering

5.5.5 	 Research Topics
These research topics are important to assuring continuously evolving
software systems and will contribute to developing a theory of assured
software evolution. The following milestones are indicators of progress
toward developing such a theory:

•	Theory for assured composition of evidence. Development of an overall
approach or theory for assured composition of proof systems allowing
combining disparate evidence from different domains to assure key
software-reliant system properties.

•	Assurance argument templates. Development of an approach for
ensuring argument sufficiency by using assurance argument templates
to identify missing assumptions, domains, or interactions between
domains and appropriately representing assurance arguments.

•	Modifiable assurance arguments. Development of an approach for
creating modifiable assurance arguments through the notion of
an ecosystem architecture and gaining a better understanding of
reassuring systems using reusable components.

•	Automatic detection if a system change invalidates an assurance
argument. Development of techniques for automatically determining
whether a system change introduces a new failure mode, a new
vulnerability, or generally invalidates an existing assurance argument
by determining how to bound propagation of change and re-assure
emergent properties.

•	Automatic system update recommendations based on operational
data. Development of techniques for automatically making
recommendations for system updates based on using data gathered
from the operational system to learn from operational experience.

•	Tool chains for combining evidence to re-assure a system. Development
of integrated tool chains including AI and/or ML techniques to support
combining multiple types of evidence with operational data to re-
assure a system.

49

A National Agenda for Software Engineering Research & Development

5.6 	 Software Construction through Compositional
Correctness Research Focus Area
5.6.1 	 Goals
To address challenges associated with scale, complexity, and time-to-
market, software-reliant systems are increasingly developed using
component-based technologies. To ensure component-based systems
meet their business, technical, and financial requirements and
constraints, research is needed on theories of composability—along with
the associated methods, platforms, and automated tools—to enable the
specification and enforcement of composition rules that allow (1) the
creation of desired behaviors (both functionality and quality attributes),
and (2) the assurance of these behaviors during initial deployment and
throughout the lifecycle. Key goals of this research area are, therefore, to
develop and/or refine theories, methods, platforms, and tools that enhance
our ability to construct software by composing components correctly and
reasoning about the consequences of various compositions, especially as
the structure, functionality, and provenance of component-based systems
evolve over time.

C
o

m
p

o
si

ti
o

n
a

l
C

o
rr

e
ct

n
e

ss

S
o

�
w

a
re

 C
o

n
st

ru
ct

io
n

 t
h

ro
u

g
h

Theory of composability

for model-integrated

computing and quality

attributes

Documented patterns and

tools for composition

notations, rules, and

relationships

“Smart

composition”

technologies

Integrated tool chains

to assure composed

behaviors at scale

before and during

runtime

Intelligent

interacting

formalisms

and assurance

capabilities

VISION
Humans and AI

are trustworthy

collaborators that

rapidly evolve

systems based on

programmer intent

50

Architecting the Future of Software Engineering

5.6.2 	 Limitations of Current Practice
The scope and scale of software-reliant systems continues to grow and
change continuously, such that developing and sustaining software from
scratch is no longer realistic for most production systems, including
mission- and safety-critical cyber-physical systems where the right answer
delivered too late becomes the wrong answer. Moreover, the size and
complexity of these systems makes it unrealistic for any one person or
group to understand the entire system. It has therefore become common—
and often necessary—to integrate (and continually reintegrate) software-
reliant systems using modular components. Many of these components,
however, are reused from existing elements that may not have been
designed initially for composition, integration, or evolution. This situation is
particularly problematic in heterogeneous computing environments, where
components are written in a mélange of programming languages atop
platform technologies with questionable quality and provenance.

Since the 1950s, software researchers and developers have been creating
abstractions that help them program in terms of their design intent rather
than the vagaries of the underlying computing environment—such as CPU,
memory, and network devices—and shield them from the complexities of
these environments. From the early days of computing, these abstractions
included both language and platform technologies. For example, early
programming languages, such as assembly and Fortran, shielded
developers from the complexities of programming directly with machine
code. Likewise, early operating system platforms, such as OS/360 and
Unix, shielded developers from the complexities of programming directly
to hardware.

Although these early languages and platforms raised the level of
abstraction, they still had a distinct “computing-oriented” focus. In
particular, they focused on abstractions of the solution space (i.e., the
domain of computing technologies themselves) rather than abstractions of
the problem space (i.e., application domains, such as telecom, aerospace,
healthcare, insurance, and biology). Moreover, too much effort was needed
to create or re-create applications from scratch atop these low levels of
abstraction rather than expressing designs in terms of application domain
concepts and then composing applications using reusable components that
could be integrated into application frameworks and software product lines.

Advances in languages and platforms during the past several decades
have raised the level of software abstractions available to developers. For
example, developers today typically use more expressive programming
languages, such as Python, Java, Kotlin, or C++, rather than Fortran or
C. Likewise, today’s reusable class libraries (such as the C++ Standard
Template Library or Java Collections) and application frameworks
provided by popular software platforms (such as Android, iOS, and Spring
middleware) minimize the need to reinvent common and domain-specific

51

A National Agenda for Software Engineering Research & Development

middleware services, such as discovery, event notification, transactions,
security, and resource management. Due to the maturation of these third-
generation languages and reusable platforms, software developers are
now better equipped to shield themselves from complexities associated
with creating applications from scratch using earlier technologies and
can instead focus on composing them using reusable components and
frameworks provided by common platforms.

Despite these advances, however, several vexing problems remain. At the
heart of these problems is the growth of platform complexity, which has
evolved faster than the ability of general-purpose programming languages
to mask it. For example, popular middleware platforms, such as Node.js,
Sparks, the Data Distribution Service (DDS), and Android, contain thousands
of classes and methods with many intricate dependencies and subtle
side effects that require considerable effort to compose, adapt, and tune
properly. Moreover, these platforms often evolve rapidly (and new platforms
appear regularly), so developers expend considerable effort manually
porting their application software to different platforms or newer versions
of the same platform.

A related problem is that most application and platform software is still
written and maintained manually using third-generation languages,
which incurs excessive time and effort, particularly for key integration-
related activities, such as system deployment, configuration, and quality
assurance. For example, it is hard to write Python or C++ code that
correctly and optimally deploys large-scale distributed systems with
hundreds or thousands of interconnected software components, which
is becoming more common in societal-scale software systems (see
Section 5.7).

Even using newer notations, such as Extensible Markup Language (XML)-
based deployment descriptors popular with middleware platforms like
Android, is fraught with complexity. Much of this complexity stems from the
semantic gap between levels of abstraction. For example

•	 the design intent (e.g., deploy components 1-50 onto nodes A-G and
components 51-100 onto nodes H-N in accordance with system resource
requirements and availability)

•	 the expression of this intent in thousands of lines of handcrafted XML
whose visually dense syntax conveys neither domain semantics nor
design intent

Due to these types of problems, the software industry is reaching a
complexity ceiling where modern platform technologies, such as reactive
microservices in cloud deployments [Gillberg 2020], have become so
complex that developers spend years mastering and wrestling with
platform APIs and usage patterns, and yet are often familiar with only
a subset of the platforms they use regularly. Moreover, third-generation

The software
industry is reaching
a complexity
ceiling where
modern platform
technologies
have become
so complex that
developers spend
years mastering
and wrestling with
platform APIs and
usage patterns.

52

Architecting the Future of Software Engineering

languages require developers to pay close attention to numerous
imperative programming details, such as terminating loops correctly;
detecting and handling errors and exceptional conditions properly;
and avoiding buffer overflows, null pointers, and double-deletions of
dynamically allocated memory [Seacord 2005].

These types of tactical issues make it hard for developers to focus on
strategic architectural issues, such as system-wide correctness and the
performance of applications composed from reusable components.
Although modern interactive development environments (IDEs) help
address some of these tactical issues (such as managing dynamic memory
management properly), IDEs are limited in their ability to detect and help
rectify common programming mistakes. Likewise, IDEs provide limited
support for guiding the correct application of architectural patterns, which
still require considerable manual design and implementation effort.

Today’s fragmented tools and methods also make it hard for software
developers to know which components and subsystems of their applications
are susceptible to side effects arising from changes to user requirements
and language and platform environments. This lack of an integrated
view—coupled with the danger of unforeseen side effects resulting
from composing software components originating from a wide range of
sources of questionable quality and provenance—often forces developers
to implement suboptimal solutions that unnecessarily duplicate code,
violate key architectural principles, and complicate system evolution and
quality assurance. Suboptimal solutions are particularly problematic when
developing and assuring mission- and safety-critical cyber-physical systems
that evolve continuously (see Section 5.5).

5.6.3 	 Topics for Research

5.6.3.1 	 Compositional Correctness via Model-Driven Engineering (MDE) Tools
One promising approach for addressing platform complexity, as well as
the inability of third-generation languages to alleviate compositional
complexity and express domain concepts reliably and securely, is to develop
and apply model-driven engineering (MDE) technologies [Schmidt 2006],
such as MATLAB, Simulink, Rhapsody, and the Architecture Analysis and
Design Language (AADL) [SEI 2019]. Rather than programming with third-
generation languages such as Java, Java Script, and C++, these model-driven
approaches enable software developers to program at a higher level by
combining the following:

53

A National Agenda for Software Engineering Research & Development

•	Domain-specific modeling languages (DSML), whose type systems
formalize the application structure, behavior, and requirements
within particular domains, such as software-defined radios, avionics
mission computing, online financial services, warehouse management,
or even the domain of middleware platforms [Voelter 2013]. DSMLs
are described using metamodels, which define the relationships
among concepts in a domain and precisely specify the key semantics
and constraints associated with these domain concepts. Developers
use DSMLs to build applications using elements of the type system
captured by metamodels and express design intent declaratively rather
than imperatively.

•	Transformation engines and generators that analyze certain aspects
of models and then synthesize various types of artifacts, such as source
code, simulation inputs, XML deployment descriptions, or alternative
model representations. The ability to synthesize artifacts from models
helps ensure the consistency between application implementations
and analysis information associated with functional and quality
of service (QoS) requirements captured by models. This automated
transformation process is often referred to as “correct-by-construction”
[Ge 2018], as opposed to conventional handcrafted “constructed-by-
correction” software development processes that are tedious, error
prone, and hard to assure.

Existing and emerging MDE technologies apply lessons learned from earlier
efforts at developing and composing software via higher-level platform
and language abstractions. Instead of general-purpose notations that
rarely express application domain concepts and design intent, DSMLs can
be tailored via metamodeling to precisely match the domain’s semantics
and syntax. DSMLs express behaviors or computations in a manner that
resembles a specific application domain in which end users operate.

54

Architecting the Future of Software Engineering

For example, financial systems could express behaviors or computations
in terms of accounts and ledgers. As another example, avionics systems
could express behaviors and computations in terms of speed, velocity,
and altitude. Essentially, MDE technologies enable programming software
at a higher level of abstraction using DSMLs that expand the syntax and
semantics of third-generation languages to develop applications on top
of popular platforms and frameworks. MDE methods and tools can thus
simplify software construction through compositional correctness by
enabling software developers to focus largely on domain-centric business
logic expressed via models created using DSMLs. The bulk of their
applications can then be synthesized and/or integrated from these higher-
level models, which can be mapped reliably, securely, and efficiently onto
the underlying software frameworks and platforms.

DSMLs often express elements in a domain graphically, rather than
purely textually (as is the case with third-generation languages). Having
graphic elements that relate directly to a familiar domain not only
helps flatten learning curves but also helps a broader range of subject
matter experts, such as system engineers and experienced software
architects, ensure that software systems meet user needs. Moreover,
MDE tools impose domain-specific constraints and perform model
checking that can detect and prevent many errors earlier in software
and system lifecycles.

In addition, because today’s platforms have much richer functionality and
QoS than those in the 1980s and 1990s, MDE tool generators need not be
as complicated because they can synthesize artifacts that map onto—and
compose into—higher-level, often standardized, middleware platform
APIs and frameworks rather than lower-level OS APIs. In particular, MDE
methods and tools can take expressions in DSMLs and auto-generate large
amounts of the code that is then connected with components created via
modern middleware platforms, such as Spring or React.js. Consequently,
it is often easier to develop, debug, and evolve MDE tools and applications
created using these tools and associated model-driven middle frameworks
[Costa 2017].

Integrating MDE tools and middleware platforms to deploy application
services end to end can help developers configure the right set of services
into the right part of an application in the right way. MDE analysis tools can
help determine the appropriate partitioning of functionality that should
be deployed into various component servers throughout a network. For
example, tools like MATLAB, Simulink, TimeWiz, and RapidRMA allow
application developers to model and visualize their application end to end
(and their QoS requirements). In particular, Simulink allows application
developers to model, analyze, simulate, verify, and rapidly prototype
applications for mission- and safety-critical cyber-physical systems.

55

A National Agenda for Software Engineering Research & Development

5.6.3.2 	 Compositional Correctness via Dependency-Injection Frameworks
The past decade has witnessed the evolution of another approach to
address the problem of tedious and error-prone code that often results
from the sole reliance on third-generation languages to create systems.
Instead of representing software behaviors in the form of MDE constructs
(such as custom-built domain-specific modeling languages that may be
unfamiliar to many programmers), software developers can write the bulk
of their business logic in their programming language of choice and then
declaratively annotate this code with various tags that provide information
used by annotation processing tools. In turn, these tools can then auto-
generate and compose software via dependency-injection, which is an
advanced form of separation of concerns used to construct and compose
components by “auto-wiring them together,” thereby increasing readability,
code reuse, and automation.

Dependency-injection frameworks, such as Spring and Dagger, allow
programmers to declaratively specify certain properties and attributes
via annotations [Patel 2018]. These annotations are then processed
automatically by tools that generate and connect large amounts of
“glue code,” thereby minimizing software development for aspects
like persistence, remote communication, and security, as well as data
access and manipulation. These annotation processing tools inspect,
generate, and compose the various aspects needed to synthesize a
working application.

Annotation-based dependency-injection frameworks simplify software
construction through compositional correctness [Bojkic 2020]. In particular,
software developers focus largely on business logic written in familiar
programming languages and then place annotations into certain classes.
Annotation processing tools then inspect and generate much of the “glue
code” needed to create and compose a working application.

For example, to assign a particular class as one that provides data, an @Data
annotation can be used to instruct an annotation processing tool to generate
code that has certain additional capabilities, such as setter/getter methods
to update/read fields in a particular object. Annotations like @Value can
also indicate that an entity (such as an object) will be stored persistently in a
database. Certain fields can also be annotated (e.g., via an @Id annotation) to
indicate that they are intended for use as primary keys in a database.

These declarative annotations enable software developers to express
metadata about the fields and elements in a class so that programmers
need not write all this code themselves. The annotation tool infrastructure
instead generates glue code and other important tasks, such as determining
dependencies between the different defined components. These tools also
automatically compose dependencies together without having to undergo
explicit composition. For example, a software developer can determine

Software
developers can
write the bulk of
their business
logic in their
programming
language of
choice and then
declaratively
annotate this
code with various
tags that provide
information used
by annotation
processing tools.

56

Architecting the Future of Software Engineering

that a particular class depends on another class and then annotate it with
another annotation, such as @Autowired. This annotation indicates to the
tool infrastructure that it needs to retrieve an implementation of that entity
and arrange to connect the pieces together.

Annotation processing tools work together with the dependency-injection
framework to instantiate other dependent components and connect
them all together, so software developers need not manually establish
all the connections and integration and composition. Instead, software
developers declare those dependencies and the framework identifies the
implementations and automatically composes them. This loose coupling
enables software developers to write their components in a more modular
manner and then leverage the tool infrastructure to perform correct
compositions on their behalf.

Beyond their worth as a more efficient, less-error prone means of
constructing new software systems, annotation-based dependency-
injection frameworks have become popular because they are widely
used to program the World Wide Web. In particular, frameworks like
Spring encapsulate popular low-level protocols and notations, such as the
Hyper-Text Transfer Protocol (HTTP), JavaScript Object Notation (JSON),
and Extensible Markup Language (XML), that encode and exchange
data types back and forth between clients and servers. These low-
level communication and data-transfer mechanisms can, in turn, be
encapsulated via annotations (such as @GetMapping and @PostMapping)
that automatically convert HTTP GET and POST requests sent over
Transmission Control Protocol (TCP) connections into conventional
method calls on objects whose business logic is written using popular
third-generation languages.

57

A National Agenda for Software Engineering Research & Development

Dependency-injection frameworks such as Spring enable software
developers to annotate (e.g., via the @RestController tag) a conventional
class to designate that incoming HTTP GET and POST requests should
be routed to its endpoint methods and processed using conventional
method calls. In particular, annotations such as @PostMapping or
@GetMapping can direct the incoming requests at the HTTP level,
route them to the appropriate endpoint method, and then dispatch this
method to process the contents contained in the HTTP message. This
annotation-based approach enables software developers to focus on
business logic instead of the intricacies involved in sending messages
from a client to a server, all of which is accomplished via declarative
annotations and auto generation, rather than developers manually
writing this code imperatively.

By enabling software developers to define their components and
applications without concern for the communication mechanisms used
to operate between them, it is no longer necessary to create inflexible
monolithic applications where all components reside in a single address
space. Instead, microservice architectures have emerged that construct
software by composing many smaller elements (i.e., microservices)
whose configurations can be customized and deployed onto the
underlying computing infrastructure, such as Amazon Web Services
(AWS), an on-premises private cloud, or an IoT sensor network [Lira
2019]. This loosely-coupled architecture enables system scalability by
leveraging multi-core processes and distributed core clusters, because a
system is composed from small components whose location can change
relatively flexibly and transparently.

Dependency injection frameworks also employ software build managers,
such as Gradle and Maven, that allow application developers to specify
the libraries they depend on in a highly flexible, programmable, and
late-binding manner. These capabilities, in turn, enable the dynamic
assembly and evolution of component implementations from many
libraries and packages available via the World Wide Web. In particular,
these components need not reside on the local build computer, but instead
can be downloaded automatically from remote repositories and installed
during the development process.

This late-binding approach to software dependency resolution allows
developers to compose software from components, some of which
they wrote (and annotated), but most of which were written by other
developers. The dependency-injection framework and build tools track
all these dependencies, compose everything, and connect all the
components without requiring extensive manual effort on the part of the
software developers.

58

Architecting the Future of Software Engineering

5.6.4 	 Research Questions
There are numerous research questions for achieving software
construction through compositional correctness based on the methods,
tools, and platforms described in the previous section, including:

•	How can we assure systems developed via loosely-coupled
components?

While software developers can derive benefits from MDE tools and
dependency-injection frameworks to generate and compose large
portions of their software systems, challenges persist because models
and annotations are often hard to debug at the “source” level and, thus,
are hard to statically assure. One reason for this difficulty stems from
the implicit dependencies existing in such loosely coupled systems.
In particular, when examining the source code itself, it is hard to
determine, statically, what implementations will be provided after various
components are synthesized and connected.

This challenge motivates the need for advanced research on annotation
browsers and static dependency analyzers that understand the semantics
of the various layers and tool chains that comprise loose-coupled
component-based systems. Likewise, there is also need for research on
“smart composition” methods, tools, and platforms that can intelligently
and correctly compose components not initially designed to work together
by automatically generating adapters that provide efficient and type-safe
semantic integration.

59

A National Agenda for Software Engineering Research & Development

•	How can we ensure a system will function properly and securely well
before runtime?

Software engineers and operators often do not know if a loosely-
coupled component-based system will function correctly until it
starts to run due to the lack of advanced visualization or testing tools,
such as quality assurance pipelines based on DevSecOps methods
and tools that understand the semantics of the annotations and the
late-binding of dependency-injection frameworks. While unit tests
or integration tests represent a time-honored approach to assuring
conventional software system, these methods are often untenable
for certain types of safety-critical or mission-critical systems (i.e.,
avionics, medical devices, or nuclear reactors) where system operators
must have confidence that they will function properly and securely
well before runtime.

With annotation-based dependency-injection frameworks, software
developers need greater assurance that a system is going to work correctly
earlier in the software lifecycle. This need presents an opportunity for
researchers to develop better tools that can conduct deeper analysis and
offer greater confidence that the system will work as intended prior to its
runtime execution.

•	How can we debug software that is developed with model-driven or
dependency-injection approaches?

