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ABSTRACT 

Model interchange approaches support the analysis of software 

architecture and design by enabling a variety of tools to 

automatically exchange performance models using a common 

schema. This paper builds on one of those interchange formats, 

the Software Performance Model Interchange Format (S-PMIF), 

and extends it to support the performance analysis of real-time 

systems. Specifically, it addresses real-time system designs 

expressed in the Construction and Composition Language (CCL) 

and their transformation into the S-PMIF for additional 

performance analyses. This paper defines extensions and changes 

to the S-PMIF meta-model and schema required for real-time 

systems. It describes transformations for both simple, best-case 

models and more detailed models of concurrency and 

synchronization. A case study demonstrates the techniques and 

compares performance results from several analyses. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Modeling techniques; D.2.2 

[Software Engineering]: Design Tools and Techniques; D.2.12 

[Software Engineering]: Interoperability; I.6.4 [Simulation and 

Modeling]: Model Validation and Analysis 

General Terms 
Performance, Design 

Keywords 
Performance, software performance engineering, performance 

model, performance analysis, model interchange, real-time 

systems, architecture analysis, component-based systems 

1. INTRODUCTION 
Performance is a quality attribute that, in spite of being critical to 

a large number of software systems, is often not appropriately 

addressed. As a result, many software-based systems fail to meet 

their performance requirements as implemented. Fixing 

performance problems often causes cost and schedule overruns 

and, in some cases, the software cannot be fixed and must be 

abandoned.  

Performance cannot be retrofitted; it must be designed into 

software from the beginning. Our experience is that performance 

problems are most often due to inappropriate architectural choices 

rather than inefficient coding. By the time the architecture is 

fixed, it may be too late to achieve adequate performance by 

tuning. Thus, it is important to be able to assess the impact of 

architectural decisions on quality requirements such as 

performance and reliability at the time that they are made. 

Although sound performance analysis theories and techniques 

exist, they are not widely used because they are difficult to 

understand and require heavy modeling effort throughout the 

development process [1]. Consequently, software engineers 

usually resort to testing to determine whether the performance 

requirements have been satisfied. To ensure that these theories 

and techniques are used, they must be made more accessible—

integrated into the software development process and supported 

with tools. 

This paper illustrates an approach to making performance analysis 

more accessible. It makes several contributions: 

• Demonstrates the use of standard performance modeling 

techniques for component-based real-time systems 

• Illustrates the use of the Software Performance Model 

Interchange Format (S-PMIF) with the Construction and 

Composition Language (CCL) 

• Merges streams of research that have thus far been 

independent: predictable assembly of components, 

software performance engineering, and model interchange. 

The next section provides some background on the merged 

streams of research, and then Section 3 discusses related work in 

these areas. Section 4 provides an overview of the Construction 

and Composition Language (CCL) and the ICM meta-model for 

CCL assemblies. Next, Section 5 presents the revised S-PMIF 

meta-model for real-time systems. Section 6 describes the 

implementation of the interoperability features. Section 7 presents 

a case study as proof of concept and Section 8 offers some 

conclusions. 
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2. BACKGROUND 
As noted above, this work merges several distinct streams of 

research. This section describes these streams and provides an 

overview of their merger.  

2.1 Predictable Assembly 
The research on predictable assembly focuses on the development 

of technologies and methods to enable the development of 

software with predictable runtime behavior [2-4]. The PACC 

initiative at the Software Engineering Institute proposes the use of 

smart constraints to achieve predictability by construction [5]. 

The idea behind this concept is that analysis theories rely on 

certain assumptions in order to be applicable, which means that 

the behavior of a software system is predictable by a given theory 

only if it satisfies its assumptions. Smart constraints can guarantee 

the satisfaction of these assumptions so that if a software system 

can be constructed under these constraints, then its behavior can 

be predicted. Smart constraints can be enforced by different 

means, from automated checks at the architecture description level 

or design specification to imposition through component 

containers [6, 7]. 

Evaluation is as important as smart constraints in order to achieve 

predictability by construction. Since the complexity of 

performance evaluation and the effort required for creating the 

performance models has been cited as one of the root causes of 

software performance failures, it is critical to automate them to 

provide a solution to this recurring problem. One way of doing so 

is by using reasoning frameworks [8]. A reasoning framework 

encapsulates an analysis theory, the generation of theory specific 

models from the architecture or design specification, and the 

evaluation of these models. 

All these concepts of predictable assembly have been integrated 

together and demonstrated in the PACC Starter Kit (PSK) [9]. 

