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Software is vital to our country’s 
global competitiveness, innovation, 
and national security. It also ensures 
our modern standard of living and 
enables continued advances in defense, 
infrastructure, healthcare, commerce, 
education, and entertainment. As 
part of its work as a federally funded 
research and development center 
(FFRDC) focused on applied research 
to improve the practice of software 
engineering, the Carnegie Mellon 
University Software Engineering 
Institute led the community in 
creating this multi-year research and 
development vision and roadmap for 
engineering next-generation software-
reliant systems.
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Foreword: Deb Frincke

Writing a foreword for this report has been both a privilege and 
a challenge. As the chair of the project’s advisory board, I had the 
opportunity to work with some of the most knowledgeable and 
passionate individuals I have ever met. The resulting report is 
important and will be impactful on the future of software engineering. 
Consequently, it was a privilege to be associated with this work.

Software, and hence software engineering, problems contributed to 
the personal challenges I had in writing this foreword because they ate 
into my scheduled time to write. By chance, I was diverted three times 
by issues that juxtaposed humans and software-reliant systems. First, I 
was interrupted by technical challenges arising from ransomware in the 
context of critical infrastructure protection. Second, I became involved in 
key practical discussions about how to manage machine learning models 
that drive important scientific algorithms. And finally, I had to engage in a 
series of plaintive conversations with my air conditioning repair mechanic 
because of a software fault that caused my air conditioning to fail during 
one of the hottest weeks in the year. So while writing, I was actually 
experiencing the reason that motivated the need for this report: Software 
inadequacies resulting from inadequate software engineering are truly 
with us everywhere!

As you read this document, think about how software touches you, and 
everything around you, and what this implies for the future of software 
engineering. You will inevitably find that software resilience remains 
critical, and that software systems have become even more important to 
our daily lives than ever before. You’ll also find that the increasing reliance 
on societal/global-scale systems highlights even more complexities, such as 
influence, social manipulation, and other challenges that emerge in these 
system types. All of this raises the stakes for software engineering.

My hope is that you will find ways to leverage this important report and 
the insights it contains, and that you will help enact its recommendations. 
We each have a responsibility to contribute to making software more 
trustworthy by advocating for investment in advancing the foundations and 
practice of software engineering.

Deb Frincke, Associate Laboratory Director for National Security Sciences, 
Oak Ridge National Laboratory 

Advisory Board Chair for the National Agenda for Software Engineering  
Research and Development Study

	





vii

A National Agenda for Software Engineering Research & Development

Foreword: The Honorable Heidi Shyu

Software is an essential, if not the central, part of every Department 
of Defense (DoD) system. Our hardware has become increasingly 
programmable, and software has become ubiquitous. Therefore, software 
engineering is a critical enabler for everything that we do in the DoD. 
To remain competitive, our weapon systems acquisition must migrate 
away from the linear development and test cycle and evolve into a rapid 
continuous update and continuous assurance environment. Consequently, 
this software engineering technology roadmap is a guide for our research 
and investment strategy that is vital for our national security. As we develop 
new systems, we must go beyond model-based software engineering to 
enable us to rapidly develop systems while reducing re-assurance and 
sustainment costs. In the future, we will need rapid composition of new 
capabilities that can operate in a highly contested and denied environment. 
Integrating heterogeneous systems seamlessly and rapidly will enable us 
to stay ahead of threats. We will need to exploit the promise of artificial 
intelligence to increase capability not only in our fielded systems but also 
in our development systems. This research roadmap should serve as the 
starting point for a sustained effort to improve software engineering. 
The DoD will continue to look to the Carnegie Mellon University Software 
Engineering Institute as a leader in improving the state of the art and 
practice in software engineering. 

The Honorable Heidi Shyu, Under Secretary of Defense  
for Research and Engineering 
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Executive Summary 
Software Engineering as a Strategic Advantage 
We live in an age of software-enabled transformation. Software, and all of 
the software engineering processes, practices, technologies, and the scientific 
domains that support it, makes our world-class healthcare, defense, commerce, 
communication, education, and energy systems possible. It is also a key enabling 
component in nearly every area of research, such as smart infrastructure 
(nanotech), human augmentation (biotech), and autonomous transportation. 
Our dependence on software, however, makes us vulnerable to its weaknesses. 
Software weaknesses are a direct reflection of inadequacies in the state of the 
art and practice of software engineering, and they can affect millions of people 
without warning. Just recently, software issues caused the largest shut-down of 
an oil pipeline in U.S. history and allowed attacks that paralyzed hundreds of 
businesses on five continents [Satter 2021]. Software quality problems have also 
led to loss of life in plane and car crashes, and expensive failures in the space 
flight industry [Rhee 2020; CBS 2010]. 

Without a catalyst for investing in software engineering, the situation will 
worsen as we increasingly depend on ever larger and more complex software-
reliant systems. This report is intended to be such a catalyst. Identifying the 
critical technologies and areas of research that will enable future systems and 
laying out a roadmap to guide research efforts is a crucial step toward making 
software a competitive advantage. This study outlines efforts intended to make 
future software systems safe, predictable, and evolvable. The Carnegie Mellon 
University Software Engineering Institute (CMU SEI) engaged the software 
engineering community and assembled an advisory board of visionaries 
and senior thought leaders to ensure that the views of the broad software 
engineering ecosystem were represented in this multi-year research and 
development vision and roadmap.

Findings Reflect New Learnings, Challenges, and Research Needs
Without exception, the work that we surveyed for this study points to software 
engineering research as a highly dynamic, fast-moving field where technologies can 
arise quickly and grow to become integral parts of the infrastructure of modern 
life. While that is perhaps unsurprising, the extent to which recent technology 
trends are coming together and allowing the emergence of capabilities with both 
speed and quality is remarkable. Many of these technologies and capabilities were 
unimaginable even 10 years ago. 



The following findings were derived from the state of software engineering practice, 
new trends and emerging technologies that will help to advance the state of 
software engineering practice, workshops held with software engineering research 
communities, a literature survey, interviews with experts in the field, and input 
from our advisory board. They summarize key learnings, key challenges, and new 
research needed for the future of software engineering. 

1.	 Maintaining national software engineering proficiency is a strategic 
advantage. Software engineering affects everything because software is 
everywhere, including in our nation’s infrastructure, defense, financial, 
education, and healthcare systems. Our ever-growing dependence on software 
systems makes it imperative to maintain our nation’s leadership and strategic 
advantage in software engineering. We need to raise the visibility of software 
engineering to the point where it receives the sustained recognition and 
investment commensurate with its importance to national security and 
competitiveness.

2.	 Maintaining national software engineering proficiency requires sustained 
research. New types of systems will continue to push beyond the bounds of 
what current software engineering theories, tools, and practices can support. 
Future systems and fundamental shifts in software engineering require new 
research focus in areas including smart automation, reassuring evolving 
systems, understanding composed systems, and new system types, such as  
AI-enabled systems, societal-scale systems, and quantum systems.

3.	 Maintaining national software engineering proficiency requires fostering 
strategic partnerships. We will need to enable strategic partnerships and 
collaborations to drive innovation in software engineering research among 
industry, research laboratories, academia, and government.

4.	 Maintaining national software engineering proficiency requires sustained 
investment. Policy makers must recognize the benefits of software engineering 
and make it a critical national capability. Such recognition would imply a 
sustained investment strategy.

5.	 The vision of software engineering needs to change. The current notion of a 
software development pipeline will be replaced by one where AI and humans 
collaborate to continuously evolve the system based on programmer intent.

6.	 Focusing on re-assuring systems will enable continuous and rapid 
incorporation of new capability. Because software is ubiquitous, there is an 
ongoing and increasing need for software to continuously evolve to incorporate 
new capability. We therefore need to understand how to continuously re-assure 
software reliant systems efficiently without doing harm to existing capability. 
Elevating the importance of assurance evidence and assurance arguments  
will be key.



7.	 New design principles are needed for societal-scale systems.  
The growing recognition of software’s impact is generating new quality 
attribute requirements for which software engineers will need to develop 
better design approaches. In addition to the traditional ones (modifiability, 
reliability, performance, etc.), there is a need to add a roster of new quality 
attributes like transparency, influence, and so forth.

8.	 The software engineering workforce needs to be (re-)conceived.  
Software-reliant systems are built for many different purposes by a broad 
collection of people with very disparate skill sets, many of whom do not  
have formal software engineering training. We need to better understand  
the nature of the needed workforce and what to do to foster its growth.

A Guiding Vision and Roadmap for the Future of  
Software Engineering
Our guiding vision, as described in our findings, is one in which the current notion  
of the software development pipeline is replaced by one where humans and software 
are trustworthy collaborators that rapidly evolve systems based on programmer 
intent. To achieve this vision, we anticipate the need for new development and 
architectural paradigms for engineering future systems.

Our study helped to inform new areas of research that must be met to advance 
software engineering for future systems. In close collaboration with our advisory 
board and other leaders in the software engineering research community, we 
developed a research roadmap with six research focus areas. The following figure 
shows those areas along with a list of research topics to undertake, and then short 
descriptions of each of the research focus areas follow. A larger version of this figure 
appears on the foldout after page 26.
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AI-Augmented Software Development. At almost every stage of the software 
development process, AI holds the promise of assisting humans. By relieving humans 
of tedious tasks, they will be better able to focus on tasks that require the creativity 
and innovation that only humans can provide. To reach this important goal, we 
need to re-envision the entire software development process with increased AI and 
automation tool support for developers. A key challenge will be taking advantage of 
the data generated throughout the lifecycle. The focus of this research area is on what 
AI-augmented software development will look like at each stage of the development 
process and during continuous evolution, where AI will be particularly useful in 
taking on routine tasks.

Assuring Continuously Evolving Software Systems. When we consider the 
software-reliant systems of today, we see that they are not static (or even infrequently 
updated) engineering artifacts. Instead, they are fluid—meaning that they are 
expected to undergo almost continuous updates and improvements and be shown 
to still work. The goal of this research area is, therefore, to develop a theory and 
practice of rapid and assured software evolution that enables efficient and bounded 
re-assurance of continuously evolving systems.

Software Construction through Compositional Correctness. As the scope and 
scale of software-reliant systems continues to grow and change continuously, the 
complexity of these systems makes it unrealistic for any one person or group to 
understand the entire system. It is therefore necessary to integrate (and continually 
re-integrate) software-reliant systems using technologies and platforms that support 
the composition of modular components. This is particularly difficult since many of 
such components are reused from existing elements that were not designed to be 
integrated or evolved together. The goal of this research area is to create methods 
and tools that enable the specification and enforcement of composition rules 
that allow (1) the creation of required behaviors (both functionality and quality 
attributes) and (2) the assurance of these behaviors.

Engineering AI-Enabled Software Systems. AI-enabled systems, which are software-
reliant systems that include AI and non-AI components, have some inherently 
different characteristics than those without AI. However, AI-enabled systems are, 
above all, a type of software system. These systems share many parallels with the 
development and sustainment of more conventional software-reliant systems. 
This research area focuses on exploring which existing software engineering 
practices can reliably support the development of AI systems, as well as identifying 
and augmenting software engineering techniques for the specification, design, 
architecture, analysis, deployment, and sustainment of systems with AI components.



Engineering Socio-Technical Systems. Societal-scale software systems, such as 
today’s commercial social media systems, are designed to keep users engaged and 
often to influence them. A key challenge in engineering societal-scale systems 
is predicting outcomes of the socially inspired quality attributes that arise when 
humans are integral components of the system. The goal is to leverage insights from 
the social sciences to build and evolve societal-scale software systems that consider 
these attributes.

Engineering Quantum Computing Software Systems. Advances in software 
engineering for quantum are as important as the hardware advances. The goals of 
this research area are to first enable current quantum computers to be programmed 
more easily and reliably, and then enable increasing abstraction as larger, fully 
fault-tolerant quantum computing systems become available. A key challenge is to, 
eventually, fully integrate these types of systems into a unified classical and quantum 
software development lifecycle.

Research and Enactment Recommendations Catalyze Change
Catalyzing change that advances software engineering will lead to more trustworthy 
and capable software-reliant systems. The research focus areas shown in the 
roadmap graphic previewed earlier in this section and on foldout following page 
25 led to a set of research recommendations that are necessary to catalyze change, 
which are followed by enactment recommendations that focus on people, investment, 
and sustainment are needed. 

The following research recommendations address challenges such as the increasing 
use of AI, assuring changing systems, composing and re-composing systems, and 
engineering socio-technical and heterogenous systems. 

1.	 Enable AI as a reliable system capability enhancer. The software engineering 
and AI communities should join forces to develop a discipline of AI engineering. 
This should enable the development and evolution of AI-enabled software 
systems that behave as intended and enable AI to be used as a software 
engineering workforce multiplier.

2.	 Develop a theory and practice for software evolution and re-assurance 
at scale. The software engineering research community should develop 
a theory and associated practices for re-assuring continuously evolving 
software systems. A focal point for this research is an assurance argument, 
which should be a software engineering artifact equal in importance to 
a system’s architecture, that ensures small system changes only require 
incremental re-assurance.



3.	 Develop formal semantics for composition technology. The computer science 
community should focus on the newest generation of composition technology 
to ensure that technologies such as dependency-injection frameworks preserve 
semantics through the various levels of abstraction that specify system 
behavior. This will allow us to reap the benefits of development by composition 
while achieving predictable runtime behavior.

4.	 Mature the engineering of societal-scale socio-technical systems. The 
software engineering community should collaborate with social science 
communities to develop engineering principles for socio-technical systems. 
Theories and techniques from disciplines such as sociology and psychology 
should be used to discover new design principles for socio-technical 
systems, which in turn should result in more predictable behavior from 
societal-scale systems.

5.	 Catalyze increased attention on engineering for new computational 
models, with a focus on quantum-enabled software systems. The software 
engineering community should collaborate with the quantum computing 
community to anticipate new architectural paradigms for quantum-enabled 
computing systems. The focus should be on understanding how the quantum 
computational model affects all layers of the software stack. 

The above recommendations focused on scientific and engineering barriers to 
achieving change. The following enactment recommendations focus on institutional 
obstacles, including economic, human, and policy barriers. 

6.	 Ensure investment priority reflects the importance of software engineering 
as a critical national capability. The strategic role of software engineering 
in national security and global market competitiveness should be reflected 
in national research activities, including those undertaken by the U.S. White 
House Office of Science and Technology Policy (OSTP) and Networking and 
Information Technology Research and Development (NITRD). These research 
activities should recognize software engineering research as an investment 
priority on par with chip manufacturing and AI with benefits to national 
competitiveness and security. Software engineering grand challenges 
sponsored by DARPA, the National Science Foundation (NSF), and FFRDCs  
are also suggested. 



7.	 Institutionalize ongoing advancement of software engineering research. 
Sustained advancements in software engineering requires institutionalizing 
an ongoing review and reinvestment cycle for software engineering research 
and its impact on software engineering practice. Maintaining national software 
engineering proficiency requires research funding sources and institutes 
working with industry and government leaders in the software engineering 
community to periodically review the state of software engineering. 

8.	 Develop a strategy for ensuring an effective workforce for the future of 
software engineering. Currently, software engineering is performed by 
a broad collection of people with an interdisciplinary skill set not always 
including formal training in software engineering. Moreover, the nature of 
software engineering seems to be changing in reaction to the fluid nature 
of software-reliant systems. We need to better understand the nature of the 
needed workforce and what to do to foster its growth. The software engineering 
community, software industry, and academic community should create a 
strategy for ensuring an effective future software engineering workforce.

Architecting Future Systems Requires Software  
Engineering Advances 
Due to the conceptual nature of software, it continues to grow, without bounds, in 
capability, complexity, and interconnection. There seems to be no plateau in the 
advancement of software. To make future software systems safe, predictable, and 
evolvable, the software engineering community—with sufficient investment from 
private and public sources—must work together to advance the theory and practice 
of software engineering strategically to enable the next generation of software-
reliant systems.
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1 Introduction
We live in an age of software-enabled 
transformation. Over the last half-century, software 
has become profoundly intertwined in our 
personal lives, and it is vital to our country’s global 
competitiveness, innovation, and national security. 
As society entrusts software with ever more 
complex and critical functionality, our reliance 
on future software systems will increase—yet 
systems will be significantly more complicated 
to build and maintain. Software engineering 
is the discipline entrusted with building and 
maintaining these pervasive software systems. 

Through the application of engineering to software, the necessary theories, 
tools, and practices are applied that enable the delivery and maintenance 
of software systems that are capable, reliable, timely, and affordable 
[Bourque 2014]. As systems continue to evolve, we can be almost certain 
that new types of systems will push beyond the current bounds of software 
engineering. We will not be able to develop and maintain future software 
systems adequately unless appropriate research is done to overcome the 
engineering problems inherent in new and emerging trends and software 
technologies. Software offers unlimited potential that can only be realized 
through advancements in software engineering. 

1.1 	 Software Enables Capability and Innovation
Software provides the capabilities for many activities essential to modern 
life. It enables the functionality of our cell phones, cars, medical equipment, 
and much more. Software also enables innovation. In today’s cars, for 
example, every component is connected to a central computer, and millions 
of lines of code enable all the features we have come to expect  
[McFadden 2021].

Software is in everything, and everything is in software. Software connects 
decision makers to data, improves the flow of goods to customers, and 
enables communication worldwide. We can connect with geographically 
dispersed friends and family through social networks enabled by software. 
We can easily access oil, gas, and electricity because software manages 
their flow through pipelines and power grids. Thanks to software, we often 
take for granted the appearance of these and other critical commodities in 
our daily lives.
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1.2 	 Software Is an Achilles Heel 
Although software is an enabler that society has grown to depend on, 
our dependence has also made us vulnerable to its weaknesses. For 
example, recent software quality problems have resulted in vulnerabilities 
that allowed hackers to gain access to data from billions of individuals, 
companies, and government offices [Tunggal 2021]. Software vulnerabilities 
also caused the largest shutdown of an oil pipeline in U.S. history and 
allowed attacks that paralyzed hundreds of businesses on all five continents 
[Satter 2021]. Software quality problems have led to loss of life in plane and 
car crashes, and expensive failures in the space flight industry [Rhee 2020; 
CBS 2010]. In fact, the total cost of poor software quality in the United States 
in 2020 was $2.08 trillion, according to the Consortium for Information and 
Software Quality (CISQ) [Krasner 2021].

1.3	 Software Is the Backbone of Safety-Critical Systems 
Many multi-national companies are experiencing the hard failures that 
come when software engineering efforts do not reach the level of quality 
demanded by their systems. For example, a major space initiative has been 
plagued with faulty designs, software errors, and issues with assurance 
practices [Pasztor 2021]. To identify the root cause of these mounting 
problems, experts point to a lack of software engineering leadership and 
discipline [McFall-Johnsen 2020]. Space initiatives are hardly alone in these 
challenges. For example, unintended acceleration related to software in 
several different automobiles is thought to have been involved in the deaths 
of many people over the past decade, and additional problems with braking 
control in cars can be traced to problematic and poor quality software 
[Mitchell 2010].

1.4	 Software Often Relies on Complex Supply Chains 
The modern software supply chain often includes a large number of 
stakeholders that contribute to the content of a software product or have 
the opportunity to modify its content. Therefore, the entire supply chain 
is an important part of the ecosystem that must be considered when we 
contemplate software quality. (See Figure 1 for an example of the complex 
relationships that can exist in a supply chain for a DoD system.1) 

The increasingly global nature of software development has raised 
concerns about supply chain attacks.2 These types of attacks are rapidly 
growing in number and scope, and they are made more effective by 
increasingly interconnected systems and the lack of transparency in 
software codebases and libraries. 

1	 Figure modified from the SEI white paper by Dorofee et al., A Systemic Approach for Assessing Software 
Supply-Chain Risk. Software Engineering Institute. February 2013.

2	 Supply chain attacks are cyberattacks that seek to damage an organization or gain access to information 
by targeting less-secure elements in the supply chain. In this type of attack, hackers can infect a single 
component that is then distributed downstream to many systems through legitimate software workflows 
and patches or updates.
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Figure 1:	 Software Supply Chain Relationships Example

For example, in 2020 a U.S. company that develops software to help 
businesses manage their networks and information technology 
infrastructures proved to be an ideal target for the largest known supply 
chain attack to date. By inserting malicious code into a routine software 
update, Russian hackers were able to compromise third-party software 
used by four-fifths of Fortune 500 companies (including Microsoft, Intel, 
FireEye, and Deloitte) and many U.S. government agencies (including the 
Department of Homeland Security, the Department of State, and the DoD). 
Altogether, about 30,000 public and private organizations were using the 
potentially infected software, which led to a web of compromised data, 
systems, and networks [Turton 2020]. 

Understanding the functionality and quality of the code used, and 
documenting and validating the supply chain, is important. Supply chain 
integrity is critical, yet the reuse of code that is of low or unknown quality 
is commonplace. Tracking the provenance of software is one way to combat 
this problem, and developing techniques and tools for doing so would 
contribute to improving software quality. 
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1.5	 Software Is a Component of Critical Infrastructure
The development or reuse of poor quality software can introduce 
vulnerabilities that allow cybercriminals to access the software that 
controls our critical infrastructure and wreak havoc. One such high-profile 
attack occurred in May 2021 on the Colonial Pipeline, which transports 
approximately 100 million gallons of gasoline, diesel, and jet fuel daily, 
supplying about 45% of all fuel consumed on the East Coast [Eaton 2021]. 
The hacker group DarkSide launched a ransomware attack3 against the 
pipeline’s systems, causing the company to shut down all of its operations 
to contain the attack. This incident is being characterized as one of the most 
significant attacks on critical infrastructure in history. Ransomware attacks 
increased by 715% in 2020 and are currently the fastest growing type of 
cyberattack [Bitdefender 2020]. About 1,000 organizations per week are 
being hit by ransomware attacks, with utilities the second-most-common 
target, behind healthcare organizations [Lanowitz 2021]. 
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While many of the long-term challenges in developing and deploying 
secure software in critical infrastructure are known, the problems remain, 
and poor quality software code continues to propagate vulnerabilities 
throughout our infrastructure. 

1.6 	 Software Engineering Determines Software Quality
Software failures are a direct reflection of inadequacies in how software 
is developed and maintained [van Genuchten 2019; Shaw 2002]. That is, 
poor quality software is the direct result of the current state of the art and 
practice in software engineering. Some effects are highly visible, such as 
the lives lost due to the loss of control of physical objects. Other effects are 
less visible, such as when vehicle emissions systems perform poorly or 
cell phone apps collect and share data without permission from the user. 
Without a catalyst for investing in software engineering, the situation will 

3	 The U.S. Cybersecurity and Infrastructure Security Agency (CISA) defines ransomware as “an ever-evolving 
form of malware designed to encrypt files on a device, rendering any files and the systems that rely on them 
unusable. Malicious actors then demand ransom in exchange for decryption.”
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worsen due to an ever-increasing dependence on increasingly large and 
complex software-reliant systems. This report is intended to be such a 
catalyst for making software engineering a strategic advantage.

1.7 	 Call to Action
Although advances in software have emerged incrementally and organically 
from many sectors, and enabled advances that were unimaginable 20 
years ago, they do not provide the levels of capability, safety, quality, 
and evolvability that future systems will require. While sound research 
in software engineering is being carried out, a focused effort, continual 
investment, and improvement in critical software engineering technologies 
are needed; otherwise, assured, next-generation applications may simply 
not be possible. 

This study identifies areas of research that are critical for enabling future 
systems and provides a roadmap to guide the research efforts of the 
software engineering community. As we developed this roadmap, we placed 
primary importance on what is needed to ensure that future software 
systems will be safe, predictable, and evolvable [DSB 2018; DoD 2018a; DoD 
2018b; Office of the President 2017].

This report is a call to action that highlights the need for continual 
investment in software engineering research to achieve the vision 
described by the research roadmap. Research investment must be 
commensurate with software engineering’s importance to national security 
and competitiveness, and motivating industry and government investment 
partnerships will be a key element of a successful plan.

1.8 	 Scope
This study addresses the following questions: 

•	How will software systems of the future be rapidly developed, assured, 
analyzed, and deployed? 

•	What major open problems and “grand challenges” are important? 

•	What software engineering research is needed to invent solutions for 
these challenges?

•	How can we incentivize strategic partnerships and collaborations 
between government, academia, and industry?

It is important to emphasize that software engineering cannot be 
considered in isolation and requires a whole-system perspective, which 
includes software, hardware, and people. We include elements of this 
thinking in the report, but primarily focus our discussion on the software 
engineering research agenda. It is also important to emphasize that this 
study is intended to be applicable to all types of software-reliant systems, 
such as safety-critical military and commercial systems; business and 
logistics systems; and systems that support research of all types.