If model-driven or dependency-injection approaches are used, there is
a general lack of debuggers that allow developers to step through their
software at the level it is written in (as opposed to the level at which it has
been generated). This problem should be familiar to prior generations of
software developers. In the early days of compilers and other language
processing tools, programs could be written at a higher-level language,
such as Fortran or C, but source-level debuggers that allow program
debugging at the higher-level language level were not initially available.
Rather, software developers had to debug at the assembly code level,
which was tedious and error-prone.

These types of limitations made it hard to debug higher-level code,
because developers had to keep falling back on lower-level code generated
by the compiler instead of the code they wrote and that the compiler
used as input. With model-driven engineering and annotation-based
dependency-injection frameworks, the level of abstraction has been
raised by many more layers. This ever-growing stack of abstraction levels
motivates research on developing tools that can debug code at the model
level or annotation level instead of the level of the code generated by these
automated processing tools.

60

Architecting the Future of Software Engineering

5.6.5 	 Research Topics
As the preceding sections demonstrate, the software community needs to
focus on evolving formalisms and tools to address the issues described.
We invite the community of researchers and practitioners to raise the
level at which mission- and safety-critical systems developed using these
approaches can be assured.

Research topics will be incremental and are summarized below:

•	Theory of composability for model-integrated computing and quality
attributes. Develop a new composability theory that uses modeling
and quality attribute concepts to integrate components developed
in accordance with component-based technologies (including, but
not limited to, model-driven engineering and/or annotation-based
dependency-injection frameworks) with assurance “baked in” to the
completed composition.

•	Documented patterns and tools for composition notations, rules, and
relationships. Develop tools, notations, and rules for composition that
enable assurance of the composed system in terms of quality attributes,
and reduce the need for purely runtime testing (i.e., be capable of
detecting defects during earlier phases of the software lifecycle).

•	“Smart composition” technologies. Create methods, tools, and platforms
that can intelligently and correctly compose components that were
not initially designed to work together by automatically generating
adapters that provide efficient and type-safe semantic integration.

•	 Integrated tool chains to assure composed behaviors at scale before and
during runtime. Develop tools that inform quality attribute engineering
trade space decisions to enable composition of systems at scale and
assure composed behaviors.

•	 Intelligent interacting formalisms and assurance capabilities. Build
an approach that empowers developers to use multiple formalisms
(e.g., combining model-driven and annotation-based approaches) to
compose systems and measure the impact on assurance.

61

A National Agenda for Software Engineering Research & Development

5.7	 Engineering AI-Enabled Software Systems
Research Focus Area
5.7.1 	 Goals
The systems of the future—from smart cities and buildings, to defense and
transportation systems, to healthcare—will likely incorporate AI elements.
For national defense applications in particular, AI-enabled software systems
promise the ability to improve the speed of response to changing missions
and promote information dominance by developing adaptive systems.

Advances in ML algorithms and the increasing availability of
computational power are already resulting in huge investments in
systems that aspire to exploit AI. AI-enabled systems, software-reliant
systems that include data and components that implement AI algorithms
mimicking learning and problem solving, have inherently different
characteristics than software systems that do not use AI components.
These differences are driving academia, industry, and governments
to explore the creation of a new discipline of engineering called AI
Engineering [Horneman 2019; Bosch 2020; Santhanam 2019]. Developing
and adopting transformative AI solutions that are safe, ethical, and
secure will require cultivating the field of AI engineering. CMU has
defined an abstract technology model called the AI Stack for driving the
clear understanding in the development and deployment of AI-enabled
systems [Moore 2018]. The SEI has further identified scalable AI (focusing
on how to scale algorithms, data, and infrastructure), robust and secure
AI (focusing on understanding the challenges around securing AI systems
against new adversarial threats), and human-machine teaming (focusing
on the challenges around interactions driven by decision making with
AI elements) as three important pillars to drive the definition of AI
engineering practices [SEI 2021].

So
�w

ar
e

Sy
st

em
s

En
gi

ne
er

in
g

AI
-E

na
bl

ed

AI-enabled
system
specification
methods

Design and analysis
methods for
AI-enabled systems

Testing practices
for AI-enabled
systems

Data
management
in support of
AI-enabled
systems

Uncertainty
management
methods

Continuous
monitoring
and sustainment

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

62

Architecting the Future of Software Engineering

However, AI-enabled systems are, above all, software systems. The
development and sustainment of these systems have many parallels with
building, deploying, and sustaining software systems. Research programs
in software engineering will need to focus on the challenges that AI
elements bring to software analysis, design, construction, deployment,
maintenance, and evolution. The goal of this research area is therefore to
explore what existing software engineering practices can reliably support
the development of AI systems and what new software engineering
research challenges need to be solved in order to reliably construct AI-
enabled software systems.

5.7.2 	 Limitations of Current Practice
AI-enabled systems in the next decade will likely continue to be dominated
by advances in ML algorithms, related in particular to advances in deep
learning due to a spike in research and the rapid advances that are
emerging. Incorporating AI and ML components into software systems
exacerbates many of the existing challenges involved with engineering
software, with or without AI elements: for example, how to have confidence
in systems, how to predict and control emergent behaviors, how to
formally specify requirements when there is uncertainty in data and the
patterns to be extracted from the data, and how to contain and manage
change. Attempts to introduce ML component development into systems
development highlight bottlenecks and mismatches between model
development, software development, infrastructure development, and
operational processes and artifacts [Amershi 2019; Lewis 2021].

Applying current software engineering practice to the development of AI-
enabled systems faces the following limitations:

•	Software development processes, including Agile processes, can pose
challenges when aligning traditional software development activities
with the experimental, iterative, and incremental nature inherent in
the development of ML models and other AI components [Amershi
2019; Rahman 2019]. ML model development relies on generation and
test approaches that make it hard to align with sprint boundaries
and the identification of done criteria common in most software
development processes.

•	Systems developed to train ML models may be expensive. One approach
to address this challenge focuses on developing self-supervised systems
that do not require the training of models in advance and shift the
effort of labeling [Hendrycks 2019]. In these systems, engineers focus
on monitoring the model and reacting to changes. This fundamental
shift to self-supervised systems will continue. However, new techniques
will need to be developed to address what elements of the system can
be self-supervised, how self-supervised elements can work together
with self-adaptation elements (in particular with self-adaptive software
systems), and the resulting challenges for system monitoring and
observability (among other things).

63

A National Agenda for Software Engineering Research & Development

•	Platforms that support system integration and model development
assume existing software platforms will scale out-of-the-box to
support the integration of AI components with the rest of the system.
Techniques to ensure successful deployment and sustainment of AI-
enabled systems after deployment are lacking. Although approaches
for building on existing software engineering techniques, such
as MLOps (which applies DevSecOps principles to ML component
development), have emerged, they still rely on existing tools without
appropriate metrics and analyses to provide timely and relevant
information to developers.

•	Systems that contain AI components cannot be reliably tested, verified,
and certified. Maintaining safety and security as new computational
paradigms such as AI are introduced cannot be guaranteed. While
the emergent field of AI engineering focuses on techniques such as
algorithmic trust, there is a dire need for software testing and analysis
techniques to support testing of AI components and AI-enabled systems.

5.7.3 	 Topics for Research
To overcome these limitations, research will need to focus on augmenting
software engineering techniques in the specification of systems with
AI components and their design, architecting, analysis, deployment,
and sustainment. In particular, progress needs to be made in the areas
described below.

5.7.3.1 	 AI-Enabled, Systems-Specific Quality Attributes and
Architecture Concerns
Quality attributes, or properties used to evaluate the quality and fitness of a
system for its mission goals, drive the selection of architecture approaches
and, consequently, the structure and behavior of software systems [Bass
2012]. Business and mission goals drive the domain and relevant types
of systems, and they are all critical in identifying high-priority quality
attributes. Identifying the driving quality attributes for AI-enabled systems,
specifying them, and understanding how they can be analyzed will require
further research. While particular mission and business goals will shape
the expected quality attributes, others will likely emerge as top priorities
as well. These attributes include explainability, data centricity, verifiability,
monitorability, observability, and fault tolerance, at a minimum [Pons 2019].
Analysis techniques to assure their correct design and implementation
will need to be developed. These attributes will also drive the development
of techniques for addressing fairness, unintended bias, and ethics. Ethics
is a complex subject which requires progress in policy, social sciences,
and technical realms. However, some aspects of ethics will fall under the
umbrella of our ability to design them into AI systems [Ozkaya 2019].

There is a dire
need for software
testing and analysis
techniques to
support testing of
AI components and
AI-enabled systems.

64

Architecting the Future of Software Engineering

5.7.3.2 	 Methods for Specifying Uncertainty and AI-Enabled System Behavior
There are systems whose requirements we can and do know up front, or
that we can discover easily through iteration. Those tend to be manageably
sized systems that we have learned how to develop over the years. In reality,
many software systems, even without AI components, need to model
uncertainties and “unknown unknowns” throughout their development.
Uncertainty is the dominant characteristic of AI-enabled systems. In
particular, learning from data and the discovery process introduced with
ML-modeling activities introduces many uncertainties. Existing software
requirements engineering and traceability techniques will need to be
expanded to decouple AI problem and model specification (which drive
ML component development) from the system specification (which drives
the test and evaluation of the resulting system—including the AI, data, and
other software elements).

5.7.3.3 	 Techniques to Analyze and Manage Change
The hard-to-trace dependencies, in particular those induced by data
dependencies, become a significant source of failure in ML systems.
These hidden and unstable data dependencies make applying known
architectural patterns to manage system evolution and separate
concerns challenging (for example, when inputs come from another ML
model that updates over time). Introduced by Google engineers as the
Changing Anything Changes Everything (CACE) principle, systems with
ML components not only become highly coupled but also more complex
[Sculley 2015]. However, the reality is that hidden dependencies have
always been a challenge to manage, in particular runtime dependencies,
because software engineers lack tools to analyze, model, and visualize
these dependencies. Data dependencies that are inherent in AI-enabled
systems suggest that we need the tools we already lacked even sooner. The
CACE principle implies that there is a dire need to better manage change
propagation, both to reduce the uncertainty of the expected results and
to improve the engineer’s ability to debug systems. Advancing software
engineering tools and techniques to analyze and safeguard systems for
change propagation will be an essential priority.

65

A National Agenda for Software Engineering Research & Development

5.7.3.4 	 Reliability in AI-Enabled Systems
Challenges related to analyzing and designing for reliability in AI-enabled
systems are similar to those of embedded real-time systems. Both are
often developed by integrating many disparate software and hardware
components, some of which may be developed and owned by different
parties. AI components will also increasingly be developed independently;
hence we will need techniques to analyze their attributes to predict their
behavior and integrate them into the rest of the system reliably. The reality
of the future of software systems will be an increased number of such
disparate components and the heterogeneity they introduce to system
design and operation. These disparate and heterogenous systems will
require software and AI engineers to assume normal failure and develop
safeguard techniques to ensure reliable system design, development, and
operations.

5.7.3.5 	 Monitoring and Self-Adaptation
The increased awareness of the role of data in the success of AI-enabled
systems will drive rapid progress in overcoming challenges stemming from
a lack of data, data with noise, and techniques to label data. It will also
drive the development of robust data engineering pipelines. Consequently,
challenges will shift to efficient deployment and sustainment of AI-enabled
systems. Current monitoring approaches mostly rely on collecting common
system metrics, such as the throughput and resource consumption of
systems. Monitoring techniques to provide information on drift detection
and the optimal time to retrain need further research. Different aspects of
monitoring and self-adaptation need to be taken into account, including

66

Architecting the Future of Software Engineering

the monitoring of data and changes in data, monitoring of the model (and
whether it continues to behave as intended), and monitoring of the system
with AI components. The existing software engineering body of work on
self-adaptation and self-healing systems will need to consider challenges
introduced by AI components, in particular the dependence on data and
how these data dependencies affect the rest of the system and its adaptive
responses. Accounting for the implications of unintended consequences
and incorrect model behavior will require the development of new
monitoring and adaptation techniques.

5.7.3.6 	 Testing, Deployment, and Sustainment of AI-Enabled Systems
The development and deployment of AI-enabled systems, in particular
ML-enabled systems, involves three distinct perspectives (along with
their own workflows and roles): data science, software engineering, and
operations. These three distinct perspectives, when misaligned due
to incorrect assumptions, can cause mismatches that result in failed
systems. Improved automation and formalism in specifying and detecting
these mismatches, incorporating these tools into deployment workflows
and MLOps pipelines, and developing testing techniques that extend
existing software testing approaches to effectively test AI components will
be needed. Currently, testing of AI components relies on ad hoc or manual
testing practices. Testing techniques for ML components, similar to those
that exist for traditional software components and systems, is a gap that
needs to be addressed.

5.7.4 	 Research Questions
The need to support AI-enabled systems through software engineering
research has reached a point similar to the period in which we realized
security, usability, and privacy had to be treated as primary quality
concerns in software systems: If we do not design for system users and
architect for usability, systems fail. Today, security, usability, and privacy
are among many other mainstream system concerns, and we have common
vocabulary and analysis methods to design and check for such attributes.
Similar progress needs to be made in identifying and understanding AI-
enabled system-specific qualities. Existing design, test, evaluation, and data
management techniques will help us understand how to design, deploy,
and sustain the structure and behavior of AI-enabled systems, and they
will also provide a stepping stone for addressing the following key research
questions in the next 5 to 10 years:

•	What are key quality attributes and architecture patterns to support
explainable and trusted AI-enabled systems? What design tactics and
analysis techniques support enforcing these attributes?

•	How can uncertainty be modeled to help specify and monitor AI-
enabled system behavior?

67

A National Agenda for Software Engineering Research & Development

•	What metrics enable fine-grained monitoring of AI and non-AI
components to derive timely sustainment decisions, such as retraining,
decommissioning, new data collection, and mission-driven decisions?

•	How does an AI-enabled system self-heal and correct errors once it
is deployed?

•	How can operational analysis be incorporated seamlessly into AI-
enabled system development and deployment, and how can it be
supported by tools in MLOps frameworks?

•	Which existing software testing techniques can support testing AI
components? What do unit, integration, and regression testing for
systems with AI components look like?

5.7.5 	 Research Topics
The ability to make progress in any of these areas will have dependencies
on the other areas, and work on all of them needs to start immediately.
Progress will be iterative and incremental, with the following milestones
guiding success:

•	AI-enabled system specification methods. Methods for specifying AI-
enabled system behavior need to be developed.

•	Testing practices for AI-enabled systems. Unit, integration, and regression
testing practices for AI-enabled systems need to be well understood.

•	Design and analysis methods for AI-enabled system. Key AI-enabled
system quality attribute concerns, including explainability,
monitorability, reliability, and trust, will need to be supported by
architectural patterns, tactics, and analysis methods.

•	Data management in support of AI-enabled systems. Understanding
the impact of data on system behavior, data architecting, and
change management needs to be well supported by analysis and
conformance tools.

•	Uncertainty management methods. There need to be techniques to
model, analyze, and design for uncertainty.

•	Continuous monitoring and sustainment. AI-systems need to be
effectively monitored, self-healed, evolved, and sustained.

68

Architecting the Future of Software Engineering

5.8 	 Engineering Societal-Scale
Systems Research Focus Area
Many societal-scale software systems, such as today’s commercial social
media systems, are designed to influence people and keep them engaged.
Companies that develop and deploy such systems generally derive revenue
from selling targeted advertisements to promote products and services, or
they exercise influence in other ways, such as advocating particular political
views. Avoiding bias and ensuring the accuracy of information are not
always goals or outcomes of these systems.

5.8.1 	 Goals
Software engineering for societal-scale systems focuses on predicting the
full range of impacts, including unintended consequences and the potential
for misuse and manipulation (which we refer to as socially inspired quality
attributes) that arise when humans are integral components of the system.
The goal is to leverage insights from the social sciences to build and evolve
societal-scale software systems that fulfill their intended purpose and
pose minimal risk of undesired or unintended consequences. Research
will enable better prediction of system behavior for building and evolving
societal-scale socio-technical software systems, constructing and evolving
systems with humans as components, and continuously mitigating risks
of unintended bias, misplaced trust, violations of privacy expectations,
concealed influence, or unrestrained social manipulation [Feiler 2006].

Societal-scale systems consist of more than conventional social media
systems. The essential characteristic of these systems is that they are
information and communications channels that foster desired outcomes
(such as engagement and action) as a primary source of revenue. Some
examples include the following:

Software
engineering for

societal-scale
systems focuses

on predicting
the full range of

impacts, including
unintended

consequences
and the potential

for misuse and
manipulation

that arise when
humans are integral

components of a
system.

So
�w

ar
e

Sy
st

em
s

En
gi

ne
er

in
g

So
ci

et
al

- S
ca

le

New quality
attributes based on
human behavior at
scale

System
instrumentation to
monitor e	ects of
system on social
behavior

Automated
detection and
protection against
misuse of
socio-technical
platforms

Platforms for
continuously
evolving
socio-technical
ecosystems

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

69

A National Agenda for Software Engineering Research & Development

•	social media platforms, such as Facebook, Twitter, and Instagram

•	search platforms, such as Google Search and YouTube, that help people
find desired content on the Internet or hosted by the service and that
also provide individualized recommendations based on data

•	systems that detect a software developer’s knowledge and adapts their
experience to mentor or train the developer

•	systems that attempt to predict events (such as school shootings, flu
outbreaks, and super spreaders) based on search or other data

•	gamification to increase engagement in areas such as personal health
or financial activities

5.8.2 	 Limitations of Current Practice
Societal-scale software systems connect people and provide new
communication mechanisms that enable many benefits, from finding a
long-lost friend to instant updates from family members. However, systems
today are designed to maximize engagement and influence people. There
exists a very limited understanding of how these systems influence the
behaviors of individuals over time or how the aggregate behaviors of
millions of people can be predicted. The limitations of engineering societal-
scale systems under the existing state of the practice, which lacks the
understanding and safeguards required to mitigate these issues, creates
serious risks to both individuals and society as a whole because bias and
misinformation create unforeseen and unrestrained consequences.

Although societal-scale systems are popular around the world and are
among the most frequently used software systems, there are significant
limitations with current practices for engineering these systems, including
the following:

•	Societal-scale software systems incorporate AI, create new information
flows, and reshape societal knowledge, but there is little understanding
of how a resulting socio-technical system will behave. People
change their behaviors in response to these information sources in
ways that are not always predictable or even visible [Centola 2018].
Understanding influence and response is made even more complex
by the fact that the information flows change frequently and the
information is not always vetted for truthfulness, bias, or manipulation.

•	Today, societal-scale systems are developed primarily to maximize
engagement through individual interactions that collectively create
social networks. These social networks can be used to influence
social behavior or perception. These technologies use highly targeted
personalization to influence individual action. This influence can
lead to polarization and can result in an aggregate warping of social
knowledge. Studies indicate that engagement algorithms can have
negative side effects that drive people toward extremes and can result

There exists
a very limited
understanding
of how these
systems influence
the behaviors of
individuals over
time, or how the
aggregate behaviors
of millions of people
can be predicted.

70

Architecting the Future of Software Engineering

in new security risks [Carley 2020]. Current engineering practices have
no framework to assess individual engagement algorithms or create
safeguards against uncontrolled warping of social knowledge.

•	Socio-technical systems provide direct connections to billions of
people daily around the world, which dramatically increases the
potential scale for social manipulation. Societal-scale systems use
active interaction and vast quantities of interaction data compared to
previous passive media (such as television), which enables targeted
persuasion with unprecedented effectiveness and scale. This
capability essentially democratizes influence, enabling manipulation
by individuals, organizations, or nation states [Waltzman 2017]. The
manipulation can be unintentional, due to a lack of understanding of
these systems, or intentional, as nation states or rogue actors create
online campaigns to manipulate populations. For many people, these
systems create a different virtual society and enable communication
with different rules and behavioral norms, which can lead to false
consensus, bias, and polarization.

5.8.3 	 Topics for Research
Building new software engineering approaches for societal scale systems
requires a cross-disciplinary approach. As stated in a recent research
agenda from the Computing Community Consortium (CCC), software
research “...will require a blend of humanities, social science, education,
journalism, and computer science, with comprehensive support and
participation from a broad range of organizations and institutions” [Bliss
2020]. Understanding what we can draw on from these disciplines will be
critical to informing software engineering research to build the software
systems of the future.

71

A National Agenda for Software Engineering Research & Development

5.8.3.1 	 New Quality Attributes and Architectures
Societal scale socio-technical systems have new quality attributes that
are not well understood. Today, most software architectures are created
to support tradeoffs across well understood quality attributes, such as
performance, reliability, and safety. Part of the goal of defining new quality
attributes includes defining the metrics of merit and how to measure it.

