

The Fundamentals of Agile, page 1 www.sei.cmu.edu/podcasts

The Fundamentals of Agile
featuring Tim Chick interviewed by Shane McGraw

--

Shane McGraw: Welcome to the SEI podcast series, a production of the Carnegie Mellon

Software Engineering Institute. The SEI is a federally funded research and development center at

Carnegie Mellon University in Pittsburgh, Pennsylvania. To learn more about the SEI, please

visit our website at www.sei.cmu.edu. My name is Shane McGraw, and today I am pleased to

introduce to you Tim Chick, a senior member of the technical staff at the Software Engineering

Institute. Tim works on the Team Software Process (TSP) initiative where he is responsible for

defining, developing, and transitioning into practice high-performance software and systems

engineering practices based on the principles and concepts in TSP and CMMI. His work includes

applied research, product-and-training development, education-and-training delivery, and

consulting in the domains of software-engineering and systems-engineering process

improvement. In today's podcast Tim will be discussing the fundamentals of agile, specifically

what it means for an organization to be agile. Welcome, Tim.

Tim Chick: Thank you.

Shane: So let's start off by you giving us a little bit of background on what agile is. It's a

buzzword you hear throughout the software community today. Can you tell us what agile is and

what it means to be agile?

Tim: Well, at its core, agile really came from the Agile Manifesto, which was first written in

2001. A bunch of guys got together, I think they were on a vacation actually, and they started

talking, and they came up with this manifesto and then they published it. It's a website. You can

go out and see it. From that it's evolved slightly. Now there's basic agile principles. There's 12 of

them. It's really focused on self-directed individuals, “teaming” environments. There's other

things that they value that's really core to their principles, like early delivery, a major focus on

customer satisfaction, customer importance. There are the products, there are the services that

you do first in this whole iterative development concept.

Shane: Okay. So let's talk to the listeners. Tell us, what are some of the specific approaches?

What are the names of some of these approaches that people could look for?

http://www.sei.cmu.edu/
http://www.sei.cmu.edu/about/people/profile.cfm?id=chick_14384
http://www.sei.cmu.edu/tsp/
http://blog.sei.cmu.edu/post.cfm/what-is-agile
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

SEI Podcast Series

The Fundamentals of Agile, page 2 www.sei.cmu.edu/podcasts

Tim: So, the two most popular agile approaches are really Scrum and XP [extreme

programming]. Scrum is basically a planning and project-tracking technique used by teams. It

also has a really key element in terms of managing customer expectations. It uses a concept

called a backlog, for example. It's basically the customer comes in and says, “Here are the story

points or the features that I want in my product. Here is the prioritization of what's most

important to me.” Based on that, the team takes that input, they pick the highest priority features

that the customer wants. They build a plan to do that in terms of what they can accomplish

within a set period of time or time box (usually no more than 6-to-8 weeks, usually closer to the

2-to-4 weeks). Then they execute. They build those features. At the end, what they want to have

is a deliverable software product to the customer, which the customer could, if they chose to,

actually start using immediately. At a minimum, it should be working code, if nothing else as a

demo, to get more feedback, to re-prioritize. That concept is, “Are we on the right track? Are we

really building you what you want as a customer?”

At the end of that cycle or iteration, they would have what's called a retrospective, which is to

stop and say, “Okay how did that iteration go? What could we do to improve it? What else needs

to be done?”

Another key factor of the retrospective is refactoring, another technique, which is actually kind

of an XP technique. It's based on the architecture, based on the design, based on the features

we've implemented to date, “What code really needs to be rewritten to be able to maintain the

product as well as quickly be able to give the customer more features in the future?”

Shane: So what's an agile organization look like? Is it easy for large companies, small

companies? Is it an easier fit for the size you are, the type of work you're doing, can we get into

that a little bit? What does an organization look like that's implementing agile?

Tim: Well, it's all spectrums. If it's a really large organization, it is usually a subset, like a

division or a team or a project trying to implement agile techniques. If it's a small company, it

could be the way in which they do all their products, all their services. Really what it comes

down to is most organizations that are really successful at agile are usually on the smaller side.

Shane: Is there any research documenting this or backing this information up? Is there anything

out there that people can go and look up showing that it fits into a certain type of environment?

Tim: Capers Jones published a book called Software Engineering Best Practices. I think it was

released last year actually. In that [book], he actually rates a lot—I mean goes through hundreds

of software practices, methodologies. Out of that, he actually ranked the top four in three

categories: small, medium, and large applications. Kind of a way to think about what's a small,

it's really an application that can be built by a team of probably about less than 10 people over

several months.

http://en.wikipedia.org/wiki/Scrum_%28development%29
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Capers_Jones
http://www.amazon.com/Software-Engineering-Best-Practices-ebook/dp/B002U2DQ5M

SEI Podcast Series

The Fundamentals of Agile, page 3 www.sei.cmu.edu/podcasts

A medium would be either one team over maybe a year or so, or maybe it’s a couple teams over

several months. A large application would probably be multiple teams over multiple years. That's

kind of how he grouped them in those three categories. He defined them in terms of function

points. I don't know if everyone is familiar with function points, so I like trying to translate that

into people size. In that he basically ranked agile as number one in small, but agile really didn't

make the top-four list at all in large applications. And he ranked agile number two in the

medium.