The PSK is a development environment that includes the 

Construction and Composition Language (CCL) [10], a language 

to describe the interface and behavioral specification of 

components and their assembly into systems. The runtime 

behavior of these systems specified in CCL can be predicted with 

the performance and model checking reasoning frameworks.  

Furthermore, executable code targeting the included runtime 

environment (the Pin component technology [11] and a real-time 

extension for Windows) can be generated from the same 

specification, guaranteeing that the code matches the 

specification. All the technologies integrated in this model-driven 

approach allow making performance predictions throughout the 

development lifecycle, from the early stages in which only the 

component and connector view of the architecture and execution 

time estimates are available, to the point in which executable code 

can be generated from the behavioral specification and measured. 

It even allows predicting the impact of changes during 

maintenance. 

Although the architecture of the PSK allows the integration of 

third-party performance analysis tools via plug-ins [12], the 

integration of each new tool requires the development of a new 

transformation to generate a performance model in an input 

format suitable for the tool. Even though this approach provides 

tight integration and allows exploiting specific features of the 

different tools, another promising option is the tool 

interoperability approach using an interchange format [13]. This 

paper describes the use of the Software Performance Model 

Interchange Format (S-PMIF) [14, 15] to allow the analysis of 

real-time designs specified in CCL with additional performance 

analysis tools. 

2.2 Software Performance Engineering 
Software performance engineering (SPE) is a systematic, 

quantitative approach to constructing software systems that meet 

performance requirements. SPE prescribes principles for creating 

responsive software, the data required for evaluation, procedures 

for obtaining performance specifications, and guidelines for the 

types of evaluation to be conducted at each development stage. It 

incorporates models for representing and predicting performance 

as well as a set of analysis methods [16].  

SPE advocates three modeling strategies: 

1. Simple-model strategy: Start with the simplest possible 

model that identifies problems with the system 

architecture, design, or implementation plans. 

2. Best- and Worst-Case Strategy: Use best- and worst-

case estimates of resource requirements to establish 

bounds on expected performance and manage 

uncertainty in estimates. 

3. Adapt-to-Precision Strategy: Match the details 

represented in the models to the knowledge of the 

software processing details. 

Simple models are easily constructed and solved to provide 

feedback on whether the proposed software is likely to meet 

performance requirements. As the software process proceeds, the 

models are refined to more closely represent the performance of 

the emerging software (adapt to precision strategy). If the 

predicted best-case performance is unsatisfactory, developers seek 

feasible alternatives. If the worst- case prediction is satisfactory, 

they proceed to the next step of the development process. If the 

results are somewhere in-between, analyses identify critical 

components and seek more precise data for them. A variety of 

techniques can provide more precision, including:  further 

refining the architecture and constructing more detailed models or 

constructing performance prototypes and measuring resource 

requirements for key components. 

SPE·ED [17] is a tool designed specifically to support the SPE 

methods and models defined in [16]. Using a small amount of 

data about envisioned software processing, SPE·ED creates and 

solves performance models, and presents visual results. It 

provides performance data for requirements and design choices 

and facilitates comparison of software and hardware alternatives 

for solving performance problems. 

SPE·ED supports four types of solutions for the performance 

models:  

1. No contention – analytic solution with one user 

2. Contention – analytic solution of multiple users of the 

same scenario,  

3. System model – simulation solution of all scenarios and 

users 

4. Advanced model – analysis of communication and 

coordination among scenarios and users. 



 The simple model solution (no contention) suffices for most 

performance analyses early in development. The data that is 

available at that time usually doesn’t provide the precision needed 

for the more detailed solutions. Later, the advanced system model 

solution gives more insight into situations when mean values may 

be fine, but queue lengths may build in some circumstances and 

lead to unacceptable performance. The advanced system model 

executes the simulation and actually “makes calls” to other 

processes at the point in the execution where special 

synchronization nodes are placed. If the called process is busy, the 

calling process waits in a queue. 

In SPE•ED, an advanced system execution model is automatically 

created and solved to quantify contention effects and delays.   

2.3 Model Interchange 
Model interchange seeks cooperation among existing tools that 

perform different tasks. XML-based interchange formats for 

models provide a mechanism whereby model information may be 

transferred among modeling and analysis tools. This makes it 

possible for a user to create a model in one tool, perform some 

studies, and then move the model to another tool for other studies 

that are better done in the second tool.  