The purpose of discussing quality attributes is to understand the
relationship of design decisions in societal-scale systems and the behaviors
of the systems in use. New approaches are needed to deal with the many
dimensions of human behavior. Engineering systems with predictable
impact on humans will help avoid surreptitious ideological influence. Trust,
privacy, and bias are not totally new, but what is new is the challenge of
predicting and monitoring these attributes.

We want to use the social sciences as a basis for understanding these
quality attributes, similar to the way we use physical sciences as a basis
for designing for other quality attributes. One approach is to separate the
measurable manifestation of a quality attribute from the interpretation of
it. For example, using votes as a measure of merit (like the best product or
solution) seems to be useful, but also has challenges, including bias and
understanding the biases in samples of voters. Additional considerations
include the following:

•	What are the new quality attributes of societal-scale socio-technical
systems?

•	How can we identify and capture societal-scale requirements?

•	How do we relate individual choices to predict larger aggregate
behaviors and determine whether they are within the “expected” range
from an engineering perspective?

•	How can we develop privacy models that scale across organizations
and systems and enable individual control?

•	How can we ensure our confidence in data?

5.8.3.2 	 Software Development Using Socio-Technical Systems
A special case occurs when socio-technical systems are used by software
engineers to build software. This is an interesting use of societal-scale
systems because of the influence of these systems on software engineers
and software engineering activities. These systems and open source
environments allow people to access huge amounts of code and create
a type of digital infrastructure that both influences and is influenced by
software engineers. Examples include:

•	Stack Overflow, where people may use solutions without considering
their origin or effects

•	GitHub, where mining code could lead to assumptions about software
qualities and possibly influence developers

72

Architecting the Future of Software Engineering

•	social coding environments, where popularity, number of users or
followers, links, and a host of other types of social information are
used in the technical decision-making process, such as the adoption of
libraries and frameworks

•	new ways of learning, from massive open online courses (MOOCs)
which enable recognized experts to teach to anyone, to developers
learning through YouTube tutorials

Researching how societal-scale systems influence software development
is important to better understand how to improve software quality and to
consider how these influences could be focused to help address workforce
challenges. For example, if socio-technical systems influence software
developers to make better decisions, then these systems could serve as one
enabler for AI-augmented software development.

5.8.3.3 	 Analysis Tools that Support Emergent Social Network Topology
Architectural and software analysis tools must be automated to enable
continuous analysis, but they must also be able to support emergent
network topologies. The network topology, or prioritized network of data
sources and influence mapping, changes because who a person connects
to strongly impacts what they see. Historically, the assumption has been
that systems were created to inform as opposed to influence people. The
influence mapping topology constantly changes, and sometimes topics
surge or “go viral,” resulting in new and unexpected connections. Specific
challenges in this area include the following:

•	developing automated and continuous analysis of very large and
emergent network topologies

•	creating analysis tools that enable situational awareness and human
understanding of very large-scale trends and predictions

5.8.3.4 	 Developing a Theory of Socio-Technical Knowledge Creation
Future software developers must consider multiple dimensions of
individual interactions and understand how these individual interactions
enable or create risks to society’s general knowledge. Addressing this
challenge requires understanding how knowledge is propagated and
identifying mechanisms to provide “guardrails” that limit how much
information is warped or influenced by speculation.

The communication mechanisms in socio-technical systems are new
pathways of information flow, and they impact social structures, norms
and understanding. Previously, information flowed from a few sources
to large audiences through video, audio, or paper media organizations
that generally included information about sources. While these media
organizations were sometimes biased, they generally undertook serious
efforts for verification or vetting. Today, information flows quickly through
social networks without explanation of the source, little vetting of the

73

A National Agenda for Software Engineering Research & Development

information, and frequent bias. Figure 3 illustrates a conceptual “funnel,”
where the data going into the funnel follows multiple steps before being
considered fact or knowledge.5 Different fields (e.g., journalism, intelligence,
and academic fields) have different versions of the funnel, but knowledge-
based professions all have ways of testing and selecting information to
identify what is and is not well founded.

Speculation

Hypothesis

Conjecture

Theories

New Knowledge

Rumors

Free Speech

Academic Freedom

Trusted Forums

Testing

Critiquing

Reviewing

Figure 3:	 Conceptual Process for Creating Knowledge in Societal-Scale Systems

Current computational methods alone are insufficient to make the
judgments needed to move data through the funnel. Specific areas of
interest include the following:

•	protecting social epistemology by identifying the knowledge funnel
mechanisms [Rauch 2018]

•	 identifying the essential characteristics of effective online moderation
systems for vetting data and rating data sources (e.g., Karma on Reddit)

•	understanding and mitigating unintended consequences at scale in
social media

•	 identifying and mitigating risks of social epistemology influencers that
negatively impact knowledge creation

5	 Graphic derived from Jim Herbsleb, Carnegie Mellon University, Institute for Software Research
[Rauch, 2018].

74

Architecting the Future of Software Engineering

5.8.3.5 	 Continuously Evolving Socio-Technical Systems
Automatically detecting and bounding behavior is critical to meeting
the scale and volume of data in socio-technical systems. This requires
consideration of the constant change and uncertainty in architectural
evolution, data flows, and governance policies of these systems. Systems of
the future must constantly monitor and adjust as the system changes.

It is important to highlight that the process of evolving societal-scale
systems also requires understanding and adjusting for how they change the
behaviors of the people using them. We don’t fully understand what kinds
of impacts these systems can have on people over time, and there is a range
of impacts that need to be explored. This creates an interesting feedback
loop in which the people using the system are also reshaping the system.

Continually evolving socio-technical systems includes questions such as
the following:

•	How can we control versions or fix bugs when these systems are
constantly changing? Is it a new way of developing software when the
system and data are never the same?

•	How do we understand the state of the socio-technical protection
mechanisms that lead to the knowledge that was created?

5.8.3.6 	 Protecting Against Misuse of Socio-Technical Platforms
Socio-technical systems connect billions of people every day and
can have profound effects on society. Detecting societal-scale
disinformation or manipulation is difficult because the information can
take many forms, such as text, video, or audio [Twetman 2021]. Rapidly
reacting to propagating misinformation in different types of data, at
scale and fast enough to respond, requires significant architectural and
data mechanisms.

75

A National Agenda for Software Engineering Research & Development

Additional topics of interest include

•	manipulating politics and public opinion, which present national
security concerns, especially when done by foreign powers

•	detecting and addressing unanticipated consequences

•	 tracking sources of content (i.e., provenance)

5.8.3.7 	 Adherence to Policy
Governments around the world are creating new policies and rules to
govern socio-technical systems. These rules can vary at national, state,
or even local government boundaries even though the socio-technical
systems exist at a global scale. New mechanisms are needed to engineer
these systems when policy rules vary across locations and provide the
measurement and audit capability required for government regulation. It
is important for software engineering research to create data-driven and
openly understood techniques for industry, government, and society to
establish a technically grounded and adaptable governance framework
for societal-scale systems. This topic requires further research because
engineers face many tradeoffs as governance addresses multiple
considerations, including the following:

•	how to require transparency when influence mechanisms are
operating in the software

•	how to monitor policy adherence while preserving the privacy of
individuals

•	how to protect against companies, governments, or other actors
misusing the ability to filter content

•	how to build automated monitoring and reporting for policy adherence

5.8.3.8 	 Experimentation and Testing
Socio-technical systems operate at such large scale, and with such diversity
of human interaction, that typical experimentation and testing approaches
are ineffective. Modeling is one option, but this requires confirmation
that the system and the model are consistent. It also requires a deeper
understanding of individual and aggregate behaviors. Another solution is
experimentation and testing as part of the operational system, such as the
A-B testing carried out by many tech companies. But, as a general strategy,
this approach has technical challenges in bounding the experimentation. It
also has potential legal and moral concerns related to human subject testing
(testing the system without the knowledge of the people using it), potentially
increasing the risk of manipulation.

This topic requires
further research
because engineers
face many tradeoffs
as governance
addresses how to
protect against
companies,
governments,
or other actors
misusing the ability
to filter content.

76

Architecting the Future of Software Engineering

A deeper understanding is needed about what testing really means for
societal-scale systems and how experimentation and testing should be
conducted. Some additional questions include the following:

•	Should people affected by a system have a role in its design (i.e.,
participatory design)?

•	How do we create an experimentation environment to explore these
areas and test new approaches? (This question involves understanding
the threshold of what is acceptable to test on live users versus what
must be revealed to users to let them know they are part of a test.)

•	 If so many people depend on socio-technical systems, should there be
reliability or safety expectations (like in telecommunications) to test
when a main hub fails or to determine how a system can fail safely?

5.8.4 	 Research Questions
There are numerous challenges and questions involved in engineering
societal-scale systems. Answering the societal-scale questions requires
leveraging expertise outside of software engineering from the social and
information sciences. The following questions highlight this point:

•	How do we test solutions and fully consider the widely varying cultural
and behavioral background of people?

•	How do we monitor social epistemology impacts, and which social
vetting processes are effective to guard against intentional or
unintentional warping of knowledge?

•	What are the software engineering expectations for transparency
when using influence mechanisms in systems, particularly in health or
financial systems?

•	What are the important aspects of societal-scale measurement to enable
continuous assessment of compliance of systems to evolving government
policies, and when might the measurement infringe on privacy?

5.8.5 	 Research Topics
Research topics will be incremental and are summarized below.

•	New quality attributes based on human behavior at scale. Identify new
quality attributes and architectures that enable engineering prediction
of human behavior at scale with consideration for uncertainty.

•	System instrumentation to monitor effects of system on social behavior.
Build continuously evolving socio-technical systems analysis tools,
analysis tools that support emergent network topology, and new
approaches for experimentation and testing.

•	Automated detection and protection for misuse of socio-technical
platforms. Develop a theory of societal-scale knowledge creation and
develop protections against misuse of societal-scale platforms.

•	Platforms for continuously evolving socio-technical ecosystems. Build
continuously evolving societal-scale system analysis tools and support
adherence to variable policy rules.

77

A National Agenda for Software Engineering Research & Development

5.9 	 Engineering Quantum Computing Software Systems
Research Focus Area
Quantum computing seeks to change the style of computation by
leveraging quantum mechanical effects. In the 1980s and early 1990s,
the theory of a new type of computer was developed: A quantum
mechanical Turing machine was described and shown to be able to
simulate everything a classical Turing machine could do. The basic unit
of computation in these systems is not a classical binary one or zero—a
bit—but, rather, an analog value that can represent intermediate values
and simultaneously multiple values: both one and zero—a quantum bit, or
qubit. This expressivity, called superposition, plus the ability of multiple
qubits to be entangled—to join together to express states that cannot be
expressed in terms of concatenated, separate, single-qubit systems—gives
a quantum computer its power. In fact, a quantum computer with n qubits
can encode 2n—1 complex numbers. Exciting theory was developed to
show that quantum computers could, for select problems, be much more
capable than classical computers. Such computers are not limited by the
Church–Turing theory, which says that the performance of all classical
computers can be only polynomially faster than a classical probabilistic
Turing machine. Better yet, algorithms were soon developed that showed
that a quantum computer could be exponentially faster than classical
computers at solving specialized problems.

Expanded set
of quantum
algorithms

Standardized
so	ware stack
interfaces

Debugging
tools and
techniques

Hybrid
classical
quantum
algorithms

Domain-
specific
languages

Co
m

pu
tin

g
So

�w
ar

e
Sy

st
em

s

En
gi

ne
er

in
g

Qu
an

tu
m

Profiling
tools

VISION
Humans and AI
are trustworthy

collaborators that
rapidly evolve

systems based on
programmer intent

78

Architecting the Future of Software Engineering

That groundbreaking theory motivated additional work on the design and
realization of quantum computers. Two classes of quantum computers
have been pursued: The first class comprises computers that initialize
state and then evolve that state directly so that the final system state has
a high probability of encoding the correct answer to the computation.
This is called analog quantum computing, and includes the quantum
annealing computers built by D-Wave Systems. The second class of
quantum computers breaks computation down into a small set of primitive
operations, then sequentially performs those operations, eventually
producing a probably correct result. These are called gate-based systems,
and are the systems we focus on here, because the discrete nature of these
systems should enable the use of error correction, which will allow the
systems to scale much larger and thus solve much more complex problems.

Small-scale implementations of these gate-based computers are starting
to be developed from different technologies. There are many challenges in
developing such systems—qubits need to be isolated from the environment,
entangled, and precisely controlled, so it is still not known which qubit
technologies will scale to the desired, large systems. Leading contenders
include trapped ion qubits (explored by IonQ and Honeywell) and
superconducting qubits (explored by IBM and Google), although academics
and others are exploring photonic qubits and neutral atoms. Major
providers of high-performance computing (e.g., IBM) and cloud computing
services (e.g., Google, Microsoft, and Amazon) are enabling access to today’s
small quantum computers through their platforms. Today, the small size
and noisy qubits of these systems have limited their applications; they
have been used mostly for experimentation and scientifically interesting,
but commercially unimportant, demonstrations. Still, the promise of
such systems to compute things beyond classical computers is enticing.
Recommendations in this section have been influenced by conversations
with practitioners as well as by several excellent recent reports [Martonosi
2018; NASEM 2019].

5.9.1 	 Goals
If we imagine that hardware advances that permit scaling are achieved,
then advances in software and software engineering will also be needed.
The 2018 National Strategic Overview for Quantum Information Science
[NSTC 2018] identifies grand challenges in areas such as ML, simulation of
many-body systems for materials discovery, chemical processes, quantum
field theory, and dynamics of biological processes. To this list we add
software engineering.

79

A National Agenda for Software Engineering Research & Development

For quantum computers, there is much to be done. We are working in a
world with quantum computers of only 50-100s of barely functioning
qubits—what John Preskill called “Noisy Intermediate-Scale Quantum”
(NISQ) technology [Preskill 2018]. The software tools we have are powerful,
yet each qubit is individually controlled by the programmer, with only
limited automation. Our goals are to first enable these NISQ computers to be
easily programmed and then to have increasing abstraction as larger, fully
fault-tolerant quantum computing systems become available.

5.9.2 	 Limitations of Current Practice
There are so many missing software engineering pieces that it is easiest
to think about the needed advances as layers in a software engineering
stack. We group those advances in software into the following categories:
quantum algorithms, software engineering, development tools and
languages, computing platforms, and testbeds.

80

Architecting the Future of Software Engineering

5.9.3 	 Topics for Research

5.9.3.1 	 Advances in Quantum and Classical Algorithms
In this section we consider software engineering for special-purpose
systems that have not yet reached their full potential—universal gate-
based quantum computers. Today’s systems are small and unreliable, so
the research described in this section that relies on large-scale systems
may take more years to perform than other sections due to their lack
of availability. Still, enough is known to start to envision the software
engineering challenges and research required for such systems, even if the
time frame may be less accurate.

Theoretical computer scientists focus on the asymptotic behavior of
algorithms. Fast quantum algorithms are tuned to the unique aspects of
a quantum computer: superposition and entanglement. These are both
limited in scope and different in style from classical algorithms, requiring
substantial creativity and expertise.

In fact, the total of all quantum algorithms that exist today that in theory
could outperform a classical algorithm are listed online as the “Quantum
Algorithm Zoo.”6 There are four major areas of such algorithms: (1) algebraic
and number theoretic algorithms; (2) oracular or searching algorithms; (3)
approximation and simulation algorithms; and (4) optimization, numerics,
and machine learning algorithms.

Unfortunately, today’s quantum computing systems perform individual
calculations much more slowly (in wall-clock time) than classical
computers. They have slower clock rates and produce probabilistic results,
thus requiring either many runs or a means of checking the discovered
solution. After the relatively limited performance of today’s real hardware is
factored in, only those algorithms that provide super-polynomial speedups
are likely to achieve true quantum advantage. Only a few experiments
have demonstrated quantum advantage—the ability to solve a problem
faster than it could be solved on a classical computer. This will remain
challenging, because both quantum and classical computing architectures
will continue to improve.

The following are research topics for this area:

•	Expand the set of known quantum algorithms.

•	Leverage new insights from quantum algorithms to improve
classical algorithms.

•	Build hybrid algorithms that leverage the best quantum and
classical algorithms working together.

•	Develop provably correct libraries that can be called from
higher-level languages.

•	Develop benchmarks, so the performance of different machines
can be compared.

6	 https://quantumalgorithmzoo.org/

https://quantumalgorithmzoo.org

81

A National Agenda for Software Engineering Research & Development

5.9.3.2 	 Advances in Software Engineering, Development Tools, and
Quantum Computing Languages
Quantum computer tools are in their infancy. There are several quantum
programming platforms. Microsoft offers a quantum development kit
that allows programming in the object-oriented Q# language [Svore 2018].
Amazon offers a development kit that supports programming in the Bra-
Ket language [Amazon 2021]. IBM offers programming in QISkit, a multi-
layered language that supports programmers with expertise in other fields,
quantum circuit developers, and quantum mechanics experts [Abraham
2019]. In addition, there are several academic (e.g., Scaffold) and open-
source (e.g., Quipper) languages and tools. Both functional and imperative
languages have been developed [Qiskit 2012; Gay 2006].

Many of these languages are low level, roughly akin to classical assembly
language. This characteristic encourages the programmer to think about
the unique aspects of quantum computers but makes it hard to think in
terms of higher-level algorithms. It is not clear that this is the best model
for developers, or that any one of these early languages is the best possible
way to program. In addition, the toolchain has many simple components,
and there are enticing hints that more sophisticated solutions will produce
dramatic speedups. For example, efficient mapping computations from a
language onto a specific quantum computer can double the performance of
the algorithm.

82

Architecting the Future of Software Engineering

The following are research topics for this area:

•	Develop new domain-specific programming languages that allow
the programmer to directly express quantum-unique parallelism
while preventing impossible actions, thereby making the quantum
programmer more efficient.

•	Develop quantum compiler optimization techniques that map
programming languages to multiple target architectures, thereby
improving the runtime and efficiency of the implementation and
enabling benchmarking.

•	Develop tools to support continuous integration for quantum computers.

5.9.3.3 	 Advances in Hardware/Software Computing Platforms
In most cases, users access today’s quantum computing systems via
the cloud as a special-purpose co-processor of a classical computer.
Most future algorithms will perform some actions (i.e., loading data and
initializing the system) on a classical computer and some computations
on a quantum computer. Deciding which computation to perform on what
component will remain a challenge, as will measuring the performance of
the system. Finally, debugging cannot be done on a quantum computer in
the usual way.

The following are research topics for this area:

•	Develop new tools for profiling quantum algorithms and hybrid
classical-quantum algorithms.

•	Develop new tools for debugging quantum algorithms and hybrid
classical-quantum algorithms.

•	Refine the interfaces: command-line, application-level, and application
programming interfaces.

83

A National Agenda for Software Engineering Research & Development

5.9.3.4 	 Advances in Simulators and Testbeds
Simulators and testbeds will be needed to advance the field. Simulators
exist and can leverage multicore and high-performance computing
infrastructures (e.g., QuEST and high-performance simulation of quantum
computers) [Jones 2019]. At base, a simulator can be used to verify the
expected outputs of a quantum computer. At higher levels of abstraction, a
simulator can trace execution and reveal the state of logical qubits. There
will be limits to these simulations, because current simulation techniques
simulate gate operations using sparse matrix manipulation, where an
N qubit computer grows as 2N. Current supercomputers can perform
simulations of about 50-qubit systems.

The following are opportunities for possible research directions:

•	Develop techniques to allow for larger simulations: new approaches,
or new decomposition of existing approaches, enabling sequential
simulation of multi-step and complex algorithms.

•	Develop techniques to automatically allow comparisons of intermediate
representations from a simulator and a quantum computer.

5.9.4 	 Research Questions
•	What additional quantum algorithms are there?

•	What new tools and techniques would be useful for debugging
quantum algorithms?

•	What new approaches, and new decomposition of existing
approaches, would support larger-scale simulation of multi-step
and complex algorithms?

84

Architecting the Future of Software Engineering

5.9.5 	 Research Topics
It is difficult to order the tasks above, which are organized as a quantum
software stack. However, there are three important epochs for quantum
computers:

•	Scientific: Learning how to build a quantum system that is perfectly
isolated from the outside world, and yet the qubits in that system are
able to strongly interact with each other. The problems that need to be
solved are mostly problems for the field of physics. Software challenges
include developing low-level tools, akin to device drivers, that
coordinate the control signals to individual qubits. There is still a lot of
interesting research to be done, but that is not the focus of this report.