A focused 
effort, continual 
investment, and 
improvements in 
critical software 
engineering 
technologies 
are needed; 
otherwise, assured 
next-generation 
applications may 
simply not be 
possible.
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While software-engineering-enabled solutions have the potential for 
transformative impacts across all sectors of society and the economy, there 
are also concerns about the security and vulnerability of these systems. 
This study does not directly address cybersecurity in depth because its 
importance is already well established, and the SEI and others continue to 
publish studies this area. 

As the resources driving the AI revolution continue to grow, the 
development and deployment of these technologies is poised not only to 
continue but to accelerate. We have positioned our discussion around AI as 
a capability enhancer as well as a source of engineering uncertainty, but we 
do not propose a research agenda for AI. The SEI and others have significant 
programs of research dedicated to machine learning and AI.

1.9 	 Audience
Some of the intended audiences for this study are described below:

•	 Industrial researchers, academic researchers, technologists, and 
research laboratories may find interesting the identification of 
important open problem areas where research solutions could be 
particularly impactful, and where new modes of working across the 
industry/academia divide could yield dividends.

•	Research funders, policy-makers, and legislative representatives may 
appreciate the argument that investments in the areas identified have 
the potential to broadly support important developments in research 
and practice across numerous domains.

•	Software developers, practitioners, and program managers may find 
useful the reminder of key challenge areas in the field today and may be 
inspired to work with researchers to help address them more broadly.

•	Federally funded research and development centers (FFRDCs) may 
be inspired to work together on some of these fundamental software 
issues that will help address national priorities across the many 
specific areas of focus for the various FFRDCs.

•	 Educators may appreciate the snapshot of the state of the practice today in 
the field (and the articulation of its limits) for use in classes and curricula.

•	 Industry leaders may find areas of research and workforce 
improvement that complement their needs and identify ways to work 
with researchers on critical issues in the commercial realm.
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1.10 	Approach
Software engineering exists as a global ecosystem that includes many 
stakeholders with different perspectives, including software developers, 
software tool vendors, companies that integrate software into their 
products, software researchers, and government sponsors of software 
research. For this study, the CMU SEI engaged the software engineering 
community and assembled an advisory board of visionaries and senior 
thought leaders across commercial industry, academia, and government. 
With their input, the study team worked to create the multi-year research 
and development vision and roadmap for engineering next-generation 
software-reliant systems in this document.

Coordination among these communities was vital to developing the 
agenda and will also be needed to implement the results. Understanding 
the diverse software engineering ecosystem, identifying future needs, 
and determining ways to effect change required a range of activities, as 
summarized in Figure 2. 

Advisory Board
Computing Landscape
Emerging Technologies
Literature Review
Expert Interviews
Workshops
Future Scenarios

National Agenda Study:
Roadmap/Outcome

Thriving Software 
Engineering Ecosystem

Assemble research focus areas, 
findings, and recommendations

Enact 
recommendations

Cast a wide net with input
from many communities

Figure 2:	 Approach for Developing This Study 

As we developed this study, the team conducted background research and 
literature surveys, held workshops, performed expert interviews, evaluated 
computing and software trends and emerging technologies, developed 
future scenarios, worked with our advisory board, and examined software-
related economic and business data. Appendix A provides additional 
information on the workshops that were held to engage with software 
engineering communities, including a cohosted workshop with the Defense 
Advanced Research Projects Agency (DARPA).
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2 Exploring Emerging Trends 
and Technologies 
Advances in computing technologies continue 
to be a key driver for U.S. leadership in science 
and technology, national security, and economic 
competitiveness [DIB 2019]. To anticipate the 
research and development that will be needed to 
support software engineering in the future, it is 
important to keep a close watch on the emerging 
trends and technologies that help to inform new 
challenges and opportunities. 

Although it is not possible to explore them all in one document, those 
included in this section help to paint a picture of the technology landscape 
that is impacting software engineering research.

2.1 	 Trends
Trends grow and change constantly in today’s fast-moving world. The 
following paragraphs focus on several current trends that we believe are 
important for envisioning how software systems will look in the future.

The software engineering pipeline is changing, accelerating the 
production of code and the ability to deploy software at high velocity. 
Private and public sector enterprises today face the challenges of a 
rapidly changing competitive landscape, evolving security requirements, 
and performance scalability. Enterprises are working to adopt rapid 
development and deployment with innovation and confidence, bridging 
the gap between operations stability and rapid feature development. At the 
scale of large aerospace organizations or product organizations such as 
Amazon, this often means thousands of independent software teams must 
be able to work in parallel to deliver software quickly, securely, reliably, and 
with zero tolerance for outages or errors. Rapid development practices, such 
as continuous integration/continuous development (CI/CD) and DevSecOps, 
are being used to deliver software features rapidly and reliably. Further 
progressing on this rapid development/deployment continuum, the notion 
of a software engineering pipeline is morphing into a fluid process through 
which new capability is introduced into ever-evolving systems.
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New types of systems will continue to push beyond the bounds of what 
current software engineering theories, tools, and practices can support 
[Kim 2019; Murphy 2020; NITRD 2011; Weyuker 2021; Wing 2021]. For 
example, trends already point toward the development and increasing use 
of these system types:

•	Very adaptive mission defense systems. Software increasingly enables 
new heterogeneous computing systems that combine intelligence, 
weapons, human-machine teaming, and other capabilities.

•	Systems that perform large-scale data fusion. Whether for news or 
intelligence, these systems take advantage of vast data streams, 
including open source data. These data streams will also drive new 
ways of constructing future systems. 

•	Smart cities, buildings, roads, cars, and other transport. Software systems 
are now integral to critical infrastructure in these domains, and they 
need to handle integration at scale as well as deal appropriately with 
safety and privacy concerns. 

•	Personal digital assistants—that really assist. Software systems must 
learn and adapt as part of their integration in home, business, and 
national security workflows, as well as our personal lives. 

•	Dynamically integrated healthcare. Devices from home, doctors’ offices, 
and hospitals will be increasingly integrated in functionality and data 
usage. This integration will result in better preventive, corrective, and 
recovery care.

•	Societal-scale systems. These platforms, enabled by advances in 
connectivity, AI, and data science, are becoming larger and more 
influential. As these systems grow, they influence social behavior and 
create impact at the societal level. The trend toward these types of 
systems has exploded over the last decade, with 3.96 billion people 
using social media worldwide [Dean 2021]. 
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Scale motivates the need for safe and resilient software composition. 
The scope and scale of software-reliant systems is continuously changing 
and growing [NRC 2010]. As improvements in computer hardware 
enable the development of more complex, advanced software, and as 
more devices connect to the network through sensors and the Internet 
of Things (IoT), it becomes clear that increasing scale is a trend with no 
sign of slowing down. Developing and sustaining software components 
from scratch in these large, complicated systems is no longer realistic. 
Consequently, a common trend is to integrate (and continually reintegrate) 
software-reliant systems out of modular components, many of which are 
reused from existing elements. 

The development and sustainment of artificial intelligence (AI) systems 
shares many parallels with building, deploying, and sustaining software 
systems. AI has captured the public imagination, as well as extensive 
investment and research dollars [Gil 2019]. The use of AI is an expanding 
trend, as it is increasingly employed across industries. While AI is a field 
unto itself with many sub fields and applications, it has great potential for 
use in software development. AI-augmented software development holds 
promise for automating common or tedious tasks and for making processes 
more efficient, effective, and enjoyable for humans. Research programs in 
software engineering will need to focus on the challenges that AI elements 
bring to software analysis, design, construction, deployment, maintenance, 
and evolution. 

Data privacy and trust are increasingly important design considerations 
for software systems. Data is now a strategic asset that is bundled, shared, 
sold, and dispersed around the world. Appropriately using this data while 
simultaneously protecting it and preventing its misuse presents serious 
architectural and software engineering challenges related to privacy, trust, 
and ethics. Technologies are being developed to help protect data, such as 
those that allow differential privacy. These technologies are important for 
things like the census, medical analyses, and other data analysis efforts 
that involve gathering information about individuals. Trust is related to the 
confidence you have in the data or output of a system, and is of particular 
concern to society in systems that contain AI. Other technologies have the 
potential to build trust, such as blockchain, a distributed ledger technology. 
It is enabling new opportunities in software engineering, with applications 
in software testing, quality, configuration management, and maintenance 
[Demi 2021].

Research 
programs 
in software 
engineering will 
need to focus on 
the challenges 
that AI elements 
bring to software 
analysis, design, 
construction, 
deployment, 
maintenance,  
and evolution.
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2.2 	 Emerging Technologies
The robust technology ecosystem we have today means new technologies 
are introduced constantly, and many more are on the horizon. 
Understanding the capabilities these technologies can bring and how 
to integrate them into systems quickly, securely, and with predictable 
performance is key to making sure they are an asset to software systems 
instead of a source of weakness or instability. In the following paragraphs, 
we briefly highlight some technologies that directly impact software 
engineering [Holland 2020].4

Advanced computing is creating new engineering challenges in 
composing and evolving systems. Advanced computing generally refers to 
a set of capabilities that are beyond the reach of desktop computers and 
the general public. It often means using specialized software or hardware 
to provide advanced technical capabilities that support massive, data-
intensive projects. Some examples of advanced computing include high-
performance computing (often for simulations and modeling), large cloud 
computing implementations, and the use of quantum mechanics and 
information theory. 

The last decade has seen many developments in advanced computing 
supported by new hardware, such as multicore chips, graphics processing 
units, field programmable gate arrays, and application-specific integrated 
circuits at the chip level. A long-term technological opportunity also 
exists to develop a software ecosystem that enables scalable quantum 
computing. Advanced computing underscores the fact that the computing 
environment of the future will be increasingly heterogeneous, which 
will create new challenges in composing and evolving systems across 
computational foundations. 

The smarter edge presents new challenges due to scale. The smarter edge 
is a catch-all term for new advancements to push heterogeneous computing 
power, applications, and data to the edge of the Internet. It goes beyond a 
conventional computer network and incorporates devices at the edge of 
the network such as sensors, IoT devices, and mobile phones. While the 
concept of ubiquitous computing has existed for decades, there have been 
recent advancements to accelerate the smarter edge, including hardware 
improvements and the expansion of 5G networks. Edge data is growing 
rapidly, thanks to ubiquitous sensing and the IoT, and the field of analytics 
is creating innovative new ways for distributed data analysis using a 
combination of edge devices and central processing. The future smarter 
edge might even include more nontraditional devices, such as space-based 
satellite mega-constellations to enable the next wave of connectivity. 

4	 See the SEI paper by Holland and Tanenbaum, Emerging Technologies 2020: Six Areas of Opportunity, for 
more information on the technologies in this section.
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Digital twins create new opportunities and challenges for assuring 
systems. A digital twin is a high-fidelity digital or computer representation 
of a physical object with some ability to reason about the object’s properties. 
These types of models allow us to find out how real-world objects might 
behave under a number of different conditions or requirements. Digital 
twins have begun to incorporate the transmission of real-time data sensed 
by the real-world object. This new, higher-resolution sensor data allows 
the digital twin to reason about future behaviors, then transmit feedback 
to the physical object. Digital twins create new opportunities for software 
engineers to use data to develop and assure software systems, but they also 
create new challenges in scale as digital twins are created for more and 
more systems in the physical world. 

Quantum-enabled systems create new challenges in combining disparate 
computational models. Software engineering is a challenge for quantum-
enabled systems: Advances will be required in many areas, including 
quantum algorithms, development tools, languages, computing platforms, 
and testbeds. If we imagine that the hardware advances that permit scaling 
in quantum computing are achieved, then these and many more advances 
in software and software engineering will be required as well. 

Extended reality provides new opportunities for human interaction and for 
visualizing complex data and systems. Extended reality refers to augmented 
reality (AR), virtual reality (VR), and combinations of the two. AR includes 
the use of devices, such as specialized glasses that display supplementary 
material, that allow the individual to see the real world, but with augmented 
information. VR, in contrast, refers to the use of specialized devices that 
enable a person to see only a virtual world. An essential quality of extended 
reality is its power to radically reshape humanity’s reasoning about 
information. These technologies could provide new interfaces for software 
engineers to visualize complex data or systems and enable new interfaces 
with greater productivity. 

An essential quality 
of extended reality 
is its power to 
radically reshape 
humanity’s 
reasoning about 
information.
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3 Findings
The work that we surveyed for this study points 
to software engineering as a highly dynamic, 
fast-moving field where technologies can arise 
quickly and grow to become integral parts of 
the infrastructure of modern life. While that 
is perhaps unsurprising, the extent to which 
recent technology trends are coming together 
and allowing the swift emergence of high-quality 
capabilities is remarkable. 

Although this was evident in our literature survey, it became even more 
apparent as we held workshops and interviews with experts in the field. 
The following findings summarize key learnings, key challenges, and new 
research needed for the future of software engineering.  

1.		Maintaining national software engineering proficiency is a 
strategic advantage.

Software engineering affects everything, because software is everywhere, 
including in our nation’s infrastructure, defense, financial, education, and 
healthcare systems. Our ever-growing dependence on software systems makes 
it imperative to maintain our nation’s leadership and strategic advantage in 
software engineering.  We need to raise the visibility of software engineering 
to the point where it receives the sustained recognition and investment 
commensurate with its importance to national security and competitiveness.
Software increasingly augments human interactions at ever-larger scales and with 
ever-greater potential impacts. As our reliance on software increases, improved 
software engineering technologies are needed that can handle the larger and 
more complicated systems of the future.
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2.		Maintaining national software engineering proficiency requires 
sustained research. 

New types of systems will continue to push beyond the bounds of what 
current software engineering theories, tools, and practices can support.  Future 
systems and fundamental shifts in software engineering require new research 
focus in areas including smart automation, reassuring evolving systems, and 
understanding composed systems. New system types, such as AI-enabled 
systems, societal-scale systems, and quantum systems, also drive the need for 
new research.
Predictable and pervasive use of AI will also lead to new software engineering 
principles. Incorporating AI in software systems requires research in AI 
engineering to enhance the necessary software engineering environments and 
tools. Incorporating AI also requires an understanding of how AI and non-AI 
components can work together for overall predictable system behavior. Software 
engineering tools are a special kind of system, and incorporating AI into these 
tools will enable more effective software engineering. Once we understand how 
to do that in a predictable way, it will allow more responsibility to be shifted 
to AI, and the collaboration between AI and humans will continue to enhance 
software engineering.

3.		Maintaining national software engineering proficiency requires 
fostering strategic partnerships. 

We need to enable strategic partnerships and collaborations to drive innovation 
in software engineering research among industry, research laboratories, 
academia, and government. AI into these tools will enable more effective 
software engineering. 

Government

Industry

Research
Laboratories

Academia

4.		Maintaining national software engineering proficiency requires 
sustained investment.

We must ensure policy makers recognize the benefits of software engineering and 
make it a critical national capability. Such recognition would imply a sustained 
investment strategy.
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5.		The vision of software engineering needs to change.  

The current notion of a software development pipeline will be replaced by one 
where AI and humans collaborate to continuously evolve the system based on 
programmer intent.

6.		Focusing on re-assuring systems will enable continuous and 
rapid incorporation of new capability.

Because software is ubiquitous, there is an ongoing and increasing need for 
software to continuously evolve to incorporate new capability. We therefore need 
to understand how to continuously re-assure software-reliant systems efficiently, 
without doing harm to existing capability. Elevating the importance of assurance 
evidence and assurance arguments will be key.

7.		 New design principles are needed for societal-scale systems. 

The growing recognition of software’s impact is generating new quality attribute 
requirements for which software engineers will need to develop better design 
approaches. In addition to traditional ones (such as modifiability, reliability, 
performance, etc.), there is a need to add a roster of new quality attributes, such 
as transparency and influence.
Engineering societal-scale systems involves subtle judgments (for example, the 
appropriate interaction between software systems and free speech principles). 
One common characteristic of societal-scale systems is that humans are integral 
components of the system. These systems should provide information or 
communication channels that can predictably lead to desired outcomes (such as 
engagement, accuracy, and so forth) from their users. As these systems proliferate, 
more research is needed to enable such prediction and control of system behavior.

8.		The software engineering workforce needs to be (re-)conceived.

Software-reliant systems are built for many different purposes by a broad 
collection of people with very disparate skill sets, many of whom do not have 
formal software engineering training.  We need to better understand the nature of 
the needed workforce and what to do to foster its growth.
Society in general has expressed concern about the adequacy and availability 
of software engineering talent. There appears to be growing concern about a 
number of topics, including changing technology skillsets, global competition for 
software engineering talent, and the role of software education. What seems to 
be clear is that no matter what tools are provided or what level of abstraction we 
use to construct systems, there will always be an important role for humans to 
contribute in evolving software engineering. 
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4 Envisioning the Future of 
Software Engineering 
Imagine it’s 2035. What will software engineering 
look like? Perhaps we can imagine it as more of 
a technical conversation between humans and 
computers than a process of manually refining 
specifications and code. 

4.1	 Future Scenarios
Consider this scenario: The days of endless requirements and design 
reviews are gone. A joint team of aeronautical engineers, pilots, and 
software engineers together design the next space-capable craft by pitching 
ideas, which are turned into viable designs based on access to extensive 
codified knowledge about cyber-physical systems, as well as the limitations 
of physics. These designs are displayed in real time, and the team compares 
defensive and maneuverability capabilities on the fly using real-time 

simulations of representative missions. The final design is selected based on 
the most desirable balance of cost, capabilities, and timeline. Today’s notion 
of a software development lifecycle might seem almost archaic compared to 
this fluid, iterative process.

Developing software in the future is likely to become more about expressing 
desired capability than writing code or having a mental repository of 
algorithms. Software engineers will have to become adept at expressing 
intent in a way that readily enables the computer to learn from experience. 
“Elegant software” will no longer refer to clever code, but will rather be the 
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result as humans work with automated and AI systems to implement the 
best ideas humans can imagine in the most timely, affordable, ethical, and 
secure ways.

Who can “program” and create complex systems will naturally expand as 
well. Our conversations with computers will take place in the language 
of our domains, with computational biologists, for example, developing 
software capabilities by talking about sequencing and genes, not by 
learning Python. Specialists of all types will be needed to inform the 
computer properly, and how they interact will look significantly different 
than it does today. 

The use of simulation may turn today’s entire notion of test and evaluation 
into an immersive experience. Imagine that a new hardware configuration 
and software capabilities are planned for a series of space assets. In a 
fully immersive virtual reality environment, the changes are emulated 
with the full telemetry of the current assets feeding the environment. 
Engineers can view the new space configuration from any vantage point, 
and not only in a visual range. All the available data and metadata from 
the current environment is also presented in real time. Where the desired 
effect is not what was anticipated, the engineer makes changes and 
immediately sees the impact on the holistic space environment. Moreover, 
dozens or more additional engineers are observing and manipulating 
the same environment in a shared experience. Communication between 
the engineers, enabled by many types of media, and a shared decision 
process assure that the system as a whole has no unintended or undesired 
emergent behavior. This same environment will be used once the change is 
made to support operator training and real-time mission rehearsal. 

Once deployed, systems will also be much more adaptable and integrated. 
Consider a scenario that involves a special forces team on a deployment, 
and imagine a firefight breaks out. The squad is caught off guard, 
communications have been disrupted, and they’re unsure of the weapons 
being used against them. Fortunately, they are teaming with a set of 
micro unmanned aircraft systems that proactively set up a mesh network 
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using alternate communications channels to re-establish contact with 
headquarters. Once that network is established, the squad directs the 
devices to observe and profile the weapons on the battlefield covertly and 
provide mitigation options while they take cover. As a result, they are not 
only able to overcome the novel threat locally but also feed their real-time 
experience to other units at the tactical edge that could be at risk. To make 
this scenario a reality, software engineers will need to design architectures 
that are nimble and allow adjustments to systems based on data from 
operational sensors and other input from users in the field.

Animators designing the next movie might work differently as adaptive user 
interfaces expand their capabilities. No longer expected to know coding and 
scripting, they can take their creative design skills much further as they 
develop fully immersive movies. In the “Age of the Holodeck,” they are able 
to incorporate novel visual storylines, design clothes for next-generation 
haptic feedback, and create events that react to the viewer’s input. As plot 
possibilities are explored over time, the interactive experiences evolve and 
improve to tailor to the preferences of the participants, building on the 
intent of the artists that set it in motion.

Students of software engineering will also learn differently. The AI and 
automation that help them craft their code might be largely invisible as 
they focus on their primary job: learning how to best understand and 
express what the software should (and should not) do. What is their 
intent for the program? How can they be sure this intent will be carried 
out over time? Is the end result not only functional, but also evolvable, 
intuitive for users, and trustworthy? One example project might involve 
a personalized web “browser” that tailors itself to an individual’s needs 
while also self-updating robust layers of security to protect critical 
data. The same system could still cultivate and share appropriate 
information anonymously in real time to help other students working 
on similar projects. 
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As software engineers move into the workforce, they will no longer be 
required to try to understand the ripple effects brought about by changes 
in increasingly complex systems. As the systems are evolved by both 
humans and AI assistants, problems will be identified and corrected before 
implementation. Assuring that proposed changes won’t break the system 
will be done automatically by analyzing the effects a change might have on 
a system’s underlying and evolving assurance arguments, which have been 
designed by skilled software engineers. Conformance to quality standards 
will also be guaranteed by design, as part of sophisticated software 
development frameworks that are put in place by expert engineers, yet 
remain hidden from programmers who need not be concerned with those 
aspects of the design. 

Despite these advances in software engineering, complex systems of any 
kind are unlikely to be perfect. In the future, specialized disciplines may 
emerge, such as those that detect potential system problems, recover 
capabilities when failures occur, and discover and eliminate the causes.  
For example, a forensic software engineer might join a virtual meeting with 
colleagues all over the world to analyze an exploit in a client’s security code 
and determine what impact it may have had. Another engineer working 
with a socio-technical ecosystem might be called by the system itself to 
step in if it notices the general expression of sentiment is moving toward an 
undesirable extreme. When problems such as these are detected, it’s the 
job of specialized software engineers to discover the root causes. Was it a 
weakly-trained machine learning algorithm, a poorly-expressed intent, a 
component that was allowed to violate the architecture because it did not 
account for a particular variable, or something else?  

In all these scenarios, software engineering is everywhere, although it looks 
and acts different than it does today. It enables all the capabilities described, 
and it does so securely, predictably, and affordably. Future advances in 
research will enable a diverse set of people to have broader access to 
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creative development, but software engineering is what will ensure the 
systems they create have superior capabilities, yet are largely free of the 
problems and failures we see today.

4.2	 Vision for the Future of Software Engineering
While the exact roles that intelligent algorithms and humans will have 
remains to be determined, the importance of software engineering to our 
vision is clear: Humans and AI will be trustworthy collaborators that rapidly 
evolve systems based on programmer intent. 

As software engineers continually interact with smart software assistants, 
computers and humans will be able to do what they both do best. Working 
in this way, possibilities that we cannot even imagine today will become 
reality. The research in this report provides the essential groundwork 
for advancing the discipline of software engineering to ensure that the 
necessary framework is in place to maximize the advantages these future 
opportunities can provide. 

A new vision for software engineering requires new development and 
architectural paradigms, which also motivate the research focus areas 
described in Section 5. 

Advanced development paradigms, such as the following, will lead to 
efficiency and trust at scale:

•	Humans leverage trusted AI as a workforce multiplier for all aspects of 
software creation.

•	Formal assurance arguments are evolved to assure and efficiently 
reassure continuously evolving software.

•	Advanced software composition mechanisms enable predictable 
construction of systems at increasingly large scale.

Advanced architectural paradigms will enable the predictable use of new 
computational models, as described below:

•	Theories and techniques drawn from the behavioral sciences are used 
to design large-scale socio-technical systems, leading to predictable 
social outcomes.

•	AI and non-AI components interact in predictable ways to achieve 
enhanced mission, societal, and business goals.

•	New analysis and design methods facilitate the development of 
quantum-enabled systems.
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5 Research Focus Areas
The fundamental shifts and needed advances 
in software engineering described in this 
report require new areas of research. In close 
collaboration with our advisory board and other 
leaders in the software engineering research 
community, we developed a research roadmap  
with six research focus areas. 

This section describes the motivation for these six areas, which are closely 
related to the findings in the previous section. In this section we also 
provide a complete roadmap, followed by a discussion of each research 
focus area in depth.