The Software Performance Model Interchange Format (S-PMIF) 

[14] is a common representation that can be used to exchange 

information between software design tools and software 

performance engineering tools. With S-PMIF, a software tool can 

capture software architecture and design information along with 

some performance information and export it to a software 

performance engineering tool for model elaboration and solution 

without the need for laborious manual translation from one tool’s 

representation to another, and without the need to validate the 

resulting specification. Use of the S-PMIF does not require tools 

to know about each other’s capabilities, internal data formats, or 

even existence. It requires only that the importing and exporting 

tools either support the S-PMIF or provide an interface that 

reads/writes model specifications from/to a file. 

S-PMIF enables the following SPE tasks: 

1. Developers can prepare designs as usual and export the 

data to SPE tools where performance models can be 

constructed automatically. 

2. The model transformation can be used to check that the 

resulting processing details are those intended by the 

software specification. 

3. Data available to developers can be captured in the 

development tool – other data can be added by 

performance specialists in the SPE tool. 

4. Rapid production of models makes data available for 

supporting design decisions in a timely fashion. This is 

good for studying architecture and design tradeoffs 

before committing to code. 

5. Developers can create and evaluate some SPE models 

without needing detailed knowledge of performance 

models. 

The performance model interchange formats specify the model 

and a set of parameters for one run. For model studies, however, it 

is useful to be able to specify multiple runs, or experiments, for 

the model. In [18] an XML interchange schema extension, called 

Experiment Schema Extension (Ex-SE), defines a set of model 

runs and the output desired from them. This extension to an 

interchange schema provides a means of specifying performance 

studies that is independent of a given tool paradigm.  

Thus, the model interchange approach makes it possible to create 

a software specification in a development tool, then automatically 

export the model description and some specifications for 

conducting performance assessments, and obtain the results for 

use in considering architectural and design alternatives. The 

advantages of this approach are: it is relatively easy to accomplish 

with existing tools; it requires minor extensions to tool functions 

(import and export) or creation of an external translator to convert 

file formats to/from interchange formats; and it enables the use of 

multiple tools so it is easy to compare results and to use the tool 

best suited to the task. 

Without a shared interchange format, two tools would need to 

develop a custom import and export mechanism. A third tool 

would require a custom interface between each of those tools 

resulting in a 4· ( N! / (2!(N-2)!))  requirement for customized 

interfaces. With a shared interchange format, the requirement for 

customized interfaces is reduced to 2·N. With XML tools the 

complexity and amount of effort to create the interface is quite 

small [19]. While XML is verbose, model interchange is a coarse-

grained interface. A file is exported, sent to another tool, it is 

imported and the model solved. So the performance impact of 

XML as the interface is insignificant compared to a fine-grained 

interface that exchanges each XML element as it is generated. 

3. RELATED WORK 

3.1 Architecture Assessment 
Kazman and co-workers describe two related approaches to the 

evaluation of software architectures. The Software Architecture 

Analysis Method (SAAM) [20] uses scenarios to derive 

information about an architecture’s ability to meet certain quality 

requirements such as performance, reliability, or modifiability. 

The Architecture Tradeoff Analysis Method (ATAM) [21] 

extends SAAM to consider interactions among quality 

requirements and identify architectural features that are sensitive 

to more than one quality attribute. Once these sensitivities have 

been identified, tradeoffs between quality requirements can be 

evaluated. 

PASASM [22] is a method for the performance assessment of 

software architectures. It uses the principles and techniques of 

SPE [16] to identify potential areas of risk within the architecture 

with respect to performance and quality objectives. If a problem is 

found, PASA also identifies strategies for reducing or eliminating 

those risks. PASA is similar to SAAM and ATAM in that it is 

scenario-based. However, there are also important differences. In 

SAAM and ATAM, scenarios are informal narratives of uses of 

the software. In PASA, performance scenarios are expressed 

formally using UML sequence or activity diagrams. ATAM and 

PASA differ in their approach to performance modeling. ATAM 

uses analytical models of certain architectural features while 

PASA uses more general software execution and system execution 

models that may be solved analytically or via simulation [16]. 

Both SAAM and ATAM produce a list of problem areas or risks 

while PASA produces a quantitative estimate of the performance 

of the system as implemented as well as for proposed changes. 

Finally, ATAM is also concerned with interactions between 



quality attributes and focuses on architectural features where 

tradeoffs may be required. While PASA’s primary focus is on 

performance, quality attributes and tradeoffs between them are 

considered as well. 

