A

Changing Counterproductive
Behaviors in Real Acquisitions

Firefighting

Good Intentions

When a project begins, no one intends
to deliver it late, or to overrun their
budget, or to give users a buggy sys-
tem. It just seems to happen—all too
often, and despite the best of inten-
tions. Actually, though, the problems
that envelop so many software acquisi-
tion efforts are predictable—which
means that they are also avoidable,
and often correctable.

We’re going to explore one of those
predictable patterns—one called fire-
fighting. A recent government devel-
opment program fell prey to it after
mistakes were made in the earliest es-
timates of the work by the contractor.

Do You Smell Smoke?

In this project, mixing the contractor’s
poor estimation process with an ag-
gressive schedule from the govern-
ment yielded significant underestima-
tion of the effort needed to develop
each system release. Looming dead-
lines, and the probability of missing
them, multiplied the schedule pressure,
and work on the project became fren-
zied. A QA analyst observed that “the
contractor burned hours like there’s no
tomorrow,” yet productivity and qual-
ity fell off with increased overtime.
The result: “They ended up rubber
stamping code at code reviews.”

“There are just too
many unpredictable

factors and variables
to accurately estimate
the effort required.”

When system acceptance testing fi-
nally started, the team found the cur-
rent release had a high failure rate in
test cases. The government technical
lead admitted the project was behind
schedule “because of all kinds of
bugs.”

Fire! All Hands on Deck!

The contractor’s solution? Fire-
fighting. Pull everyone off their as-
signed tasks to fix the problems blaz-
ing throughout the project. Resources
were pulled off of every

other effort that was going on in
parallel—notably the next release.

Later, a team member noted that no
task was safe from being stripped of
people. The government acknowl-
edged that delays on the current re-

“The contractor

burned hours like
there’s no tomorrow”

lease would unguestionably affect the
next release. The firefighting, he said,
“sets my colleagues doing the next
release up to fail, because then they
have to start late, and their schedule
will slip from the beginning.”

The contractor wanted to break out of
this dynamic, but with all the people
needed for estimating the next release
busy fighting fires, “we’re never able
to get out ahead of the problems.”

A Towering Inferno

So, the problem just got worse, and the
flames hotter and higher. The contrac-
tor noted that the government deferred
problem requirements—moving them

Archetypes

to a new release—rather than facing
the problem and cancelling or post-
poning indefinitely. The problem thus
perpetuated itself, with deferred re-
quirements mapped to future releases,
and resources diverted from early re-
lease development.

The program manager, reviewing the
smoking ruin of the development
plan, summed it up.

“The first-order effects of what went
wrong on the release were bad
enough,” he said. “It was late and
over budget. But the contractor didn’t
want to acknowledge that that caused
the next release to slip, and may have
reduced functionality in the current
release—Ileaving this [mess] on the
side that someone has to clean up.”

(Continued on page 2)



(Continued from page 1)

The Bigger Picture

There are many ways the firefighting dynamic can begin, but
once started it is self-perpetuating. The initial trigger may be
due to scope creep, budget cuts, underestimation of the actual
effort, or other reasons. Processes are stressed, and short cuts
may be taken in quality processes. This allows defects to sur-
vive or be inserted into the system.

Reading The Causal Loop Diagram

A program has a desired goal for the number of allowable
defects in the delivered system—and the difference between
that goal and the actual number of problems is the Problem
Gap (see diagram). If this gap increases, then Resources
Dedicated to Current Release must increase to do rework to
fix problems.

More resources doing rework means fewer Design Problems
in Current Release, and reduces the Problem Gap. This is a
Balancing loop in which rework offsets (balances) the defects
being inserted. Unless the staff size increases, more people
assigned as Resources Dedicated to Current Release leaves
fewer Resources Dedicated to Next Release. This reduces the
resources available for Early Development Activities on Next
Release—which, after a delay, increases the number of De-
sign Problems in Current Release.

This exemplifies the classic problem of trading off long-term
benefits for short-term gains, and results in exacerbating
problems rather than resolving them. By “robbing Peter to
pay Paul,” additional resources will have to be spent in re-
solving the new problems introduced into the future releases.

“How can | break this
vicious cycle of schedule slips,

cost overruns,
and high defect rates?”’

[Kim 93] Kim, Daniel H. System Archetypes: Diagnosing Systemic Issues and De-
signing High-Leverage Interventions, Vols. I, I1, and I11. Pegasus Communications,
1993.

[Repenning 01] Repenning, Nelson P.; Goncalves, Paulo; & Black, Laura J. Past the
Tipping Point: The Persistence of Firefighting in Product Development. California
Management Review, July 1, 2001.

A Causal Loop Diagram of the firefighting effect.

Opposite

Sal

Opposite

[Repenning 01]

System variables (nodes) affect one another (shown by arrows):
Same means variables move in the same direction; Opposite
means the variables move in opposite directions. Balancing
loops converge on a stable value; Reinforcing loops are always
increasing or always decreasing. Delay denotes actual time de-
lays.

Breaking The Pattern

From a systems thinking perspective, to break out of this
ongoing dynamic this program needs to: (1) acknowledge
up front that the “fix” they are using—namely diverting
resources to address problems in the current release—is
just alleviating a symptom of the true problem, and (2)
commit to solving the real problem—accurately estimat-
ing the time and effort required for a release, and staffing
each new release in accordance with that estimate from the
beginning so that more problems with quality don’t occur
[Kim 93].

For other programs that have not yet experienced this type
of behavior, there are ways to avoid it [Repenning 01]:

e Don’tinvest in new tools and processes if you're al-
ready resource-constrained.

e Aggregation of resource planning (across all subtasks)
is critical to fire prevention.

e When a project does experience trouble in the later
phases of the development cycle, don’t try to “catch
up”—revisit the product plan instead.

e Don’t reward developers for being good firefighters.

Carnegie Mellon
Software Engineering Institute

Acquisition Archetypes is an exploration of patterns of failure in software
acquisition using systems thinking concepts. It is published by the Acqui-
sition Support Program of the Software Engineering Institute.

For more information, visit http://www.sei.cmu.edu/programs/acquisition-
support/

Copyright 2007 Carnegie Mellon University.