5.1 	� Advanced Development Paradigms 
Trends toward the use of DevSecOps and digital twins are indicators that 
the boundaries between fielded systems and development environments 
are increasingly becoming porous. For example, through maturing AI 
techniques, software is augmenting human decision making and becoming 
very useful as a vehicle for improving performance by learning from 
experience (i.e., data). Operational data is being combined with simulations 
to give real-time insight into how systems behave. Continually changing 
mission needs are driving almost continuous system evolution, requiring 
both efficient system re-assurance and compositional approaches to system 
development. These trends motivated the first three research focus areas, 
which we consider fundamental to advanced development paradigms:

1.	 AI-Augmented Software Development: using maturing AI techniques 
to augment human decision making in software engineering and to 
enable learning from the vast amount of software engineering data

2.	 Assuring Continuously Evolving Software Systems: recognizing the 
importance of efficient re-assurance of rapidly changing systems while 
taking into consideration the many scientific domains and evidence 
that will be needed to reason about future software-reliant systems

3.	 Software Construction through Compositional Correctness: 
recognizing that the only viable way of developing and evolving 
systems will be through technologies that enable compositional 
development
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5.2 	 Advanced Architectural Paradigms 
Some characteristics of future systems pose new and interesting problems 
for software engineering. In particular, introducing AI components into 
systems, considering humans as elements of a system, and effectively 
exploiting quantum computing pose particularly important challenges 
for future systems. In our vision of software engineering, advanced 
architectural paradigms will enable the predictable use of these new 
aspects of systems. These challenges motivated the following three 
research focus areas that we consider fundamental to advanced 
architectural paradigms:

4.	 Engineering Societal-Scale Software Systems: discussing the 
challenge of modeling human behavior

5.	 Engineering AI-Enabled Software Systems: focusing on the challenge 
of handling the uncertainty that AI components bring to a system

6.	 Engineering Quantum Computing Software Systems: considering 
what aspects of the quantum computation should be hidden from or 
exposed to higher levels of the software stack

5.3 	 Research Roadmap
The research areas we identified are meant to be mutually synergistic. 
For example, AI-augmented software development needs to consider 
continuously evolving systems and, ultimately, assurance arguments 
need to be used by AI tools when they offer software development advice. 
The relationship between software construction through compositional 
correctness and assuring continuously evolving software systems is also 
strong, because compositional technology and reasoning will be key 
enablers of incremental re-assurance as systems evolve. Likewise, all of the 
advanced development paradigms are applicable to each of the new system 
types discussed under advanced architectural paradigms.

The graphic on the foldout following this page shows the research focus 
areas and a suggested course of research topics to undertake. 
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5.4 	 AI-Augmented Software Development  
Research Focus Area
5.4.1 	 Goals
The need to improve the efficiency of software engineers and reduce 
their cognitive load has driven and will continue to drive trends toward 
improved automation and formalisms to support software development 
tasks. Software engineers using AI-augmented approaches will also be 
able to focus on tasks that require critical thinking and creativity. This 
research area focuses on developing approaches for automating AI-
relevant software engineering tasks and accelerating the development of 
reliable automation for engineering. Outcomes of this research area will 
consequently enable the design, development, and deployment of reliable 
software by further shifting the attention of humans to the conceptual 
tasks that computers are not good at and eliminating human error from 
tasks where computers can help. 

Many of the automated approaches developed during the previous decade, 
including model-based software engineering, DevSecOps tools, defect and 
vulnerability analysis, automated bug fixing, modern code review, and 
value stream management tools, were developed with the goal of improving 
software development efficiency and quality [Lago 2015; Rahman 2017; 
Morrison 2018; Le Goeus 2019; Sadowski 2018; Murphy 2019]. Despite these 
advances in automation, failures, software security and quality issues, 
and overspending continue to be the norm. To put the size of the challenge 
in context, the U.S. government alone (excluding any private industry 
spending) spent over $90 billion for system maintenance and operation in 
2019 [GAO 2019]. 
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We need to create tools that allow software engineers to easily express the 
changes they care about, including requirement and design trade-offs and 
different solution options, and then trust that automation will correctly 
resolve most, if not all, of the details at the programming language level. For 
example, many systems would benefit from the development of tools to help 
developers avoid, detect, and fix defects as they develop software. A range 
of techniques that includes safer programming languages, better-designed 
frameworks, cheap and easy automatically generated tests, and tools that 
recommend fixes will collectively provide better results than relying on 
any one technique alone. In the next decade, AI approaches will provide an 
opportunity to rethink how we achieve programming goals, in particular by 
providing improved capabilities for the elimination of trivial and repetitive 
mistakes that later become hard to detect and fix. 

These advances will inevitably drive a re-envisioning of the software 
development process, with increased intelligence and support to 
developers. Taking advantage of the data generated through the software 
development lifecycle will be a beneficial and natural byproduct of the 
process. Consequently, this research area asks the question: What will AI-
augmented software development look like in the future?

5.4.2 	 Limitations of Current Practice
Today, software development is human-intensive, test-intensive, and error 
prone. In particular, current software development practices are hindered 
by the following limitations:

•	Developers are expected to be experts in many topics (requirements, 
architecture, design, programming languages, analytic models, a 
dizzying array of technologies and frameworks, quality attributes, 
testing approaches, platforms, and much more). Software engineers 
often naively rely on software development processes that are not 
followed properly to orchestrate these activities and the artifacts 
created along the way. 

•	From inception to deployment, a significant number of artifacts are 
generated from requirements specifications, such as design documents, 
analysis artifacts, test cases, and deployment scripts. Streamlining 
these artifacts toward successful system delivery continues to be a 
resource-intensive challenge. 

•	Developers are expected to understand the ripple effects within 
increasingly complex systems (in terms of size, distribution, 
concurrency, etc.) without having effective tools.

•	Formal methods and model-based approaches have been created with 
the promise of reliably generating code and evolving systems, but even 
in safety-critical systems they do not scale beyond limited aspects of 
the system. 
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within increasingly 
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without having 
effective tools.
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•	Time spent designing and testing systems continues to be cut short 
when schedule challenges hit, further jeopardizing the quality of the 
systems developed. 

•	System sustainability and evolution, especially for legacy systems, 
continue to be manually driven, high-risk efforts.

•	Conformance to quality standards and intended architectures are not 
guaranteed as part of the software development framework or tool chain. 

5.4.3 	 Topics for Research
At almost every stage of software development, AI holds the promise of 
assisting humans and making the process more efficient, effective, and 
enjoyable. Each new generation of tools and advances toward this end will 
find acceptance by developers and reach wider adoption if it can meet the 
following goals: 

•	Perform tasks that developers already do, but do them more efficiently 
(e.g., test faster).

•	Perform tasks that developers already do, but do them better  
(e.g., catch more bugs).

•	Perform tasks that developers are not able to do currently (e.g., leverage 
new data to integrate new conformance checks or generate new tests).

•	Reduce hand-offs and integrate elements that are currently 
disconnected (e.g., provide requirement traceability).

•	Teach developers how to do tasks better as they go (e.g., advise and/or 
mentor with real-time feedback on implementation errors).

•	Help to scale what developers can already do (e.g., allow them to 
consider more alternative design options). 
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To best evaluate the efficacy of such new, automated tools and approaches 
in practice, they also need to seamlessly augment and integrate with the 
developers’ environments, even during the research stages. The AI-
augmented software engineering advances that we outline in the following 
sections take advantage of continuous integration and deployment 
environments for data collection, iterative feedback loops, and testing 
developer buy-in.

5.4.3.1 	 AI-Supported Re-Envisioned Development Workflows 
Agile and lean software development processes encourage elimination of 
waste by helping developers focus on the top priorities and understand 
what tasks stay in inventory [Reinertson 2019]. For example, test-driven 
development workflows might advocate software requirements being 
converted to test cases before the software is fully developed. Then software 
development can be tracked by repeatedly testing the software against all 
the test cases, which will drive significant improvements in the efficiency 
of software development and improve system quality. In a similar analogy, 
AI-supported development workflows will target data-intensive and tedious 
activities, which might result in different task dependencies in the the 
software development lifecycle. For example, developers may not need to 
test for certain classes of bugs when AI-augmented bug fixing becomes a 
reality at scale. 

Incorporating AI-based developer support tools will also trigger the need to 
envision more effective workflows for developers. For example, improved 
real-time assistance in code quality conformance can reduce reliance 
on the added static code analysis checks during testing and deployment, 
improving the balance of local conformance analysis versus analysis of 
system-wide, cross-cutting, and harder-to-conduct architectural quality and 
runtime concerns. Today, system-wide analysis is often a manual effort that 
is rarely supported by automation. 

In an AI-augmented development lifecycle, the developers and the 
AI assistant will both have a supervisory role. Developers will guide 
and consequently improve the AI assistants. AI assistants will take 
on a supervisory role by providing real-time feedback and, in time, 
demonstrating repeated mistakes to developers. On a developer team, there 
will always be some developers who you trust more than others (perhaps 
due to experience, skill sets, or demonstrated performance). The AI-assisted 
development workflows will trigger the need to think of AI “partners” in the 
same way. In what roles do humans and AI perform most effectively as part 
of an overall team that produces software of sufficient quality?
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5.4.3.2 	 Automated Code Repair
Automated code repair is a specialized application of auto code generation. 
Code generation includes a broad collection of approaches and technology 
that accomplish different tasks, and the precise meaning depends a lot 
on what portion of a code base you are discussing. Code generation has 
been available for decades to generate portions of code, such as class 
declarations to match a unified modeling language (UML) diagram. Such 
work is usually used as a starting point, with developers expected to take 
over implementation details within this shell. There has been fragmented 
research on several formalisms to drive code generation. Similarly, 
existing computer-aided software engineering tools have limited code 
generation capabilities. 

The opportunity that AI poses for code generation is the ability to search 
existing code and identify patterns that are similar to the intended new 
code. Rather than starting from a specification, such as a UML model, 
existing code can be used as an input and transformed to address specific 
classes of problems. ML-based techniques can assist by generating similar 
code to what is already available. This suggests opportunities for starting 
small using AI-based code generation approaches to take advantage of 
commonly repeated applications. 

Automated code repair can similarly use existing code as input and then 
transform it to address specific classes of repair problems [Oliveira 2018; 
Klieber 2016]. The research gaps to fill include figuring out which parts the 
user needs to specify for the program to generate usable solutions at scale 
and how to generate partial, but acceptable, solutions to make incremental 
progress. Other gaps involve determining whether code bases provide 
relevant data to label and create ML models for complex code generation 
tasks (in particular, those that can also resolve semantic inconsistencies) 
and deciding how developers can determine whether what was generated 
is appropriate. 

The chances of human error increase with the exponential increase in the 
volume of code and other software artifact data generated; the number of 
overlooked bugs also increases simultaneously. AI, and in particular ML, is 
good at recognizing patterns in huge amounts of data. Success will depend 
on the ability to identify small, scalable portions of auto code generation and 
repair problems [Kirbas 2021]. 

5.4.3.3 	 Eliminating the Design/Code Conformance Gap 
Aligning the design of a system and its implementation improves product 
quality and simplifies product evolution. Especially for DoD systems, the 
ability to conform to particular architectural approaches, such as open 
architectures, not only supports technical goals, such as the ability to 
evolve easily, but also mission goals, such as the ability to integrate across 
domains. The same challenges exist in industry systems as well, 
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such as in smart cities. Today, such conformance goals are achieved 
through qualitative techniques. While developers are empowered with 
AI-augmented tools and techniques that increasingly assist them in 
implementation tasks, the abstraction gap between code and design limits 
automation for conformance and design tasks. Code all too often diverges 
from a system’s intended design and qualities designed into the system 
are not realized, increasing maintenance effort. This could be prevented 
if developers could confirm whether each code commit conformed to 
the intended design and quality. To accomplish this in a scalable way, 
automation is needed that can compare as-implemented designs to 
as-intended designs as part of continuous integration pipelines. ML and 
search-based algorithms provide an opportunity to revisit this otherwise 
thorny problem. 

5.4.3.4 	 Multi-Artifact System Analysis 
There are opportunities—and dangers—in relying on AI assistants to 
help developers find related examples in artifacts, code bases, defect 
and vulnerability records, or documentation recommendations. For 
example, many developers have copied insecure code, propagating 
bad practices. AI assistants, however, when proactively designed to 
safeguard for such errors, can contribute to reducing the risks posed 
by such practices. For example, recommendations can incorporate 
features from multiple artifacts, along with confidence ratings to 
improve relevance. AI assistants that support multi-artifact analysis, 
for example, can support engineering tasks during the planning phase, 
when a project can take advantage of inputs from requirements, 
analysis, and technology selection to improve contextualization of 
reused code from other projects. 



33

A National Agenda for Software Engineering Research & Development

The ability to combine information from multiple software engineering 
artifacts, supported by ML approaches such as natural language 
processing algorithms and boosting algorithms that turn weak learners 
into strong learners, will open improved avenues of traceability in the 
software development lifecycle. For example, if a developer is describing 
something they are not that certain about, the system can continuously 
rebuild aspects of itself based on human or AI intervention until the 
description becomes clearer. In so doing, it can take advantage of features 
potentially common to different software engineering artifacts that drive 
the development of such learners. 

The body of work in mining software repositories has progressed over 
decades [Hassan 2008; MSR 2021], in particular in areas of defect analysis 
and prediction, developer sentiment analysis, and code review practice. 
This body of work provides a foundation to improve the traceability of 
information shared within the artifacts, driving more timely and correct 
decision-making support to developers. 

5.4.3.5 	 Automated Evolution and Refactoring 
Software design, development, and deployment is a trade-off-based 
activity. Search-based software engineering techniques [Harman 2015] 
show promise of accommodating the Pareto-optimal nature of software 
design and, in fact, recommend multiple viable solutions representative 
of the design trade-off space. Despite progress in providing software 
engineers with tools that automate an increasing number of development 
tasks, complex activities—such as redesigning and reengineering existing 
software—remain resource-intensive or are supported by tools that are 
error prone. 

The vision for automated evolution and refactoring at scale calls for 
automation that takes direction from developers in the language of 
design and automates the code changes required to realize those changes 
[Ivers 2020]. Questions to address include what portions of the process 
can and should be automated and how AI approaches, such as search-
based algorithms, can reliably generate solutions. Automating tedious, 
repetitive, and error prone activities (e.g., crawling through thousands 
of dependencies) is a clear starting point. Should tools change the bare 
minimum to achieve a refactoring goal, or should they create opportunities 
to “clean things up” along the way to improve the system along general 
quality improvement goals (e.g., introducing design patterns to improve 
maintainability along with other top-priority quality concerns)? Can we 
refactor data (e.g., database schema and stored procedures) together with 
code? Tools should refactor test suites along with code. Can they also create 
unit tests as a byproduct of refactoring at scale? Addressing these questions 
will enable a future in which AI-augmented software development will also 
be able to support more high-speed change.
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5.4.4 	 Research Questions
Questions derived from the research topics include the following: 

•	How do we transform high-level specifications of what the program 
should do into a low-level program that implements it (i.e., use abstract 
logical reasoning to create programs that satisfy a given specification)? 

•	 In what ways can AI be used to make specifications more precise and 
resolve ambiguities, consistent with the needs of system stakeholders? 
Are developers more or less error prone in writing specifications than 
in writing code, and where can AI supplement gaps in both writing code 
and specifications?

•	Are there new phases or activities that become part of the software 
development lifecycle in an AI-assisted paradigm? Do we need to 
rethink aspects of the lifecycle to incorporate the elicitation of intent? 
Can the feedback obtained from AI-assistants be purposed for fostering 
the skills of developers? 

•	Can AI-assistants help developers orchestrate continuous system 
evolution, since software will not be static and hard-coded as it is today 
but rather will dynamically adjust to continuously fulfill its purpose? 

•	What roles will AI-supported tools take on and what roles will be 
retained by human developers? 

•	How can AI-augmented software development tools generate the 
metadata needed to efficiently verify or validate code?

•	Can AI capabilities support debugging code by instrumenting the 
development environment (e.g., can automated analysis look at issue 
logs in a critical system and understand how long it is taking to address 
certain types of problems, then feed that forward to help with decision 
making)?

•	What are the right levels of abstraction? We have developed higher-
level programming languages, architecture patterns, and so forth. 
What new levels of abstraction are needed to support different 
developer tasks?

•	What new software development data needs to be collected (ethically 
and in a way that ensures security and privacy) to enable such future 
research? What activities lack the traceability that could be established 
if we collected such data?

Trust in AI-based solutions, whatever their form, boils down to a risk 
assessment. What’s the probability that the result is correct? What’s the 
impact if it’s wrong, and how can the associated risks be dramatically 
reduced if AI makes the wrong recommendations? Developers will 
initially have to take the driver’s seat, and initial progress will be slow; 
however, advances in answering such questions will accelerate progress. 
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AI-augmented software development research, consequently, will result 
in creating reliable automation support for developers, improving their 
efficiency, effectiveness, and the quality of the systems they develop. 

5.4.5 	 Research Topics
To make progress in these areas, each area must be able to inform the 
others, in particular by generating data and using that data to identify the 
next relevant research steps. Progress will be iterative and incremental, 
with the following milestones guiding success:

•	Re-envisioned software development lifecycle. The way that the software 
development lifecycle will change in an AI-augmented paradigm needs 
to be considered. As research progresses, it is important to clarify the 
different roles that humans and AI-augmented tools perform, ranging 
from AI as a trustworthy assistant to AI completely replacing some tasks.

•	Acquire data and developed data models for AI-augmented paradigms. 
Data to model each stage or workflow of an AI-augmented paradigm 
are needed. An assessment is needed to identify what additional data 
would help, how to collect missing data with the least intervention, and 
how to assemble this data ethically.

•	 Identify new forms of evidence of quality. There is a need to automatically 
accumulate and carry along evidence of quality and to verify that 
the results are correct. AI generates metadata to efficiently verify or 
validate code and generate traceable evidence with code.

•	Automate design, evolution, and analysis tools. Reliable automated tools 
that interact with developers using their vocabulary are needed to 
assist with evolution and refactoring tasks.

•	Scale auto code generation and repair. Model-based techniques and 
formal methods need to be augmented with AI techniques to increase 
the scope and scale of their applicability. 

•	Collect evidence demonstrating developer acceptance and efficacy of AI 
assistance. Developers must accept the new forms of interactions with 
confidence; empirical data demonstrates that developers spend the 
most time on design tasks rather than on software complexity and 
challenges to improved quality.
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5.5 	 Assuring Continuously Evolving  
Software Systems Research Focus Area
5.5.1 	 Goals
This research area focuses on how to create an evolvable assurance 
argument, which should only require incremental changes as incremental 
changes are made to a system. Incremental modifications to a system 
should also require less assurance than a complete de novo assurance 
effort. In addition, the argument should be provably sufficient (i.e., the 
only source of uncertainty in the argument should be deficiencies in 
the evidence—the reasoning structure should be completely deductive, 
providing correct conclusions to the extent that the evidence and inferences 
from evidence are completely correct).

5.5.2 	 Limitations of Current Practice
The scope, scale, and pervasiveness of software-reliant systems continue to 
grow and change. Incremental assurance is the only practical way to get a 
system deployed and updated in a timely manner with adequate confidence 
in its operational behavior. Providing such confidence is particularly 
important for safety- and mission-critical systems in which software defects 
can have catastrophic impacts on lives or property. 

Systems today change incrementally and continuously. It is necessary 
to move from a mindset of “build and assure” (i.e., a one-time event) to a 
mindset of “rebuild and re-assure” (i.e., continual events). Moreover, today’s 
software-reliant systems evolve, in part, by reusing components of varying 
provenance in settings that were not necessarily considered and where 
third parties are responsible for making updates. Therefore, addressing 
limitations for assured composition of components and on efficient re-
assurance of evolving systems is important.
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5.5.2.1 	 Limitations in Assured Composition
Software-reliant systems are typically built today by incorporating third-
party components, mostly in the form of platforms (e.g., operating systems, 
middleware, and graphical user interfaces), libraries, and frameworks (that 
combine platforms and libraries). To allow developers to use third-party 
components, component developers provide application programming 
interfaces (APIs) that describe information, such as

•	how to call the functions of the components (e.g., name of the function 
and what parameters to give)

•	what results to expect in return (e.g., the specific output value type and 
high-level description of the computation) 

•	what restrictions (if any) govern the sequencing of different functions 
(e.g., to open a file before reading it)

Unfortunately, while APIs are often sufficient to perform code composition, 
they are insufficient to perform assured composition. The reason APIs 
are insufficient for this purpose is that they are designed for use by 
programmers rather than for integration into assurance arguments. 

5.5.2.2 	 Limitations in Reassuring Evolving Systems
Today’s approaches for assuring software-reliant systems focus primarily 
on testing, simulation, and (limited) application of formal methods. Most 
assurance in practice is accomplished by testing (e.g., automated regression 
testing, stress testing, and penetration testing) and inspection (e.g., design 
and code reviews). 

For some enterprise and mission-critical systems, Agile development 
and DevSecOps pipelines increasingly provide the basis for incremental 
evolution. In these types of systems, it is common to use techniques that 
provide quick feedback about possible errors. Various informal assurance 
techniques are used, including

•	 test-driven development, which ensures that tests exist for new and 
modified capabilities

•	continuous integration, which provides the opportunity to make and 
test frequent small changes, thereby giving incremental increases in 
confidence that system requirements are being met

•	continuous delivery, which ensures quick feedback on whether 
incremental changes are meeting actual user needs (i.e., whether the 
requirements need to change)
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In all of these methods, quality assurance engineers leverage regression 
testing to gain evidence that previously assured system behavior is 
maintained despite changes incorporated in a new release.

Assurance cases are increasingly being required for assuring critical 
systems [Maksimov 2019; Denney 2018]. The assurance case concept, 
however, focuses on arguing the properties of a system at a particular 
point in time. The notion of evolving an assurance argument in parallel 
with system evolution activities is not commonly discussed, even in large 
research projects such as DARPA’s ARCoS project (which is focused on 
developing assurance cases more quickly by automating some parts of the 
process) [Richards 2019].

5.5.3 	 Topics for Research

5.5.3.1 	 Developing a Theory of Assured Software Evolution 
Software-reliant systems are neither static nor infrequently updated 
engineering artifacts, but rather are fluid engineering artifacts (i.e., artifacts 
that are expected to undergo continuing updates and improvements). 
Therefore, the effort required to re-assure and recertify an entire system 
must be minimized by bounding the consequences of changing individual 
components and subsets of composed components. 

The overarching goal of this research topic is, therefore, to enable efficient 
and bounded re-assurance of continuously evolving systems where most, 
if not all, of the re-assurance effort is confined to the part or aspect of the 
system that changed. Achieving this goal requires developing a theory 
and practice of assured software evolution, including how to appropriately 
structure a system and its assurance argument. Central to the theory is 
an artifact that we will refer to as the “assurance argument,” which should 
possess the following properties:
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•	Precision. The representation is amenable to automatic and  
formal reasoning.

•	Soundness. A viable assurance argument must be based on explicit and 
precise assumptions and be provably sufficient relative to claims about 
the behavior the system must exhibit.

•	Multi-domain applicability. A viable assurance argument consists 
of a large collection of interacting sub-arguments (e.g., about logical 
correctness, timing correctness, and security), each of which must  
be precise and sound, while accounting for interactions with other  
sub-arguments.

•	Modularity. An assurance argument that supports efficient re-
assurance must bound the effects of change to avoid having to re-
assure all behavior every time the system changes. But in addition, 
inter-module dependencies must be made explicit and traceable.

The next two sections discuss topics focused on overcoming limitations 
associated with assured composition and efficient reassuring of  
evolving systems.

5.5.3.2 	 Toward an Ecosystem Architecture and Proof System for  
Argument Sufficiency
It is hard today to explain to what extent the combination of different 
types of evidence (such as from testing, formal verification, simulation, 
and digital twins) provides increased (and justified) confidence that a 
system will meet its requirements (i.e., behave as expected). It is likewise 
hard to explain when certain types of (potentially expensive) evidence are 
not needed to obtain sufficient confidence in system behavior. Justified 
confidence depends on developing and sustaining a well-structured 
assurance argument that rigorously codifies how system behavior can be 
inferred from a collection of evidence. To address this challenge, we propose 
research on creating or refining theories, methods, and tools for combining 
disparate evidence types into a sound assurance argument.

While we are motivated by the notion of an assurance argument actually 
being a proof system, we are also aware that there are no irrefutable 
arguments for practical systems. In particular, there is no absolute 
certainty that an assumption wasn’t overlooked or that an inference from 
every evidence type is always correct. Nevertheless, we believe that the 
quest for sound arguments, while being mindful of important practical 
considerations, will lead to rigorous—yet practical—techniques.
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5.5.3.3 	 Combining Disparate Evidence
An assurance argument uses evidence of different types. Consider the 
need to assure that an autonomous system (such as driverless car or 
drone) will never hurt humans. One type of evidence might come from 
real-time analysis that can be applied to guarantee that deadlines for 
timing-critical tasks are never missed. Another type of evidence might 
be required to estimate the probability of the vision system correctly 
recognizing humans. These different types of evidence—in addition 
to other evidence—must be combined in ways that enable making 
a formal assurance argument about human safety. Making a formal 
assurance argument using evidence from different domains also requires 
combining proof systems from the different domains. This leads to two 
challenges: (1) determining whether there are dependencies between the 
proof systems, and if there are dependencies, (2) determining what parts 
of the original proof systems remain valid and what parts need to change.