Earlier approaches to architecture assessment (e.g., [23], [24] 

[25], [26], [27], and [28]) relied on directly connecting a 

particular design notation and a particular type of performance 

model. More recently, interchange formats have been used to 

decouple the architecture description from the model description 

(see below). 

3.2 Model Interchange 
Several model interchange formats for different types of models 

have been proposed. The Performance Model Interchange Format, 

PMIF, [13, 29] enables various tools to exchange queueing 

network model information. PMIF is based on a meta-model, 

which provides an underlying formalism for the schema. The 

meta-model for the Software Performance Model Interchange 

Format, S-PMIF, was defined and later extended in [15, 30]. It 

differs from the PMIF in that it specifies software processing 

details and bridges the gap between software architecture and 

design tools and performance analysis tools. Woodside et al. 

developed a meta-model, PUMA, that combines software and 

system models based on layered queueing networks (LQN) in 

[31]. D’Ambrogio also defines a MOF meta-model of LQNs and 

transfers UML models to LQNs in [32].  

Other approaches have focused on transferring information 

between UML-based software design tools and software 

performance engineering tools, such as [14, 33-35]. Gu and Petriu 

[36] and Balsamo and Marzolla [24] use XML to transfer design 

specifications into a particular solver; however, they do not 

attempt to develop a general format for the interchange of 

performance models among different tools. Our work does not 

involve UML transformations so other topics such as SPT and 

MARTE are not addressed here. 

This body of work demonstrates that model interoperability 

among a set of tools is viable. Common interchange formats such 

as PMIF, S-PMIF, and PUMA are preferable because they enable 

the use of a large number of tools without requiring custom 

interfaces for each one. 

3.3 Component-Based Approaches 
Some work has addressed the performance analysis of component-

based systems. Wu and Woodside use an XML Schema to 

describe the contents and data types that a Component-Based 

Modeling language (CBML) document may have [37]. CBML is 

an extended version of the Layered Queuing Network (LQN) 

language that adds the capability and flexibility to model software 

components and component-based systems. 

Becker, et al., address components whose performance behavior 

depends on the context in which they are used [38]. They address 

sources of variability such as loop iterations, branch conditions, 

and parametric resource demand, and then use simulation to 

predict performance in a particular usage context. 

Grassi, et al., extend the KLAPER MOF meta-model to represent 

reconfigurable component-based systems in [39]. It is to be used 

in autonomic systems and enable dynamic reconfiguration to meet 

QoS goals. 

These approaches are performance-centric in that they 

create/adapt a model of component based systems specifically for 

performance assessment. We prefer to work with generally 

accepted architecture representations, and use a common 

interchange format (S-PMIF) that allows the use of a variety of 

performance modeling tools to provide performance predictions 

for architecture and design alternatives. In addition, we have 

extended the S-PMIF to include features necessary for evaluating 

real-time systems. In the future, it may be possible to unify the 

various interchange formats as suggested by [40]. In the 

meantime, it makes sense to extend the meta-models as necessary 

to create a superset of the necessary information for performance 

assessment.  

4. CCL AND ICM 
The architecture specification language used in this study is the 

Construction and Composition Language (CCL) [10]. This 

section describes relevant features of CCL and ICM, a meta-

model for facilitating the analysis of CCL specifications. 

4.1 Construction and Composition Language 
CCL is a language for specifying the behavior of components, 

their composition to form assemblies or systems, and the 

properties required for reasoning about the assemblies [10]. CCL 

enforces the notion of pure composition, which means that all the 

behavior is inside the components and systems are assembled by 

wiring components together with no “glue” code. Components in 

CCL interact through pins. Source pins emit stimuli and sink pins 

receive stimuli. When a sink pin receives a stimulus, it triggers a 

reaction, which carries out the response to the stimulus. A 

reaction can initiate an interaction with other components via its 

source pins. Pins can interact synchronously or asynchronously. 

Stimuli can carry data, and for that reason, pins have signatures 

describing the data they consume and produce. 

The following CCL specification declares a component type 

MovementPlanner with one asynchronous sink pin and three 

source pins (one synchronous and two asynchronous). Then it 

declares a reaction in which all the pins participate, that is, it is 

triggered by go, the only sink pin, and it can interact with other 

components through the source pins. The keyword threaded 

indicates that this reaction executes in its own thread. 

component MovementPlanner() { 
    sink asynch go(); 
    source synch get(produce int mode, produce  
        string in, consume string out); 
    source asynch moveX(produce int pos); 
    source asynch moveY(produce int pos); 
 

    threaded react reaction go, get, moveX, moveY) 
    { 

// reaction specification goes here 
    } 
} 

It is important to note that a specification like this that does not 

have the behavioral specification of the reaction is a valid CCL 

specification. Therefore, analysis can be done in the early stages 

of the design, when only the component and connector structure 

of the system is known. 