Barry Boehm also wrote a book several years ago where he talked about the criteria. He had,

basically, five key points saying, “Well, should I use traditional, plain-driven methods, or should

I use agile methods?” And, based on those five criteria—for example, what is the criticality of

the application (Would lives be lost or is it a convenience-type application)? A convenience

application, he says, is more agile-based, while a life-critical application would be better

matched for traditional methods. The other extreme on the axis is where more plain-driven

techniques would be appropriate. He had four other criteria. So those are the types of things that

you can look at that support that statement.

Shane: Very good. Now one thing I know is that organizations are interested in how to select the

right agile method for their environment. How do they go about that?

Tim: So, I said Barry Boehm had the five criteria. I like to try simplify it to three. The three

basic criteria are

1. Is my organization ready to change, any type of change? How hard and fast are we with our

current status quo and approaches to doing things (If they are open to change, if they are open to

ideas and not just in words but also in actions)? You know, any type of change—whether it’s

agile, whether it's CMMI, whether it's just a change in the building office space or whatever it

is—it takes resources. It takes time. It takes effort. When you want to change your approach to

doing business such as developing software, you need multiple levels of sponsorship. You need

executive sponsors. You need the team leaders, the first-line managers need to support this

change. You need developers willing to give it a shot and become efficient at the new methods

and the new approaches. So that's one criteria.

2. The other criteria is “What am I building? What is my product that I have and that I need?”

So for that one, the question is, “What are the characteristics of my product? Is it life critical?

Will someone die if I have a defect in my product? Or, will they just be inconvenienced?” That

really dictates which methodology or technique I should want to use.

Another example would be, “Who are my customers, my stakeholders?” If I have a really diverse

stakeholder group, and they don't really agree on, “What is the top priority? What are the key

features of my product?” I really probably need a traditional systems-engineer or requirements-

http://en.wikipedia.org/wiki/Barry_Boehm

SEI Podcast Series

The Fundamentals of Agile, page 4 www.sei.cmu.edu/podcasts

analyst type of approach for giving my team that feedback in determining, “What do I fit in this

iteration? What do I fit in this time box?”

So that's really looking at, “Are some of the different agile techniques appropriate for my

product that I'm building as well as my customers’ expectations and needs?” Based on that, I can

pick. Maybe it's a combination of some very agile techniques as well as with some traditional

techniques—that marriage of methodologies, which is really what most organizations do.

3. And the third and final criteria, really, is my organizational culture. For example, pair

programming, which is an extreme programming XP technique. If my organization really has a

lot of interpersonal, collaborative type of issues (they would have a hard time with two people

sitting together without arguing and really collaboratively writing the same code, using one

keyboard, at one time). I really do have to deal with the collaborative issues before I would try to

use the extreme programming technique of pair programming. So, those really are the three

major criteria one should use in trying to figure out, “What are the right methods for me, for this

project, for this organization?”

Shane: Right. Now, like anything else when companies are implementing something, a lot seem

to struggle with implementing agile consistently through the organization. So how do you

implement agile? Once it's implemented, how do you maintain consistency?

Tim: So, some people I've talked to, they really love agile. They love the techniques. And it's

working really well for their team, for their project, but they are really having a hard time getting

other projects in the organization to be just as successful as they are. That really is the key.

Other organizations I see that are doing agile, they like it, but they're really struggling with

maintaining it. People come, people go. So, to fix or to address some of those concerns, some of

those issues, on the TSP team we developed a planning framework, which is agile. It really is in

alignment with the manifesto, as well as with the 12 agile principles, instead of the scrum

technique, which really uses some pseudo measures. It uses features. It uses velocity. The

planning framework that the TSP uses, it actually uses more precise measures like task time,

schedule, dates, as well as size of your products. With that consistency of a measurement

framework, I can now communicate across teams, across projects.

Where a lot of agile teams really struggle, where one team unit that's pretty stable, the team

members stay on that same team over a decent period of time. They really gel in terms of their

definitions of what a feature is or what a story is, but each team gets a slightly modified

definition or interpretation of what that is. That really impacts your ability to estimate and to

really build your commitments with your customer. So, your velocity really takes major changes

every time you change a member of your team. That's one issue that a lot of organizations

[struggle with] when they want to do it across the board.

http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Pair_programming

SEI Podcast Series

The Fundamentals of Agile, page 5 www.sei.cmu.edu/podcasts

The other one is in the size of the application that they're trying to apply the principles, right?