The assurance argument must provide the appropriate guarantees, even if 
empirical evidence is part of the argument. For example, in an airbag system 
we may determine that it is not possible to guarantee that an adult-
detection module always detects whether an adult passenger is present. 
In that case, it might be possible to determine that the probability of not 
detecting a human should be kept under 0.001%. A sufficient argument 
for achieving this level of precision would require designing experiments 
with proper sampling mechanisms based on probability theory to prove 
that the required probability-of-failure threshold can be reached. A 
sufficient argument would also need to account for the possible mutual 
effects of using probabilistic and deterministic reasoning in the same 
assurance argument.
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5.5.3.4 	 Assured Composition 
Assured composition will be key for combining disparate evidence and 
producing rigorous assurance arguments. Achieving assured composition 
requires expanding attention from code composition to assurance 
argument composition. Discussing both programming and assurance 
concerns requires using a more general definition of components and 
interfaces.

We define a component as an encapsulation of a behavior that provides 
a summary of such a behavior in an interface. This interface is sufficient 
to combine components and create a new behavior. The specifics of 
the behavior encapsulation and its summary depend on the type of 
composition. For example, code composition will use code encapsulations 
(e.g., libraries) and APIs, while assured compositions may use, for example, 
value transformation formulas and post- and pre-conditions. Related 
considerations include

•	Software composition is heavily focused on code composition in current 
practice, which means that component interfaces focus on providing 
information to programmers with little direct concern for assurance. 
Some efforts have gone beyond this conventional approach by 
incorporating some form of assumed and/or guarantee reasoning, such 
as design-by-contracts schemes [Myer 1992]. 

•	Formal arguments are typically developed for particular domains without 
considering cross-domain effects. This trend has led to component 
and interface descriptions that only support, for instance, value 
transformation claims and ignore other aspects, such as timing, 
security, and the effects of faulty behavior. Other communities focus 
on, for instance, timing behavior and ignore value transformations. 
Such domain-specific interface descriptions capture only part of the 
complete behavior of the component. These domain-specific claims 
are actually key to scalable assurance within a specific domain. For 
instance, the real-time task abstractions in rate-monotonic analysis 
(which is a specific type of real-time analysis that only uses task 
execution time, period, and priority in the simplest case) can lead 
to analyses that are of linear complexity in the number of real-time 
tasks. Adding additional information, such as computational state, can 
lead to exponential analysis complexity (as for a timed automaton, for 
example) [Alur 1992].

•	Cross-domain dependencies. When a claim is made in a particular 
domain (e.g., to verify value transformation properties), modification to 
this claim can affect claims in different domains (e.g., claims about the 
worst-case execution time of a task, the heat dissipation of a processor, 
or failure independence in a fault-tolerant replication structure). These 
effects stem from cross-domain dependencies, which are often ignored 
or treated informally.
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•	Scalable multi-domain compositions. To deal with the cross-domain 
dependencies, some research efforts have merged multiple domains 
to address different cross-domain concerns simultaneously [Alur 
1992, 1993]. Unfortunately, these efforts tend to lead to unscalable 
assurance procedures. Consequently, the challenge is to preserve 
the scalability of independent domains while accounting for the 
cross-domain dependencies in a sound manner. Work by Chaki et al. 
achieves scalable assurance of concurrent real-time systems in two 
domains: concurrent systems and real-time schedulability [Chaki 
2011]. Exploiting assumptions of real-time schedulability analysis 
(specifically, the periodicity of job arrivals) greatly reduced the number 
of possible process interleaving that needed to be checked in periodic 
concurrent systems.

5.5.3.5 	 Argument Sufficiency
A sound assurance argumentation system should be capable of 
automatically proving that the provided arguments are sufficient to 
demonstrate that the system behaves as intended, assuming there are 
no deficiencies in supporting evidence. However, most methods used by 
practitioners today use surrogate criteria (such as branch coverage or range 
coverage), which provide inadequate evidence for assurance sufficiency 
and rely on human judgment. This might be unavoidable, since it might 
not be possible or practical to reason about behaviors exhaustively (e.g., 
all possible values of the software variables and all interleaving of thread 
executions). However, a sound assurance argument should provide a way to 
pinpoint where evidence deficiencies impact confidence in claims.

Unfortunately, the ever-increasing complexity of software-reliant 
systems—particularly safety- and mission-critical systems—has long 
escaped the human capacity to judge argument sufficiency. Moreover, 
this judgment not only must be done within each behavioral domain, but 
across domains. Clearly, the argumentation system must be practical, 
scalable, and largely automatable to support the increasing complexity of 
software-reliant systems. 

Such an argumentation system should allow us to prove whether or not 
arguments are missing. For instance, consider a simplified airbag system 
that requires proving three logical behavior claims: (1) presence of an 
adult passenger, (2) occurrence of a crash, and (3) trigger inflation if and 
only if (1) and (2). The analysis of an assurance argument should be able to 
deduce insufficiency (e.g., it should be able to identify the lack of a timing 
behavior claim and the corresponding physics behavior claim). In this case, 
the missing claims are from other behavioral domains, but this can also 
occur within a single domain. Deducing insufficiency will require domain 
and cross-domain proof templates; canonical arguments for typical classes 
of systems that can be instantiated for specific systems and help identify 
missing elements of an argument.
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5.5.3.6 	 Representing Assurance Arguments
A general and sound verification argumentation framework needs to both 
(1) explain to humans why we have confidence in the argument, and (2) 
allow the full formal and automatic integration of all the arguments that 
comprise the case.

As presented in our airbag example above, different technical domains 
use formalisms for deductive reasoning that abstracts away (or 
deletes) some information. For instance, logical verification (e.g., model 
checking) models the value transformation nature of computation. 
However, its models do not contain information about elapsed time or 
execution time. It can therefore reason about value transformation but 
not computation time. 

Similarly, real-time scheduling models for timing verification reason 
about elapsed time and execution time but ignore values that the 
computation produces. As a result, these models cannot reason about 
value transformation. Finally, physical models using differential equations 
completely ignore that computation takes time or that algorithms 
represent numbers in different formats or number of bits. Hence, these 
models cannot reason fully about the value transformation correctness or 
computation time.

Some combinations of multiple disciplines (such as hybrid and embedded 
systems) have been developed over the years to model transformations of 
values in computation and the evolution of physical variables in a combined 
model [Alur 1993]. However, these combinations often tend to increase the 
complexity of the assurance and move away from practicality. 

An alternative direction was proposed by Benveniste et al., who developed 
a framework to specify Assume/Guarantee contracts on sets of behaviors 
[Benveniste 2015]. In this case, the specific formalism applied to capture the 
behaviors is left undefined. However, the framework can define a contract 
algebra based on set theory that reasons about composable verification. For 
example, the framework can define how to combine guarantees of modules 
to verify a global property and how to verify that a modification to a module 
does not modify the assumptions it makes or the guarantees it provides. 

The formalisms to define the behaviors to support the low-level description 
of the modules can come from different scientific disciplines, as soon as 
the set operations of the contract algebra are properly implemented (e.g., 
set intersections, inclusion, and union). Moreover, these operations can 
be carefully designed to minimize the interaction across formalisms and 
avoid a complexity explosion. Benveniste et al. conducted some initial work 
in this direction [Benveniste 2015]. These properties allow changing one 
part of an assurance argument without having to reverify any other parts 
of the argument that interacts with this module. This approach supports 
assuring software evolution through composition reasoning, which is 
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important for reassuring a system as it evolves. Ruchkin presented other 
research performed on architectural models combining different types of 
analyses [Ruchkin 2014].

5.5.3.7 	 Ecosystem Architecture
Combining evidence relies on the structure of the system, which in turn 
imparts structure on the system’s assurance argument. The structure of 
the argument should influence the development–assurance pipeline. What 
is needed, therefore, is a proof system and supporting infrastructure that 
includes notions of what evidence is needed, how the evidence is gathered, 
how to ensure that the evidence is acceptably valid, where it’s stored, 
when it’s updated, what dependencies exist, and so forth [Richards 2019]. 
In particular, the dependencies between the assumptions and guarantees 
of components in the system and the dependencies of different types of 
evidence in the assurance argument must be precise. 

These relationships suggest a notion of architecture that includes the 
relationships described above, which we refer to as the “ecosystem 
architecture.” In this context, ecosystem architecture is defined as 
the aggregate structure of the software-reliant system, the assurance 
argument, the DevSecOps pipeline, and the development organization.  
It is not surprising that these structures are related and interact, since it  
is well-known that quality attributes impact software architectures  
[Bass 2012].

5.5.3.8 	 Reassuring Evolving Systems
For a system that continuously evolves, there is a natural tension between 
the speed at which new capabilities and fixes are deployed and the 
comprehensiveness of assurance. In particular, it is hard to have speedy 
deployment with assurance due to the time it can take to decide how to 
modify an existing test so it satisfies some sufficiency criterion for the 
test suite as a whole. Likewise, it can be hard to understand how the 
consequence of change propagates through a system, particularly if the 
system is composed of modules developed and evolved independently 
(especially if these modules are provided by third-party suppliers only in 
binary form). 

However, reducing re-assurance effort for a changed system is important. 
We know that for some safety-critical systems today, little or no changes 
are allowed after they pass certification. The reason for this restriction 
is that the only accepted way to ensure that no critical flaws have been 
introduced by a change is to recertify the entire system (e.g., by re-running 
all operational tests, which can take months). Due to such recertification 
challenges, some systems are not upgraded for years, which is clearly at 
odds with other requirements, such as upgrades to meet rapidly evolving 
threats or applying security patches to fix vulnerabilities.
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5.5.3.9 	 Bounding Propagation
A theory of software evolution will provide a basis for (1) determining 
(and bounding) change propagation, and (2) suggesting or anticipating 
the need for change that is based (at least in part) on system behavior, 
changes in requirements, changes in operational environments, and so 
forth. Changes to a system as it evolves are obviously not conducted in 
isolation, but rather are performed in the context of an existing system 
(even greenfield software development can be viewed this way). For any 
system—and especially large-scale systems and systems-of-systems—it 
can be hard (if not nearly impossible) to fully comprehend the future 
consequences of any given change.

For example, has a change inadvertently introduced a new failure mode or 
vulnerability? Complex feature spaces are too hard for humans to keep in 

mind. When the “distance” from a change to the place where an error 
manifests is large, it is nearly impossible for humans to anticipate resulting 
problems. Moreover, when the consequence of a change propagates across 
different “technical domains” (such as from security to real-time 
performance to material stress analysis) finding newly introduced problems 
can be very hard. AI- and ML-enabled components in systems exacerbate 
this problem, because it is not always possible to anticipate or detect 
changes in the environment that affect the system (such as a change in the 
distribution of data from that originally used to train a classifier). 

5.5.3.10 	Reassuring Emergent Properties 
It can be hard to regain confidence in non-functional or emergent properties 
of a system after a change has been made, because such properties typically 
depend on interactions between functionally independent parts of a 
system. For example, unless a system is carefully architected, changes can 
unintentionally impair a system’s security or timing properties. Likewise, 
changes to a system’s external environment may invalidate or weaken 
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assumptions underlying assurance claims about functional and non-
functional behaviors. Similarly, changes in usage patterns (e.g., a change 
in the mix of requests to a system) can stress a design, leading to behavior 
that is unacceptable in the changed environment. In general, current re-
assurance practices are not robust when it comes to assessing the possible 
effects of changes on desired quality attributes.

5.5.3.11 	 Assured Multi-Behavior Composition
As more software-reliant systems are developed using component-based 
technologies and platforms (many of which are provided by third parties), 
we need theories of composability—along with the associated methods 
and automated tools—that enable the specification and enforcement of 
composition rules that both allow (1) the creation of required behaviors in 
all the behavioral domains (i.e., functional and non-functional) required 
by the system (logical, timing, control, safety, security, etc.), and (2) the 
assurance of these behaviors, both during initial deployment and during 
subsequent evolutions. These theories, methods, and tools must be capable 
of reasoning about the consequences of integrating components within 
each behavioral domain and across domains, especially as their structure 
and functionality evolves dynamically over time.

5.5.3.12 	 Reassuring Systems Using Reusable Components
Assurance practices have not been focused on assurance efficiencies 
that may be possible when a system is composed largely from reusable 
components (such as product line systems). For example, it is not necessarily 
clear how argument fragments associated with such components can be 
reliably and efficiently composed and reused to lessen the assurance effort 
for the composed system.

5.5.3.13 	 Learning from Operational Experience
If an evolving system is already operational, then data may exist about 
its reliability, safety, and so forth. AI and ML could make use of this data 
in at least two ways. First, it could be used to detect deviations from 
normal; such techniques have been used to analyze network traffic for 
cybersecurity (using macro-level statistical indicators), but could also 
be used to monitor other indicators, such as order queue lengths for 
e-commerce systems (e.g., Amazon.com). Second, in the spirit of Netflix’s 
chaos monkey, hypothetical changes could be imposed on the system, 
and AI or ML tools could determine patterns of propagation for different 
types of change. This analysis could be used to characterize potentially 
problematic classes of change. 

Generally, we posit that the experience gained from observing the system 
in operation, experimenting with it, and examining patterns of change that 
invalidate sufficiency arguments can be used to trigger re-assurance or 
bound re-assurance. Operational experience also evinces confidence in the 
sufficiency of a system’s assurance argument.
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5.5.4 	 Research Questions
•	What are suitable representations of an assurance argument? 

A formal and automatable representation of an assurance argument must 
be developed that can handle the numerous domains of assurance (e.g., 
logical correctness, timing correctness, and security correctness) and 
their interactions. An overall argumentation mechanism must be devised 
that uses proof systems from all of the relevant domains to prove the 
properties of interest and demonstrate the extent to which the available 
evidence supports the arguments. 

More specifically, this overall mechanism should show that (1) the 
collection of arguments is sufficient to prove the properties for all of 
the relevant domains, and (2) that all possible effects that one domain 
can have on the other domains have been considered. An overall 
argumentation mechanism must also support the discovery of missing 
assumptions and inadvertently omitted domains. Argumentation 
templates or patterns could help with this.

To make this concrete, an assurance argument itself can be reasoned 
about formally (e.g., is it sound?; are its assumptions consistent?; and 
does it appropriately account for all aspects of the system?). Providing a 
representation that can address these issues is a foundational challenge 
for assuring an evolving system.

•	What are patterns of evolvable assurance arguments? 

Given a generalized assurance argument about a system and a 
subsequent change to the system, determining the extent to which the 
assurance argument needs to change to account for the system change, 
while otherwise remaining sound, is a challenge. For continuously 
evolving systems, bounding the cost of re-assuring will be especially 
important. Just as for software architecture, bounding the effect of change 
depends on the structure of the argument. Structuring arguments will 
require developing notions of interface and encapsulation for assurance 
arguments.

•	Are there opportunities to use ML to automatically detect needed 
changes in assurance arguments? 

Automatically learning from operational experience (i.e., actual use) 
can be used to predict the need for changing the system by discovering 
patterns of operational behavior that indicate that assurance assumptions 
have been violated by new, possibly unanticipated operating conditions or 
by discovering patterns of argument that might be flawed.
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5.5.5 	 Research Topics
These research topics are important to assuring continuously evolving 
software systems and will contribute to developing a theory of assured 
software evolution. The following milestones are indicators of progress 
toward developing such a theory:

•	Theory for assured composition of evidence. Development of an overall 
approach or theory for assured composition of proof systems allowing 
combining disparate evidence from different domains to assure key 
software-reliant system properties.

•	Assurance argument templates. Development of an approach for 
ensuring argument sufficiency by using assurance argument templates 
to identify missing assumptions, domains, or interactions between 
domains and appropriately representing assurance arguments.

•	Modifiable assurance arguments. Development of an approach for 
creating modifiable assurance arguments through the notion of 
an ecosystem architecture and gaining a better understanding of 
reassuring systems using reusable components.

•	Automatic detection if a system change invalidates an assurance 
argument. Development of techniques for automatically determining 
whether a system change introduces a new failure mode, a new 
vulnerability, or generally invalidates an existing assurance argument 
by determining how to bound propagation of change and re-assure 
emergent properties.

•	Automatic system update recommendations based on operational 
data. Development of techniques for automatically making 
recommendations for system updates based on using data gathered 
from the operational system to learn from operational experience.

•	Tool chains for combining evidence to re-assure a system. Development 
of integrated tool chains including AI and/or ML techniques to support 
combining multiple types of evidence with operational data to re-
assure a system.
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5.6 	 Software Construction through Compositional 
Correctness Research Focus Area
5.6.1 	 Goals
To address challenges associated with scale, complexity, and time-to-
market, software-reliant systems are increasingly developed using 
component-based technologies. To ensure component-based systems 
meet their business, technical, and financial requirements and 
constraints, research is needed on theories of composability—along with 
the associated methods, platforms, and automated tools—to enable the 
specification and enforcement of composition rules that allow (1) the 
creation of desired behaviors (both functionality and quality attributes), 
and (2) the assurance of these behaviors during initial deployment and 
throughout the lifecycle. Key goals of this research area are, therefore, to 
develop and/or refine theories, methods, platforms, and tools that enhance 
our ability to construct software by composing components correctly and 
reasoning about the consequences of various compositions, especially as 
the structure, functionality, and provenance of component-based systems 
evolve over time. 
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5.6.2 	 Limitations of Current Practice
The scope and scale of software-reliant systems continues to grow and 
change continuously, such that developing and sustaining software from 
scratch is no longer realistic for most production systems, including 
mission- and safety-critical cyber-physical systems where the right answer 
delivered too late becomes the wrong answer. Moreover, the size and 
complexity of these systems makes it unrealistic for any one person or 
group to understand the entire system. It has therefore become common—
and often necessary—to integrate (and continually reintegrate) software-
reliant systems using modular components. Many of these components, 
however, are reused from existing elements that may not have been 
designed initially for composition, integration, or evolution. This situation is 
particularly problematic in heterogeneous computing environments, where 
components are written in a mélange of programming languages atop 
platform technologies with questionable quality and provenance.

Since the 1950s, software researchers and developers have been creating 
abstractions that help them program in terms of their design intent rather 
than the vagaries of the underlying computing environment—such as CPU, 
memory, and network devices—and shield them from the complexities of 
these environments. From the early days of computing, these abstractions 
included both language and platform technologies. For example, early 
programming languages, such as assembly and Fortran, shielded 
developers from the complexities of programming directly with machine 
code. Likewise, early operating system platforms, such as OS/360 and 
Unix, shielded developers from the complexities of programming directly 
to hardware.

Although these early languages and platforms raised the level of 
abstraction, they still had a distinct “computing-oriented” focus. In 
particular, they focused on abstractions of the solution space (i.e., the 
domain of computing technologies themselves) rather than abstractions of 
the problem space (i.e., application domains, such as telecom, aerospace, 
healthcare, insurance, and biology). Moreover, too much effort was needed 
to create or re-create applications from scratch atop these low levels of 
abstraction rather than expressing designs in terms of application domain 
concepts and then composing applications using reusable components that 
could be integrated into application frameworks and software product lines.

Advances in languages and platforms during the past several decades 
have raised the level of software abstractions available to developers. For 
example, developers today typically use more expressive programming 
languages, such as Python, Java, Kotlin, or C++, rather than Fortran or 
C. Likewise, today’s reusable class libraries (such as the C++ Standard 
Template Library or Java Collections) and application frameworks 
provided by popular software platforms (such as Android, iOS, and Spring 
middleware) minimize the need to reinvent common and domain-specific 
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middleware services, such as discovery, event notification, transactions, 
security, and resource management. Due to the maturation of these third-
generation languages and reusable platforms, software developers are 
now better equipped to shield themselves from complexities associated 
with creating applications from scratch using earlier technologies and 
can instead focus on composing them using reusable components and 
frameworks provided by common platforms.

Despite these advances, however, several vexing problems remain. At the 
heart of these problems is the growth of platform complexity, which has 
evolved faster than the ability of general-purpose programming languages 
to mask it. For example, popular middleware platforms, such as Node.js, 
Sparks, the Data Distribution Service (DDS), and Android, contain thousands 
of classes and methods with many intricate dependencies and subtle 
side effects that require considerable effort to compose, adapt, and tune 
properly. Moreover, these platforms often evolve rapidly (and new platforms 
appear regularly), so developers expend considerable effort manually 
porting their application software to different platforms or newer versions 
of the same platform.

A related problem is that most application and platform software is still 
written and maintained manually using third-generation languages, 
which incurs excessive time and effort, particularly for key integration-
related activities, such as system deployment, configuration, and quality 
assurance. For example, it is hard to write Python or C++ code that 
correctly and optimally deploys large-scale distributed systems with 
hundreds or thousands of interconnected software components, which 
is becoming more common in societal-scale software systems (see 
Section 5.7).

Even using newer notations, such as Extensible Markup Language (XML)-
based deployment descriptors popular with middleware platforms like 
Android, is fraught with complexity. Much of this complexity stems from the 
semantic gap between levels of abstraction. For example

•	 the design intent (e.g., deploy components 1-50 onto nodes A-G and 
components 51-100 onto nodes H-N in accordance with system resource 
requirements and availability) 

•	 the expression of this intent in thousands of lines of handcrafted XML 
whose visually dense syntax conveys neither domain semantics nor 
design intent

Due to these types of problems, the software industry is reaching a 
complexity ceiling where modern platform technologies, such as reactive 
microservices in cloud deployments [Gillberg 2020], have become so 
complex that developers spend years mastering and wrestling with 
platform APIs and usage patterns, and yet are often familiar with only 
a subset of the platforms they use regularly. Moreover, third-generation 
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languages require developers to pay close attention to numerous 
imperative programming details, such as terminating loops correctly; 
detecting and handling errors and exceptional conditions properly; 
and avoiding buffer overflows, null pointers, and double-deletions of 
dynamically allocated memory [Seacord 2005]. 

These types of tactical issues make it hard for developers to focus on 
strategic architectural issues, such as system-wide correctness and the 
performance of applications composed from reusable components. 
Although modern interactive development environments (IDEs) help 
address some of these tactical issues (such as managing dynamic memory 
management properly), IDEs are limited in their ability to detect and help 
rectify common programming mistakes. Likewise, IDEs provide limited 
support for guiding the correct application of architectural patterns, which 
still require considerable manual design and implementation effort.

Today’s fragmented tools and methods also make it hard for software 
developers to know which components and subsystems of their applications 
are susceptible to side effects arising from changes to user requirements 
and language and platform environments. This lack of an integrated 
view—coupled with the danger of unforeseen side effects resulting 
from composing software components originating from a wide range of 
sources of questionable quality and provenance—often forces developers 
to implement suboptimal solutions that unnecessarily duplicate code, 
violate key architectural principles, and complicate system evolution and 
quality assurance. Suboptimal solutions are particularly problematic when 
developing and assuring mission- and safety-critical cyber-physical systems 
that evolve continuously (see Section 5.5).

5.6.3 	 Topics for Research 

5.6.3.1 	 Compositional Correctness via Model-Driven Engineering (MDE) Tools
One promising approach for addressing platform complexity, as well as 
the inability of third-generation languages to alleviate compositional 
complexity and express domain concepts reliably and securely, is to develop 
and apply model-driven engineering (MDE) technologies [Schmidt 2006], 
such as MATLAB, Simulink, Rhapsody, and the Architecture Analysis and 
Design Language (AADL) [SEI 2019]. Rather than programming with third-
generation languages such as Java, Java Script, and C++, these model-driven 
approaches enable software developers to program at a higher level by 
combining the following:
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•	Domain-specific modeling languages (DSML), whose type systems 
formalize the application structure, behavior, and requirements 
within particular domains, such as software-defined radios, avionics 
mission computing, online financial services, warehouse management, 
or even the domain of middleware platforms [Voelter 2013]. DSMLs 
are described using metamodels, which define the relationships 
among concepts in a domain and precisely specify the key semantics 
and constraints associated with these domain concepts. Developers 
use DSMLs to build applications using elements of the type system 
captured by metamodels and express design intent declaratively rather 
than imperatively.

•	Transformation engines and generators that analyze certain aspects  
of models and then synthesize various types of artifacts, such as source 
code, simulation inputs, XML deployment descriptions, or alternative 
model representations. The ability to synthesize artifacts from models 
helps ensure the consistency between application implementations 
and analysis information associated with functional and quality 
of service (QoS) requirements captured by models. This automated 
transformation process is often referred to as “correct-by-construction” 
[Ge 2018], as opposed to conventional handcrafted “constructed-by-
correction” software development processes that are tedious, error 
prone, and hard to assure.