•	NISQ: This is the era when systems of 50 to a few hundred qubits are in
the system, mostly isolated from the outside world, and able to interact
with each other as desired. Several quantum computers have been
built that reach this scale and performance. There are many interesting
software engineering problems.

•	Fault-Tolerant Quantum Computing: This is the era of a few hundred
to millions of qubits, isolated from the external world and strongly
interacting with each other in carefully controlled ways.

We subdivide milestones in the following table, focusing on problems of
NISQ and Fault-Tolerant Quantum Computing, and forcing a selection of no
more than two of the following categories:

•	Short-term. These are efforts that should be pursued over the next
couple of years.

•	Mid-term. These are efforts that should be pursued over the next
three-to-five years.

•	Long-term. These are efforts that should be pursued over the next
six or more years.

85

A National Agenda for Software Engineering Research & Development

Table 1: 	Quantum Computing Research Milestone Time Frame

Research Direction Short Term Mid-term Long-term

Benchmarks for quantum computing X

Large-scale simulation techniques X

Expanded set of quantum algorithms X X

Quantum algorithm insights leveraged for
classical algorithms X X

Standardized software stack interfaces X X

Intermediate comparisons: QC and simulators X X

Debugging tools and techniques X X

Hybrid classical-quantum algorithms X X

Proven correct libraries X X

Domain-specific languages with greater
abstraction X X

Target architecture mapping techniques X X

Tools for continuous integration X X

Profiling tools X X

87

A National Agenda for Software Engineering Research & Development

6 Recommendations
This report is intended as a call to action in
response to current and anticipated future deficits
in software engineering capability. Both the
research recommendations and the enactment
recommendations in this section help to define the
actions needed for the successful development of
future systems.

The research focus areas in Section 5 led to the research recommendations,
followed by a set of enactment recommendations that focus on people,
investment, and sustainment as vehicles for change. Work should begin as
soon as possible on implementing the recommendations in this section.

6.1 	 Research Recommendations
The research recommendations were motivated by the following key
observations:

•	AI is both a capability enhancer and a source of engineering uncertainty.

•	As software pervades everything, it increasingly helps us imagine new
ways it can be used. This leads to the engineering challenge of ensuring
software evolvability while efficiently reassuring it.

•	As software systems continue to grow in size and interconnectivity,
evolvability will increasingly depend on engineering by composing and
recomposing systems from existing pieces.

•	 In the past, social groups and societies were constrained to some
extent by physical proximity. Now social media enables interactions
at an enormous scale, virtually without limit. This leads to a need
for developing new engineering principles for societal-scale, socio-
technical systems.

•	As software continues to touch almost everything, software-reliant
systems inevitably become increasingly heterogenous, consisting of
data, humans, organizations, sensors, different types of computational
devices and other physical objects, and other elements. This
heterogeneity of system parts brings engineering challenges due to the
many disparate and interacting domains.

88

Architecting the Future of Software Engineering

The following research recommendations are intended for public and
private researchers and practitioners.

Recommendation 1—Enable AI as a Reliable System Capability
Enhancer

The software engineering and AI communities should join forces to develop
a discipline of AI engineering (perhaps starting with the Association for the
Advancement of Artificial Intelligence (AAAI) and IEEE Computer Society). This
would contribute to the development and evolution of AI-enabled software
systems that behave as intended. Moreover, this would enable AI to be
used as a software engineering workforce multiplier by helping with routine
software engineering activities, such as generating code based on programmer
intent aiding in refactoring, and ensuring conformance between a system’s
implementation and its architecture.

Recommendation 2—Develop a Theory and Practice for Software
Evolution and Re-Assurance at Scale

The software engineering research community should develop a theory and
associated practices for re-assuring continuously evolving software systems. A
focal point for this research is an assurance argument, which should be a software
engineering artifact equal in importance to a system’s architecture. Research
should include developing representations for assurance arguments and
approaches for structuring assurance arguments so that small system changes
only require incremental re-assurance.

Recommendation 3—Develop Formal Semantics for Composition
Technology

The computer science community should focus on the newest generation of
composition technology to ensure that technologies such as dependency-
injection frameworks preserve semantics through the various levels of
abstraction that specify system behavior. This will allow us to reap the benefits of
development by composition while achieving predictable runtime behavior.

Recommendation 4—Mature the Engineering of Societal-Scale
Socio-Technical Systems

The software engineering community should collaborate with social science
communities to develop engineering principles for socio-technical systems.
Theories and techniques from disciplines such as sociology and psychology
should be used to discover new design principles for socio-technical systems,
which in turn should result in more predictable behavior from societal-scale
systems such as social media.

89

A National Agenda for Software Engineering Research & Development

Recommendation 5—Catalyze Increased Attention on Engineering
for New Computational Models, with a Focus on Quantum-enabled
Software Systems.

The software engineering community should collaborate with the quantum
computing community to anticipate new architectural paradigms for
quantum-enabled computing systems. The focus should be on understanding
how the quantum computational model affects all layers of the software
stack. Predictably, exploiting quantum computing will require determining
where the specifics of the quantum model should be hidden versus known by
other elements of the software system.

6.2 	 Enactment Recommendations
While research recommendations focus on scientific and engineering
barriers to achieving change, enactment recommendations focus on
institutional barriers, such as economic, human, and policy barriers.

•	 It takes investment to fuel change. The institutional challenge is to
compel investors.

•	Regardless of the level of automation, human engineers build
systems. The institutional challenge is to reimagine our software
engineering workforce.

•	 Self-sustaining change requires institutionalization of policy and practices.

The following enactment recommendations are for research funders, policy
makers, and industry leaders.

Recommendation 6—Investment Priority Should Reflect the
Benefits of Software Engineering As a Critical National Capability

The software engineering community, software industry leaders, national
labs, and federal departments should recognize software engineering as a
national priority. This higher recognition in policy is needed to enable sustained
government and industry investment in software engineering research, with
benefits to national competitiveness and security.
The strategic role of software engineering in national security and global market
competitiveness should be reflected in national research activities, including
those undertaken by the White House Office of Science and Technology Policy
(OSTP) and Networking and Information Technology Research and Development
(NITRD). These research activities should recognize software engineering research
as an investment priority on par with chip manufacturing and AI. For example,
the risk of the U.S. economy being dependent on foreign chip manufacturing
recently motivated multiple U.S. actions, including industry investments of
around $50 billion and a proposed government investment of another $50 billion.
AI technology investment has followed a similar path, where a possible U.S.
technology gap motivated government investment from DAPRA and NITRD, along
with major industry investments. In both of these examples, increasing awareness
of the risks to national security and the U.S. economy motivated action that
included industry and government investment. It is equally important to invest in
software engineering research (see the table on the following page).

90

Architecting the Future of Software Engineering

Without continual investment and improvement in software engineering
technologies, next-generation applications will simply not be possible.
Software, and therefore software engineering, is the common enabler of rapid
innovation across most new technologies. As outlined in the research focus
areas of this report, the software engineering technical challenges ahead
require new solutions.
As stated in the 2018 National Defense Strategy, “The security environment is also
affected by rapid technological advancements and the changing character of war.
The drive to develop new technologies is relentless, expanding to more actors
with lower barriers of entry, and moving at accelerating speed.” The environment
of rapid technological advancement highlights how quickly technology
leadership can be lost, and the lower barrier of entry for software means that
nation states, or even non-state actors, can quickly leverage technology.
Software engineering grand challenges sponsored by DARPA, the National Science
Foundation (NSF), and FFRDCs are also suggested. Grand challenges have become
an effective way to quickly mobilize existing capability on critical issues while
enabling new partnerships across academia and industry.

Table 2: 	Investment in U.S. Software Technology

Chip Manufacturing
Risk: U.S. economy dependent on
foreign chip manufacturing

•	 US capacity fell to approximately
13% in 2015 compared to 30% in
1990 and 42% in 1980

•	 2020–2021: World-wide shortages
post pandemic

AI Technology

Risk: U.S. AI technology gap compared
to other nation states

•	 many nations interested, but
becoming a two-nation race

•	 multiple nations announcing multi-
billion-dollar investments in AI

Software Engineering Research

Risk: Software engineering advances
have not kept up with the critical
nature of software for U.S. national
security and competitiveness.

This is important because

•	 software is the backbone of all
critical systems

•	 software includes complex supply
chains

•	 software is infrastructure

U.S. Actions

•	 2017: President’s Council of
Advisors on Science and Technology
(PCAST) report on US Leadership in
Semiconductors

•	 2020–2021: Intel more than $20
billion, Taiwan Semiconductor
Manufacturing Company (TSMC)
more than $30 billion in U.S.
fabrication investments

•	 2021: $50 billion request in
president’s budget goals

U.S. Actions

•	 2018: DARPA “AI Next” $2 billion

•	 2019: Executive order AI strategy and
investment

•	 2021: Networking and
Information Technology Research
and Development (NITRD)
investments—#1 of 12

Initial U.S. Actions

•	 2019–2020: NITRD Future Comput-
ing Community of Interest; National
Strategic Computing Initiative
Update; and Software Productivity,
Sustainability, and Quality Working
group

•	 2021: CMU SEI A National Agenda
for Software Engineering Research &
Development study

91

A National Agenda for Software Engineering Research & Development

Recommendation 7—Institutionalize Ongoing Advancement of
Software Engineering Research

The software engineering community, software industry leaders, national
labs, and federal departments should recognize software engineering as a
national priority. This higher recognition in policy is needed to enable sustained
government and industry investment in software engineering research, with
benefits to national competitiveness and security.
Sustained advancements in software engineering require institutionalizing an
ongoing review and reinvestment cycle for software engineering research and its
impact on software engineering practice on the fabric of our software engineering
ecosystem. Maintaining national software engineering proficiency requires
research funding sources and institutes working with industry and government
leaders in the software engineering community to periodically review the state
of software engineering. The DoD’s National Defense Strategy (formerly the
Quadrennial Defense Review) can serve as an exemplar. The responsibility for
ensuring that such reviews take place should be part of a high-level influential
organization such as OSTP or President’s Council of Advisors on Science and
Technology (PCAST).

Recommendation 8—Develop a Strategy For Ensuring an Effective
Workforce for the Future of Software Engineering.

Currently, software engineering is performed by a broad collection of people
with an interdisciplinary skill set that does not always include formal training in
software engineering. Moreover, the nature of software engineering seems to be
changing in reaction to the fluid nature of software-reliant systems. Because of
these trends, the traditional areas of expertise, such as architecting, designing,
implementing, and testing, could give way to other specializations.
We need to better understand the nature of the needed workforce and what to do
to foster its growth. The software engineering community, software industry, and
the academic community should create a strategy for ensuring an effective future
software engineering workforce.
These issues and other consequences of this research roadmap need to be
studied, to lead to a detailed set of workforce recommendations.

93

A National Agenda for Software Engineering Research & Development

7 Conclusion
Architecting the Future of Software Engineering: A
National Agenda for Software Engineering Research
and Development is the result of a yearlong,
community-based activity to re-validate the
importance and centrality of software engineering;
identify current and future challenges in the
discipline; and develop a research agenda to
catalyze the software engineering ecosystem to
prepare for the future.

We conclude this document by summarizing several insights we gained (or
re-gained) along the way.

Software touches all aspects of life and all aspects of infrastructure;
is key to research in many disciplines; and, in general, is important to
all aspects of national security. Thus, software is an important enabler
of ever-more aspects of society. It is hard to look around you and not see
something with software inside. The importance and pervasiveness of
software naturally implies that we have to pay careful attention to how we
construct and evolve it. That is, we have to pay careful attention to software
engineering. Otherwise we risk having software engineering become not
just an enabler of new capability, but also a source of vulnerability.

Software engineering was originally conceived in the spirit of other, older
engineering disciplines, but it seems to be finding a niche of its own due
to its unique nature. Perhaps, unlike other engineering disciplines such
as civil engineering, software engineering will not evolve into a “mature”
discipline. If it does not, it will be because, after its practice become routine,
it will soon thereafter be automated, and software engineering will advance
to tackle a new challenge. Then, due to the conceptual nature of software,
the practice of software engineering will continue to grow and change—
without bounds—in capability, complexity, closeness to other domains, and
interconnection. There seems to be no plateau in the advance of software
and, therefore, no end for challenges in software engineering.

94

Architecting the Future of Software Engineering

The continual advance of software is a natural driver for automation,
which leads to increasing responsibilities and authority for the software
that helps humans create and evolve software. AI is playing an important
role in helping software tools move beyond their role as mere extensions
of programmers. It is also creating a new role for engineers as peers
and, ultimately, collaborators with AI. This expanded role will enable
the engineering of software, in part, by allowing software engineers and
eventually users to “program” software by letting it know what it is they
expect it to do. Programming through intent in this way will become an
important specialty.

Increased reliance on software drives the need to continuously and rapidly
change it. Indeed, what used to be a “want” has become a “need” for defense
systems. Nimble threats drive the need for nimble responses and enhanced
capabilities through better sensors. And AI analytics drive the need for
rapid fielding. These new capabilities, in turn, drive new mission concepts.
Rapid change requires rapid re-assurance, which makes it increasingly
important to structure evidence and assurance arguments in a way that
allows re-assurance to be done incrementally and compositionally.

Future research must be planned with the software ecosystem in mind, and
it must be representative of key software engineering challenges. Software
engineering can be examined along two orthogonal dimensions: “doing
software” and “what software does.” “Doing software” led us to consider
several advanced development paradigms. We focused on three that seem
to be central to the changing nature of software engineering described
above: the drive for increased automation; the need for re-assurance; and
the vital nature of compositionality. “What software does” led us to consider
three types of challenges that could give rise to advanced architectural
paradigms: humans as part of the system; AI components in a system; and
quantum processors as an exemplar of a new computational model.

95

A National Agenda for Software Engineering Research & Development

Our goal in looking at software engineering in this way was to be
representative and encompassing without having to be exhaustive. We
hope this framework invites others to consider other advanced development
paradigms that are key to the changing nature of software engineering
and other types of challenges that might give rise to additional advanced
architectural paradigms, thereby extending the roadmap that we’ve started.

Ongoing self-assessment needs to be institutionalized. As noted before,
there seems to be no end in sight for advances in software engineering. This
means that software engineering requires ongoing reflection and incentives
to support advancement. This, in turn, requires a high-level advocate, along
with funding and periodic reviews to continue what this study started.

Software has sometimes been compared to
air: It’s invisible and everywhere, and everyone
and everything needs it. This feeling can lead
to two different ways of considering software
and, hence, software engineering: (1) letting it
remain invisible and taking it for granted, or
(2) nurturing it, caring for it, protecting it, and
improving it. We hope this report has convinced
you that there really is only one viable way of
considering software engineering.

97

A National Agenda for Software Engineering Research & Development

Appendix A: Engaging the Software Engineering
Community Through Workshops
The following workshops provided the opportunity to gain perspectives
from diverse audiences and are summarized in the following sections:

•	A-1: National Agenda for Software Engineering R&D Workshop—Software
Engineering Researcher Edition

Focus: Leverage significant experience of Carnegie Mellon SEI researchers
and technical staff to identify future trends in software engineering.

•	A-2: Voice of the Customer Workshop

Focus: Obtain perspective of future-leaning software engineering trends
and challenges from the point of view of our customers.

•	A-3: Future Scenarios Workshop—Developing Plausible Alternative Futures

Focus: What role will software engineering play in our nation’s security
in 2030?

•	A-4: DoD Senior Leaders Workshop

Focus: Perspectives on software challenges and future demands from DoD
Senior Leaders.

•	A-5: Software Engineering Grand Challenges and Future Visions Workshop

Focus: SEI-DARPA hosted workshop with the software engineering
research community to outline software engineering’s key research
challenge areas for the next decade.

Appendix A: Engaging the
Software Engineering

Community Through Workshops

98

Architecting the Future of Software Engineering

Appendix A-1: National Agenda for Software
Engineering R&D Workshop—Software Engineering
Researcher Edition
Workshop Date and Goal
May 1, 2020. Leverage experience of SEI senior researchers and technical
staff to identify future trends in software engineering.

Workshop Pre-work
Attendees were asked to consider five questions and send a short
whitepaper with their ideas and responses to one or more of the following
questions:

1.	 What do you think will be examples of “software systems” of the
future? (For example, considerations might include quantum,
hypersonics, autonomous, intelligent systems, and so forth.)

2.	 How will software systems of the future be developed?

3.	 What are key technical challenges and breakthrough ideas in
software engineering?
(For example, consider challenges in areas such as architecture,
assurance, acquisition, model-based software engineering, autonomy,
DevSecOps, AI, resilience, and so forth.)

4.	 What other types of advances aren’t on our radar yet—but should be?

5.	 Discuss ideas for a research roadmap: How can we energize and
coordinate all of the needed constituencies to achieve the desired future?

More than 60 responses were received and a cross section of topics were
presented as five-minute lightning talks.

Guest Speaker Intro Talk
The workshop opened with guest speaker Keith Webster, Carnegie Mellon
University Dean of University Libraries and Director of Emerging and
Integrative Media Initiatives. His presentation was Envisioning the Future
with a Futurist: Introducing the Notion of Futures and Foresight Studies.

99

A National Agenda for Software Engineering Research & Development

Lightning Talks and Themes from Lightning Talks
Thirty-six SEI technical staff members presented lightning talks. Designated
“listeners” collected key ideas and themes in real-time from these talks as
related to the five questions asked in pre-work, as follows. (This is a sample
list and not intended to be comprehensive.)

1.	 What do you think will be examples of “software systems” of the future?
•	commodity heterogenous interconnected computing platforms

•	prevalence of embedded systems

•	new domains in space

•	massively distributed computing

•	cognitive architectures

•	voice to code—voice to simulate—voice to test

•	software-defined everything

•	software developed by open source community supported by
industry users

2.	 What things do we need to consider for future systems?
•	computing solutions in socio-embedded computing

•	 increasing security and reliant systems

•	 importance of human interaction in the creation of future systems

•	new quality attributes including observability

•	operating in uncertain environments

•	design automation to support systems of the future

•	ethical human software development

•	 tiered workforce in software engineering (the job of the programmer
is changing dramatically)

•	how to engineer quantum systems at scale (a very challenging field)

•	container-based deployment

•	automated virtual testing

•	data development process

3.	 How will software systems of the future be developed (i.e., themes for
developing future systems)?
•	certification and validation

•	extending DevSecOps

•	AI and ML approaches

•	ethics of software development and encapsulated in software
solutions

100

Architecting the Future of Software Engineering

•	heavy focus on human-system interaction

•	new demands on embedded systems

•	distributed engineering

•	automated repair algorithms

•	 “no code” solutions are gaining traction in industry

•	notion of “family of systems” architectures

•	human factors in software engineering

4.	 What are the key technical challenges and breakthrough ideas in
software engineering? (For example, in areas such as architecture,
assurance, acquisition, model-based software engineering, autonomy,
DevSecOps, and AI)?
•	Trends toward new systems will lead to new software development

challenges in

	– automation of software development and deployment

	– development and sustainment of AI systems

	– primacy of data

	– formal methods and proof engineering

	– human-centered engineering approaches

	– hierarchical certification approaches

	– adoption challenges and need for suitable context

	– preparing the workforce of tomorrow and moving toward a tiered
workforce in software development

	– new programming languages that automate complex/common
functions

	– proof engineering

5.	 What other types of advances aren’t on our radar yet—but should be?

•	hyper automation and new software development languages

•	hyper agility and need for tools and methods to accelerate
that agility

•	hyper computation and need to validation and verification,
modeling, and simulation

•	social views of software engineering including workforce
perceptions and accessibility to more people

•	causal inference

101

A National Agenda for Software Engineering Research & Development

Discuss ideas for how to generate a research roadmap: how to
energize and coordinate all of the needed constituencies to achieve
the desired future.

•	There is a systematic process for envisioning the future…we practice for
the future (it doesn’t just happen).

•	Bring futures thinking to the National Agenda for Software Engineering.

•	There is no single future “out there” to be predicted. There are
many alternative futures to be anticipated and pre-experienced to
some degree.

•	Consider horizons of change, including the following:

•	expected future

	– where we are headed

	– the future if everything continues as it has

	– the result of conditions and trends (momentum)

•	alternative futures

	– what might happen instead

	– the set of plausible futures if something less likely or unexpected
happens

	– the result of events and issues (contingencies)

•	preferred future(s)

	– what we want to happen

	– either the expected or any of the alternative futures that is
preferable

•	Think about WILDCARDS.