An assembly of components is produced by creating component 

instances and connecting them as in the following fragment. 



    MovementPlanner movementPlanner(); 
    AxisController controllerX("X"); 
 
    movementPlanner:moveX ~> controllerX:move; 

For the connection between two pins to be legal, they need to 

have the same mode (synchronous or asynchronous) and they 

need to have complementing signatures, meaning that the data 

produced by one pin is consumed by the other and vice versa. For 

example, the signature of the pin move in AxisController is as 

follows. 

    sink asynch move(consume int pos); 

Assemblies declare services (e.g., clocks, keyboard input, console 

output, etc.) that they expect the environment to provide. The 

specification of a service is identical to that of a component, 

except that the keyword service is used instead. One important 

semantic difference though, is that services are the only source of 

external events because components cannot interact directly with 

the environment. 

CCL has an annotation mechanism that can be used to provide 

information required to analyze the assembly. For example, the 

following annotation1 indicates the minimum, average, and 

maximum execution time of the move pin in AxisController when 

run in isolation (i.e., with no blocking and no preemption). 

    annotate AxisController:move {"lambda*", 
 const string execTime =   
            "G(9.95, 10.01, 10.14)" } 

Only the aspects of CCL most relevant for this paper have been 

covered here. More details about CCL can be found in [10]. 

4.2 ICM: A Meta-model for CCL Assemblies 
The intermediate constructive model (ICM) is an intermediate 

representation of a CCL assembly that makes the generation of 

                                                                 

1 The argument “lambda*” indicates the reasoning framework this 

annotation is used for. 

analysis models simpler. Instead of having to deal with the 

language related constructs in the CCL abstract syntax tree while 

developing a transformation, it is easier to start from concepts that 

are more relevant to reason about the assembly. For example, it is 

easier to reason about a source pin with an event interarrival 

distribution, than doing the same thinking in terms of a 

computational unit, an annotation and a float literal expression. 

The ICM meta-model, shown in Figure 1, does not have 

information regarding types and only represents instances. That is, 

if there are two instances of the same component type, elements 

common to both, such as pins, are repeated in the model. This 

redundancy also makes it easier to traverse the design in order to 

transform it to an analysis model. The root element of the ICM 

meta-model is the AssemblyInstance, which contains all the 

service and component instances in the assembly.  These have a 

common base class, ElementInstance, with all the attributes they 

share. Components and services have pins that can be either sink 

or source. SinkPinInstance has an execution time distribution to 

represent the amount of CPU time the sink pin requires. When a 

source pin belongs to a service (i.e., it is a ServiceSourcePinIcm), 

it has an event interarrival distribution and can optionally have an 

execution time distribution as well. Distributions can be of 

different kinds, such as constant or exponential. In order to 

represent the connections between components, there is a 

reference sinks between pins that shows which sink pins are 

connected to a source pin. In a similar way, the reactSources 

reference indicates the sources that are triggered by a sink pin in 

the same component. 

5. S-PMIF  
The S-PMIF is based on the SPE meta-model. This meta-model 

defines the essential information required to create the software 

and system performance models as defined in [16]. The SPE 

 

Figure 1. ICM Meta-model 



meta-model class diagram is shown in Figure 2. The complete 

definition is available at www.spe-ed.com/pmif/s-pmif.xml 2 

Several changes were made to the meta-model described in [30] 

as a result of this work. The first was the creation of the abstract 

entity Scenario with subclasses PerformanceScenario and 

ServiceScenario. A PerformanceScenario represents an end-to-

end, externally visible interaction (analogous to a Use Case) while 

a ServiceScenario is a scenario that provides one or more services 

to one or more PerformanceScenarios. Performance Scenarios 

have workload intensities which may be specified by a number of 

users and think time (closed workload) or an inter-arrival time 

(open workload). ServiceScenarios have an optional 

intearrivalTime (default is 0) and numberOfInstances. 

 

Several attributes were also added to the meta-model to allow 

specification of real-time concepts: 

                                                                 

2 You also need ~/OverheadMatrix.xml and ~/Devices.xml. The 

extension for all schemas is ~.xml so that it can be viewed from 

a browser. Change the extensions to ~.xsd to use them. 