Existing and emerging MDE technologies apply lessons learned from earlier 
efforts at developing and composing software via higher-level platform 
and language abstractions. Instead of general-purpose notations that 
rarely express application domain concepts and design intent, DSMLs can 
be tailored via metamodeling to precisely match the domain’s semantics 
and syntax. DSMLs express behaviors or computations in a manner that 
resembles a specific application domain in which end users operate. 
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For example, financial systems could express behaviors or computations 
in terms of accounts and ledgers. As another example, avionics systems 
could express behaviors and computations in terms of speed, velocity, 
and altitude. Essentially, MDE technologies enable programming software 
at a higher level of abstraction using DSMLs that expand the syntax and 
semantics of third-generation languages to develop applications on top 
of popular platforms and frameworks. MDE methods and tools can thus 
simplify software construction through compositional correctness by 
enabling software developers to focus largely on domain-centric business 
logic expressed via models created using DSMLs. The bulk of their 
applications can then be synthesized and/or integrated from these higher-
level models, which can be mapped reliably, securely, and efficiently onto 
the underlying software frameworks and platforms.

DSMLs often express elements in a domain graphically, rather than 
purely textually (as is the case with third-generation languages). Having 
graphic elements that relate directly to a familiar domain not only 
helps flatten learning curves but also helps a broader range of subject 
matter experts, such as system engineers and experienced software 
architects, ensure that software systems meet user needs. Moreover, 
MDE tools impose domain-specific constraints and perform model 
checking that can detect and prevent many errors earlier in software 
and system lifecycles. 

In addition, because today’s platforms have much richer functionality and 
QoS than those in the 1980s and 1990s, MDE tool generators need not be 
as complicated because they can synthesize artifacts that map onto—and 
compose into—higher-level, often standardized, middleware platform 
APIs and frameworks rather than lower-level OS APIs. In particular, MDE 
methods and tools can take expressions in DSMLs and auto-generate large 
amounts of the code that is then connected with components created via 
modern middleware platforms, such as Spring or React.js. Consequently, 
it is often easier to develop, debug, and evolve MDE tools and applications 
created using these tools and associated model-driven middle frameworks 
[Costa 2017]. 

Integrating MDE tools and middleware platforms to deploy application 
services end to end can help developers configure the right set of services 
into the right part of an application in the right way. MDE analysis tools can 
help determine the appropriate partitioning of functionality that should 
be deployed into various component servers throughout a network. For 
example, tools like MATLAB, Simulink, TimeWiz, and RapidRMA allow 
application developers to model and visualize their application end to end 
(and their QoS requirements). In particular, Simulink allows application 
developers to model, analyze, simulate, verify, and rapidly prototype 
applications for mission- and safety-critical cyber-physical systems.
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5.6.3.2 	 Compositional Correctness via Dependency-Injection Frameworks
The past decade has witnessed the evolution of another approach to 
address the problem of tedious and error-prone code that often results 
from the sole reliance on third-generation languages to create systems. 
Instead of representing software behaviors in the form of MDE constructs 
(such as custom-built domain-specific modeling languages that may be 
unfamiliar to many programmers), software developers can write the bulk 
of their business logic in their programming language of choice and then 
declaratively annotate this code with various tags that provide information 
used by annotation processing tools. In turn, these tools can then auto-
generate and compose software via dependency-injection, which is an 
advanced form of separation of concerns used to construct and compose 
components by “auto-wiring them together,” thereby increasing readability, 
code reuse, and automation.

Dependency-injection frameworks, such as Spring and Dagger, allow 
programmers to declaratively specify certain properties and attributes 
via annotations [Patel 2018]. These annotations are then processed 
automatically by tools that generate and connect large amounts of 
“glue code,” thereby minimizing software development for aspects 
like persistence, remote communication, and security, as well as data 
access and manipulation. These annotation processing tools inspect, 
generate, and compose the various aspects needed to synthesize a 
working application. 

Annotation-based dependency-injection frameworks simplify software 
construction through compositional correctness [Bojkic 2020]. In particular, 
software developers focus largely on business logic written in familiar 
programming languages and then place annotations into certain classes. 
Annotation processing tools then inspect and generate much of the “glue 
code” needed to create and compose a working application. 

For example, to assign a particular class as one that provides data, an @Data 
annotation can be used to instruct an annotation processing tool to generate 
code that has certain additional capabilities, such as setter/getter methods 
to update/read fields in a particular object. Annotations like @Value can 
also indicate that an entity (such as an object) will be stored persistently in a 
database. Certain fields can also be annotated (e.g., via an @Id annotation) to 
indicate that they are intended for use as primary keys in a database. 

These declarative annotations enable software developers to express 
metadata about the fields and elements in a class so that programmers 
need not write all this code themselves. The annotation tool infrastructure 
instead generates glue code and other important tasks, such as determining 
dependencies between the different defined components. These tools also 
automatically compose dependencies together without having to undergo 
explicit composition. For example, a software developer can determine 
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that a particular class depends on another class and then annotate it with 
another annotation, such as @Autowired. This annotation indicates to the 
tool infrastructure that it needs to retrieve an implementation of that entity 
and arrange to connect the pieces together. 

Annotation processing tools work together with the dependency-injection 
framework to instantiate other dependent components and connect 
them all together, so software developers need not manually establish 
all the connections and integration and composition. Instead, software 
developers declare those dependencies and the framework identifies the 
implementations and automatically composes them. This loose coupling 
enables software developers to write their components in a more modular 
manner and then leverage the tool infrastructure to perform correct 
compositions on their behalf. 

Beyond their worth as a more efficient, less-error prone means of 
constructing new software systems, annotation-based dependency-
injection frameworks have become popular because they are widely 
used to program the World Wide Web. In particular, frameworks like 
Spring encapsulate popular low-level protocols and notations, such as the 
Hyper-Text Transfer Protocol (HTTP), JavaScript Object Notation (JSON), 
and Extensible Markup Language (XML), that encode and exchange 
data types back and forth between clients and servers. These low-
level communication and data-transfer mechanisms can, in turn, be 
encapsulated via annotations (such as @GetMapping and @PostMapping) 
that automatically convert HTTP GET and POST requests sent over 
Transmission Control Protocol (TCP) connections into conventional 
method calls on objects whose business logic is written using popular 
third-generation languages. 
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Dependency-injection frameworks such as Spring enable software 
developers to annotate (e.g., via the @RestController tag) a conventional 
class to designate that incoming HTTP GET and POST requests should 
be routed to its endpoint methods and processed using conventional 
method calls. In particular, annotations such as @PostMapping or  
@GetMapping can direct the incoming requests at the HTTP level, 
route them to the appropriate endpoint method, and then dispatch this 
method to process the contents contained in the HTTP message. This 
annotation-based approach enables software developers to focus on 
business logic instead of the intricacies involved in sending messages 
from a client to a server, all of which is accomplished via declarative 
annotations and auto generation, rather than developers manually 
writing this code imperatively. 

By enabling software developers to define their components and 
applications without concern for the communication mechanisms used 
to operate between them, it is no longer necessary to create inflexible 
monolithic applications where all components reside in a single address 
space. Instead, microservice architectures have emerged that construct 
software by composing many smaller elements (i.e., microservices) 
whose configurations can be customized and deployed onto the 
underlying computing infrastructure, such as Amazon Web Services 
(AWS), an on-premises private cloud, or an IoT sensor network [Lira 
2019]. This loosely-coupled architecture enables system scalability by 
leveraging multi-core processes and distributed core clusters, because a 
system is composed from small components whose location can change 
relatively flexibly and transparently. 

Dependency injection frameworks also employ software build managers, 
such as Gradle and Maven, that allow application developers to specify 
the libraries they depend on in a highly flexible, programmable, and 
late-binding manner. These capabilities, in turn, enable the dynamic 
assembly and evolution of component implementations from many 
libraries and packages available via the World Wide Web. In particular, 
these components need not reside on the local build computer, but instead 
can be downloaded automatically from remote repositories and installed 
during the development process.

This late-binding approach to software dependency resolution allows 
developers to compose software from components, some of which 
they wrote (and annotated), but most of which were written by other 
developers. The dependency-injection framework and build tools track  
all these dependencies, compose everything, and connect all the 
components without requiring extensive manual effort on the part of the 
software developers. 
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5.6.4 	 Research Questions 
There are numerous research questions for achieving software 
construction through compositional correctness based on the methods, 
tools, and platforms described in the previous section, including:

•	How can we assure systems developed via loosely-coupled 
components?

While software developers can derive benefits from MDE tools and 
dependency-injection frameworks to generate and compose large 
portions of their software systems, challenges persist because models 
and annotations are often hard to debug at the “source” level and, thus, 
are hard to statically assure. One reason for this difficulty stems from 
the implicit dependencies existing in such loosely coupled systems. 
In particular, when examining the source code itself, it is hard to 
determine, statically, what implementations will be provided after various 
components are synthesized and connected. 

This challenge motivates the need for advanced research on annotation 
browsers and static dependency analyzers that understand the semantics 
of the various layers and tool chains that comprise loose-coupled 
component-based systems. Likewise, there is also need for research on 
“smart composition” methods, tools, and platforms that can intelligently 
and correctly compose components not initially designed to work together 
by automatically generating adapters that provide efficient and type-safe 
semantic integration.
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•	How can we ensure a system will function properly and securely well 
before runtime?

Software engineers and operators often do not know if a loosely-
coupled component-based system will function correctly until it 
starts to run due to the lack of advanced visualization or testing tools, 
such as quality assurance pipelines based on DevSecOps methods 
and tools that understand the semantics of the annotations and the 
late-binding of dependency-injection frameworks. While unit tests 
or integration tests represent a time-honored approach to assuring 
conventional software system, these methods are often untenable 
for certain types of safety-critical or mission-critical systems (i.e., 
avionics, medical devices, or nuclear reactors) where system operators 
must have confidence that they will function properly and securely 
well before runtime. 

With annotation-based dependency-injection frameworks, software 
developers need greater assurance that a system is going to work correctly 
earlier in the software lifecycle. This need presents an opportunity for 
researchers to develop better tools that can conduct deeper analysis and 
offer greater confidence that the system will work as intended prior to its 
runtime execution. 

•	How can we debug software that is developed with model-driven or 
dependency-injection approaches?

If model-driven or dependency-injection approaches are used, there is 
a general lack of debuggers that allow developers to step through their 
software at the level it is written in (as opposed to the level at which it has 
been generated). This problem should be familiar to prior generations of 
software developers. In the early days of compilers and other language 
processing tools, programs could be written at a higher-level language, 
such as Fortran or C, but source-level debuggers that allow program 
debugging at the higher-level language level were not initially available. 
Rather, software developers had to debug at the assembly code level, 
which was tedious and error-prone. 

These types of limitations made it hard to debug higher-level code, 
because developers had to keep falling back on lower-level code generated 
by the compiler instead of the code they wrote and that the compiler 
used as input. With model-driven engineering and annotation-based 
dependency-injection frameworks, the level of abstraction has been 
raised by many more layers. This ever-growing stack of abstraction levels 
motivates research on developing tools that can debug code at the model 
level or annotation level instead of the level of the code generated by these 
automated processing tools. 
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5.6.5 	 Research Topics
As the preceding sections demonstrate, the software community needs to 
focus on evolving formalisms and tools to address the issues described. 
We invite the community of researchers and practitioners to raise the 
level at which mission- and safety-critical systems developed using these 
approaches can be assured. 

Research topics will be incremental and are summarized below:

•	Theory of composability for model-integrated computing and quality 
attributes. Develop a new composability theory that uses modeling 
and quality attribute concepts to integrate components developed 
in accordance with component-based technologies (including, but 
not limited to, model-driven engineering and/or annotation-based 
dependency-injection frameworks) with assurance “baked in” to the 
completed composition.

•	Documented patterns and tools for composition notations, rules, and 
relationships. Develop tools, notations, and rules for composition that 
enable assurance of the composed system in terms of quality attributes, 
and reduce the need for purely runtime testing (i.e., be capable of 
detecting defects during earlier phases of the software lifecycle).

•	“Smart composition” technologies. Create methods, tools, and platforms 
that can intelligently and correctly compose components that were 
not initially designed to work together by automatically generating 
adapters that provide efficient and type-safe semantic integration.

•	 Integrated tool chains to assure composed behaviors at scale before and 
during runtime. Develop tools that inform quality attribute engineering 
trade space decisions to enable composition of systems at scale and 
assure composed behaviors.

•	 Intelligent interacting formalisms and assurance capabilities. Build 
an approach that empowers developers to use multiple formalisms 
(e.g., combining model-driven and annotation-based approaches) to 
compose systems and measure the impact on assurance. 
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5.7	 Engineering AI-Enabled Software Systems  
Research Focus Area
5.7.1 	 Goals
The systems of the future—from smart cities and buildings, to defense and 
transportation systems, to healthcare—will likely incorporate AI elements. 
For national defense applications in particular, AI-enabled software systems 
promise the ability to improve the speed of response to changing missions 
and promote information dominance by developing adaptive systems.

Advances in ML algorithms and the increasing availability of 
computational power are already resulting in huge investments in 
systems that aspire to exploit AI. AI-enabled systems, software-reliant 
systems that include data and components that implement AI algorithms 
mimicking learning and problem solving, have inherently different 
characteristics than software systems that do not use AI components. 
These differences are driving academia, industry, and governments 
to explore the creation of a new discipline of engineering called AI 
Engineering [Horneman 2019; Bosch 2020; Santhanam 2019]. Developing 
and adopting transformative AI solutions that are safe, ethical, and 
secure will require cultivating the field of AI engineering. CMU has 
defined an abstract technology model called the AI Stack for driving the 
clear understanding in the development and deployment of AI-enabled 
systems [Moore 2018]. The SEI has further identified scalable AI (focusing 
on how to scale algorithms, data, and infrastructure), robust and secure 
AI (focusing on understanding the challenges around securing AI systems 
against new adversarial threats), and human-machine teaming (focusing 
on the challenges around interactions driven by decision making with 
AI elements) as three important pillars to drive the definition of AI 
engineering practices [SEI 2021]. 
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However, AI-enabled systems are, above all, software systems. The 
development and sustainment of these systems have many parallels with 
building, deploying, and sustaining software systems. Research programs 
in software engineering will need to focus on the challenges that AI 
elements bring to software analysis, design, construction, deployment, 
maintenance, and evolution. The goal of this research area is therefore to 
explore what existing software engineering practices can reliably support 
the development of AI systems and what new software engineering 
research challenges need to be solved in order to reliably construct AI-
enabled software systems. 

5.7.2 	 Limitations of Current Practice
AI-enabled systems in the next decade will likely continue to be dominated 
by advances in ML algorithms, related in particular to advances in deep 
learning due to a spike in research and the rapid advances that are 
emerging. Incorporating AI and ML components into software systems 
exacerbates many of the existing challenges involved with engineering 
software, with or without AI elements: for example, how to have confidence 
in systems, how to predict and control emergent behaviors, how to 
formally specify requirements when there is uncertainty in data and the 
patterns to be extracted from the data, and how to contain and manage 
change. Attempts to introduce ML component development into systems 
development highlight bottlenecks and mismatches between model 
development, software development, infrastructure development, and 
operational processes and artifacts [Amershi 2019; Lewis 2021]. 

Applying current software engineering practice to the development of AI-
enabled systems faces the following limitations:

•	Software development processes, including Agile processes, can pose 
challenges when aligning traditional software development activities 
with the experimental, iterative, and incremental nature inherent in 
the development of ML models and other AI components [Amershi 
2019; Rahman 2019]. ML model development relies on generation and 
test approaches that make it hard to align with sprint boundaries 
and the identification of done criteria common in most software 
development processes. 

•	Systems developed to train ML models may be expensive. One approach 
to address this challenge focuses on developing self-supervised systems 
that do not require the training of models in advance and shift the 
effort of labeling [Hendrycks 2019]. In these systems, engineers focus 
on monitoring the model and reacting to changes. This fundamental 
shift to self-supervised systems will continue. However, new techniques 
will need to be developed to address what elements of the system can 
be self-supervised, how self-supervised elements can work together 
with self-adaptation elements (in particular with self-adaptive software 
systems), and the resulting challenges for system monitoring and 
observability (among other things). 
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•	Platforms that support system integration and model development 
assume existing software platforms will scale out-of-the-box to 
support the integration of AI components with the rest of the system. 
Techniques to ensure successful deployment and sustainment of AI-
enabled systems after deployment are lacking. Although approaches 
for building on existing software engineering techniques, such 
as MLOps (which applies DevSecOps principles to ML component 
development), have emerged, they still rely on existing tools without 
appropriate metrics and analyses to provide timely and relevant 
information to developers. 

•	Systems that contain AI components cannot be reliably tested, verified, 
and certified. Maintaining safety and security as new computational 
paradigms such as AI are introduced cannot be guaranteed. While 
the emergent field of AI engineering focuses on techniques such as 
algorithmic trust, there is a dire need for software testing and analysis 
techniques to support testing of AI components and AI-enabled systems.

5.7.3 	 Topics for Research
To overcome these limitations, research will need to focus on augmenting 
software engineering techniques in the specification of systems with 
AI components and their design, architecting, analysis, deployment, 
and sustainment. In particular, progress needs to be made in the areas 
described below.

5.7.3.1 	 AI-Enabled, Systems-Specific Quality Attributes and  
Architecture Concerns
Quality attributes, or properties used to evaluate the quality and fitness of a 
system for its mission goals, drive the selection of architecture approaches 
and, consequently, the structure and behavior of software systems [Bass 
2012]. Business and mission goals drive the domain and relevant types 
of systems, and they are all critical in identifying high-priority quality 
attributes. Identifying the driving quality attributes for AI-enabled systems, 
specifying them, and understanding how they can be analyzed will require 
further research. While particular mission and business goals will shape 
the expected quality attributes, others will likely emerge as top priorities 
as well. These attributes include explainability, data centricity, verifiability, 
monitorability, observability, and fault tolerance, at a minimum [Pons 2019]. 
Analysis techniques to assure their correct design and implementation 
will need to be developed. These attributes will also drive the development 
of techniques for addressing fairness, unintended bias, and ethics. Ethics 
is a complex subject which requires progress in policy, social sciences, 
and technical realms. However, some aspects of ethics will fall under the 
umbrella of our ability to design them into AI systems [Ozkaya 2019]. 
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5.7.3.2 	 Methods for Specifying Uncertainty and AI-Enabled System Behavior
There are systems whose requirements we can and do know up front, or 
that we can discover easily through iteration. Those tend to be manageably 
sized systems that we have learned how to develop over the years. In reality, 
many software systems, even without AI components, need to model 
uncertainties and “unknown unknowns” throughout their development. 
Uncertainty is the dominant characteristic of AI-enabled systems. In 
particular, learning from data and the discovery process introduced with 
ML-modeling activities introduces many uncertainties. Existing software 
requirements engineering and traceability techniques will need to be 
expanded to decouple AI problem and model specification (which drive 
ML component development) from the system specification (which drives 
the test and evaluation of the resulting system—including the AI, data, and 
other software elements).  

5.7.3.3 	 Techniques to Analyze and Manage Change
The hard-to-trace dependencies, in particular those induced by data 
dependencies, become a significant source of failure in ML systems. 
These hidden and unstable data dependencies make applying known 
architectural patterns to manage system evolution and separate 
concerns challenging (for example, when inputs come from another ML 
model that updates over time). Introduced by Google engineers as the 
Changing Anything Changes Everything (CACE) principle, systems with 
ML components not only become highly coupled but also more complex 
[Sculley 2015]. However, the reality is that hidden dependencies have 
always been a challenge to manage, in particular runtime dependencies, 
because software engineers lack tools to analyze, model, and visualize 
these dependencies. Data dependencies that are inherent in AI-enabled 
systems suggest that we need the tools we already lacked even sooner. The 
CACE principle implies that there is a dire need to better manage change 
propagation, both to reduce the uncertainty of the expected results and 
to improve the engineer’s ability to debug systems. Advancing software 
engineering tools and techniques to analyze and safeguard systems for 
change propagation will be an essential priority.
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5.7.3.4 	 Reliability in AI-Enabled Systems
Challenges related to analyzing and designing for reliability in AI-enabled 
systems are similar to those of embedded real-time systems. Both are 
often developed by integrating many disparate software and hardware 
components, some of which may be developed and owned by different 
parties. AI components will also increasingly be developed independently; 
hence we will need techniques to analyze their attributes to predict their 
behavior and integrate them into the rest of the system reliably. The reality 
of the future of software systems will be an increased number of such 
disparate components and the heterogeneity they introduce to system 
design and operation. These disparate and heterogenous systems will 
require software and AI engineers to assume normal failure and develop 
safeguard techniques to ensure reliable system design, development, and 
operations. 

5.7.3.5 	 Monitoring and Self-Adaptation 
The increased awareness of the role of data in the success of AI-enabled 
systems will drive rapid progress in overcoming challenges stemming from 
a lack of data, data with noise, and techniques to label data. It will also 
drive the development of robust data engineering pipelines. Consequently, 
challenges will shift to efficient deployment and sustainment of AI-enabled 
systems. Current monitoring approaches mostly rely on collecting common 
system metrics, such as the throughput and resource consumption of 
systems. Monitoring techniques to provide information on drift detection 
and the optimal time to retrain need further research. Different aspects of 
monitoring and self-adaptation need to be taken into account, including 
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the monitoring of data and changes in data, monitoring of the model (and 
whether it continues to behave as intended), and monitoring of the system 
with AI components. The existing software engineering body of work on 
self-adaptation and self-healing systems will need to consider challenges 
introduced by AI components, in particular the dependence on data and 
how these data dependencies affect the rest of the system and its adaptive 
responses. Accounting for the implications of unintended consequences 
and incorrect model behavior will require the development of new 
monitoring and adaptation techniques. 

5.7.3.6 	 Testing, Deployment, and Sustainment of AI-Enabled Systems
The development and deployment of AI-enabled systems, in particular 
ML-enabled systems, involves three distinct perspectives (along with 
their own workflows and roles): data science, software engineering, and 
operations. These three distinct perspectives, when misaligned due 
to incorrect assumptions, can cause mismatches that result in failed 
systems. Improved automation and formalism in specifying and detecting 
these mismatches, incorporating these tools into deployment workflows 
and MLOps pipelines, and developing testing techniques that extend 
existing software testing approaches to effectively test AI components will 
be needed. Currently, testing of AI components relies on ad hoc or manual 
testing practices. Testing techniques for ML components, similar to those 
that exist for traditional software components and systems, is a gap that 
needs to be addressed.

5.7.4 	 Research Questions
The need to support AI-enabled systems through software engineering 
research has reached a point similar to the period in which we realized 
security, usability, and privacy had to be treated as primary quality 
concerns in software systems: If we do not design for system users and 
architect for usability, systems fail. Today, security, usability, and privacy 
are among many other mainstream system concerns, and we have common 
vocabulary and analysis methods to design and check for such attributes. 
Similar progress needs to be made in identifying and understanding AI-
enabled system-specific qualities. Existing design, test, evaluation, and data 
management techniques will help us understand how to design, deploy, 
and sustain the structure and behavior of AI-enabled systems, and they 
will also provide a stepping stone for addressing the following key research 
questions in the next 5 to 10 years: 

•	What are key quality attributes and architecture patterns to support 
explainable and trusted AI-enabled systems? What design tactics and 
analysis techniques support enforcing these attributes? 

•	How can uncertainty be modeled to help specify and monitor AI-
enabled system behavior?
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•	What metrics enable fine-grained monitoring of AI and non-AI 
components to derive timely sustainment decisions, such as retraining, 
decommissioning, new data collection, and mission-driven decisions?

•	How does an AI-enabled system self-heal and correct errors once it  
is deployed?

•	How can operational analysis be incorporated seamlessly into AI-
enabled system development and deployment, and how can it be 
supported by tools in MLOps frameworks?

•	Which existing software testing techniques can support testing AI 
components? What do unit, integration, and regression testing for 
systems with AI components look like?

5.7.5 	 Research Topics
The ability to make progress in any of these areas will have dependencies 
on the other areas, and work on all of them needs to start immediately. 
Progress will be iterative and incremental, with the following milestones 
guiding success: 

•	AI-enabled system specification methods. Methods for specifying AI-
enabled system behavior need to be developed.

•	Testing practices for AI-enabled systems. Unit, integration, and regression 
testing practices for AI-enabled systems need to be well understood.

•	Design and analysis methods for AI-enabled system. Key AI-enabled 
system quality attribute concerns, including explainability, 
monitorability, reliability, and trust, will need to be supported by 
architectural patterns, tactics, and analysis methods.

•	Data management in support of AI-enabled systems. Understanding 
the impact of data on system behavior, data architecting, and 
change management needs to be well supported by analysis and 
conformance tools. 

•	Uncertainty management methods. There need to be techniques to 
model, analyze, and design for uncertainty. 