•	The software engineering tools and approaches must enable agility to
respond to more frequent and sometimes rapid shifts in the future.

•	The future comes from the commercial side and the importance of
understanding the vectors of industry.

•	 It is important to consider tech transition and understand what can
be consumed.

102

Architecting the Future of Software Engineering

Appendix A-2: Voice of the Customer Workshop
Workshop Date and Goal
May 20, 2020. Obtain perspective on future-leaning software
engineering trends and challenges from the point of view of DoD and
industry collaborators.

Prior to the workshop, participants were asked to share their thoughts on
one or more of six questions, in short lightning talks (about 5 minutes each).
A summary of the responses is listed below.

1.	 Based on what you are hearing from our customers, what do you think
will be examples of software systems or software missions of the
future? (For example, consider quantum, hyper sonics, autonomous,
intelligent systems, and so forth.)
•	no code/low code

•	 families of architecture models, different architectures, and new
quality attributes

•	 insatiable quest for data to satisfy data-to-decision

2.	 How will software systems of the future be implemented?
•	mission engineering with development of systems

•	speed of the warfighter

3.	 What are the key software challenges our customers are having or
foresee in the future?
•	 trust and assurance of systems

•	 legacy systems, legacy systems, legacy systems

•	code analysis and ML automated architectural analysis/refactoring

4.	 What role do our customers want to see from the SEI as software
becomes more ubiquitous in their systems?
•	 independence

•	knowledge of topics with real world data

•	help people think when they don’t have time to do so

5.	 What other types of advances aren’t on our radar yet—but should be?
•	data visualization

•	 integrating data into decision making

•	 industry leading the way

6.	 Discuss ideas for a research roadmap: How can we energize and
coordinate all of the needed constituencies to achieve the desired future?
•	create a research influencer map

•	acquisition as an advantage for warfighter

103

A National Agenda for Software Engineering Research & Development

Appendix A-3: Future Scenarios Workshop:
Developing Plausible Alternative Futures
Workshop Date and Goal
May 29, 2020. Find out from thought leaders what role software engineering
plays in our nation’s security in 2030.

Workshop Objectives
1.	 Learn how to think about and devise some futures scenarios with

Keith Webster, Carnegie Mellon University Dean of University
Libraries & Director of Emerging and Integrative Media Initiatives.

2.	 Pilot a Zoom futures scenarios workshop with breakout groups with a
small number of participants.

3.	 Learn from the experience and consider applying or adapting this
method to other working sessions for the National Agenda for
Software Engineering Study.

Workshop Pre-Work
The participants were asked to answer 3 questions before the workshop to
kickstart discussion.

1.	 What are the five to ten key drivers and trends you see impacting the
framing questions over the next decade (and beyond)?

2.	 What questions would you like to be able to answer using the
scenarios we’ll produce as a result of our work?

3.	 What decisions do you need to make in the near-term that would
benefit from a sense of the long-term?

Workshop Summary
The workshop participants voted and identified the following drivers and
trends for the future of software engineering:

•	explosion in the amount of software and software complexity in the
world and extending into new areas (ubiquity and complexity)

•	 increase of software in critical roles without appropriate attention into
safety, security or society risk

•	 increasing government and corporate access to personal data and
increasing concern about privacy

•	AI/ML driving automation and innovation

•	access to computing devices, sensors, bandwidth and continuous
connectivity

•	automated tools for data collection and analysis, for architectural
consistency, software quality, vulnerability discovery and repair

•	policies gaining traction in many countries to reduce cooperation and
collaboration between nations

104

Architecting the Future of Software Engineering

•	deployed software creating increasingly disruptive unintended effects

•	changing nature of education and training including content, delivery,
and access

•	policies gaining traction in many countries to reduce cooperation and
collaboration between nations

•	deployed software creating increasingly disruptive unintended effects

The workshop participants voted and identified the following uncertainties:

•	 level of international collaboration

•	supply chain – software, talent

•	AI/ML (incl access to data and privacy)

•	 funding and partnership

•	data as a strategic asset

•	societal consequences of software deployment

•	engineering of systems

•	access to technology and connectivity

105

A National Agenda for Software Engineering Research & Development

Appendix A-4: DoD Senior Leaders Workshop
Workshop Date and Objectives
June 25, 2020

1.	 Hear directly from DoD senior leaders (PEOs, PMs, services and intel
agencies) in 10-minute lightning talks to understand their challenges
and ideas about the future of software engineering.

2.	 Provide a forum for DoD senior leaders to hear challenges and
ideas from other DoD senior leaders about the future of software
engineering.

Summary of Workshop Ideas
•	Speed, speed, speed. Iterate quickly and often, but with the feedback

and discipline needed for assurance.

•	There is a need for an organic capability in DoD for software
engineering, including the culture, training, career development, and
other elements needed to support the build vs. buy paradigm.

•	Building in security and ensuring security throughout the lifecycle is a
key concern. Topics mentioned included Risk Management Framework
(RMF), continuous authority to operate (ATO) that addresses security,
developing a “risk of use sticker,” Cybersecurity National Action Plan,
whitelist interactions, and zero trust architecture.

•	Modeling to enable rapid development and deployment should be a
focus. There is a need for high fidelity digital models and common
standards so systems can integrate with models and with each other.

•	The software acquisition system is antiquated and doesn’t support
speed and iteration. There are “color of money” problems and also
cultural problems, such as how we communicate progress, schedule,
and cost to stakeholders.

•	Better ways are needed for funding foundational or common shared
services, which is impossible with the current funding and program
element structure.

•	System boundaries have evolved or fallen away because everything
is connected to everything with massive complexity and non-
deterministic behavior—and interacting with and maintaining legacy
systems adds to the challenges.

•	Resilient operations in denied environments is a must (denied comms,
cloud, data access, positioning, navigation, and timing (PNT), etc.).

•	The interconnected nature of the software challenges is apparent.
Multiple stakeholders emphasized how getting software right
requires also getting many other elements right, including workforce,
acquisition roles, technical solutions, infrastructure, and data.

106

Architecting the Future of Software Engineering

Appendix A-5: Software Engineering Grand
Challenges and Future Visions Workshop
Workshop Date and Goal
December 1-3, 2020. Outline software engineering’s key research challenge
areas for the next decade.

Workshop Overview
Society’s dependence on software has only accelerated and broadened
in recent years, and the software engineering and research communities
have continued to focus on specific topics or innovations. However, there
is also value in looking further ahead at the wider discipline of software
engineering and envisioning the future we can create: Based on where we
are today, where will innovation take us in the next 5, 10, or 20 years? And
what do we need to do to prepare the future?

To answer these questions and begin to envision the future of software
engineering, the SEI, in collaboration with the Defense Advanced Research
Projects Agency (DARPA), convened the Software Engineering Grand
Challenges and Future Visions Workshop, conducted Tuesday, December 1
through Thursday, December 3, 2020. This workshop aimed to spur a
discussion among leading researchers, practitioners, and government
stakeholders and promote communication within and among these
communities. Its goal was to stimulate new thinking, articulate future
needs, and discuss how emerging and/or disruptive software engineering
technologies, methods, and tools can help us address those needs.

Participants
The workshop participants were drawn from the following communities:
•	academic researchers whose work is having (or likely will have) a

fundamental impact on the way software and software-reliant systems
will be developed

•	 leaders in companies now developing leading-edge software by
creating and applying software advances at scale

•	 thought leaders familiar with the defense mission and threat space
who are working to implement acquisition practices that support
current and future capability needs

Position Papers and Talks
Participants were asked to contribute a one-to-two-page position paper
describing

1.	 a vision of the types of systems that will need to be developed in the
future (5, 10, or 20 years out)

2.	 major open problems and “grand challenges” software engineering
must address to make those systems technically and/or
economically feasible

107

A National Agenda for Software Engineering Research & Development

Contributors were also free to identify associated research areas
or themes. Selected participants provided short lightning talks
based on their position paper. The organizers and participants were
particularly open to visions that aimed to rethink the foundations of
software engineering.

The position papers and lightning talks reflected a mix of today’s important
research areas as well as disruptive technologies likely to have an impact on
the field of software engineering but which have not yet commanded wide
notice. Topics included artificial intelligence (AI), machine learning (ML),
automated testing and cybersecurity tools, cyber-physical systems, socio-
technical systems, and formal models.

Focus Questions
The workshop comprised three half-day sessions of facilitated discussions
designed to address areas of need and potential impact without precluding
interesting avenues of inquiry. Areas of discussion focused on the following:

•	What are the major open problems (and grand challenges) that
software engineering must address?

•	What software research (whether in research labs, university, industry,
government, or some mix of these) is needed to invent solutions for
those problems?

•	What role should collaboration between industry and academia
play in developing and adopting solutions? What role should the
government play?

•	What can incentivize strategic collaborations among government,
academia, and industry?

Expected Outcomes: Grand Challenges and Visions

The three-day workshop was designed to produce grand challenges and
vision statements, scenarios that describe

•	an important class or classes of future software and software-reliant
systems

•	software engineering research methods, tools, and practices that are
needed to make those systems feasible

These outcomes are intended to serve as inputs to ongoing efforts to define
new research programs and initiatives that can shape the future of software
engineering and a research roadmap that will help us close the gap
between today’s capabilities and the futures we envision.

108

Architecting the Future of Software Engineering

Seeding the Discussion
To set the stage for the discussion, three keynotes were presented,
and all participants were asked to contribute short lightning talks to
introduce key concepts. Keynote addresses were provided by Sandeep
Neema, Program Manager at DARPA’s Information Innovation Office; Sol
Greenspan, Program Director in the National Science Foundation’s (NSF)
Directorate for Computer & Information Science and Engineering (CISE);
and Christopher Ré, Associate Professor of Computer Science at Stanford
Artificial Intelligence (AI) Lab. These keynotes described the software
engineering research landscape from the point of view of DARPA, NSF,
and the Stanford AI Lab.

Keynote Summary One—Sandeep Neema, DARPA:
Software and Defense
In his keynote, Neema stressed the importance of software to the DoD.
He observed that the growth and complexity of software are astounding,
and noted that every generation of a given system is more complex by an
order of magnitude (for example, the F-35). Neema underscored the reality
that almost 90 percent of system functionality is now realized through
software. “Mission success depends on high-quality software,” he said, also
noting that the DoD is in the business of software. Drilling down, Neema
noted that the field of software V&V has been a prolific area of research:
The results have been impressive and a portfolio of V&V techniques is
now available. However, these advances haven’t netted the desired results.
“Given innovation in tools and methods for V&V,” said Neema, “one would
hope software quality has improved significantly, but recent results indicate
things are no better than a decade ago.”

Neema noted the number of software vulnerabilities has grown over time
in Microsoft and Android systems, and the time from discovery to patch
is significant. Neema observed that things are not much different in the
realm of weapons programs: Despite advances in software analysis and
verification, software quality is not much better. “Moore’s law may be dead,”
added Neema, “but systems are still advancing at a fast pace and becoming
more sophisticated and technologically advanced.” Military systems are
evolving rapidly, human-machine partnership are becoming important, and
hybrid domains have emerged. “We need to straddle core tech, engineering,
and mission applications and build a pipeline that can continuously deliver
new capabilities,” said Neema.

He then identified four broad research areas:

•	proficient AI

•	advantage in cyber operations

•	resilient adaptable and secure systems

•	confidence in the information domain

109

A National Agenda for Software Engineering Research & Development

In his concluding remarks, Neema noted challenges in the areas of
resiliency, rapid evolution in the face of nimble threats, bolt-on security,
cyber-physical systems and distributed IoT, safe data sharing, and sustained
configuration integrity. His ideas about addressing these challenges
included targeted modeling and analysis and rich toolchains.

Finally, Neema cited some specific areas of interest to DARPA:

•	verification-friendly systems engineering

•	 intersection of AI, ML, and software engineering

•	software comprehension and maintenance

•	process engineering

Keynote Summary Two—Sol Greenspan, National Science
Foundation (NSF): Tracing the Evolution of Software Engineering
through Past Workshops
Greenspan framed his remarks in the context of two previous workshops
conducted in 2001 and 2010 to place the current workshop in context. The
2001 workshop, “New Visions for Software Design & Productivity: Research
& Applications” (sponsored by Vanderbilt University, the Networking and
Information Technology Research and Development (NITRD) Program,
the National Science Foundation, and others) examined the question
“What can we do well?” Greenspan noted that 2001 workshop found
requirements remained a problem; embedded and networked systems
were considered important; there was a need to identify what programming
environments were needed; testbeds were needed that simulate
operational environments; and there was a tension between informal and
formal methods and questions about the nature of the balance between the
two and whether that balance should change. Participants also questioned
whether software development should be more fluid (Agile), which was hard
to achieve in DoD and government settings because of the budgeting and
oversight process.

The consensus of the 2001 workshop was there had been productivity
gains in lines of code per person, and new ideas and tools had emerged
in the form of middleware, GUI generators, APIs, MDE, and application
frameworks. Participants then asked, “Why can’t we declare victory?”
To address then-emerging challenges, participants at the 2001 workshop
recommended the following:

•	specification and management of complex requirements (especially for
embedded and networked systems)

•	better software development environments with domains-specific
capabilities for validation

•	 testbeds that simulate operational situations (environment conditions,
user interactions)

110

Architecting the Future of Software Engineering

The 2010 “Workshop on the Future of Software Engineering Research”
was also sponsored by NITRD and was collocated with the “ACM SIGSOFT
Eighteenth International Symposium on the Foundations of Software
Engineering.” In that workshop, participants examined how we:

•	help people produce and use software

•	build the complex systems of the future

•	create dependable software-intensive systems

•	 invest in research to improve software decision-making, evolution
and economics

•	 invest in research to improve software research methodology

As with the 2001 workshop, these questions continue to have resonance.

Recommendations from the 2010 workshop included developing social
connections for software engineering stakeholders; democratizing and
broadening participation in production and use of software (e.g., end-
user programming); addressing societal grand challenge problems of
unprecedented complexity and scale (e.g., the SEI ultra-large systems
report); exploiting emerging technology and platform opportunities (e.g.,
app stores); automating software evolution; strengthening empirical
research foundations; and incorporating social science research.

Though certain questions and challenges persist, there have been some
changes since 2010. For instance, the amount of data involved has increased
significantly. Software engineering has become a big data science. Also, we
have witnessed the emergence of issues concerning of the naturalness of
software code; static and dynamic testing and analysis; heightened demand
for reliability, robustness, and resilience; and integration of computing,
sensing, communications, and new devices (e.g., 5G, IoT, and nano). In light
of these new issues, the field of software engineering should be thinking
about the following:

•	Software-reliant systems will need to contain more knowledge about
the world.

•	Our environments will need to have embedded software engineering
capabilities and infrastructure.

•	Systems will need to be held accountable to laws, compliance rules, and
societal norms.

111

A National Agenda for Software Engineering Research & Development

Keynote Summary Three—Christopher Ré, Stanford AI Lab:
Software 2.0
Ré opened his remarks by stating that Software 2.0 is eating Software 1.0. As
an example of the power of Software 2.0, Ré cited Google’s translation tool,
which shrank from 500 thousand lines of code (LoC) to 500 lines of dataflow.
Ré noted that Software 2.0 includes AI applications, and that the software
engineering and/or design element is really changing (again citing the
shift from LoC to data flow code). This shift has already has had an impact
on products we use today, including Spotlight, Safari, and assistants. Core
pieces of the software are rewritten in this way. What’s more, this shift is
not restricted to large companies.

Ré observed that something is changing in what we’re building. When ML
is used in a core way to build apps, it changes what you do as a software
engineer. Models have become commodities. Engineers are not always
writing new code but, rather, servicing and understanding new models.
Weakly and naturally supervised systems are big changes for Software 2.0.

Ré discussed Overton, a data system for monitoring and improving ML
products. Ré wanted to change the conversation about ML systems. He cited
the “Transformer model.” The model didn’t matter. Rather, what mattered
was having tools to understand workflow.

“We wanted low-margin parts of the job automated,” he said. “We can
automate huge parts of the stack and concentrate on what the user actually
needs.” This, according to Ré, would prevent the phenomenon of “new-
model-itis.” There’s been a shift from building models to support model
building to monitoring quality and improving supervision.

Ré noted a number of challenges in this new environment:

•	Many decisions are required, all of which need to be right.

•	ML products have complicated pipelines; seams exist between
products; and it’s hard to share code and/or ideas.

•	ML products require fine-grained monitoring and involve rare queries
and/or complex disambiguation.

•	Quality is rapidly improving.

•	Horrible errors are easy to make.

In short, he said, we are entering the age of ML as an engineering discipline.

112

Architecting the Future of Software Engineering

Lightning Talk Summaries

Software and Missions to Space—As NASA’s missions become
increasingly dependent on correctly functioning software, code is
growing and becoming more complex. Likewise, the safety and reliability
of software has become more crucial, but software has also become
harder to test and verify. Consequently, the following areas have grown
in importance: requirements assessment; software code quality and
risk assessment; automated software architecture analysis; research
correlated to selected metrics on defects to assess code quality; and
automation of software engineering and assurance.

Workforce—What will the software engineering workforce of the future
look like? A need exists to need to uniformly train the workforce through
a cross-matrix curriculum. Presently, approaches to training differ.
There is disparity in the quality and consistency of training. We all train
differently, yet expect to collaborate effectively. One possible approach
could take inspiration from maneuver warfare, in which distributed forces
are placed in different, vulnerable areas to remove a “center of gravity.”
Eliminating cultural inhibitors to change, including software training
practices, was one suggestion.

Scalable Assurance and Cyber-Physical Systems—The scalable assurance
challenges of cyber-physical systems (CPS) include the kinetic effect of
CPS, which often are safety-critical systems, such as airplanes, requiring
strong assurance. However, strong assurance has not been practical
because of multi-criticality (assurance levels, timing, real-time mixed-trust
computation) and artifact size (too large for strong verification techniques).
Challenges also exist regarding the problem of cognitive design overload
in large systems. To address these problems of scale, work is needed in the
following research areas:

•	multi-criticality: real-time mixed criticality with temporal protection

•	artifact size: minimize verified components, add enforcers to guard
critical properties, protect the enforcers, and enforce critical aspects

•	cognitive design overload: model-based engineering

“Multi-Everything”—Systems need to be “multi-everything.” ML-enabled
software needs to be able to analyze code to ensure confidence and
meet requirements and use cases. We need easy migration between
cloud services and post-deployment monitoring that’s not expensive. We
also need to make data a first-class citizen: proprietary data formats are
problematic. There is a further need for a variable-trust data environment,
which requires security without latency, and lifecycle management is
necessary for ML-produced software.

113

A National Agenda for Software Engineering Research & Development

The Needs of the Scientific Community—Performance, portability, and
productivity are keys to the future of computing. High-performance
computing has changed qualitatively and quantitatively. The software
community has seen the advent of many-core and multicore systems,
heterogeneous computing, machine learning, and an enormous increase
in the diversity of the hardware ecosystem in both edge and high-end
computing. Great diversity in capabilities exists. The demand for software in
scientific computing has been growing. It outstrips supply and the gap has
grown worse over time—a key challenge the scientific ecosystem requires
the field to address. Hardware–software codesign, more intelligent ways of
producing software for simulation and analysis, and more intelligence in
composing scientific workflows are needed.

The Demands of International Development Projects—International
conversations are taking place about software. Language needs to be
appropriate and culturally inclusive, and the same holds true for software.
A need exists for commonality of language and architecture: Software is
global conversation. Coding for key systems is taking place around the
world. With this in mind, all partners should share a common language,
ethical and legal frameworks, and a commonality of commercial off-the-
shelf (COTS) and military off-the-shelf (MOTS). Challenges exist related
to the notion of the “data lake.” How can various international partners
working on a project absorb the information they need from the lake? There
is also a need to get individuals with the right skills and accreditations into
Department of Defense (DoD) in the global marketplace, as well as a need
for automated testing, certification, and verification and validation.

Software Warning Lights—Software warning lights are behavior guards
in the application domain intended to protect the public’s health, safety, and
welfare. Such warning systems are common in network operation centers,
but they’ve yet to see use at the application level. We need this kind of
cyber-anomalous detection system for the warfighter—a warning light that
allows the warfighter to see anomalies in software in real time.