With a larger application, it’s a more complicated application—especially when you start talking

about system-of-systems or multiple applications having to work together that are actually being

developed in parallel with each other. For those, quality really becomes important. Regardless of

small, medium, or large applications, agile pretty much says, “The most successful measure is

working software.” That's true. That's the goal of all software developers: to build a product that

works, that meets the customer’s needs.

But, as you get larger, that medium and that large approach, you really need some more leading

indicators to quality. And so inspections, reviews—they really become key. You want to do

those types of techniques on all of your products, right? Of anything—whether it's a document,

whatever it is, your architecture, your designs—to help remove those defects as quickly as

possible so you get that working product at the end, whenever you do do that integration for the

customer—whether it's at every iteration, at the end of the year, whatever it is that meets that

customer’s needs.

So, in order to do that, TSP created this quality framework, which is collect a little bit of data

about those defects, when are they injected? what is the impact of those defects as well as

emphasizing the need to do early-on quality measures, such as reviews and inspections, right?

So, once you have a focus on quality, which needs to be a little bit more than just working

software for large or medium applications. And you have a more precise measurement for

articulating where I stand on this project: am I ahead of schedule? am I behind schedule? do I

need more people. All those types of things you do when you’remanaging a project. Well with

just those four key measures: time, size, defects, and schedule performance, I now actually have

a measurement framework that's pretty simplistic. But it allows me to answer a lot of

questions—not just from the planning and quality perspective, but also, how is my process

performing overall? Did I make the right selection between the traditional methods and the agile

methods? and if I didn't, my data should tell me that, right?

It's that external looking in at myself, right? Because we get so busy, as humans into our day-to-

day work, we really have a hard time objectively evaluating ourselves. And data is really good

for helping us face reality, right? And so, with that and still every iteration, I stop. Just like in

scrum, I do a retrospective with that little bit of data it says, “okay, this isn't quite working. Let's

try this other technique, whether it's an agile technique or traditional technique. Let's see if this

helps us, let's test that out one or two cycles. What does our data say?” And then we can either

keep it because it's an improvement. We can get rid of it if it makes us worse, or if it's just a

change for the sake of change, but really shows no benefit, we can pick and choose. Did we like

doing it more than what we did before? If we like what we did before, there's no impact. Well,

let's just pick that other technique, because it was easier and it was more fun. And so, that's really

what teams have to do. And you have to be a power team to do that as an organization. By giving

http://www.sei.cmu.edu/sos/

SEI Podcast Series

The Fundamentals of Agile, page 6 www.sei.cmu.edu/podcasts

them a consistent framework to make those decisions across the organization is really key to

allowing those agile techniques where it's really knowledge worker, you know, collaborative

decision making and environment. A lot of trust has to be there, right? And some of that

consistency and core framework. And as long as everyone is following those frameworks, they

can now communicate and they can start building that trust in terms of ability to make their

commitments and actually articulate where they stand, right? Ahead or behind schedule? What's

the quality of my product? Why did I pick with these methods verses other methods, right?

They'll have data to help them support those decisions and those discussions with executives and

leaders, which can also help maintain the sponsorship, maintain the need for—and be able to

articulate the value of doing things the way they're doing it.

Shane: So, very good. For the folks or listeners out there that may be interested in TSP, if you

could give them one site where are you sending them to? Where are you pointing users to go to

to learn about TSP, if they want more information?

Tim: Well, there's two sites. Well, if you go to the SEI's website, so www.sei.cmu.edu, if you

just do slash TSP, you can go to TSP's homepage. There you'll find some technical reports,

things of that nature. If you want to hear from actual users of the TSP technology, I would

actually go to the SEI's website. But after the edu, it would be slash TSP symposium, and go to

the proceedings tab on there. Basically, there's five years’ worth of presentations. You'll hear

what Microsoft felt about it, Intuit, DoD, Hill Air force Base. So, there's just a huge variety. And

I just think that’s more powerful than any technical report.

Shane: Thank you for joining us. This recording and a downloadable are available at

sei.cmu.edu. An audio file of this podcast, along with transcript, will also be available on the SEI

website at www.sei.cmu.edu/podcasts. As always, if you have any questions, please don't

hesitate to email us at info@sei.cmu.edu.

file:///C:/Users/hap/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/23K0JJR6/www.sei.cmu.edu
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tspsymposium/2012/index.cfm
http://www.sei.cmu.edu/tspsymposium/2012/proceedings.cfm
http://www.sei.cmu.edu/podcasts
http://www.sei.cmu.edu/podcasts
mailto:info@sei.cmu.edu