•	Continuous monitoring and sustainment. AI-systems need to be 
effectively monitored, self-healed, evolved, and sustained.
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5.8 	 Engineering Societal-Scale  
Systems Research Focus Area
Many societal-scale software systems, such as today’s commercial social 
media systems, are designed to influence people and keep them engaged. 
Companies that develop and deploy such systems generally derive revenue 
from selling targeted advertisements to promote products and services, or 
they exercise influence in other ways, such as advocating particular political 
views. Avoiding bias and ensuring the accuracy of information are not 
always goals or outcomes of these systems. 

5.8.1 	 Goals
Software engineering for societal-scale systems focuses on predicting the 
full range of impacts, including unintended consequences and the potential 
for misuse and manipulation (which we refer to as socially inspired quality 
attributes) that arise when humans are integral components of the system. 
The goal is to leverage insights from the social sciences to build and evolve 
societal-scale software systems that fulfill their intended purpose and 
pose minimal risk of undesired or unintended consequences. Research 
will enable better prediction of system behavior for building and evolving 
societal-scale socio-technical software systems, constructing and evolving 
systems with humans as components, and continuously mitigating risks 
of unintended bias, misplaced trust, violations of privacy expectations, 
concealed influence, or unrestrained social manipulation [Feiler 2006]. 

Societal-scale systems consist of more than conventional social media 
systems. The essential characteristic of these systems is that they are 
information and communications channels that foster desired outcomes 
(such as engagement and action) as a primary source of revenue. Some 
examples include the following:
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•	social media platforms, such as Facebook, Twitter, and Instagram

•	search platforms, such as Google Search and YouTube, that help people 
find desired content on the Internet or hosted by the service and that 
also provide individualized recommendations based on data

•	systems that detect a software developer’s knowledge and adapts their 
experience to mentor or train the developer

•	systems that attempt to predict events (such as school shootings, flu 
outbreaks, and super spreaders) based on search or other data 

•	gamification to increase engagement in areas such as personal health 
or financial activities

5.8.2 	 Limitations of Current Practice 
Societal-scale software systems connect people and provide new 
communication mechanisms that enable many benefits, from finding a 
long-lost friend to instant updates from family members. However, systems 
today are designed to maximize engagement and influence people. There 
exists a very limited understanding of how these systems influence the 
behaviors of individuals over time or how the aggregate behaviors of 
millions of people can be predicted. The limitations of engineering societal-
scale systems under the existing state of the practice, which lacks the 
understanding and safeguards required to mitigate these issues, creates 
serious risks to both individuals and society as a whole because bias and 
misinformation create unforeseen and unrestrained consequences.

Although societal-scale systems are popular around the world and are 
among the most frequently used software systems, there are significant 
limitations with current practices for engineering these systems, including 
the following:

•	Societal-scale software systems incorporate AI, create new information 
flows, and reshape societal knowledge, but there is little understanding 
of how a resulting socio-technical system will behave. People 
change their behaviors in response to these information sources in 
ways that are not always predictable or even visible [Centola 2018]. 
Understanding influence and response is made even more complex 
by the fact that the information flows change frequently and the 
information is not always vetted for truthfulness, bias, or manipulation.

•	Today, societal-scale systems are developed primarily to maximize 
engagement through individual interactions that collectively create 
social networks.  These social networks can be used to influence 
social behavior or perception. These technologies use highly targeted 
personalization to influence individual action. This influence can 
lead to polarization and can result in an aggregate warping of social 
knowledge. Studies indicate that engagement algorithms can have 
negative side effects that drive people toward extremes and can result 
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in new security risks [Carley 2020]. Current engineering practices have 
no framework to assess individual engagement algorithms or create 
safeguards against uncontrolled warping of social knowledge.

•	Socio-technical systems provide direct connections to billions of 
people daily around the world, which dramatically increases the 
potential scale for social manipulation. Societal-scale systems use 
active interaction and vast quantities of interaction data compared to 
previous passive media (such as television), which enables targeted 
persuasion with unprecedented effectiveness and scale. This 
capability essentially democratizes influence, enabling manipulation 
by individuals, organizations, or nation states [Waltzman 2017]. The 
manipulation can be unintentional, due to a lack of understanding of 
these systems, or intentional, as nation states or rogue actors create 
online campaigns to manipulate populations. For many people, these 
systems create a different virtual society and enable communication 
with different rules and behavioral norms, which can lead to false 
consensus, bias, and polarization.

5.8.3 	 Topics for Research
Building new software engineering approaches for societal scale systems 
requires a cross-disciplinary approach. As stated in a recent research 
agenda from the Computing Community Consortium (CCC), software 
research “...will require a blend of humanities, social science, education, 
journalism, and computer science, with comprehensive support and 
participation from a broad range of organizations and institutions” [Bliss 
2020]. Understanding what we can draw on from these disciplines will be 
critical to informing software engineering research to build the software 
systems of the future. 
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5.8.3.1 	 New Quality Attributes and Architectures
Societal scale socio-technical systems have new quality attributes that 
are not well understood. Today, most software architectures are created 
to support tradeoffs across well understood quality attributes, such as 
performance, reliability, and safety. Part of the goal of defining new quality 
attributes includes defining the metrics of merit and how to measure it.

The purpose of discussing quality attributes is to understand the 
relationship of design decisions in societal-scale systems and the behaviors 
of the systems in use. New approaches are needed to deal with the many 
dimensions of human behavior. Engineering systems with predictable 
impact on humans will help avoid surreptitious ideological influence. Trust, 
privacy, and bias are not totally new, but what is new is the challenge of 
predicting and monitoring these attributes. 

We want to use the social sciences as a basis for understanding these 
quality attributes, similar to the way we use physical sciences as a basis 
for designing for other quality attributes. One approach is to separate the 
measurable manifestation of a quality attribute from the interpretation of 
it. For example, using votes as a measure of merit (like the best product or 
solution) seems to be useful, but also has challenges, including bias and 
understanding the biases in samples of voters. Additional considerations 
include the following:

•	What are the new quality attributes of societal-scale socio-technical 
systems?

•	How can we identify and capture societal-scale requirements?

•	How do we relate individual choices to predict larger aggregate 
behaviors and determine whether they are within the “expected” range 
from an engineering perspective? 

•	How can we develop privacy models that scale across organizations 
and systems and enable individual control?

•	How can we ensure our confidence in data?

5.8.3.2 	 Software Development Using Socio-Technical Systems
A special case occurs when socio-technical systems are used by software 
engineers to build software. This is an interesting use of societal-scale 
systems because of the influence of these systems on software engineers 
and software engineering activities. These systems and open source 
environments allow people to access huge amounts of code and create 
a type of digital infrastructure that both influences and is influenced by 
software engineers. Examples include: 

•	Stack Overflow, where people may use solutions without considering 
their origin or effects

•	GitHub, where mining code could lead to assumptions about software 
qualities and possibly influence developers
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•	social coding environments, where popularity, number of users or 
followers, links, and a host of other types of social information are 
used in the technical decision-making process, such as the adoption of 
libraries and frameworks

•	new ways of learning, from massive open online courses (MOOCs) 
which enable recognized experts to teach to anyone, to developers 
learning through YouTube tutorials

Researching how societal-scale systems influence software development 
is important to better understand how to improve software quality and to 
consider how these influences could be focused to help address workforce 
challenges. For example, if socio-technical systems influence software 
developers to make better decisions, then these systems could serve as one 
enabler for AI-augmented software development.

5.8.3.3 	 Analysis Tools that Support Emergent Social Network Topology
Architectural and software analysis tools must be automated to enable 
continuous analysis, but they must also be able to support emergent 
network topologies. The network topology, or prioritized network of data 
sources and influence mapping, changes because who a person connects 
to strongly impacts what they see. Historically, the assumption has been 
that systems were created to inform as opposed to influence people. The 
influence mapping topology constantly changes, and sometimes topics 
surge or “go viral,” resulting in new and unexpected connections. Specific 
challenges in this area include the following:

•	developing automated and continuous analysis of very large and 
emergent network topologies

•	creating analysis tools that enable situational awareness and human 
understanding of very large-scale trends and predictions

5.8.3.4 	 Developing a Theory of Socio-Technical Knowledge Creation
Future software developers must consider multiple dimensions of 
individual interactions and understand how these individual interactions 
enable or create risks to society’s general knowledge. Addressing this 
challenge requires understanding how knowledge is propagated and 
identifying mechanisms to provide “guardrails” that limit how much 
information is warped or influenced by speculation.

The communication mechanisms in socio-technical systems are new 
pathways of information flow, and they impact social structures, norms 
and understanding. Previously, information flowed from a few sources 
to large audiences through video, audio, or paper media organizations 
that generally included information about sources. While these media 
organizations were sometimes biased, they generally undertook serious 
efforts for verification or vetting. Today, information flows quickly through 
social networks without explanation of the source, little vetting of the 
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information, and frequent bias. Figure 3 illustrates a conceptual “funnel,” 
where the data going into the funnel follows multiple steps before being 
considered fact or knowledge.5 Different fields (e.g., journalism, intelligence, 
and academic fields) have different versions of the funnel, but knowledge-
based professions all have ways of testing and selecting information to 
identify what is and is not well founded.

Speculation

Hypothesis

Conjecture

Theories

New Knowledge

Rumors

Free Speech

Academic Freedom

Trusted Forums
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Figure 3:	 Conceptual Process for Creating Knowledge in Societal-Scale Systems

Current computational methods alone are insufficient to make the 
judgments needed to move data through the funnel. Specific areas of 
interest include the following:

•	protecting social epistemology by identifying the knowledge funnel 
mechanisms [Rauch 2018]

•	 identifying the essential characteristics of effective online moderation 
systems for vetting data and rating data sources (e.g., Karma on Reddit)

•	understanding and mitigating unintended consequences at scale in 
social media

•	 identifying and mitigating risks of social epistemology influencers that 
negatively impact knowledge creation

5	 Graphic derived from Jim Herbsleb, Carnegie Mellon University, Institute for Software Research  
[Rauch, 2018].
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5.8.3.5 	 Continuously Evolving Socio-Technical Systems
Automatically detecting and bounding behavior is critical to meeting 
the scale and volume of data in socio-technical systems. This requires 
consideration of the constant change and uncertainty in architectural 
evolution, data flows, and governance policies of these systems. Systems of 
the future must constantly monitor and adjust as the system changes.

It is important to highlight that the process of evolving societal-scale 
systems also requires understanding and adjusting for how they change the 
behaviors of the people using them. We don’t fully understand what kinds 
of impacts these systems can have on people over time, and there is a range 
of impacts that need to be explored. This creates an interesting feedback 
loop in which the people using the system are also reshaping the system.

Continually evolving socio-technical systems includes questions such as  
the following:

•	How can we control versions or fix bugs when these systems are 
constantly changing? Is it a new way of developing software when the 
system and data are never the same?

•	How do we understand the state of the socio-technical protection 
mechanisms that lead to the knowledge that was created?

5.8.3.6 	 Protecting Against Misuse of Socio-Technical Platforms
Socio-technical systems connect billions of people every day and 
can have profound effects on society. Detecting societal-scale 
disinformation or manipulation is difficult because the information can 
take many forms, such as text, video, or audio [Twetman 2021]. Rapidly 
reacting to propagating misinformation in different types of data, at 
scale and fast enough to respond, requires significant architectural and 
data mechanisms. 
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Additional topics of interest include

•	manipulating politics and public opinion, which present national 
security concerns, especially when done by foreign powers

•	detecting and addressing unanticipated consequences

•	 tracking sources of content (i.e., provenance) 

5.8.3.7 	 Adherence to Policy 
Governments around the world are creating new policies and rules to 
govern socio-technical systems. These rules can vary at national, state, 
or even local government boundaries even though the socio-technical 
systems exist at a global scale. New mechanisms are needed to engineer 
these systems when policy rules vary across locations and provide the 
measurement and audit capability required for government regulation. It 
is important for software engineering research to create data-driven and 
openly understood techniques for industry, government, and society to 
establish a technically grounded and adaptable governance framework 
for societal-scale systems. This topic requires further research because 
engineers face many tradeoffs as governance addresses multiple 
considerations, including the following:

•	how to require transparency when influence mechanisms are 
operating in the software 

•	how to monitor policy adherence while preserving the privacy of 
individuals 

•	how to protect against companies, governments, or other actors 
misusing the ability to filter content

•	how to build automated monitoring and reporting for policy adherence

5.8.3.8 	 Experimentation and Testing
Socio-technical systems operate at such large scale, and with such diversity 
of human interaction, that typical experimentation and testing approaches 
are ineffective. Modeling is one option, but this requires confirmation 
that the system and the model are consistent. It also requires a deeper 
understanding of individual and aggregate behaviors. Another solution is 
experimentation and testing as part of the operational system, such as the 
A-B testing carried out by many tech companies. But, as a general strategy, 
this approach has technical challenges in bounding the experimentation. It 
also has potential legal and moral concerns related to human subject testing 
(testing the system without the knowledge of the people using it), potentially 
increasing the risk of manipulation.
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A deeper understanding is needed about what testing really means for 
societal-scale systems and how experimentation and testing should be 
conducted. Some additional questions include the following:

•	Should people affected by a system have a role in its design (i.e., 
participatory design)?

•	How do we create an experimentation environment to explore these 
areas and test new approaches? (This question involves understanding 
the threshold of what is acceptable to test on live users versus what 
must be revealed to users to let them know they are part of a test.)

•	 If so many people depend on socio-technical systems, should there be 
reliability or safety expectations (like in telecommunications) to test 
when a main hub fails or to determine how a system can fail safely?

5.8.4 	 Research Questions 
There are numerous challenges and questions involved in engineering 
societal-scale systems. Answering the societal-scale questions requires 
leveraging expertise outside of software engineering from the social and 
information sciences. The following questions highlight this point:

•	How do we test solutions and fully consider the widely varying cultural 
and behavioral background of people? 

•	How do we monitor social epistemology impacts, and which social 
vetting processes are effective to guard against intentional or 
unintentional warping of knowledge? 

•	What are the software engineering expectations for transparency 
when using influence mechanisms in systems, particularly in health or 
financial systems? 

•	What are the important aspects of societal-scale measurement to enable 
continuous assessment of compliance of systems to evolving government 
policies, and when might the measurement infringe on privacy?

5.8.5 	 Research Topics
Research topics will be incremental and are summarized below.

•	New quality attributes based on human behavior at scale. Identify new 
quality attributes and architectures that enable engineering prediction 
of human behavior at scale with consideration for uncertainty.

•	System instrumentation to monitor effects of system on social behavior. 
Build continuously evolving socio-technical systems analysis tools, 
analysis tools that support emergent network topology, and new 
approaches for experimentation and testing.

•	Automated detection and protection for misuse of socio-technical 
platforms. Develop a theory of societal-scale knowledge creation and 
develop protections against misuse of societal-scale platforms.

•	Platforms for continuously evolving socio-technical ecosystems. Build 
continuously evolving societal-scale system analysis tools and support 
adherence to variable policy rules.
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5.9 	 Engineering Quantum Computing Software Systems 
Research Focus Area
Quantum computing seeks to change the style of computation by 
leveraging quantum mechanical effects. In the 1980s and early 1990s, 
the theory of a new type of computer was developed: A quantum 
mechanical Turing machine was described and shown to be able to 
simulate everything a classical Turing machine could do. The basic unit 
of computation in these systems is not a classical binary one or zero—a 
bit—but, rather, an analog value that can represent intermediate values 
and simultaneously multiple values: both one and zero—a quantum bit, or 
qubit. This expressivity, called superposition, plus the ability of multiple 
qubits to be entangled—to join together to express states that cannot be 
expressed in terms of concatenated, separate, single-qubit systems—gives 
a quantum computer its power. In fact, a quantum computer with n qubits 
can encode 2n—1 complex numbers. Exciting theory was developed to 
show that quantum computers could, for select problems, be much more 
capable than classical computers. Such computers are not limited by the 
Church–Turing theory, which says that the performance of all classical 
computers can be only polynomially faster than a classical probabilistic 
Turing machine. Better yet, algorithms were soon developed that showed 
that a quantum computer could be exponentially faster than classical 
computers at solving specialized problems.
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That groundbreaking theory motivated additional work on the design and 
realization of quantum computers. Two classes of quantum computers 
have been pursued: The first class comprises computers that initialize 
state and then evolve that state directly so that the final system state has 
a high probability of encoding the correct answer to the computation. 
This is called analog quantum computing, and includes the quantum 
annealing computers built by D-Wave Systems. The second class of 
quantum computers breaks computation down into a small set of primitive 
operations, then sequentially performs those operations, eventually 
producing a probably correct result. These are called gate-based systems, 
and are the systems we focus on here, because the discrete nature of these 
systems should enable the use of error correction, which will allow the 
systems to scale much larger and thus solve much more complex problems.

Small-scale implementations of these gate-based computers are starting 
to be developed from different technologies. There are many challenges in 
developing such systems—qubits need to be isolated from the environment, 
entangled, and precisely controlled, so it is still not known which qubit 
technologies will scale to the desired, large systems. Leading contenders 
include trapped ion qubits (explored by IonQ and Honeywell) and 
superconducting qubits (explored by IBM and Google), although academics 
and others are exploring photonic qubits and neutral atoms. Major 
providers of high-performance computing (e.g., IBM) and cloud computing 
services (e.g., Google, Microsoft, and Amazon) are enabling access to today’s 
small quantum computers through their platforms. Today, the small size 
and noisy qubits of these systems have limited their applications; they 
have been used mostly for experimentation and scientifically interesting, 
but commercially unimportant, demonstrations. Still, the promise of 
such systems to compute things beyond classical computers is enticing. 
Recommendations in this section have been influenced by conversations 
with practitioners as well as by several excellent recent reports [Martonosi 
2018; NASEM 2019].

5.9.1 	 Goals
If we imagine that hardware advances that permit scaling are achieved, 
then advances in software and software engineering will also be needed. 
The 2018 National Strategic Overview for Quantum Information Science 
[NSTC 2018] identifies grand challenges in areas such as ML, simulation of 
many-body systems for materials discovery, chemical processes, quantum 
field theory, and dynamics of biological processes. To this list we add 
software engineering.
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For quantum computers, there is much to be done. We are working in a 
world with quantum computers of only 50-100s of barely functioning 
qubits—what John Preskill called “Noisy Intermediate-Scale Quantum” 
(NISQ) technology [Preskill 2018]. The software tools we have are powerful, 
yet each qubit is individually controlled by the programmer, with only 
limited automation. Our goals are to first enable these NISQ computers to be 
easily programmed and then to have increasing abstraction as larger, fully 
fault-tolerant quantum computing systems become available.

5.9.2 	 Limitations of Current Practice 
There are so many missing software engineering pieces that it is easiest 
to think about the needed advances as layers in a software engineering 
stack. We group those advances in software into the following categories: 
quantum algorithms, software engineering, development tools and 
languages, computing platforms, and testbeds. 
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5.9.3 	 Topics for Research

5.9.3.1 	 Advances in Quantum and Classical Algorithms
In this section we consider software engineering for special-purpose 
systems that have not yet reached their full potential—universal gate-
based quantum computers. Today’s systems are small and unreliable, so 
the research described in this section that relies on large-scale systems 
may take more years to perform than other sections due to their lack 
of availability. Still, enough is known to start to envision the software 
engineering challenges and research required for such systems, even if the 
time frame may be less accurate.

Theoretical computer scientists focus on the asymptotic behavior of 
algorithms. Fast quantum algorithms are tuned to the unique aspects of 
a quantum computer: superposition and entanglement. These are both 
limited in scope and different in style from classical algorithms, requiring 
substantial creativity and expertise. 

In fact, the total of all quantum algorithms that exist today that in theory 
could outperform a classical algorithm are listed online as the “Quantum 
Algorithm Zoo.”6  There are four major areas of such algorithms: (1) algebraic 
and number theoretic algorithms; (2) oracular or searching algorithms; (3) 
approximation and simulation algorithms; and (4) optimization, numerics, 
and machine learning algorithms.

Unfortunately, today’s quantum computing systems perform individual 
calculations much more slowly (in wall-clock time) than classical 
computers. They have slower clock rates and produce probabilistic results, 
thus requiring either many runs or a means of checking the discovered 
solution. After the relatively limited performance of today’s real hardware is 
factored in, only those algorithms that provide super-polynomial speedups 
are likely to achieve true quantum advantage. Only a few experiments 
have demonstrated quantum advantage—the ability to solve a problem 
faster than it could be solved on a classical computer. This will remain 
challenging, because both quantum and classical computing architectures 
will continue to improve.

The following are research topics for this area:

•	Expand the set of known quantum algorithms.

•	Leverage new insights from quantum algorithms to improve  
classical algorithms.

•	Build hybrid algorithms that leverage the best quantum and  
classical algorithms working together.

•	Develop provably correct libraries that can be called from  
higher-level languages.

•	Develop benchmarks, so the performance of different machines  
can be compared.

6	 https://quantumalgorithmzoo.org/

https://quantumalgorithmzoo.org
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5.9.3.2 	 Advances in Software Engineering, Development Tools, and 
Quantum Computing Languages
Quantum computer tools are in their infancy. There are several quantum 
programming platforms. Microsoft offers a quantum development kit 
that allows programming in the object-oriented Q# language [Svore 2018]. 
Amazon offers a development kit that supports programming in the Bra-
Ket language [Amazon 2021]. IBM offers programming in QISkit, a multi-
layered language that supports programmers with expertise in other fields, 
quantum circuit developers, and quantum mechanics experts [Abraham 
2019]. In addition, there are several academic (e.g., Scaffold) and open-
source (e.g., Quipper) languages and tools. Both functional and imperative 
languages have been developed [Qiskit 2012; Gay 2006]. 

Many of these languages are low level, roughly akin to classical assembly 
language. This characteristic encourages the programmer to think about 
the unique aspects of quantum computers but makes it hard to think in 
terms of higher-level algorithms. It is not clear that this is the best model 
for developers, or that any one of these early languages is the best possible 
way to program. In addition, the toolchain has many simple components, 
and there are enticing hints that more sophisticated solutions will produce 
dramatic speedups. For example, efficient mapping computations from a 
language onto a specific quantum computer can double the performance of 
the algorithm. 
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The following are research topics for this area:

•	Develop new domain-specific programming languages that allow 
the programmer to directly express quantum-unique parallelism 
while preventing impossible actions, thereby making the quantum 
programmer more efficient.

•	Develop quantum compiler optimization techniques that map 
programming languages to multiple target architectures, thereby 
improving the runtime and efficiency of the implementation and 
enabling benchmarking.

•	Develop tools to support continuous integration for quantum computers.

5.9.3.3 	 Advances in Hardware/Software Computing Platforms
In most cases, users access today’s quantum computing systems via 
the cloud as a special-purpose co-processor of a classical computer. 
Most future algorithms will perform some actions (i.e., loading data and 
initializing the system) on a classical computer and some computations 
on a quantum computer. Deciding which computation to perform on what 
component will remain a challenge, as will measuring the performance of 
the system. Finally, debugging cannot be done on a quantum computer in 
the usual way.

The following are research topics for this area:

•	Develop new tools for profiling quantum algorithms and hybrid 
classical-quantum algorithms.

•	Develop new tools for debugging quantum algorithms and hybrid 
classical-quantum algorithms.

•	Refine the interfaces: command-line, application-level, and application 
programming interfaces.
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5.9.3.4 	 Advances in Simulators and Testbeds 
Simulators and testbeds will be needed to advance the field. Simulators 
exist and can leverage multicore and high-performance computing 
infrastructures (e.g., QuEST and high-performance simulation of quantum 
computers) [Jones 2019]. At base, a simulator can be used to verify the 
expected outputs of a quantum computer. At higher levels of abstraction, a 
simulator can trace execution and reveal the state of logical qubits. There 
will be limits to these simulations, because current simulation techniques 
simulate gate operations using sparse matrix manipulation, where an 
N qubit computer grows as 2N. Current supercomputers can perform 
simulations of about 50-qubit systems.

The following are opportunities for possible research directions:

•	Develop techniques to allow for larger simulations: new approaches, 
or new decomposition of existing approaches, enabling sequential 
simulation of multi-step and complex algorithms.

•	Develop techniques to automatically allow comparisons of intermediate 
representations from a simulator and a quantum computer.

5.9.4 	 Research Questions
•	What additional quantum algorithms are there?

•	What new tools and techniques would be useful for debugging 
quantum algorithms?

•	What new approaches, and new decomposition of existing 
approaches, would support larger-scale simulation of multi-step  
and complex algorithms?
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5.9.5 	 Research Topics
It is difficult to order the tasks above, which are organized as a quantum 
software stack. However, there are three important epochs for quantum 
computers:

•	Scientific: Learning how to build a quantum system that is perfectly 
isolated from the outside world, and yet the qubits in that system are 
able to strongly interact with each other. The problems that need to be 
solved are mostly problems for the field of physics. Software challenges 
include developing low-level tools, akin to device drivers, that 
coordinate the control signals to individual qubits. There is still a lot of 
interesting research to be done, but that is not the focus of this report.