• arrivalDistribution (PerformanceScenario) and 

serviceDistribution (Device). These take their values from 

an enumerated type, DistributionType (exp, normal, 

constant, erlang, hyperexp, uniform(u1,u2)). These 

attributes are optional (default to exp). 

• schedulingDiscipline (Device). This attribute is also an 

enumerated type (FCFS, IS, LCFSPR, PR, PS, RR) and is 

optional. 

• responseTimeRequirement and throughputRequirement 

(Scenario). The values of these attributes are real numbers. 

In addition, the attributes partnerNodeID and 

partnerScenarioName were added to SendNode and attributes 

were removed from SynchronizationNode. 

TheS-PMIF is implemented using three separate schemas: 

Topology, OverheadMatrix, and Device. They can be combined 

by including the appropriate schemas. Thus, Topology may 

include OverheadMatrix which includes Device. This is useful 

because one may use any of the schemas without using the others. 

For example, if the overhead matrix specification is coming from 

another source it does not need to be included in the topology, 

and vice-versa. 
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Comparing this meta-model to the MARTE specification is 

beyond the scope of this paper and will be addressed in future 

work. 

6. IMPLEMENTATION 

6.1 Generating S-PMIF Models from CCL 
Even though from the user’s perspective the transformation to an 

S-PMIF model starts from a CCL specification, behind the scenes 

the CCL specification is transformed first to an ICM model from 

which the S-PMIF is finally generated.  

The ICM meta-model is defined as an Ecore model, the meta-

model of the Eclipse Modeling Framework [41]. EMF can 

generate the Java implementation classes to load, manipulate and 

persist instances of the model. The S-PMIF format is specified as 

an XML schema, and since EMF provides the same generative 

capabilities starting with an XML schema, EMF was used to 

generate the Java implementation to manipulate the S-PMIF 

models. 

The following sections describe the generation of two flavors of 

S-PMIF model from ICM, the simple model, or no contention 

model, and the advanced model. 

6.2 Generation of the Simple Model 
The overall approach to generate the simple model consists of 

creating an S-PMIF performance scenario for each service source 

pin in the ICM. In that way, the performance scenario 

encompasses the complete response to an external event. The 

execution graph for the performance scenario is created by 

recursively traversing the response by visiting each pin, starting 

with the service source pin. Figure 3 shows the pseudocode for 

the two functions that implement the core of the transformation. 

The function visitSource checks whether the source pin is 

synchronous or asynchronous. In the first case, it directly returns 

the node that is created by visiting the sink connected to that 

source. However, if the source pin is asynchronous, it creates a 

SplitNode to represent the initiation of concurrent threads of 

execution, and adds to the split node the nodes resulting from 

visiting all the sink pins connected to the source node. The 

function visitSink creates a BasicNode with a 

ResourceRequirement to model the computation carried out by the 

sink pin and then it visits in sequence all the source pins in the 

same component that are triggered by the reaction of the sink pin. 

The order of execution is modeled by creating the arcs connecting 

the nodes. 

One problem that arose while implementing this algorithm was 

the lack of subtype relationships between the different kinds of 

nodes in the S-PMIF schema. In the S-PMIF meta-model, both 

BasicNode and SplitNode are subtypes of Node. However, in the 

XML schema for S-PMIF the hierarchy was flattened and those 

relationships were lost [14]. For that reason, in the Java 

implementation generated with EMF from the S-PMIF schema, 

Node, BasicNode, and SplitNode have no subtype relationship. 

This complicates the implementation of the transformation 

algorithm. For instance, what is the return type of visitSource if it 

can return either a BasicNode or a SplitNode? The problem also 

hindered the use of polymorphism because it makes it impossible 

to make calls such as lastNode.getNodeId(), where lastNode can 

refer to different types of nodes. Although the intent of flattening 

the S-PMIF schema was to simplify the XML [14], the lack of 

subtype relationships proved to have the opposite effect in 

situations where the XML is generated by a high level modeling 

technology such as EMF.  

The problem of not having node subtyping was overcome in two 

different ways. One solution was changing the return type of 

visitSource and visitSink to ExpandedNode, and wrapping the 

result of each function in its own execution graph contained in an 

expanded node. This approached worked well albeit it generated a 

lot of expanded nodes and execution graphs that would otherwise 

not be needed.  

The second solution was more complicated because it consisted of 

adding subtyping to the schema from which the Java 

implementation classes were generated while maintaining an 

output format compliant with the original S-PMIF schema. The 

subtyping was added by using the schema type extension 

mechanism. In addition, containment relationships that were 

implemented with XSD choice were changed to use the base type. 