Societal-Scale Systems and Social Media—Societal-scale systems, such
as social media, present concerning unintended consequences. These
unintended consequences are a national security threat because they
dramatically increase the potential for social manipulation. We need to
adopt a behavioral science view to inform systems that determine what
is true. The notion of social epistemology presents knowledge creation
as a social process. This isn’t working in our societal-scale systems. We
need methods, for instance, to funnel free speech in such systems through
testing, critique, review, and trusted forums to create new knowledge. Such
a process is critical to determining what’s true. In the current state of affairs,
social media is focused on engagement, not knowledge. Consequently, we
see the rise of so-called “alternative facts,” conspiracy theories, et cetera as
unintended side effects.

114

Architecting the Future of Software Engineering

An Army Software Factory—Hardware-intensive systems have become
software-intensive systems, and traditional methods are too slow, too
expensive, and of little value. The defense community would be well served
by building organic competencies that meet or exceed skills in the private
sector. A move to in-house development for the DoD would enable it to
serve as its own integrator, but such a move presents many challenges.

Cyber-Resilient Software Ecosystems—Cyber resilience on platforms
is a problem, and there are larger challenges in ecosystems, including
monocultures, security fragmentation, and a “libertarian” design ethic.
Not much has been done to manage and/or patch monocultures. Tools
are needed to make it easier to deliver implementation diversity. Key
stakeholders tend to assume that someone else is taking responsibility for
overall design but, when application developers follow an ungoverned path,
they can inadvertently increase the attack surface of the apps they develop.
We don’t build guards and monitors into applications. But, we need these
things for a resilient ecosystem.

Keys for Faster Iterative Requirements Engineering—We can build better
and more ethical software. The field is not taking advantage of AI. Some
software development is being done with AI, but it’s clumsy and requires
manual tinkering with AI tools. One approach to these challenges lies in
the concept of keys: the few controllable variables of a model that control
decisions about non-dependent clashing links in chains of reason that link
inputs to desired goals. If keys work, they could lead to a dramatic reduction
in modeling effort, more AI-assisted software engineering, better software
engineering, and ethical software engineering for AI. Keys have the
potential to enable developers to very quickly reason about a system.

Self-Supervised Systems—Entity disambiguation systems are built with
supervised training, making them brittle and expensive. This challenge
is being addressed with fully self-supervised systems, which are easier to
maintain and extend. With such systems, engineers focus on monitoring
the model. This approach has been deployed in industry, and this
fundamental shift to self-supervised systems is not going away. However,
while self-supervised systems make things easier for engineers, they do
pose challenges. For instance, how does the system handle what’s not in
training data? How do you monitor the model and unit test? How does the
system correct errors on the fly once it’s deployed?

Bridging the Gap between Formal Methods and System Assurance—
Component specifications for safety could offer a way to bridge the gap
between formal methods (math) versus system assurance (a condition in
which it’s acceptably rare that the system will cause harm). A number of
challenges to achieving this goal exist. For instance, can formal methods
be used on real-world systems? Yes, but it’s expensive. Proofs need to be
handwritten by experts. As for system assurance, the challenge lies in

115

A National Agenda for Software Engineering Research & Development

determining how you know when analysis is complete. Questions also
arise concerning how repeatable analysis is. The keystone that holds all
this together is a rich component specification on which system assurance
tooling can be automated and built.

Certifying Adaptive Dynamic Computing Environments—
Presently, certifying adaptive dynamic computing environments
presents a challenge. “The right answer delivered too late is the wrong
answer.” Employing dynamic resource management to support multiple
missions simultaneously requires adaptive computing resource
management. However, certifying such as system to ensure reliability is
not a solved problem and is becoming more complex with AI and other
advanced technologies.

The Future of Air Travel—Autonomy will be important. There will be
many autonomous vehicles in the air as well as on the ground, which will
necessitate integration across air space. These developments present
challenges in safety certification, affordability, training, system definition
and requirements, and full integration of systems.

New System Categories—New system categories have emerged: systems
at ultra-large, societal-scale (here defined to include systems such as
connected and autonomous vehicles, transactive energy distribution,
and low-altitude air traffic control); human-AI-machine teams (such as
medical assistive robotics and enhanced reality environments); and
multi-technology fusion (such as the Microsoft Premonition program
integrating IoT technologies, metagenomics, ecological and epidemiological
simulations, and cloud computing for global monitoring of the biome).
Software technology is focused on gluing together heterogenous systems at
ever-bigger scales. The resulting challenges include developing platforms
for system integration, platforms for model integration, and platforms for
integrating AI and ML components. Corollary research areas include a
formal foundation for system integration, a formal foundation for model
integration, and compositionality for AI and ML components.

Software Engineering Research in Production—Partnerships need to be
established to solve large-scale computing problems, but it’s hard to make
these partnerships happen. Technical innovation is needed in the areas of
data anonymization and privatization, observability, secure computation-
like data analysis, and measurement frameworks. Furthermore, cultural
changes are needed: Reviewers need to accept industrial case studies,
and industry and government need “matchmaking” with academia. Policy
changes on non-disclosure and data use agreements are needed to shrink
the divide among industry, government, and academia to establish stronger
partnerships so research can better represent what’s going on.

116

Architecting the Future of Software Engineering

The Role of Digital Twins—We are in an age of software transformation.
The future will bring autonomous transportation, human augmentation
(biotech), and smart infrastructure (nanotech). These developments will
have an impact on software, which will need to adopt a cross-discipline
focus, require a low and/or reduced context (“How can we make building
blocks?”), and demand safety and security assurance-test-driven
development. One possible solution to these challenges is to integrate digital
twin with model-based engineering.

Workshop Summary: General Discussion Topics
While the workshop discussions focused on a number of specific technical
areas, overall they provided interesting insight into the state of research and
practice. In this section, these insights are collected into broad groups.

Tension between Speed and Trusted Capability
Many of the discussions focused on the increasing tension between
the speed of new capability deployment and the need for “exquisite
engineering” (i.e., the engineering effort needed to develop and field the
high-quality systems that we trust with many aspects of our modern
lives and livelihoods). The need for trust in systems is greater than ever—
not only for CPS, but also for societal-scale systems. In the words of one
workshop participant, “We live in software.” This statement reflects the
degree to which many aspects of our day-to-day lives are now supported
by, controlled by, or influenced by software systems. Given the plethora
of such systems and the difficulty of understanding emergent behaviors,
there is a renewed focus on building these systems to be correct and
auditable by construction.

Participants also highlighted the need to make the software producing
workforce more productive and efficient to meet the engineering demand
for evermore software systems whose behaviors require evermore
confidence. Some potential advancements in this direction include greater
emphasis on the following items:

•	platforms and/or environments that help raise the quality of software
by construction (via automation and machine teaming)

•	democratizing development

•	 tools that leverage the heterogeneity of the workforce

•	 low-code and/or no-code solutions

117

A National Agenda for Software Engineering Research & Development

Assured Composition
Several participants commented on an emerging development paradigm,
“assured composition,” that aims to deal with the issues noted above.
Assured composition reflects a need to better understand emergent
behaviors that result from chance or design in these systems.

Research at Scale
A related emerging research paradigm, “research at scale,” reflects a need to
better understand phenomena in systems at scale that are usually not easily
accessible and/or available to the research community. These large-scale
systems pose new challenges and require new approaches for researchers
to contribute meaningful results that can impact the state of the practice.

118

Architecting the Future of Software Engineering

Focus Themes
Five major themes emerged over the course of the workshop, Illustrated
in Figure 4. By design, these were not decided ahead of time but rather
emerged out of participant discussions. Some of these themes were raised
and discussed explicitly; others were created to summarize several related
conversations that happened over the course of the event.

Assuring Continuously Evolving Systems

Provide evidence and arguments that a system will behave as intended,
considering both desired functionality and quality attributes, as it evolves
continuously to incorporate new capability and dynamically self-adapts its
operating configuration at runtime.

AI-Augmented Software Development

Augment each stage of software development with AI to orchestrate
continuous systems evolution, positioning for constant high speed change.

Engineering of AI-Enabled Software

Develop empirically validated practices to support development and
sustainment of next generation AI-Enabled software. Provide tools,
verification methods, techniques and practice to apply sound software
engineering principles to AI Engineering.

Designing in Ethics in Software, Systems, and
Societal-Scale Systems

Build and evolve societal-scale software systems that enable transparency
and mitigate risks of unethical influence on individuals, unrestrained social
manipulation, or disruption of social epistemology.

Composable Software Systems

Provide a scientific and engineering basis for designing, building, analyzing,
and assuring heterogeneous and composable software systems. Provide
languages, tools, environments, and techniques to support these activities.

Figure 4:	 Summary of Major Themes Emerging from the Workshop

119

A National Agenda for Software Engineering Research & Development

References
URLs are valid as of the publication date of this document.

[Abhari 2012]	
Abhari, A. J. et al. Scaffold: Quantum Programming Language. TR-934-12.
Princeton University. 2012. https://www.cs.princeton.edu/research/
techreps/TR-934-12

[Adee 2020]
Adee, S. What Are Deepfakes and How Are They Created? IEEE Spectrum.
April 29, 2020. https://spectrum.ieee.org/what-is-deepfake

[Ahmad 2021]
Ahmad, Norita; Laplante, Phil; & Defranco, Joanna. Life, IoT, and the Pursuit
of Happiness. Computing Edge. August 2021.

[Alur 1992]
Alur, R. & Dill, D. The theory of timed automata. In: de Bakker J.W., Huizing
C., de Roever W.P., Rozenberg G. Real-Time: Theory in Practice. REX 1991.
Lecture Notes in Computer Science. Volume 600. 1992.
https://doi.org/10.1007/BFb0031987

[Alur 1993]
Alur, R.; Courcoubetis, C.; Henzinger, T.A.; & Ho, P.-H. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems. In Hybrid Systems. Grossman, R.; Nerode, A.; Ravn, A.; & Rischel, H.
[editors]. Springer. Pages 209–229. 1993.

[Amazon 2021]	
Amazon. Amazon Braket: Explore and experiment with quantum
computing. Amazon Web Services, Inc. June 3, 2021 [accessed].
https://aws.amazon.com/braket/

[Amershi 2019]	
Amershi, S. et al. Software Engineering for Machine Learning: A Case Study.
Pages 291-300. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). Montreal, QC,
Canada. 25–31 May 2019. https://ieeexplore.ieee.org/document/8804457

[Bader 2021]
Bader, Johannes; Kim, Sonia; Luan, Frank; Chandra, Satish; & Meijer, Erik.
AI in Software Engineering at Facebook. IEEE Software. July/August 2021.

[Bass 2012]	
Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice.
3rd Ed. 2012. Addison-Wesley. ISBN-13: ?978-0321815736.

[Benveniste 2015]
Benveniste, Albert et al. Contracts for Systems Design: Theory. RR-8759.
Inria Rennes Bretagne Atlantique; INRIA. 2015.
https://hal.inria.fr/hal-01178467

[Bitdefender 2020]
Bitdefender. Mid-Year Threat Landscape Report 2020. Bitdefender. 2020.
https://www.bitdefender.com/files/News/CaseStudies/study/366/
Bitdefender-Mid-Year-Threat-Landscape-Report-2020.pdf

References

https://www.cs.princeton.edu/research/techreps/TR-934-12
https://www.cs.princeton.edu/research/techreps/TR-934-12
https://spectrum.ieee.org/what-is-deepfake
https://doi.org/10.1007/BFb0031987
https://aws.amazon.com/braket/
https://ieeexplore.ieee.org/document/8804457
https://hal.inria.fr/hal-01178467
https://www.bitdefender.com/files/News/CaseStudies/study/366/Bitdefender-Mid-Year-Threat-Landscape-Report-2020.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/366/Bitdefender-Mid-Year-Threat-Landscape-Report-2020.pdf

120

Architecting the Future of Software Engineering

[Bliss 2020]
Bliss, Nadya et al. An Agenda for Disinformation Research. Computing
Community Consortium. 2020. https://arxiv.org/ftp/arxiv/
papers/2012/2012.08572.pdf

[Bojkic 2020]
Bojkić, Marko; Pržulj, Đorđe; Stefanović, Miroslav; & Ristic, Sonja. Usage
of Dependency Injection within Different Frameworks. Presented at 19th
International Symposium INFOTEH-JAHORINAAt-Jahorina. March 2020.

[Bosch 2020]	
Bosch, J.; Crnkovic, I.; & Olsson, H.H. Engineering AI systems: A research
agenda. Cornell University ArXiv.org. June 3, 2020.
https://arxiv.org/abs/2001.07522

[Bourque 2014]
Bourque, P. & Fairley, R.E., eds. Guide to the Software Engineering Body of
Knowledge, version 3.0. IEEE Computer Society. 2014. www.swebok.org.

[Broy 2018]
Broy, Manfred. Yesterday, Today, Tomorrow: 50 Years of Software
Engineering. IEEE Software. September/October 2018.

[Carleton 2020]
Carleton, Anita; Harper, Erin; Menzies, Tim; Xie, Tao; Eldh, Sigrid; and
Lyu, Michael. Expert Perspectives on AI. IEEE Software. Volume 37.
Number 4. Pages 87–94. July–August 2020, https://ieeexplore.ieee.org/
document/9121622.

[Carleton 2020]
Carleton, Anita; Harper, Erin; Menzies, Tim; Xie, Tao; Eldh, Sigrid; &Lyu,
Michael. The AI Effect: Working at the Intersection of AI and SE. IEEE
Software. July/August 2020.

[Carley 2018]
Carley, K.M.; Cervone, G.; Agarwal, N.; & Liu, H. Social Cyber-Security. In
Social, Cultural, and Behavioral Modeling. Thomson, R.; Dancy, C.; Hyder, A.;
& Bisgin, H. [editors]. Springer. Pages 389–394. 2020. https://link.springer.
com/chapter/10.1007/978-3-319-93372-6_42

[CBS 2020]
CBS News. Toyota “Unintended Acceleration” Has Killed 89. CBS News.
May 25, 2010. https://www.cbsnews.com/news/toyota-unintended-
acceleration-has-killed-89/

[Centola 2018]
Centola, Damon. How Behavior Spreads: The Science of Complex Contagion.
Princeton University Press. 2018. ISBN: 978-0-691-17531-7.

[Chaki 2011]
Chaki, S.; Gurfinkel, A.; & Strichman, O. Time-bounded analysis of real-
time systems. Pages 72-80. In Proceedings of the International Conference
on Formal Methods in Computer-Aided Design (FMCAD) 2011. Austin, Texas.
October 30–November 2, 2011.
https://ieeexplore.ieee.org/document/6148914

https://arxiv.org/ftp/arxiv/papers/2012/2012.08572.pdf
https://arxiv.org/ftp/arxiv/papers/2012/2012.08572.pdf
https://arxiv.org/abs/2001.07522
http://www.swebok.org
https://ieeexplore.ieee.org/document/9121622
https://ieeexplore.ieee.org/document/9121622
https://link.springer.com/chapter/10.1007/978-3-319-93372-6_42
https://link.springer.com/chapter/10.1007/978-3-319-93372-6_42
https://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/
https://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/
https://ieeexplore.ieee.org/document/6148914

121

A National Agenda for Software Engineering Research & Development

[Charette 2005]
Charette, Robert N. Why software fails. IEEE spectrum. Pages 42-49.
Volume 42. Number 9. 2005.

[Costa 2017]
Costa, F.; Morris, K.; Kon, F.; and Clarke, P. Model-Driven Domain-Specific
Middleware. Pages 1961-1971. In Proceedings of 37th International
Conference on Distributed Computing Systems (ICDCS). 2017. doi: 10.1109/
ICDCS.2017.197.

[Council 2021]
Council, Jared. Where Business Is Using AI. The Wall Street Journal.
March 10, 2021.

[Czerwinski 2021]
Czerwinski, Mary; Hernandez, Javier; & McDuff, Daniel. Building an AI that
Feels: AI Systems with Emotional Intelligence Could Learn Faster and Be
More Helpful. IEEE Spectrum. May 2021.

[Dao 2021]
Dao, Nhu-Ngoc; Quoc, Viet-Pham; Dinh-Thuan; & Dustdar, Schahram.
The Sky is the Edge. Computing Edge. August 2021.

[Dean 2021]
Dean, Brian. Social Network Usage & Growth Statistics: How Many People
Use Social Media in 2021? Backlinko. April 26, 2021.
https://backlinko.com/social-media-users

[Debray 2020]
Debray, Vidroba & Miller, Seneca. Overcoming Challenges With Continuous
Integration and Deployment Pipelines. IEEE Software. May/June 2020.

[Demi 2021]
Demi, Selina; Colomo-Palacious, R.; & Sánchez-Gordón, M. Software
Engineering Applications Enabled by Blockchain Technology: A Systematic
Mapping Study. Applied Sciences. Volume 11. No. 7. March 25, 2021.
https://www.mdpi.com/2076-3417/11/7/2960

[Denney 2018]
Denney, Ewen & Pai, Ganesh. Tool support for assurance case
development. Automated Software Engineering. Volume 25. Number 3.
September 2018. Pages 435–499. https://link.springer.com/
article/10.1007/s10515-017-0230-5

[DIB 2019]
Defense Innovation Board. Software is Never Done: Refactoring the
Acquisition Code for Competitive Advantage. May 2019.
https://media.defense.gov/2019/Apr/30/2002124828/-
1/-1/0/SOFTWAREISNEVERDONE_
REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_
FINAL.SWAP.REPORT.PDF

https://backlinko.com/social-media-users
https://www.mdpi.com/2076-3417/11/7/2960
https://link.springer.com/article/10.1007/s10515-017-0230-5
https://link.springer.com/article/10.1007/s10515-017-0230-5
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF

122

Architecting the Future of Software Engineering

[Divine 2020]
Divine, John. Tech Stocks: Is 2020 the Year Software Eats the World?
U.S. News and World Report. May 20, 2020. https://money.usnews.com/
investing/stock-market-news/articles/tech-stocks-is-2020-the-year-
software-eats-the-world

[DoD 2018a]
Office of the Deputy Assistant Secretary of Defense. DoD Digital Engineering
Strategy. Department of Defense. June 2018.
https://fas.org/man/eprint/digeng-2018.pdf

[DoD 2018b]
Department of Defense. Summary of the 2018 National Defense Strategy
of the United States of America: Sharpening the American Military’s
Competitive Edge. U.S. Department of Defense. 2018.
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-
Defense-Strategy-Summary.pdf

[DSB 2016]
Defense Science Board. Summer Study on Autonomy. June 2016.
https://www.hsdl.org/?view&did=794641

[DSB 2018]
Defense Science Board. Design and Acquisition of Software for Defense
Systems. Defense Science Board, U.S. Department of Defense. Office
of the Under Secretary of Defense for Research and Engineering.
February 2018. https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_
FINALdelivered2-21-2018.pdf

[Eaton 2021]
Eaton, C. & Volz, D. U.S. Pipeline Cyberattack Forces Closure. The Wall Street
Journal, May 8. 2021. https://www.wsj.com/articles/cyberattack-forces-
closure-of-largest-u-s-refined-fuel-pipeline-11620479737

[Ebert 2018]
Ebert, Christof. 50 years of software engineering: Progress and perils.
IEEE Software. Pages 94-101. Volume 35. Number 5. 2018

[Feiler 2006]
Feiler, Peter H. et al. Ultra-Large-Scale Systems: The Software Challenge of the
Future. Software Engineering Institute. 2006. ISBN 0-9786956-0-7.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30519

[GAO 2019]	
United States Government Accountability Office. Agencies Need to
Develop Modernization Plans for Critical Legacy Systems. GAO-19-471.
U.S. Government Accountability Office. June 11, 2019.
https://www.gao.gov/assets/700/699616.pdf

[Gay 2006]	
Gay, S. J. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science. Volume 16. Number 4.
Pages 581–600. July 24, 2006.

https://money.usnews.com/investing/stock-market-news/articles/tech-stocks-is-2020-the-year-software-eats-the-world
https://money.usnews.com/investing/stock-market-news/articles/tech-stocks-is-2020-the-year-software-eats-the-world
https://money.usnews.com/investing/stock-market-news/articles/tech-stocks-is-2020-the-year-software-eats-the-world
https://fas.org/man/eprint/digeng-2018.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://www.hsdl.org/?view&did=794641
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://www.wsj.com/articles/cyberattack-forces-closure-of-largest-u-s-refined-fuel-pipeline-11620479737
https://www.wsj.com/articles/cyberattack-forces-closure-of-largest-u-s-refined-fuel-pipeline-11620479737
https://www.gao.gov/assets/700/699616.pdf

123

A National Agenda for Software Engineering Research & Development

[Ge 2018]
Ge, N. Dieumegard, A.; Jenn, E.; and Voisin, L. Corrrect-by-contruction
Specification to Verified Code. Software: Evolution and Process. Wiley.
June 25, 2018. https://onlinelibrary.wiley.com/doi/10.1002/smr.1959

[Gil 2019]
Gil, Yolanda & Selman, Bart. A 20-Year Community Roadmap for Artificial
Intelligence Research in the US. Computing Community Consortium.
August 2019. https://cra.org/ccc/wp-content/uploads/sites/2/2019/08/
Community-Roadmap-for-AI-Research.pdf

[Gillberg 2020]
Gillberg, A. & Holst, G. The Impact of Reactive Programming on Code
Complexity and Readability: A Case Study. Institute of Computer and
Systems Sciences. Mid Sweden University, Östersund, Sweden. 2020.