•	NISQ: This is the era when systems of 50 to a few hundred qubits are in 
the system, mostly isolated from the outside world, and able to interact 
with each other as desired. Several quantum computers have been 
built that reach this scale and performance. There are many interesting 
software engineering problems.

•	Fault-Tolerant Quantum Computing: This is the era of a few hundred 
to millions of qubits, isolated from the external world and strongly 
interacting with each other in carefully controlled ways.

We subdivide milestones in the following table, focusing on problems of 
NISQ and Fault-Tolerant Quantum Computing, and forcing a selection of no 
more than two of the following categories: 

•	Short-term. These are efforts that should be pursued over the next 
couple of years.

•	Mid-term. These are efforts that should be pursued over the next  
three-to-five years.

•	Long-term. These are efforts that should be pursued over the next  
six or more years.
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Table 1: 	Quantum Computing Research Milestone Time Frame

Research Direction Short Term Mid-term Long-term

Benchmarks for quantum computing X

Large-scale simulation techniques X

Expanded set of quantum algorithms X X

Quantum algorithm insights leveraged for 
classical algorithms X X

Standardized software stack interfaces X X

Intermediate comparisons: QC and simulators X X

Debugging tools and techniques X X

Hybrid classical-quantum algorithms X X

Proven correct libraries X X

Domain-specific languages with greater 
abstraction X X

Target architecture mapping techniques X X

Tools for continuous integration X X

Profiling tools X X
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6 Recommendations
This report is intended as a call to action in 
response to current and anticipated future deficits 
in software engineering capability. Both the 
research recommendations and the enactment 
recommendations in this section help to define the 
actions needed for the successful development of 
future systems. 

The research focus areas in Section 5 led to the research recommendations, 
followed by a set of enactment recommendations that focus on people, 
investment, and sustainment as vehicles for change. Work should begin as 
soon as possible on implementing the recommendations in this section.

6.1 	 Research Recommendations
The research recommendations were motivated by the following key 
observations:

•	AI is both a capability enhancer and a source of engineering uncertainty.

•	As software pervades everything, it increasingly helps us imagine new 
ways it can be used. This leads to the engineering challenge of ensuring 
software evolvability while efficiently reassuring it.

•	As software systems continue to grow in size and interconnectivity, 
evolvability will increasingly depend on engineering by composing and 
recomposing systems from existing pieces.

•	 In the past, social groups and societies were constrained to some 
extent by physical proximity. Now social media enables interactions 
at an enormous scale, virtually without limit. This leads to a need 
for developing new engineering principles for societal-scale, socio-
technical systems.

•	As software continues to touch almost everything, software-reliant 
systems inevitably become increasingly heterogenous, consisting of 
data, humans, organizations, sensors, different types of computational 
devices and other physical objects, and other elements. This 
heterogeneity of system parts brings engineering challenges due to the 
many disparate and interacting domains.
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The following research recommendations are intended for public and 
private researchers and practitioners. 

Recommendation 1—Enable AI as a Reliable System Capability 
Enhancer

The software engineering and AI communities should join forces to develop 
a discipline of AI engineering (perhaps starting with the Association for the 
Advancement of Artificial Intelligence (AAAI) and IEEE Computer Society). This 
would contribute to the development and evolution of AI-enabled software 
systems that behave as intended. Moreover, this would enable AI to be 
used as a software engineering workforce multiplier by helping with routine 
software engineering activities, such as generating code based on programmer 
intent aiding in refactoring, and ensuring conformance between a system’s 
implementation and its architecture.

Recommendation 2—Develop a Theory and Practice for Software 
Evolution and Re-Assurance at Scale

The software engineering research community should develop a theory and 
associated practices for re-assuring continuously evolving software systems. A 
focal point for this research is an assurance argument, which should be a software 
engineering artifact equal in importance to a system’s architecture. Research 
should include developing representations for assurance arguments and 
approaches for structuring assurance arguments so that small system changes 
only require incremental re-assurance.

Recommendation 3—Develop Formal Semantics for Composition 
Technology

The computer science community should focus on the newest generation of 
composition technology to ensure that technologies such as dependency-
injection frameworks preserve semantics through the various levels of 
abstraction that specify system behavior. This will allow us to reap the benefits of 
development by composition while achieving predictable runtime behavior.

Recommendation 4—Mature the Engineering of Societal-Scale  
Socio-Technical Systems

The software engineering community should collaborate with social science 
communities to develop engineering principles for socio-technical systems. 
Theories and techniques from disciplines such as sociology and psychology 
should be used to discover new design principles for socio-technical systems, 
which in turn should result in more predictable behavior from societal-scale 
systems such as social media.
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Recommendation 5—Catalyze Increased Attention on Engineering 
for New Computational Models, with a Focus on Quantum-enabled 
Software Systems.

The software engineering community should collaborate with the quantum 
computing community to anticipate new architectural paradigms for 
quantum-enabled computing systems. The focus should be on understanding 
how the quantum computational model affects all layers of the software 
stack. Predictably, exploiting quantum computing will require determining 
where the specifics of the quantum model should be hidden versus known by 
other elements of the software system.

6.2 	 Enactment Recommendations
While research recommendations focus on scientific and engineering 
barriers to achieving change, enactment recommendations focus on 
institutional barriers, such as economic, human, and policy barriers. 

•	 It takes investment to fuel change. The institutional challenge is to 
compel investors.

•	Regardless of the level of automation, human engineers build 
systems. The institutional challenge is to reimagine our software 
engineering workforce.

•	 Self-sustaining change requires institutionalization of policy and practices.

The following enactment recommendations are for research funders, policy 
makers, and industry leaders. 

Recommendation 6—Investment Priority Should Reflect the 
Benefits of Software Engineering As a Critical National Capability

The software engineering community, software industry leaders, national 
labs, and federal departments should recognize software engineering as a 
national priority. This higher recognition in policy is needed to enable sustained 
government and industry investment in software engineering research, with 
benefits to national competitiveness and security. 
The strategic role of software engineering in national security and global market 
competitiveness should be reflected in national research activities, including 
those undertaken by the White House Office of Science and Technology Policy 
(OSTP) and Networking and Information Technology Research and Development 
(NITRD). These research activities should recognize software engineering research 
as an investment priority on par with chip manufacturing and AI. For example, 
the risk of the U.S. economy being dependent on foreign chip manufacturing 
recently motivated multiple U.S. actions, including industry investments of 
around $50 billion and a proposed government investment of another $50 billion. 
AI technology investment has followed a similar path, where a possible U.S. 
technology gap motivated government investment from DAPRA and NITRD, along 
with major industry investments. In both of these examples, increasing awareness 
of the risks to national security and the U.S. economy motivated action that 
included industry and government investment. It is equally important to invest in 
software engineering research (see the table on the following page).
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Without continual investment and improvement in software engineering 
technologies, next-generation applications will simply not be possible. 
Software, and therefore software engineering, is the common enabler of rapid 
innovation across most new technologies. As outlined in the research focus 
areas of this report, the software engineering technical challenges ahead 
require new solutions. 
As stated in the 2018 National Defense Strategy, “The security environment is also 
affected by rapid technological advancements and the changing character of war. 
The drive to develop new technologies is relentless, expanding to more actors 
with lower barriers of entry, and moving at accelerating speed.” The environment 
of rapid technological advancement highlights how quickly technology 
leadership can be lost, and the lower barrier of entry for software means that 
nation states, or even non-state actors, can quickly leverage technology. 
Software engineering grand challenges sponsored by DARPA, the National Science 
Foundation (NSF), and FFRDCs are also suggested. Grand challenges have become 
an effective way to quickly mobilize existing capability on critical issues while 
enabling new partnerships across academia and industry.

Table 2: 	Investment in U.S. Software Technology

Chip Manufacturing
Risk: U.S. economy dependent on 
foreign chip manufacturing

•	 US capacity fell to approximately 
13% in 2015 compared to 30% in 
1990 and 42% in 1980

•	 2020–2021: World-wide shortages 
post pandemic

AI Technology

Risk: U.S. AI technology gap compared 
to other nation states

•	 many nations interested, but 
becoming a two-nation race

•	 multiple nations announcing multi-
billion-dollar investments in AI

Software Engineering Research

Risk: Software engineering advances 
have not kept up with the critical 
nature of software for U.S. national 
security and competitiveness. 

This is important because 

•	 software is the backbone of all 
critical systems

•	 software includes complex supply 
chains 

•	 software is infrastructure

U.S. Actions

•	 2017: President’s Council of 
Advisors on Science and Technology 
(PCAST) report on US Leadership in 
Semiconductors

•	 2020–2021: Intel more than $20 
billion, Taiwan Semiconductor 
Manufacturing Company (TSMC) 
more than $30 billion in U.S. 
fabrication investments

•	 2021: $50 billion request in 
president’s budget goals

U.S. Actions

•	 2018: DARPA “AI Next” $2 billion

•	 2019: Executive order AI strategy and 
investment

•	 2021: Networking and 
Information Technology Research 
and Development (NITRD) 
investments—#1 of 12

Initial U.S. Actions

•	 2019–2020: NITRD Future Comput-
ing Community of Interest; National 
Strategic Computing Initiative 
Update; and Software Productivity, 
Sustainability, and Quality Working 
group

•	 2021: CMU SEI A National Agenda 
for Software Engineering Research & 
Development study



91

A National Agenda for Software Engineering Research & Development

Recommendation 7—Institutionalize Ongoing Advancement of 
Software Engineering Research

The software engineering community, software industry leaders, national 
labs, and federal departments should recognize software engineering as a 
national priority. This higher recognition in policy is needed to enable sustained 
government and industry investment in software engineering research, with 
benefits to national competitiveness and security. 
Sustained advancements in software engineering require institutionalizing an 
ongoing review and reinvestment cycle for software engineering research and its 
impact on software engineering practice on the fabric of our software engineering 
ecosystem. Maintaining national software engineering proficiency requires 
research funding sources and institutes working with industry and government 
leaders in the software engineering community to periodically review the state 
of software engineering. The DoD’s National Defense Strategy (formerly the 
Quadrennial Defense Review) can serve as an exemplar. The responsibility for 
ensuring that such reviews take place should be part of a high-level influential 
organization such as OSTP or President’s Council of Advisors on Science and 
Technology (PCAST).

Recommendation 8—Develop a Strategy For Ensuring an Effective 
Workforce for the Future of Software Engineering.

Currently, software engineering is performed by a broad collection of people 
with an interdisciplinary skill set that does not always include formal training in 
software engineering. Moreover, the nature of software engineering seems to be 
changing in reaction to the fluid nature of software-reliant systems. Because of 
these trends, the traditional areas of expertise, such as architecting, designing, 
implementing, and testing, could give way to other specializations. 
We need to better understand the nature of the needed workforce and what to do 
to foster its growth. The software engineering community, software industry, and 
the academic community should create a strategy for ensuring an effective future 
software engineering workforce.
These issues and other consequences of this research roadmap need to be 
studied, to lead to a detailed set of workforce recommendations.
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7 Conclusion
Architecting the Future of Software Engineering: A 
National Agenda for Software Engineering Research 
and Development is the result of a yearlong, 
community-based activity to re-validate the 
importance and centrality of software engineering; 
identify current and future challenges in the 
discipline; and develop a research agenda to 
catalyze the software engineering ecosystem to 
prepare for the future. 

We conclude this document by summarizing several insights we gained (or 
re-gained) along the way.

Software touches all aspects of life and all aspects of infrastructure;  
is key to research in many disciplines; and, in general, is important to 
all aspects of national security. Thus, software is an important enabler 
of ever-more aspects of society. It is hard to look around you and not see 
something with software inside. The importance and pervasiveness of 
software naturally implies that we have to pay careful attention to how we 
construct and evolve it. That is, we have to pay careful attention to software 
engineering. Otherwise we risk having software engineering become not 
just an enabler of new capability, but also a source of vulnerability. 

Software engineering was originally conceived in the spirit of other, older 
engineering disciplines, but it seems to be finding a niche of its own due 
to its unique nature. Perhaps, unlike other engineering disciplines such 
as civil engineering, software engineering will not evolve into a “mature” 
discipline. If it does not, it will be because, after its practice become routine, 
it will soon thereafter be automated, and software engineering will advance 
to tackle a new challenge. Then, due to the conceptual nature of software, 
the practice of software engineering will continue to grow and change—
without bounds—in capability, complexity, closeness to other domains, and 
interconnection. There seems to be no plateau in the advance of software 
and, therefore, no end for challenges in software engineering. 
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The continual advance of software is a natural driver for automation, 
which leads to increasing responsibilities and authority for the software 
that helps humans create and evolve software. AI is playing an important 
role in helping software tools move beyond their role as mere extensions 
of programmers. It is also creating a new role for engineers as peers 
and, ultimately, collaborators with AI. This expanded role will enable 
the engineering of software, in part, by allowing software engineers and 
eventually users to “program” software by letting it know what it is they 
expect it to do. Programming through intent in this way will become an 
important specialty.

Increased reliance on software drives the need to continuously and rapidly 
change it. Indeed, what used to be a “want” has become a “need” for defense 
systems. Nimble threats drive the need for nimble responses and enhanced 
capabilities through better sensors. And AI analytics drive the need for 
rapid fielding. These new capabilities, in turn, drive new mission concepts. 
Rapid change requires rapid re-assurance, which makes it increasingly 
important to structure evidence and assurance arguments in a way that 
allows re-assurance to be done incrementally and compositionally.

Future research must be planned with the software ecosystem in mind, and 
it must be representative of key software engineering challenges. Software 
engineering can be examined along two orthogonal dimensions: “doing 
software” and “what software does.” “Doing software” led us to consider 
several advanced development paradigms. We focused on three that seem 
to be central to the changing nature of software engineering described 
above: the drive for increased automation; the need for re-assurance; and 
the vital nature of compositionality. “What software does” led us to consider 
three types of challenges that could give rise to advanced architectural 
paradigms: humans as part of the system; AI components in a system; and 
quantum processors as an exemplar of a new computational model. 
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Our goal in looking at software engineering in this way was to be 
representative and encompassing without having to be exhaustive. We 
hope this framework invites others to consider other advanced development 
paradigms that are key to the changing nature of software engineering 
and other types of challenges that might give rise to additional advanced 
architectural paradigms, thereby extending the roadmap that we’ve started. 

Ongoing self-assessment needs to be institutionalized. As noted before, 
there seems to be no end in sight for advances in software engineering. This 
means that software engineering requires ongoing reflection and incentives 
to support advancement. This, in turn, requires a high-level advocate, along 
with funding and periodic reviews to continue what this study started.

Software has sometimes been compared to 
air: It’s invisible and everywhere, and everyone 
and everything needs it. This feeling can lead 
to two different ways of considering software 
and, hence, software engineering: (1) letting it 
remain invisible and taking it for granted, or 
(2) nurturing it, caring for it, protecting it, and 
improving it. We hope this report has convinced 
you that there really is only one viable way of 
considering software engineering.
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Appendix A: Engaging the Software Engineering 
Community Through Workshops
The following workshops provided the opportunity to gain perspectives 
from diverse audiences and are summarized in the following sections: 

•	A-1: National Agenda for Software Engineering R&D Workshop—Software 
Engineering Researcher Edition 

Focus: Leverage significant experience of Carnegie Mellon SEI researchers 
and technical staff to identify future trends in software engineering.

•	A-2: Voice of the Customer Workshop

Focus: Obtain perspective of future-leaning software engineering trends 
and challenges from the point of view of our customers. 

•	A-3: Future Scenarios Workshop—Developing Plausible Alternative Futures

Focus: What role will software engineering play in our nation’s security  
in 2030?

•	A-4: DoD Senior Leaders Workshop

Focus: Perspectives on software challenges and future demands from DoD 
Senior Leaders.

•	A-5: Software Engineering Grand Challenges and Future Visions Workshop 

Focus: SEI-DARPA hosted workshop with the software engineering 
research community to outline software engineering’s key research 
challenge areas for the next decade.

Appendix A: Engaging the 
Software Engineering 

Community Through Workshops
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Appendix A-1: National Agenda for Software 
Engineering R&D Workshop—Software Engineering 
Researcher Edition
Workshop Date and Goal
May 1, 2020. Leverage experience of SEI senior researchers and technical 
staff to identify future trends in software engineering.

Workshop Pre-work
Attendees were asked to consider five questions and send a short 
whitepaper with their ideas and responses to one or more of the following 
questions:

1.	 What do you think will be examples of “software systems” of the 
future? (For example, considerations might include quantum, 
hypersonics, autonomous, intelligent systems, and so forth.)

2.	 How will software systems of the future be developed? 

3.	 What are key technical challenges and breakthrough ideas in 
software engineering?  
(For example, consider challenges in areas such as architecture, 
assurance, acquisition, model-based software engineering, autonomy, 
DevSecOps, AI, resilience, and so forth.)

4.	 What other types of advances aren’t on our radar yet—but should be?

5.	 Discuss ideas for a research roadmap: How can we energize and 
coordinate all of the needed constituencies to achieve the desired future?

More than 60 responses were received and a cross section of topics were 
presented as five-minute lightning talks.

Guest Speaker Intro Talk
The workshop opened with guest speaker Keith Webster, Carnegie Mellon 
University Dean of University Libraries and Director of Emerging and 
Integrative Media Initiatives. His presentation was Envisioning the Future 
with a Futurist: Introducing the Notion of Futures and Foresight Studies.
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Lightning Talks and Themes from Lightning Talks
Thirty-six SEI technical staff members presented lightning talks. Designated 
“listeners” collected key ideas and themes in real-time from these talks as 
related to the five questions asked in pre-work, as follows. (This is a sample 
list and not intended to be comprehensive.) 

1.	 What do you think will be examples of “software systems” of the future? 
•	commodity heterogenous interconnected computing platforms 

•	prevalence of embedded systems

•	new domains in space 

•	massively distributed computing

•	cognitive architectures

•	voice to code—voice to simulate—voice to test

•	software-defined everything 

•	software developed by open source community supported by  
industry users

2.	 What things do we need to consider for future systems?
•	computing solutions in socio-embedded computing

•	 increasing security and reliant systems

•	 importance of human interaction in the creation of future systems

•	new quality attributes including observability 

•	operating in uncertain environments

•	design automation to support systems of the future

•	ethical human software development

•	 tiered workforce in software engineering (the job of the programmer 
is changing dramatically)

•	how to engineer quantum systems at scale (a very challenging field)

•	container-based deployment

•	automated virtual testing

•	data development process

3.	 How will software systems of the future be developed (i.e., themes for 
developing future systems)?
•	certification and validation

•	extending DevSecOps

•	AI and ML approaches

•	ethics of software development and encapsulated in software 
solutions
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•	heavy focus on human-system interaction

•	new demands on embedded systems

•	distributed engineering

•	automated repair algorithms

•	 “no code” solutions are gaining traction in industry

•	notion of “family of systems” architectures

•	human factors in software engineering

4.	 What are the key technical challenges and breakthrough ideas in 
software engineering? (For example, in areas such as architecture, 
assurance, acquisition, model-based software engineering, autonomy, 
DevSecOps, and AI)?
•	Trends toward new systems will lead to new software development 

challenges in

	– automation of software development and deployment

	– development and sustainment of AI systems

	– primacy of data

	– formal methods and proof engineering

	– human-centered engineering approaches

	– hierarchical certification approaches

	– adoption challenges and need for suitable context

	– preparing the workforce of tomorrow and moving toward a tiered 
workforce in software development

	– new programming languages that automate complex/common 
functions 

	– proof engineering

5.	 What other types of advances aren’t on our radar yet—but should be?

•	hyper automation and new software development languages

•	hyper agility and need for tools and methods to accelerate  
that agility

•	hyper computation and need to validation and verification,  
modeling, and simulation

•	social views of software engineering including workforce 
perceptions and accessibility to more people

•	causal inference
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Discuss ideas for how to generate a research roadmap: how to 
energize and coordinate all of the needed constituencies to achieve 
the desired future.

•	There is a systematic process for envisioning the future…we practice for 
the future (it doesn’t just happen).

•	Bring futures thinking to the National Agenda for Software Engineering.

•	There is no single future “out there” to be predicted. There are 
many alternative futures to be anticipated and pre-experienced to 
some degree.

•	Consider horizons of change, including the following:

•	expected future

	– where we are headed

	– the future if everything continues as it has

	– the result of conditions and trends (momentum)

•	alternative futures

	– what might happen instead

	– the set of plausible futures if something less likely or unexpected 
happens

	– the result of events and issues (contingencies)

•	preferred future(s)

	– what we want to happen

	– either the expected or any of the alternative futures that is 
preferable

•	Think about WILDCARDS.

•	The software engineering tools and approaches must enable agility to 
respond to more frequent and sometimes rapid shifts in the future.

•	The future comes from the commercial side and the importance of 
understanding the vectors of industry.

•	 It is important to consider tech transition and understand what can  
be consumed.
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Appendix A-2: Voice of the Customer Workshop
Workshop Date and Goal
May 20, 2020. Obtain perspective on future-leaning software 
engineering trends and challenges from the point of view of DoD and 
industry collaborators.

Prior to the workshop, participants were asked to share their thoughts on 
one or more of six questions, in short lightning talks (about 5 minutes each). 
A summary of the responses is listed below.

1.	 Based on what you are hearing from our customers, what do you think 
will be examples of software systems or software missions of the 
future? (For example, consider quantum, hyper sonics, autonomous, 
intelligent systems, and so forth.)
•	no code/low code

•	 families of architecture models, different architectures, and new 
quality attributes

•	 insatiable quest for data to satisfy data-to-decision

2.	 How will software systems of the future be implemented?
•	mission engineering with development of systems

•	speed of the warfighter

3.	 What are the key software challenges our customers are having or 
foresee in the future?
•	 trust and assurance of systems

•	 legacy systems, legacy systems, legacy systems

•	code analysis and ML automated architectural analysis/refactoring

4.	 What role do our customers want to see from the SEI as software 
becomes more ubiquitous in their systems?
•	 independence

•	knowledge of topics with real world data

•	help people think when they don’t have time to do so

5.	 What other types of advances aren’t on our radar yet—but should be?
•	data visualization

•	 integrating data into decision making

•	 industry leading the way

6.	 Discuss ideas for a research roadmap: How can we energize and 
coordinate all of the needed constituencies to achieve the desired future?
•	create a research influencer map

•	acquisition as an advantage for warfighter
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Appendix A-3: Future Scenarios Workshop: 
Developing Plausible Alternative Futures
Workshop Date and Goal
May 29, 2020. Find out from thought leaders what role software engineering 
plays in our nation’s security in 2030.

Workshop Objectives
1.	 Learn how to think about and devise some futures scenarios with 

Keith Webster, Carnegie Mellon University Dean of University 
Libraries & Director of Emerging and Integrative Media Initiatives. 

2.	 Pilot a Zoom futures scenarios workshop with breakout groups with a 
small number of participants. 

3.	 Learn from the experience and consider applying or adapting this 
method to other working sessions for the National Agenda for 
Software Engineering Study. 

Workshop Pre-Work
The participants were asked to answer 3 questions before the workshop to 
kickstart discussion. 

1.	 What are the five to ten key drivers and trends you see impacting the 
framing questions over the next decade (and beyond)?

2.	 What questions would you like to be able to answer using the 
scenarios we’ll produce as a result of our work?

3.	 What decisions do you need to make in the near-term that would 
benefit from a sense of the long-term?

Workshop Summary
The workshop participants voted and identified the following drivers and 
trends for the future of software engineering: 

•	explosion in the amount of software and software complexity in the 
world and extending into new areas (ubiquity and complexity)

•	 increase of software in critical roles without appropriate attention into 
safety, security or society risk 

•	 increasing government and corporate access to personal data and 
increasing concern about privacy

•	AI/ML driving automation and innovation

•	access to computing devices, sensors, bandwidth and continuous 
connectivity

•	automated tools for data collection and analysis, for architectural 
consistency, software quality, vulnerability discovery and repair

•	policies gaining traction in many countries to reduce cooperation and 
collaboration between nations
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•	deployed software creating increasingly disruptive unintended effects

•	changing nature of education and training including content, delivery, 
and access

•	policies gaining traction in many countries to reduce cooperation and 
collaboration between nations

•	deployed software creating increasingly disruptive unintended effects

The workshop participants voted and identified the following uncertainties: 

•	 level of international collaboration

•	supply chain – software, talent

•	AI/ML (incl access to data and privacy)

•	 funding and partnership

•	data as a strategic asset

•	societal consequences of software deployment

•	engineering of systems

•	access to technology and connectivity
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Appendix A-4: DoD Senior Leaders Workshop
Workshop Date and Objectives
June 25, 2020

1.	 Hear directly from DoD senior leaders (PEOs, PMs, services and intel 
agencies) in 10-minute lightning talks to understand their challenges 
and ideas about the future of software engineering.