For example, the containment relationship shown in Figure 4 was 

changed as it appears in Figure 5. This change allowed EMF to 

generate Java code with the right subtype relationships. However, 

the generated XML for a BasicNode would look as follows. 

  <Node xsi:type="BasicNode_type" NodeId="N1" … /> 

Since this is not compatible with the S-PMIF schema, XSD 

substitution groups were defined so that the desired XML output 

Node visitSource(SourcePinInstance source) { 
  if source is synchronous { 
    node = visitSink(sink) 
  } else { // source is asynchronous 
    node = new SplitNode 
    for each sink in source.sinks { 
      newNode = visitSink(sink) 
      add newNode to children of node 
    } 
  } 
  return node 
} 

 
Node visitSink(SinkPinInstance sink) { 
  node = new BasicNode 
  add ResourceRequirement to node from 
        sink.execTimeDistribution 
  lastNode = node 
  for each source in sink.reactSources { 
    newNode = visitSource(source) 
    arc = new Arc 
    arc.from = lastNode.getNodeId() 
    arc.to = newNode.getNodeId() 
    lastNode = newNode 
  } 
  return node 
} 
 

Figure 3. Pseudocode for simple S-PMIF model generation 

<xs:complexType name="EG_type"> 
  <xs:sequence> 
    <xs:choice maxOccurs="unbounded"> 
      <xs:element name="BasicNode" 
                  type="BasicNode_type"/> 
      <xs:element name="SplitNode" 
                  type="CPSNode_type"/> 
      ... 
    </xs:choice> 
  </xs:sequence> 
  ... 
</xs:complexType> 

Figure 4. Containment with schema choice 



was produced. A substitution group introduced to the schema with 

<xs:element name="BasicNode" 
  substitutionGroup="Node" type="BasicNode_type"/> 

resulted in the right XML produced as in this example: 

  <BasicNode NodeId="N1" … /> 

 

Figure 5. Containment with base type 

6.3 Generation of the Advanced Model 
In a component-based real-time system, the response to an event 

may be realized by several components that may execute in their 

own thread. When creating the advanced S-PMIF model, the 

different concurrent threads of execution need to be modeled so 

that contention between them can be evaluated.  

S-PMIF has the concept of a SynchronizationNode that maps 

directly to the different kinds of pins in CCL. Synchronous source 

and sink pins can be represented by SynchronousCall and Reply 

nodes respectively. Asynchronous source and sink pins can be 

modeled by AsynchronousCall and NoReply nodes 

correspondingly. The pseudocode for the algorithm used to 

generate the advanced model is shown in Figure 6. The most 

important function is getPSForSink. This function creates a 

scenario for a sink pin in the assembly only if it has not created it 

before; otherwise, it returns the already existing scenario. The 

performance scenario starts with either a BasicNode or 

SynchronizationNode depending on whether it is top level (i.e., 

first in the response to an event) or not. If it is not top level, the 

type of the SynchronizationNode is set to match the interaction 

mode of the pin. This first node in the scenario has a 

ResourceRequirement specifying the execution time required by 

the sink pin in the CPU. If the component interacts with other 

components via its source pins, synchronization nodes of type 

SynchronousCall or AsynchronousCall are created to model the 

interactions with the connected sink pins. In order to get the 

partner scenario of these synchronization nodes, getPSForSink is 

called recursively. The main function of the transformation, 

generateModel, just calls getPSForSink for each of the sinks 

connected to service source pins in the assembly and sets the 

corresponding interarrival time for the top level performance 

scenarios. 

The algorithm presented here depends on a simplifying 

assumption, namely, that all the sink pins in the assembly 

participate in threaded reactions. Nevertheless, it would not be 

difficult to extend it to support unthreaded reactions as well 

because traversing unthreaded reactions would be the same as was 

done in the simple model generation algorithm, except that in this 

case there would be no split nodes. 

6.4 Importing the Models  
The S-PMIF is imported into a software performance modeling 

tool, like SPE·ED [42, 43], SP[44], or HIT [45] for performance 

analysis of the software architecture and design, and evaluation of 

alternatives. The software performance modeling tool must either 

provide an import mechanism for S-PMIF or read input from a 

file that can be generated from a translation of the S-PMIF. 