[Halon 2019]
Halon, Eytan. SpaceIL reveals preliminary reasons behind Beresheet crash.
The Jerusalem Post. April 18, 2019. https://www.jpost.com/Israel-News/
SpaceIL-reveals-preliminary-reasons-behind-Beresheet-crash-587117

[Hamilton 2018]
Hamilton, Margaret. What the Errors Tell Us. IEEE Software. September/
October 2018.

[Hammond 2019]
Hammond, Ray. Megatrends of the 21st Century. Allianz Partners. June
2019. https://www.allianz-partners.com/content/dam/onemarketing/
awp/azpartnerscom/reports/futorology/Allianz-Partners-Megatrends-
of-the-21st-Century-ENG.pdf

[Harman 2015]	
Harman, M.; Jia, Y.; & Zhang, Y. Achievements, Open Problems and
Challenges for Search Based Software Testing. Pages 1–12. In 2015 IEEE
8th International Conference on Software Testing, Verification and Validation
(ICST). Graz, Austria. April 13–17, 2015.
https://ieeexplore.ieee.org/document/7102580

[Hassan 2008]	
Hassan, A.E. The road ahead for mining software repositories. Pages 48–57.
In Proceedings of the 2008 Frontiers of Software Maintenance. Beijing, China.
September 30–October 2, 2008.
https://ieeexplore.ieee.org/document/4659248

[Hemon 2020]
Hemon, Aymeric; Fitzgerald, Barbara Lyonnet; & Rowe, Frantz. Innovative
Practices for Knowledge Sharing in Large-Scale DevOps. IEEE Software.
May/June 2020.

[Hendrycks 2019]	
Hendrycks, Dan; Mazeika, Mantas; Kadavath, Saura; & Song, Dawn.
Using Self-Supervised Learning Can Improve Model Robustness
and Uncertainty. In Proceedings of Advances in Neural Information
Processing Systems 32 (NeurIPS 2019). Vancouver, BC, Canada.
December 2019. https://proceedings.neurips.cc/paper/2019/file/
a2b15837edac15df90721968986f7f8e-Paper.pdf

https://onlinelibrary.wiley.com/doi/10.1002/smr.1959
https://cra.org/ccc/wp-content/uploads/sites/2/2019/08/Community-Roadmap-for-AI-Research.pdf
https://cra.org/ccc/wp-content/uploads/sites/2/2019/08/Community-Roadmap-for-AI-Research.pdf
https://www.jpost.com/Israel-News/SpaceIL-reveals-preliminary-reasons-behind-Beresheet-crash-587117
https://www.jpost.com/Israel-News/SpaceIL-reveals-preliminary-reasons-behind-Beresheet-crash-587117
https://www.allianz-partners.com/content/dam/onemarketing/awp/azpartnerscom/reports/futorology/Allianz-Partners-Megatrends-of-the-21st-Century-ENG.pdf
https://www.allianz-partners.com/content/dam/onemarketing/awp/azpartnerscom/reports/futorology/Allianz-Partners-Megatrends-of-the-21st-Century-ENG.pdf
https://www.allianz-partners.com/content/dam/onemarketing/awp/azpartnerscom/reports/futorology/Allianz-Partners-Megatrends-of-the-21st-Century-ENG.pdf
https://ieeexplore.ieee.org/document/7102580
https://ieeexplore.ieee.org/document/4659248
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf

124

Architecting the Future of Software Engineering

[Holland 2020]
Holland, Charles & Tanenbaum, Jacob. Emerging Technologies 2020: Six
Areas of Opportunity. Carnegie Mellon University, Software Engineering
Institute. December 2020. https://resources.sei.cmu.edu/asset_files/
WhitePaper/2020_019_001_651791.pdf

[Horneman 2019]	
Horneman, Angela; Mellinger, Andrew; & Ozkaya, Ipek, AI Engineering:
11 Foundational Practices. Carnegie Mellon University, Software
Engineering Institute. 2019. https://resources.sei.cmu.edu/asset_files/
WhitePaper/2019_019_001_634648.pdf

[Ivers 2020]	
Ivers, James; Ozkaya, Ipek; Nord, Robert L.; & Seifried, Chris. Next generation
automated software evolution refactoring at scale. Pages 1521–1524. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
Association for Computing Machinery, New York, New York. 2020.
https://dl.acm.org/doi/pdf/10.1145/3368089.3417042

[Jansen 2019]
Jansen, Slinger; Cusumano, Michael; & Popp, Karl Michael. Managing
Software Platforms and Ecosystems. IEEE Software. May/June 2019.

[Jensen 2021]
Jensen, Jakob Jul. Applying a Smart Ecosystem Mindset to Rethink Your
Products. Computing Edge. June 2021.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9269897

[Jones 2019]	
Jones, Tyson; Brown, Anna; Bush, Ian; & Benjamin, Simon C. QuEST and
High Performance Simulation of Quantum Computers. Scientific Reports.
Volume 9. Number 10736. July 24, 2019. Pages 1–11.
https://www.nature.com/articles/s41598-019-47174-9.pdf

[Kazman 2020]
Kazman, Rick & Pasquale, Liliana. Software Engineering in Society.
IEEE Software. January/February 2020.

[Kim 2019]
Kim, Miryung. Re-engineering Software Engineering for a Data-centric World.
Presented at The 34th IEEE/ACM International Conference on Automated
Software Engineering. November 2019. http://web.cs.ucla.edu/~miryung/
ASE2019-Keynote-MiryungKim-SE4DA.pdf

[Kirbas 2021]	
Kirbas, Serkan et al. On the Introduction of Automatic Program Repair in
Bloomberg. IEEE Software. April 25, 2021. https://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=9395171

[Klieber 2016]	
Klieber, William & Snavely, Will. Automated Code Repair Based on Inferred
Specifications. Pages 130–137. In 2016 IEEE Cybersecurity Development
(SecDev 2016). Boston, Massachusetts. November 3–4, 2016.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7839806

https://resources.sei.cmu.edu/asset_files/WhitePaper/2020_019_001_651791.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2020_019_001_651791.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf
https://dl.acm.org/doi/pdf/10.1145/3368089.3417042
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9269897
https://www.nature.com/articles/s41598-019-47174-9.pdf
http://web.cs.ucla.edu/~miryung/ASE2019-Keynote-MiryungKim-SE4DA.pdf
http://web.cs.ucla.edu/~miryung/ASE2019-Keynote-MiryungKim-SE4DA.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395171
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9395171
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7839806

125

A National Agenda for Software Engineering Research & Development

[Krasner 2021]
Krasner, Herb. The Cost of Poor Software Quality in the US: A 2020 Report.
Consortium for Information & Software Quality. January 1, 2021.
CPSQ-2020-report.pdf (it-cisq.org)

[Krishnan 2020]
Krishnan, Mahesh. Evolution in the Automation of CI/CD. Presented at
the 35th IEEE/ACM International Conference on Automated Software
Engineering. September 2020. https://youtu.be/4f7sCrEtM30

[Kwiatkowska 2019]
Kwiatkowska, Marta. Safety and Robustness for Deep Learning with
Provable Guarantees. Page 2. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. Tallinn, Estonia. August 2019.
https://dl.acm.org/doi/10.1145/3338906.3342812

[Lago 2015]	
Lago, Patricia; Malavolta, Ivano; Muccini, Henry; Pelliccione, Patrizio; &
Tang, Antony. The Road Ahead for Architectural Languages. IEEE Software.
Volume 32. Number 1. January–February 2015. Pages 98–105.
https://ieeexplore.ieee.org/abstract/document/6756703

[Lanowitz 2021]
Lanowitz, Theresa. Ransomware and Energy and Utilities. AT&T Blog.
June 3, 2021. https://cybersecurity.att.com/blogs/security-essentials/
ransomware-and-energy-and-utilities

[Law 2021]
Law, Kincho & Lynch, Jerome. Smart City: Technologies and Challenges.
Computing Edge. June 2021.

[Le Goeus 2019]	
Le Goues, Claire; Pradel, Michael; & Roychoudhury, Abhik. 2019.
Automated Program Repair. Communications of the ACM. Volume 62.
Number 12. Pages 56–65. November 21, 2019. https://cacm.acm.org/
magazines/2019/12/241055-automated-program-repair/fulltext

[Le Goeus 2021]
Le Goeus, Claire; Pradel, Michael; Roychoudhury, Abnik; & Chanra, Stish.
Automatic Code Repair. IEEE Software. July/August 2021.

[Levitt 2019]
Levitt, Mark. Software Development—by 2040. Trixta. January 25, 2019.
https://medium.com/trixta/software-development-by-2040-
14e39f9153cb

[Lewis 2021]
Lewis, G.; Bellomo, S.; & Ozkaya, I. Characterizing and Detecting Mismatch
in Machine-Learning-Enabled Systems. In 1st International Workshop on AI
Engineering—Software Engineering for AI collocated with ICSE 2021.
Virtual workshop. May 30, 2021. https://arxiv.org/pdf/2103.14101.pdf

http://CPSQ-2020-report.pdf
https://youtu.be/4f7sCrEtM30
https://dl.acm.org/doi/10.1145/3338906.3342812
https://ieeexplore.ieee.org/abstract/document/6756703
https://cybersecurity.att.com/blogs/security-essentials/ransomware-and-energy-and-utilities
https://cybersecurity.att.com/blogs/security-essentials/ransomware-and-energy-and-utilities
https://cacm.acm.org/magazines/2019/12/241055-automated-program-repair/fulltext
https://cacm.acm.org/magazines/2019/12/241055-automated-program-repair/fulltext
https://medium.com/trixta/software-development-by-2040-14e39f9153cb
https://medium.com/trixta/software-development-by-2040-14e39f9153cb
https://arxiv.org/pdf/2103.14101.pdf

126

Architecting the Future of Software Engineering

[Lira 2019]
Lira, C.; Mello, B.; & Prazeres, C. Pages 1243–1251. Reactive Microservices
for the Internet of Things: A Case Study in Fog Computing. In SAC ‘19:
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
April 2019.
https://doi.org/10.1145/3297280.329740210.1145/3297280.3297402.

[Mahe 2020]
Mahe, Nolwen; Adams, Bram; Marsan, Josianne; Templier, Mathieu; &
Bissonnette, Sylvie. Migrating a Software Factory to Design Thinking: Paying
Attention to People and Mind-Sets. IEEE Software. March/April 2020.

[Maksimov 2019]
Maksimov, Mike; Kokaly, Sahar; & Chechik, Marsha. A Survey of Tool-
Supported Assurance Case Assessment Techniques. ACM Computing
Surveys (CSUR). Volume 52. Number 5. October 2019. Pages 1–34.
https://dl.acm.org/doi/pdf/10.1145/3342481

[Marr 2020]
Marr, Bernard. The Top 10 Breakthrough Technologies for 2020.
Forbes. February 26, 2020. https://www.forbes.com/sites/
bernardmarr/2020/02/26/mit-names-top-10-breakthrough-
technologies-for-2020/?sh=279ddb71d482

[Martonosi 2018]	
Martonosi, Margaret & Roettele, Martin. Next Steps in Quantum
Computing: Computer Science’s Role. Computing Community Consortium
Catalyst. November 2018. https://cra.org/ccc/wp-content/uploads/
sites/2/2018/11/Next-Steps-in-Quantum-Computing.pdf

[McFadden 2021]
McFadden, Christopher. What’s the Biggest Software Package by Lines of
Code? Interesting Engineering. July 15, 2021.
https://interestingengineering.com/whats-the-biggest-software-
package-by-lines-of-code

[McFall-Johnsen 2020]
McFall-Johnsen, Morgan. Catastrophic software errors doomed Boeing’s
airplanes and nearly destroyed its NASA spaceship. Experts blame the
leadership’s ‘lack of engineering culture.’ Business Insider. February 29, 2020.
https://www.businessinsider.com/boeing-software-errors-jeopardized-
starliner-spaceship-737-max-planes-2020-2

[Military.Com 2015]
Military.Com. Software Glitch Causes F-35 to Incorrectly Detect Targets in
Formation. Military.Com. March 24, 2015.
https://www.military.com/defensetech/2015/03/24/software-glitch-
causes-f-35-to-incorrectly-detect-targets-in-formation

[MIT 2021]
MIT Technology Review. 10 Breakthrough Technologies 2021. MIT
Technology Review. February 24, 2021. https://www.technologyreview.
com/2021/02/24/1014369/10-breakthrough-technologies-2021/

https://doi.org/10.1145/3297280.329740210.1145/3297280.3297402
https://dl.acm.org/doi/pdf/10.1145/3342481
https://www.forbes.com/sites/bernardmarr/2020/02/26/mit-names-top-10-breakthrough-technologies-for-2020/?sh=279ddb71d482
https://www.forbes.com/sites/bernardmarr/2020/02/26/mit-names-top-10-breakthrough-technologies-for-2020/?sh=279ddb71d482
https://www.forbes.com/sites/bernardmarr/2020/02/26/mit-names-top-10-breakthrough-technologies-for-2020/?sh=279ddb71d482
https://cra.org/ccc/wp-content/uploads/sites/2/2018/11/Next-Steps-in-Quantum-Computing.pdf
https://cra.org/ccc/wp-content/uploads/sites/2/2018/11/Next-Steps-in-Quantum-Computing.pdf
https://interestingengineering.com/whats-the-biggest-software-package-by-lines-of-code
https://interestingengineering.com/whats-the-biggest-software-package-by-lines-of-code
https://www.businessinsider.com/boeing-software-errors-jeopardized-starliner-spaceship-737-max-planes-2020-2
https://www.businessinsider.com/boeing-software-errors-jeopardized-starliner-spaceship-737-max-planes-2020-2
https://www.military.com/defensetech/2015/03/24/software-glitch-causes-f-35-to-incorrectly-detect-targets-in-formation
https://www.military.com/defensetech/2015/03/24/software-glitch-causes-f-35-to-incorrectly-detect-targets-in-formation
https://www.technologyreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021/
https://www.technologyreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021/

127

A National Agenda for Software Engineering Research & Development

[Mitchell 2010]
Mitchell, Robert L. Toyota’s Lesson: Software Can Be Unsafe at Any Speed
Computerworld. February 5, 2010.
https://www.computerworld.com/article/2467572/toyota-s-lesson--
software-can-be-unsafe-at-any-speed.html

[Moore 2016]
Moore, Andrew; O’Reilly, Tim; Nielsen, Paul; & Fall, Kevin. Four Thought
Leaders on Where the Industry is Headed. IEEE Software 33:1. January–
February 2016. Pages 36–39. https://doi.org/10.1109/MS.2016.1

[Morrison 2018]	
Morrison, Patrick; Pandita, Rahul; Xiao, Xusheng; Chillarege, Ram; &
Williams, Laurie A. Are vulnerabilities discovered and resolved like other
defects? Empirical Software Engineering. Volume 23. Number 3. June 2018.
Pages 1383–1421.
https://link.springer.com/article/10.1007/s10664-017-9541-1

[Muccini 2018]
Muccini, Henry; Bosch, Jan; & van der Hoek, Andre. Collaborative Modeling
in Software Engineering. IEEE Software. November/December 2018.

[MSR 2021]
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). Madrid, Spain. 17–19 May 2021.
https://conf.researchr.org/home/msr-2021

[Murphy 2019]	
Murphy, Gail C.; Kersten, Mik; Elves, Robert; & Bryan, Nicole. Enabling
Productive Software Development by Improving Information Flow.
In Rethinking Productivity in Software Engineering. Sadowski, Caitlin &
Zimmerman, Thomas [editors]. Apress. Pages 281–292. 2019.

[Murphy 2020]
Murphy, Gail. Is Software Engineering Research Addressing Software
Engineering Problems? Presented at The 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). September 2020.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9286117

[Myer 1992]
Meyer, Bertrand. Applying “Design by Contract.” Computer. Volume 25.
Number 10. October 1992. Pages 40–51.

[Nagourney 2018]
Nagourney, Adam; Sanger, David E.; & Barr, Johanna. Hawaii Panics After
Alert About Incoming Missile Is Sent in Error. The New York Times.
January 13, 2018.
https://www.nytimes.com/2018/01/13/us/hawaii-missile.html

[NASEM 2019]	
National Academies of Sciences Engineering and Medicine. Quantum
Computing: Progress and Prospects. The National Academies Press. 2019.
ISBN: 978-0-309-47969-1.

https://www.computerworld.com/article/2467572/toyota-s-lesson--software-can-be-unsafe-at-any-speed.html
https://www.computerworld.com/article/2467572/toyota-s-lesson--software-can-be-unsafe-at-any-speed.html
https://doi.org/10.1109/MS.2016.1
https://link.springer.com/article/10.1007/s10664-017-9541-1
https://conf.researchr.org/home/msr-2021
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9286117
https://www.nytimes.com/2018/01/13/us/hawaii-missile.html

128

Architecting the Future of Software Engineering

[NITRD 2011]
Networking and Information Technology Research and Development
Program. Future of Software Engineering Research. December 2011.
https://www.nitrd.gov/pubs/FOSER_report_2011.pdf

[NITRD 2021]
Networking and Information Technology Research and Development
Program. Innovation through NITRD Coordination. NITRD.gov. August 9, 2021
[accessed]. https://www.nitrd.gov/

[Novielli 2019]
Novielli, Nicole & Serebrenik, Alexander. Sentiment and Emotion in
Software Engineering. IEEE Software. September/October 2019.

[NRC 2010]
National Research Council. Critical Code: Software Producibility for Defense.
Washington, DC: The National Academies Press. 2010. ISBN: 978-0-309-
15948-7. https://www.nap.edu/catalog/12979/Critical-code-software-
producibility-for-defense

[NSTC 2018]	
National Science and Technology Council, Subcommittee on Quantum
Information Science. National Strategic Overview for Quantum Information
Science. September 2018. https://www.quantum.gov/wp-content/
uploads/2020/10/2018_NSTC_National_Strategic_Overview_QIS.pdf

[NSTC 2020]
National Science and Technology Council, Subcommittee on Networking
& Information Technology. Supplement to the President’s FY2021 Budget.
August 14, 2020.
https://www.nitrd.gov/pubs/FY2021-NITRD-Supplement.pdf

[Office of the President 2017]
Office of the President. National Security Strategy of the United States of
America. December 2017. https://www.hsdl.org/?view&did=806478

[Oliveira 2018]	
Oliveira, V.P.L.; Souza, E.F.d.; Goues, C.L.; et al. Improved representation and
genetic operators for linear genetic programming for automated program
repair. Empirical Software Engineering. Volume 23. Number 5. October 2018.
Pages 2980–3006.

[Ozkaya 2020]	
Ozkaya, I. What Is Really Different in Engineering AI-Enabled Systems?
IEEE Software. Volume 37. Number 4. July–August 2020. Pages 3–6.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9121629

[Ozkaya 2021]
Ozkaya, Ipek. A Watershed Moment for Search-Based Software
Engineering. IEEE Software. Volume 38. Number 4. 2021. Pages 3–6.