2.	 Provide a forum for DoD senior leaders to hear challenges and 
ideas from other DoD senior leaders about the future of software 
engineering.

Summary of Workshop Ideas
•	Speed, speed, speed. Iterate quickly and often, but with the feedback 

and discipline needed for assurance.

•	There is a need for an organic capability in DoD for software 
engineering, including the culture, training, career development, and 
other elements needed to support the build vs. buy paradigm.

•	Building in security and ensuring security throughout the lifecycle is a 
key concern. Topics mentioned included Risk Management Framework 
(RMF), continuous authority to operate (ATO) that addresses security, 
developing a “risk of use sticker,” Cybersecurity National Action Plan, 
whitelist interactions, and zero trust architecture.

•	Modeling to enable rapid development and deployment should be a 
focus. There is a need for high fidelity digital models and common 
standards so systems can integrate with models and with each other.

•	The software acquisition system is antiquated and doesn’t support 
speed and iteration. There are “color of money” problems and also 
cultural problems, such as how we communicate progress, schedule, 
and cost to stakeholders.

•	Better ways are needed for funding foundational or common shared 
services, which is impossible with the current funding and program 
element structure.

•	System boundaries have evolved or fallen away because everything 
is connected to everything with massive complexity and non-
deterministic behavior—and interacting with and maintaining legacy 
systems adds to the challenges.

•	Resilient operations in denied environments is a must (denied comms, 
cloud, data access, positioning, navigation, and timing (PNT), etc.).

•	The interconnected nature of the software challenges is apparent. 
Multiple stakeholders emphasized how getting software right 
requires also getting many other elements right, including workforce, 
acquisition roles, technical solutions, infrastructure, and data. 
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Appendix A-5: Software Engineering Grand 
Challenges and Future Visions Workshop
Workshop Date and Goal
December 1-3, 2020. Outline software engineering’s key research challenge 
areas for the next decade.

Workshop Overview
Society’s dependence on software has only accelerated and broadened 
in recent years, and the software engineering and research communities 
have continued to focus on specific topics or innovations. However, there 
is also value in looking further ahead at the wider discipline of software 
engineering and envisioning the future we can create: Based on where we 
are today, where will innovation take us in the next 5, 10, or 20 years? And 
what do we need to do to prepare the future? 

To answer these questions and begin to envision the future of software 
engineering, the SEI, in collaboration with the Defense Advanced Research 
Projects Agency (DARPA), convened the Software Engineering Grand 
Challenges and Future Visions Workshop, conducted Tuesday, December 1  
through Thursday, December 3, 2020. This workshop aimed to spur a 
discussion among leading researchers, practitioners, and government 
stakeholders and promote communication within and among these 
communities. Its goal was to stimulate new thinking, articulate future 
needs, and discuss how emerging and/or disruptive software engineering 
technologies, methods, and tools can help us address those needs.

Participants
The workshop participants were drawn from the following communities:
•	academic researchers whose work is having (or likely will have) a 

fundamental impact on the way software and software-reliant systems 
will be developed

•	 leaders in companies now developing leading-edge software by 
creating and applying software advances at scale 

•	 thought leaders familiar with the defense mission and threat space 
who are working to implement acquisition practices that support 
current and future capability needs

Position Papers and Talks
Participants were asked to contribute a one-to-two-page position paper 
describing 

1.	 a vision of the types of systems that will need to be developed in the 
future (5, 10, or 20 years out)

2.	 major open problems and “grand challenges” software engineering 
must address to make those systems technically and/or 
economically feasible
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Contributors were also free to identify associated research areas 
or themes. Selected participants provided short lightning talks 
based on their position paper. The organizers and participants were 
particularly open to visions that aimed to rethink the foundations of 
software engineering.

The position papers and lightning talks reflected a mix of today’s important 
research areas as well as disruptive technologies likely to have an impact on 
the field of software engineering but which have not yet commanded wide 
notice. Topics included artificial intelligence (AI), machine learning (ML), 
automated testing and cybersecurity tools, cyber-physical systems, socio-
technical systems, and formal models. 

Focus Questions
The workshop comprised three half-day sessions of facilitated discussions 
designed to address areas of need and potential impact without precluding 
interesting avenues of inquiry. Areas of discussion focused on the following:

•	What are the major open problems (and grand challenges) that 
software engineering must address? 

•	What software research (whether in research labs, university, industry, 
government, or some mix of these) is needed to invent solutions for 
those problems?

•	What role should collaboration between industry and academia 
play in developing and adopting solutions? What role should the 
government play?

•	What can incentivize strategic collaborations among government, 
academia, and industry?

Expected Outcomes: Grand Challenges and Visions

The three-day workshop was designed to produce grand challenges and 
vision statements, scenarios that describe 

•	an important class or classes of future software and software-reliant 
systems 

•	software engineering research methods, tools, and practices that are 
needed to make those systems feasible 

These outcomes are intended to serve as inputs to ongoing efforts to define 
new research programs and initiatives that can shape the future of software 
engineering and a research roadmap that will help us close the gap 
between today’s capabilities and the futures we envision.
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Seeding the Discussion
To set the stage for the discussion, three keynotes were presented, 
and all participants were asked to contribute short lightning talks to 
introduce key concepts. Keynote addresses were provided by Sandeep 
Neema, Program Manager at DARPA’s Information Innovation Office; Sol 
Greenspan, Program Director in the National Science Foundation’s (NSF) 
Directorate for Computer & Information Science and Engineering (CISE); 
and Christopher Ré, Associate Professor of Computer Science at Stanford 
Artificial Intelligence (AI) Lab. These keynotes described the software 
engineering research landscape from the point of view of DARPA, NSF,  
and the Stanford AI Lab. 

Keynote Summary One—Sandeep Neema, DARPA:  
Software and Defense
In his keynote, Neema stressed the importance of software to the DoD. 
He observed that the growth and complexity of software are astounding, 
and noted that every generation of a given system is more complex by an 
order of magnitude (for example, the F-35). Neema underscored the reality 
that almost 90 percent of system functionality is now realized through 
software. “Mission success depends on high-quality software,” he said, also 
noting that the DoD is in the business of software. Drilling down, Neema 
noted that the field of software V&V has been a prolific area of research: 
The results have been impressive and a portfolio of V&V techniques is 
now available. However, these advances haven’t netted the desired results. 
“Given innovation in tools and methods for V&V,” said Neema, “one would 
hope software quality has improved significantly, but recent results indicate 
things are no better than a decade ago.” 

Neema noted the number of software vulnerabilities has grown over time 
in Microsoft and Android systems, and the time from discovery to patch 
is significant. Neema observed that things are not much different in the 
realm of weapons programs: Despite advances in software analysis and 
verification, software quality is not much better. “Moore’s law may be dead,” 
added Neema, “but systems are still advancing at a fast pace and becoming 
more sophisticated and technologically advanced.” Military systems are 
evolving rapidly, human-machine partnership are becoming important, and 
hybrid domains have emerged. “We need to straddle core tech, engineering, 
and mission applications and build a pipeline that can continuously deliver 
new capabilities,” said Neema. 

He then identified four broad research areas:

•	proficient AI

•	advantage in cyber operations

•	resilient adaptable and secure systems

•	confidence in the information domain
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In his concluding remarks, Neema noted challenges in the areas of 
resiliency, rapid evolution in the face of nimble threats, bolt-on security, 
cyber-physical systems and distributed IoT, safe data sharing, and sustained 
configuration integrity. His ideas about addressing these challenges 
included targeted modeling and analysis and rich toolchains. 

Finally, Neema cited some specific areas of interest to DARPA:

•	verification-friendly systems engineering 

•	 intersection of AI, ML, and software engineering

•	software comprehension and maintenance

•	process engineering

Keynote Summary Two—Sol Greenspan, National Science 
Foundation (NSF): Tracing the Evolution of Software Engineering 
through Past Workshops 
Greenspan framed his remarks in the context of two previous workshops 
conducted in 2001 and 2010 to place the current workshop in context. The 
2001 workshop, “New Visions for Software Design & Productivity: Research 
& Applications” (sponsored by Vanderbilt University, the Networking and 
Information Technology Research and Development (NITRD) Program, 
the National Science Foundation, and others) examined the question 
“What can we do well?” Greenspan noted that 2001 workshop found 
requirements remained a problem; embedded and networked systems 
were considered important; there was a need to identify what programming 
environments were needed; testbeds were needed that simulate 
operational environments; and there was a tension between informal and 
formal methods and questions about the nature of the balance between the 
two and whether that balance should change. Participants also questioned 
whether software development should be more fluid (Agile), which was hard 
to achieve in DoD and government settings because of the budgeting and 
oversight process. 

The consensus of the 2001 workshop was there had been productivity 
gains in lines of code per person, and new ideas and tools had emerged 
in the form of middleware, GUI generators, APIs, MDE, and application 
frameworks. Participants then asked, “Why can’t we declare victory?”  
To address then-emerging challenges, participants at the 2001 workshop 
recommended the following:

•	specification and management of complex requirements (especially for 
embedded and networked systems)

•	better software development environments with domains-specific 
capabilities for validation

•	 testbeds that simulate operational situations (environment conditions, 
user interactions)
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The 2010 “Workshop on the Future of Software Engineering Research” 
was also sponsored by NITRD and was collocated with the “ACM SIGSOFT 
Eighteenth International Symposium on the Foundations of Software 
Engineering.” In that workshop, participants examined how we: 

•	help people produce and use software

•	build the complex systems of the future

•	create dependable software-intensive systems

•	 invest in research to improve software decision-making, evolution  
and economics

•	 invest in research to improve software research methodology

As with the 2001 workshop, these questions continue to have resonance.

Recommendations from the 2010 workshop included developing social 
connections for software engineering stakeholders; democratizing and 
broadening participation in production and use of software (e.g., end-
user programming); addressing societal grand challenge problems of 
unprecedented complexity and scale (e.g., the SEI ultra-large systems 
report); exploiting emerging technology and platform opportunities (e.g., 
app stores); automating software evolution; strengthening empirical 
research foundations; and incorporating social science research.

Though certain questions and challenges persist, there have been some 
changes since 2010. For instance, the amount of data involved has increased 
significantly. Software engineering has become a big data science. Also, we 
have witnessed the emergence of issues concerning of the naturalness of 
software code; static and dynamic testing and analysis; heightened demand 
for reliability, robustness, and resilience; and integration of computing, 
sensing, communications, and new devices (e.g., 5G, IoT, and nano). In light 
of these new issues, the field of software engineering should be thinking 
about the following:

•	Software-reliant systems will need to contain more knowledge about 
the world.

•	Our environments will need to have embedded software engineering 
capabilities and infrastructure.

•	Systems will need to be held accountable to laws, compliance rules, and 
societal norms.
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Keynote Summary Three—Christopher Ré, Stanford AI Lab:  
Software 2.0
Ré opened his remarks by stating that Software 2.0 is eating Software 1.0. As 
an example of the power of Software 2.0, Ré cited Google’s translation tool, 
which shrank from 500 thousand lines of code (LoC) to 500 lines of dataflow. 
Ré noted that Software 2.0 includes AI applications, and that the software 
engineering and/or design element is really changing (again citing the 
shift from LoC to data flow code). This shift has already has had an impact 
on products we use today, including Spotlight, Safari, and assistants. Core 
pieces of the software are rewritten in this way. What’s more, this shift is 
not restricted to large companies.

Ré observed that something is changing in what we’re building. When ML 
is used in a core way to build apps, it changes what you do as a software 
engineer. Models have become commodities. Engineers are not always 
writing new code but, rather, servicing and understanding new models. 
Weakly and naturally supervised systems are big changes for Software 2.0. 

Ré discussed Overton, a data system for monitoring and improving ML 
products. Ré wanted to change the conversation about ML systems. He cited 
the “Transformer model.” The model didn’t matter. Rather, what mattered 
was having tools to understand workflow. 

“We wanted low-margin parts of the job automated,” he said. “We can 
automate huge parts of the stack and concentrate on what the user actually 
needs.” This, according to Ré, would prevent the phenomenon of “new-
model-itis.” There’s been a shift from building models to support model 
building to monitoring quality and improving supervision. 

Ré noted a number of challenges in this new environment:

•	Many decisions are required, all of which need to be right.

•	ML products have complicated pipelines; seams exist between 
products; and it’s hard to share code and/or ideas.

•	ML products require fine-grained monitoring and involve rare queries 
and/or complex disambiguation.

•	Quality is rapidly improving.

•	Horrible errors are easy to make.

In short, he said, we are entering the age of ML as an engineering discipline.
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Lightning Talk Summaries

Software and Missions to Space—As NASA’s missions become 
increasingly dependent on correctly functioning software, code is 
growing and becoming more complex. Likewise, the safety and reliability 
of software has become more crucial, but software has also become 
harder to test and verify. Consequently, the following areas have grown 
in importance: requirements assessment; software code quality and 
risk assessment; automated software architecture analysis; research 
correlated to selected metrics on defects to assess code quality; and 
automation of software engineering and assurance. 

Workforce—What will the software engineering workforce of the future 
look like? A need exists to need to uniformly train the workforce through 
a cross-matrix curriculum. Presently, approaches to training differ. 
There is disparity in the quality and consistency of training. We all train 
differently, yet expect to collaborate effectively. One possible approach 
could take inspiration from maneuver warfare, in which distributed forces 
are placed in different, vulnerable areas to remove a “center of gravity.” 
Eliminating cultural inhibitors to change, including software training 
practices, was one suggestion.

Scalable Assurance and Cyber-Physical Systems—The scalable assurance 
challenges of cyber-physical systems (CPS) include the kinetic effect of 
CPS, which often are safety-critical systems, such as airplanes, requiring 
strong assurance. However, strong assurance has not been practical 
because of multi-criticality (assurance levels, timing, real-time mixed-trust 
computation) and artifact size (too large for strong verification techniques). 
Challenges also exist regarding the problem of cognitive design overload 
in large systems. To address these problems of scale, work is needed in the 
following research areas:

•	multi-criticality: real-time mixed criticality with temporal protection

•	artifact size: minimize verified components, add enforcers to guard 
critical properties, protect the enforcers, and enforce critical aspects

•	cognitive design overload: model-based engineering

“Multi-Everything”—Systems need to be “multi-everything.” ML-enabled 
software needs to be able to analyze code to ensure confidence and 
meet requirements and use cases. We need easy migration between 
cloud services and post-deployment monitoring that’s not expensive. We 
also need to make data a first-class citizen: proprietary data formats are 
problematic. There is a further need for a variable-trust data environment, 
which requires security without latency, and lifecycle management is 
necessary for ML-produced software. 
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The Needs of the Scientific Community—Performance, portability, and 
productivity are keys to the future of computing. High-performance 
computing has changed qualitatively and quantitatively. The software 
community has seen the advent of many-core and multicore systems, 
heterogeneous computing, machine learning, and an enormous increase 
in the diversity of the hardware ecosystem in both edge and high-end 
computing. Great diversity in capabilities exists. The demand for software in 
scientific computing has been growing. It outstrips supply and the gap has 
grown worse over time—a key challenge the scientific ecosystem requires 
the field to address. Hardware–software codesign, more intelligent ways of 
producing software for simulation and analysis, and more intelligence in 
composing scientific workflows are needed.

The Demands of International Development Projects—International 
conversations are taking place about software. Language needs to be 
appropriate and culturally inclusive, and the same holds true for software. 
A need exists for commonality of language and architecture: Software is 
global conversation. Coding for key systems is taking place around the 
world. With this in mind, all partners should share a common language, 
ethical and legal frameworks, and a commonality of commercial off-the-
shelf (COTS) and military off-the-shelf (MOTS). Challenges exist related 
to the notion of the “data lake.” How can various international partners 
working on a project absorb the information they need from the lake? There 
is also a need to get individuals with the right skills and accreditations into 
Department of Defense (DoD) in the global marketplace, as well as a need 
for automated testing, certification, and verification and validation.

Software Warning Lights—Software warning lights are behavior guards 
in the application domain intended to protect the public’s health, safety, and 
welfare. Such warning systems are common in network operation centers, 
but they’ve yet to see use at the application level. We need this kind of 
cyber-anomalous detection system for the warfighter—a warning light that 
allows the warfighter to see anomalies in software in real time.

Societal-Scale Systems and Social Media—Societal-scale systems, such 
as social media, present concerning unintended consequences. These 
unintended consequences are a national security threat because they 
dramatically increase the potential for social manipulation. We need to 
adopt a behavioral science view to inform systems that determine what 
is true. The notion of social epistemology presents knowledge creation 
as a social process. This isn’t working in our societal-scale systems. We 
need methods, for instance, to funnel free speech in such systems through 
testing, critique, review, and trusted forums to create new knowledge. Such 
a process is critical to determining what’s true. In the current state of affairs, 
social media is focused on engagement, not knowledge. Consequently, we 
see the rise of so-called “alternative facts,” conspiracy theories, et cetera as 
unintended side effects.
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An Army Software Factory—Hardware-intensive systems have become 
software-intensive systems, and traditional methods are too slow, too 
expensive, and of little value. The defense community would be well served 
by building organic competencies that meet or exceed skills in the private 
sector. A move to in-house development for the DoD would enable it to 
serve as its own integrator, but such a move presents many challenges.

Cyber-Resilient Software Ecosystems—Cyber resilience on platforms  
is a problem, and there are larger challenges in ecosystems, including 
monocultures, security fragmentation, and a “libertarian” design ethic. 
Not much has been done to manage and/or patch monocultures. Tools 
are needed to make it easier to deliver implementation diversity. Key 
stakeholders tend to assume that someone else is taking responsibility for 
overall design but, when application developers follow an ungoverned path, 
they can inadvertently increase the attack surface of the apps they develop. 
We don’t build guards and monitors into applications. But, we need these 
things for a resilient ecosystem.

Keys for Faster Iterative Requirements Engineering—We can build better 
and more ethical software. The field is not taking advantage of AI. Some 
software development is being done with AI, but it’s clumsy and requires 
manual tinkering with AI tools. One approach to these challenges lies in 
the concept of keys: the few controllable variables of a model that control 
decisions about non-dependent clashing links in chains of reason that link 
inputs to desired goals. If keys work, they could lead to a dramatic reduction 
in modeling effort, more AI-assisted software engineering, better software 
engineering, and ethical software engineering for AI. Keys have the 
potential to enable developers to very quickly reason about a system.

Self-Supervised Systems—Entity disambiguation systems are built with 
supervised training, making them brittle and expensive. This challenge 
is being addressed with fully self-supervised systems, which are easier to 
maintain and extend. With such systems, engineers focus on monitoring 
the model. This approach has been deployed in industry, and this 
fundamental shift to self-supervised systems is not going away. However, 
while self-supervised systems make things easier for engineers, they do 
pose challenges. For instance, how does the system handle what’s not in 
training data? How do you monitor the model and unit test? How does the 
system correct errors on the fly once it’s deployed? 

Bridging the Gap between Formal Methods and System Assurance—
Component specifications for safety could offer a way to bridge the gap 
between formal methods (math) versus system assurance (a condition in 
which it’s acceptably rare that the system will cause harm). A number of 
challenges to achieving this goal exist. For instance, can formal methods 
be used on real-world systems? Yes, but it’s expensive. Proofs need to be 
handwritten by experts. As for system assurance, the challenge lies in 
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determining how you know when analysis is complete. Questions also 
arise concerning how repeatable analysis is. The keystone that holds all 
this together is a rich component specification on which system assurance 
tooling can be automated and built. 

Certifying Adaptive Dynamic Computing Environments— 
Presently, certifying adaptive dynamic computing environments 
presents a challenge. “The right answer delivered too late is the wrong 
answer.” Employing dynamic resource management to support multiple 
missions simultaneously requires adaptive computing resource 
management. However, certifying such as system to ensure reliability is 
not a solved problem and is becoming more complex with AI and other 
advanced technologies. 

The Future of Air Travel—Autonomy will be important. There will be 
many autonomous vehicles in the air as well as on the ground, which will 
necessitate integration across air space. These developments present 
challenges in safety certification, affordability, training, system definition 
and requirements, and full integration of systems.

New System Categories—New system categories have emerged: systems 
at ultra-large, societal-scale (here defined to include systems such as 
connected and autonomous vehicles, transactive energy distribution, 
and low-altitude air traffic control); human-AI-machine teams (such as 
medical assistive robotics and enhanced reality environments); and 
multi-technology fusion (such as the Microsoft Premonition program 
integrating IoT technologies, metagenomics, ecological and epidemiological 
simulations, and cloud computing for global monitoring of the biome). 
Software technology is focused on gluing together heterogenous systems at 
ever-bigger scales. The resulting challenges include developing platforms 
for system integration, platforms for model integration, and platforms for 
integrating AI and ML components. Corollary research areas include a 
formal foundation for system integration, a formal foundation for model 
integration, and compositionality for AI and ML components. 

Software Engineering Research in Production—Partnerships need to be 
established to solve large-scale computing problems, but it’s hard to make 
these partnerships happen. Technical innovation is needed in the areas of 
data anonymization and privatization, observability, secure computation-
like data analysis, and measurement frameworks. Furthermore, cultural 
changes are needed: Reviewers need to accept industrial case studies, 
and industry and government need “matchmaking” with academia. Policy 
changes on non-disclosure and data use agreements are needed to shrink 
the divide among industry, government, and academia to establish stronger 
partnerships so research can better represent what’s going on.
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The Role of Digital Twins—We are in an age of software transformation. 
The future will bring autonomous transportation, human augmentation 
(biotech), and smart infrastructure (nanotech). These developments will 
have an impact on software, which will need to adopt a cross-discipline 
focus, require a low and/or reduced context (“How can we make building 
blocks?”), and demand safety and security assurance-test-driven 
development. One possible solution to these challenges is to integrate digital 
twin with model-based engineering.

Workshop Summary: General Discussion Topics
While the workshop discussions focused on a number of specific technical 
areas, overall they provided interesting insight into the state of research and 
practice. In this section, these insights are collected into broad groups.

Tension between Speed and Trusted Capability
Many of the discussions focused on the increasing tension between 
the speed of new capability deployment and the need for “exquisite 
engineering” (i.e., the engineering effort needed to develop and field the 
high-quality systems that we trust with many aspects of our modern 
lives and livelihoods). The need for trust in systems is greater than ever—
not only for CPS, but also for societal-scale systems. In the words of one 
workshop participant, “We live in software.” This statement reflects the 
degree to which many aspects of our day-to-day lives are now supported 
by, controlled by, or influenced by software systems. Given the plethora 
of such systems and the difficulty of understanding emergent behaviors, 
there is a renewed focus on building these systems to be correct and 
auditable by construction.

Participants also highlighted the need to make the software producing 
workforce more productive and efficient to meet the engineering demand 
for evermore software systems whose behaviors require evermore 
confidence. Some potential advancements in this direction include greater 
emphasis on the following items:

•	platforms and/or environments that help raise the quality of software 
by construction (via automation and machine teaming)

•	democratizing development

•	 tools that leverage the heterogeneity of the workforce

•	 low-code and/or no-code solutions
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Assured Composition
Several participants commented on an emerging development paradigm, 
“assured composition,” that aims to deal with the issues noted above. 
Assured composition reflects a need to better understand emergent 
behaviors that result from chance or design in these systems.

Research at Scale
A related emerging research paradigm, “research at scale,” reflects a need to 
better understand phenomena in systems at scale that are usually not easily 
accessible and/or available to the research community. These large-scale 
systems pose new challenges and require new approaches for researchers 
to contribute meaningful results that can impact the state of the practice.
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Focus Themes
Five major themes emerged over the course of the workshop, Illustrated 
in Figure 4. By design, these were not decided ahead of time but rather 
emerged out of participant discussions. Some of these themes were raised 
and discussed explicitly; others were created to summarize several related 
conversations that happened over the course of the event.

Assuring Continuously Evolving Systems 

Provide evidence and arguments that a system will behave as intended, 
considering both desired functionality and quality attributes, as it evolves 
continuously to incorporate new capability and dynamically self-adapts its 
operating configuration at runtime.

AI-Augmented Software Development

Augment each stage of software development with AI to orchestrate 
continuous systems evolution, positioning for constant high speed change.

Engineering of AI-Enabled Software

Develop empirically validated practices to support development and 
sustainment of next generation AI-Enabled software. Provide tools, 
verification methods, techniques and practice to apply sound software 
engineering principles to AI Engineering. 

Designing in Ethics in Software, Systems, and  
Societal-Scale Systems

Build and evolve societal-scale software systems that enable transparency 
and mitigate risks of unethical influence on individuals, unrestrained social 
manipulation, or disruption of social epistemology.

Composable Software Systems

Provide a scientific and engineering basis for designing, building, analyzing, 
and assuring heterogeneous and composable software systems. Provide 
languages, tools, environments, and techniques to support these activities.

Figure 4:	 Summary of Major Themes Emerging from the Workshop
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