[Pasztor 2021]
Pasztor, Andy & Tangel, Andrew. Boeing’s Other Big Problem: Fixing Its
Space Program. The Wall Street Journal. January 16, 2021.
https://www.wsj.com/articles/boeings-other-big-problem-fixing-its-
space-program-11610773201

https://www.nitrd.gov/pubs/FOSER_report_2011.pdf
https://www.nitrd.gov/
https://www.nap.edu/catalog/12979/Critical-code-software-producibility-for-defense
https://www.nap.edu/catalog/12979/Critical-code-software-producibility-for-defense
https://www.quantum.gov/wp-content/uploads/2020/10/2018_NSTC_National_Strategic_Overview_QIS.pdf
https://www.quantum.gov/wp-content/uploads/2020/10/2018_NSTC_National_Strategic_Overview_QIS.pdf
https://www.nitrd.gov/pubs/FY2021-NITRD-Supplement.pdf
https://www.hsdl.org/?view&did=806478
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9121629
https://www.wsj.com/articles/boeings-other-big-problem-fixing-its-space-program-11610773201
https://www.wsj.com/articles/boeings-other-big-problem-fixing-its-space-program-11610773201

129

A National Agenda for Software Engineering Research & Development

[Patel 2018]
Patel, N. & Patel, K. Java 9 Dependency Injection: Write Loosely Coupled Code
with Spring 5 and Guice. Packt Publishing Ltd., Apr 26, 2018. https://www.
packtpub.com/product/java-9-dependency-injection/9781788296250.

[Patel 2021]
Patel, Prachi. Engineering Bias Out of AI. IEEE Spectrum. May 2021.

[Pham 2021]
Pham, Thanh. Analyzing The Software Engineer Shortage. Forbes. Apr 13, 2021.
https://www.forbes.com/sites/forbestechcouncil/2021/04/13/
analyzing-the-software-engineer-shortage/?sh=1a92fd4e321c

[Pons 2019]	
Pons, Lena & Ozkaya, Ipek. Priority Quality Attributes for Engineering
AI-enabled Systems. Presented at AAAI FSS-19: Artificial Intelligence in
Government and Public Sector. November 7–8, 2019.
https://arxiv.org/pdf/1911.02912.pdf

[Preskill 2018]	
Preskill, J. Quantum Computing in the NISQ Era and Beyond. Quantum.
Volume 2. 2018. Page 79. https://doi.org/10.22331/q-2018-08-06-79

[Qiskit 2019]	
Qiskit. Qiskit: An Open-source Framework for Quantum Computing.
qiskit.org. August 19, 2021 [accessed]. https://qiskit.org/

[Rahman 2017]	
Rahman, Akond; Partho, Asif; Meder, David; & Williams, Laurie A. Pages
20–26. In Proceedings of the 3rd International Workshop on Rapid Continuous
Software Engineering (RCoSE ‘17). Buenos Aires, Argentina. May 2017.
https://dl.acm.org/doi/pdf/10.5555/3105398.3105404

[Rahman 2019]	
Rahman, M.S.; Rivera, E.; Khomh, F.; Guéhéneuc, Y.; & Lehnert, B. Machine
Learning Software Engineering in Practice: An Industrial Case Study. 2019.
ArXiv, abs/1906.07154.

[Ramakrishna 2021]
Ramakrishna, Sudhakar. New Findings From Our Investigation of
SUNBURST. Thwack Solarwinds IT Community. January 11, 2021.
https://thwack.solarwinds.com/resources/b/community-
announcements/posts/new-findings-from-our-investigation-of-sunburst

[Rauch 2018]
Rauch, J.; Gonzalez, M.; & Shields, J. A. The Constitution of Knowledge.
National Affairs. Fall 2018. https://www.nationalaffairs.com/
publications/detail/the-constitution-of-knowledge

[Reinertson 2019]	
Reinertson, Donald. The Principles of Product Development Flow: Second
Generation Lean Product Development. Celeritas Publishing. 2019.
ISBN-13: 978-1935401001.

https://www.packtpub.com/product/java-9-dependency-injection/9781788296250
https://www.packtpub.com/product/java-9-dependency-injection/9781788296250
https://www.forbes.com/sites/forbestechcouncil/2021/04/13/analyzing-the-software-engineer-shortage/?sh=1a92fd4e321c
https://www.forbes.com/sites/forbestechcouncil/2021/04/13/analyzing-the-software-engineer-shortage/?sh=1a92fd4e321c
https://arxiv.org/pdf/1911.02912.pdf
https://doi.org/10.22331/q-2018-08-06-79
https://qiskit.org/
https://dl.acm.org/doi/pdf/10.5555/3105398.3105404
https://thwack.solarwinds.com/resources/b/community-announcements/posts/new-findings-from-our-investigation-of-sunburst
https://thwack.solarwinds.com/resources/b/community-announcements/posts/new-findings-from-our-investigation-of-sunburst
https://www.nationalaffairs.com/publications/detail/the-constitution-of-knowledge
https://www.nationalaffairs.com/publications/detail/the-constitution-of-knowledge

130

Architecting the Future of Software Engineering

[Rhee 2020]
Rhee, Joseph; Wagschal, Gerry; & Jung Jinsol. How Boeing 737 MAX’s flawed
flight control system led to 2 crashes that killed 346. ABC News.
November 27, 2020. https://abcnews.go.com/US/boeing-737-maxs-
flawed-flight-control-system-led/story?id=74321424

[Richards 2014]
Richards, Lisa. How Software Changed the World. MAPCON. March 31, 2014.
https://www.mapcon.com/us-en/how-software-changed-the-world

[Richards 2019]
Richards, Raymond. Automated Rapid Certification Of Software (ARCOS).
Defense Advanced Research Projects Agency. May 7, 2021 [accessed]. https://
www.darpa.mil/program/automated-rapid-certification-of-software

[Roulette 2020]
Roulette, Joey. Boeing’s botched Starliner test flirted with ‘catastrophic’
failure: NASA panel. Reuters. February 6, 2020. https://www.reuters.com/
article/us-space-exploration-boeing/boeings-botched-starliner-test-
flirted-with-catastrophic-failure-nasa-panel-idUSKBN20106A

[Ruchkin 2014]
Ruchkin, Ivan, et al. Contract-Based Integration of Cyber-Physical Analyses.
In 2014 Proceedings of the International Conference on Embedded Software,
EMSOFT. https://ieeexplore.ieee.org/document/

[Sadowski 2018]	
Sadowski, Caitlin; Söderberg, Emma; Church, Luke; Sipko, Michal; &
Bacchelli, Alberto. Pages 181-190. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP ‘18). Gothenburg, Sweden. May 27–June 3, 2018.
https://dl.acm.org/doi/pdf/10.1145/3183519.3183525

[Santhanam 2019]	
Santhanam, P.; Farchi, Eitan; & Pankratius, Victor. Engineering Reliable Deep
Learning Systems. Presented at The AAAI Fall Symposium Series on AI in
Government & Public Sector. Washington D.C. November 7-9, 2019.
https://arxiv.org/ftp/arxiv/papers/1910/1910.12582.pdf

[Satter 2021]
Satter, Raphael. Up to 1,500 businesses affected by ransomware attack,
U.S. firm’s CEO says. Reuters. July 6, 2021. https://www.reuters.com/
technology/hackers-demand-70-million-liberate-data-held-by-
companies-hit-mass-cyberattack-2021-07-05/

[Schmidt 2006]
Schmidt, D. Guest Editor’s Introduction: Model-Driven Engineering.
IEEE Computer 39:2. February 2006. Pages 25–31.
https://doi.org/10.1109/MC.2006.58

[Sculley 2015]
Sculley, D. et al. Hidden Technical Debt in Machine Learning Systems. Pages
2503–2511. In Proceedings of the 28th International Conference on Neural
Information Processing Systems—Volume 2. Montreal, Quebec, Canada.
December 2015. https://papers.nips.cc/paper/2015/file/86df7dcfd896fca
f2674f757a2463eba-Paper.pdf

https://abcnews.go.com/US/boeing-737-maxs-flawed-flight-control-system-led/story?id=74321424
https://abcnews.go.com/US/boeing-737-maxs-flawed-flight-control-system-led/story?id=74321424
https://www.mapcon.com/us-en/how-software-changed-the-world
https://www.darpa.mil/program/automated-rapid-certification-of-software
https://www.darpa.mil/program/automated-rapid-certification-of-software
https://www.reuters.com/article/us-space-exploration-boeing/boeings-botched-starliner-test-flirted-with-catastrophic-failure-nasa-panel-idUSKBN20106A
https://www.reuters.com/article/us-space-exploration-boeing/boeings-botched-starliner-test-flirted-with-catastrophic-failure-nasa-panel-idUSKBN20106A
https://www.reuters.com/article/us-space-exploration-boeing/boeings-botched-starliner-test-flirted-with-catastrophic-failure-nasa-panel-idUSKBN20106A
https://ieeexplore.ieee.org/document/
https://dl.acm.org/doi/pdf/10.1145/3183519.3183525
https://arxiv.org/ftp/arxiv/papers/1910/1910.12582.pdf
https://www.reuters.com/technology/hackers-demand-70-million-liberate-data-held-by-companies-hit-mass-cyberattack-2021-07-05/
https://www.reuters.com/technology/hackers-demand-70-million-liberate-data-held-by-companies-hit-mass-cyberattack-2021-07-05/
https://www.reuters.com/technology/hackers-demand-70-million-liberate-data-held-by-companies-hit-mass-cyberattack-2021-07-05/
https://doi.org/10.1109/MC.2006.58
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

131

A National Agenda for Software Engineering Research & Development

[Seacord 2005]
Seacord, R. Secure Coding in C and C++. Addison-Wesley Professional. 2005.

[SEI 2019]	
Software Engineering Institute. Architecture Analysis and Design
Language. Software Engineering Institute Website. June 9, 2021 [accessed].
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_
datapageid_4050=191439&customel_datapageid_4050=191439

[SEI 2020]
Software Engineering Institute. Architecting the Future of Software
Engineering. 2020 SEI Year in Review. Pittsburgh, PA: Software Engineering
Institute. Carnegie Mellon University. 2021. http://resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=736258

[SEI 2021]	
Software Engineering Institute. Artificial Intelligence Engineering. Software
Engineering Institute Website. June 9, 2021 [accessed]. https://www.sei.
cmu.edu/our-work/artificial-intelligence-engineering/index.cfm

[Schatsky 2020]
Schatsky, David & Bumb, Sourabh. AI is Helping to Make Better Software.
Deloitte Insights. January 2020. https://www2.deloitte.com/content/dam/
insights/us/articles/6342_S4S-AI-in-software/DI_S4S%20AI%20in%20
software.pdf

[Shaw 2016]
Shaw, Mary. Progress Toward an Engineering Discipline of Software.
Presented at The 38th International Conference on Software Engineering.
May 2016. https://2016.icse.cs.txstate.edu/static//downloads/docs-and-
slides/mary-shaw-keynote-slides.pdf

[Shull 2016]
Shull, Forrest; Carleton, Anita; Carriere, Jeromy; Prikladnicki, Rafael; &
Zhang, Dongmei. The Future of Software Engineering. IEEE Software.
January/February 2016.

[Smith 2020]
Smith, Carol. Designing Trustworthy AI for Human-Machine Teaming.
SEI Blog. March 9, 2020. https://insights.sei.cmu.edu/blog/designing-
trustworthy-ai-for-human-machine-teaming/

[Svore 2018]	
Svore, K. et al. Q#: Enabling Scalable Quantum Computing and
Development with a High-level DSL. Pages 1–10. In Proceedings of the Real
World Domain Specific Languages Workshop 2018. Vienna, Austria.
February 2018. https://dl.acm.org/doi/pdf/10.1145/3183895.3183901

[Swimmer 2019]
Simmer, Morton & Vosseler, Rainer. Everything is Software: The
Consequences of Software Permeating Our World. Trend Mirco. July 31, 2019.
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-
and-digital-threats/everything-is-software

https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=736258
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=736258
https://www.sei.cmu.edu/our-work/artificial-intelligence-engineering/index.cfm
https://www.sei.cmu.edu/our-work/artificial-intelligence-engineering/index.cfm
https://www2.deloitte.com/content/dam/insights/us/articles/6342_S4S-AI-in-software/DI_S4S%20AI%20in%20software.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/6342_S4S-AI-in-software/DI_S4S%20AI%20in%20software.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/6342_S4S-AI-in-software/DI_S4S%20AI%20in%20software.pdf
https://2016.icse.cs.txstate.edu/static//downloads/docs-and-slides/mary-shaw-keynote-slides.pdf
https://2016.icse.cs.txstate.edu/static//downloads/docs-and-slides/mary-shaw-keynote-slides.pdf
https://insights.sei.cmu.edu/blog/designing-trustworthy-ai-for-human-machine-teaming/
https://insights.sei.cmu.edu/blog/designing-trustworthy-ai-for-human-machine-teaming/
https://dl.acm.org/doi/pdf/10.1145/3183895.3183901
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/everything-is-software
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/everything-is-software

132

Architecting the Future of Software Engineering

[Thomas 1928]
Thomas, W.I. & Thomas, D.S. The Child in America: Behavior Problems and
Programs. Knopf. 1928.

[Trujilo 2020]
Trujilo, Leonardo; Villanueava, Oar; & Hernandez, Daniel. A Novel
Approach for Search-Based Program Repair. IEEE Software.
July/August 2021.

[Tunggal 2021]
Tunggal, Abi Tyas. The 57 Biggest Data Breaches (Updated for 2021). UpGuard
Blog. July 6, 2021. https://www.upguard.com/blog/biggest-data-breaches

[Turton 2020]
Turton, William. Hackers used a little-known IT vendor to attack U.S.
agencies. Fortune. December 15, 2020.
https://fortune.com/2020/12/15/solarwinds-hackers-u-s-agencies/

[Twetman 2021]
Twetman, H.; Paramonova, M.; & Hanley, M. Social Media Monitoring:
A Primer. NATO Strategic Communications Centre of Excellence. 2021. ISBN:
978-9934-564-91-8. https://stratcomcoe.org/cuploads/pfiles/social_
media_monitoring_a_primer_12-02-2020.pdf

[van Genuchten 2019]
van Genuchten, Michiel & Hatton, Les. Ten Years of “Impact” Columns—
The Good, the Bad, and the Ugly. IEEE Software. Volume 36. Number 6.
2019. Pages 57–60.

[Voelter 2013]
Voelter, M. DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. dslbook.org. 2013.
http://voelter.de/data/books/markusvoelter-dslengineering-1.0.pdf

[Waltzman 2017]
Waltzman, Rand. The Weaponization of Information: The Need for
Cognitive Security. RAND Corporation. 2017.
https://www.rand.org/pubs/testimonies/CT473.html

[Weyuker 2021]
Weyuker, Elaine. The View from 40 years in the Research Trenches: From
Academia to Industry and Back Again. Presented at 43rd International
Conference on Software Engineering. May 2021. https://conf.researchr.
org/details/icse-2021/icse-2021-keynotes/4/Elaine-Weyuker-s-Keynote-
The-View-From-40-Years-in-the-Research-Trenches-From-Aca

[Wing 2021]
Wing, Jeannette. Data for Good: Ensuring the Responsible Use of Data to
Benefit Society. Presented at 43rd International Conference on Software
Engineering. May 2021. https://conf.researchr.org/details/icse-2021/icse-
2021-keynotes/5/Jeannette-Wing-s-Keynote-Data-for-Good-Ensuring-
the-Responsible-Use-of-Data-to-Ben

https://www.upguard.com/blog/biggest-data-breaches
https://fortune.com/2020/12/15/solarwinds-hackers-u-s-agencies/
https://stratcomcoe.org/cuploads/pfiles/social_media_monitoring_a_primer_12-02-2020.pdf
https://stratcomcoe.org/cuploads/pfiles/social_media_monitoring_a_primer_12-02-2020.pdf
http://voelter.de/data/books/markusvoelter-dslengineering-1.0.pdf
https://www.rand.org/pubs/testimonies/CT473.html
https://conf.researchr.org/details/icse-2021/icse-2021-keynotes/4/Elaine-Weyuker-s-Keynote-The-View-From-40-Years-in-the-Research-Trenches-From-Aca
https://conf.researchr.org/details/icse-2021/icse-2021-keynotes/4/Elaine-Weyuker-s-Keynote-The-View-From-40-Years-in-the-Research-Trenches-From-Aca
https://conf.researchr.org/details/icse-2021/icse-2021-keynotes/4/Elaine-Weyuker-s-Keynote-The-View-From-40-Years-in-the-Research-Trenches-From-Aca
https://conf.researchr.org/details/icse-2021/icse-2021-keynotes/5/Jeannette-Wing-s-Keynote-Data-for-Good-Ensuring-the-Responsible-Use-of-Data-to-Ben
https://conf.researchr.org/details/icse-2021/icse-2021-keynotes/5/Jeannette-Wing-s-Keynote-Data-for-Good-Ensuring-the-Responsible-Use-of-Data-to-Ben
https://conf.researchr.org/details/icse-2021/icse-2021-keynotes/5/Jeannette-Wing-s-Keynote-Data-for-Good-Ensuring-the-Responsible-Use-of-Data-to-Ben

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use
and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this
material for internal use is granted, provided the copyright and “No Warranty” statements are
included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permission. Permission
is required for any other external and/or commercial use. Requests for permission should be directed
to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM21-0889

mailto:permission@sei.cmu.edu

Architecting The Future of Softw
are Engineering

��������
The Soft ware Engineering Institute (SEI) at Carnegie Mellon University is a Federally Funded
Research and Development Center (FFRDC)—a nonprofit, public–private partnership that
conducts research for the United States government. One of only 10 FFRDCs sponsored by the U.S.
Department of Defense (DoD), the SEI conducts R&D in soft ware engineering, systems engineering,
cybersecurity, and many other areas of computing, working to introduce private-sector innovations
into government.

As the only FFRDC sponsored by the DoD that is also authorized to work with organizations outside
of the DoD, the SEI is unique. We work with partners throughout the U.S. government, the private
sector, and academia. These partnerships enable us to take innovations from concept to practice,
closing the gap between research and use.

����������
Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

412.268.5800 | 888.201.4479
sei.cmu.edu | info@sei.cmu.edu

©2021 Carnegie Mellon University | 5601

	Table of Contents
	Executive Summary
	1 Introduction
	1.1 	Software Enables Capability and Innovation
	1.2 	Software Is an Achilles Heel
	1.3	Software Is the Backbone of Safety-Critical Systems
	1.4	Software Often Relies on Complex Supply Chains
	1.5	Software Is a Component of Critical Infrastructure
	1.6 	Software Engineering Determines Software Quality
	1.7 	Call to Action
	1.8 	Scope
	1.9 	Audience
	1.10 	Approach

	2 Exploring Emerging Trends and Technologies
	2.1 	Trends
	2.2 	Emerging Technologies

	3 Findings
	4 Envisioning the Future of Software Engineering
	4.1	Future Scenarios
	4.2	Vision for the Future of Software Engineering

	5 Research Focus Areas
	5.1 	�Advanced Development Paradigms
	5.2 	Advanced Architectural Paradigms
	5.3 	Research Roadmap
	5.4 	AI-Augmented Software Development
Research Focus Area
	5.4.1 Goals
	5.4.2 Limitations of Current Practice
	5.4.3 Topics for Research
	5.4.4 Research Questions
	5.4.5 Research Topics

	5.5 	Assuring Continuously Evolving
Software Systems Research Focus Area
	5.5.1 Goals
	5.5.2 Limitations of Current Practice
	5.5.3 Topics for Research
	5.5.4 	Research Questions
	5.5.5 	Research Topics

	5.6 	Software Construction through Compositional Correctness Research Focus Area
	5.6.1 	Goals
	5.6.2 	Limitations of Current Practice
	5.6.3 	Topics for Research
	5.6.4 	Research Questions
	5.6.5 	Research Topics

	5.7	Engineering AI-Enabled Software Systems
Research Focus Area
	5.7.1 	Goals
	5.7.2 	Limitations of Current Practice
	5.7.3 	Topics for Research
	5.7.4 	Research Questions
	5.7.5 	Research Topics

	5.8 	Engineering Societal-Scale
Systems Research Focus Area
	5.8.1 	Goals
	5.8.2 	Limitations of Current Practice
	5.8.3 	Topics for Research
	5.8.4 	Research Questions
	5.8.5 	Research Topics

	5.9 	Engineering Quantum Computing Software Systems Research Focus Area
	5.9.1 	Goals
	5.9.2 	Limitations of Current Practice
	5.9.3 	Topics for Research
	5.9.4 	Research Questions
	5.9.5 	Research Topics

	6 Recommendations
	6.1 	Research Recommendations
	6.2 	Enactment Recommendations

	7 Conclusion
	Appendix A: Engaging the Software Engineering Community Through Workshops
	References