We use the SPE·ED tool. SPE·ED uses the Document Object 

Model (DOM) to import the s-pmif.xml. It first loads and parses 

the document, then uses DOM calls to walk through each scenario 

and create the corresponding nodes and arcs in SPE·ED. Previous 

work created a prototype import mechanism [30]. It included 

neither the import of resource requirements nor the overhead 

matrix so those features were added to handle these models. This 

was the only extension required for the simple models. The 

following additional features were required for the real-time 

extensions used in the advanced models: 

• ServiceScenarios are currently mapped to performance 

scenarios. In the future, SPE·ED will support 

ServiceScenarios, so this is a temporary solution. 

 

Figure 6. Pseudocode for advanced S-PMIF model generation 

<xs:complexType name="EG_type"> 
  <xs:sequence> 
    <xs:element maxOccurs="unbounded" 
               name="Node" type="Node_type"/> 
    ... 
  </xs:sequence> 
  ... 
</xs:complexType> 

generateModel() { 
  for each serviceSourcePin in assembly { 
    linkedSink =  
           sink connected to serviceSourcePin 
    ps = getPSForSink(linkedSink, true) 
    ps.interarrivalTime =  
      serviceSourcePin.eventDistribution.mean 
  } 
} 
 

PS getPSForSink(SinkPinInstance sink, 
                bool topLevel) { 
  if PS already created for sink { 
    return psMap[sink] 
  } 
  ps = new PS 
  ps.priority = sink.priority 
  if topLevel { 
    node = new BasicNode 
  } else { 
    node = new SynchronizationNode 
    if sink is synchronous { 
      node.myType = Reply 
    } else { 
      node.myType = NoReply 
    } 
  } 
  add ResourceRequirement to node from 
        sink.execTimeDistribution 
  make node first node in ps 
  lastNode = node 
  for each source reacting to sink { 
    for each linkedSync connected to source { 
      node = new SynchronizationNode 
      if sink is synchronous { 
        node.myType = SynchronousCall 
      } else { 
        node.myType = AsynchronousCall 
      } 
      node.partnerPerfScenario = 
            getPSForSink(linkedSink, false) 
      arc = new Arc 
      arc.from = lastNode.getNodeId() 
      arc.to = node.getNodeId() 
      lastNode = node 
    } 
  } 
  psMap[sink] = ps 
  return ps 
} 



• SPE·ED assumes arrival times and service times are 

exponentially distributed, the case study required 

constant interarrival and service times 

• Preemptive-resume scheduling was required. 

• Synchronization nodes were not supported in the earlier 

prototype 

7. PROOF OF CONCEPT 
In order to demonstrate the viability of the performance model 

exchange approach, we selected a real-time application that was 

specified with CCL. The application is a simple robot controller 

that takes high-level work orders for a robot and translates them to 

low-level movement commands for the robot’s two axes. Figure 7 

shows the design of the controller. The solid black boxes are 

sources of events, and in this case, they all have constant 

interarrival intervals. For clarity, the period of the event has been 

included in the name of the service (e.g., clock130 has a period of 

130ms). Components are depicted as hollow boxes in the diagram, 

with sink pins on the left, and source pins on the right. Single and 

double arrow pins indicate synchronous and asynchronous 

interaction respectively.  

The trajectory planner periodically receives high-level orders for 

the robot and, using information it gets from the position monitor, 

decomposes them into subwork orders, which it then puts in the 

work order repository. The movement planner gets orders from 

the repository and translates them into movement commands for 

the axis-controllers controllerX and controllerY. The position 

monitor receives input from a sensor that is read periodically, and 

the monitor component performs low-priority monitoring tasks.  

It is critical that the movement planner never finds the repository 

empty because if it does, it has to abort the operation of the robot. 

Both planners cannot miss their deadline at the end of their 

period. Therefore, this is a hard real-time situation. All the sink 

pins in this design execute on their own thread at different 

priorities. 

The simple model consists of four performance scenarios. Figure 

8 shows the generated S-PMIF for one of them. 

The advanced system model has nine scenarios. Figure 9 shows 

the S-PMIF for the same scenario in the advanced model. 

Figure 10 shows the imported models. On the left is a portion of 

the simple model corresponding to the execution graph for the 

expanded node, E_trajectoryPlanner.go. Its “no contention” 

solution is shown. On the right is the generated advanced model 

consisting of the N_trajectoryPlanner.go basic node followed by 

two synchronous call nodes. 

In order to have a baseline for comparing the results, the 

controller was analyzed using the worst-case latency prediction 

capability provided by the PSK performance-reasoning 

framework. This analysis first transforms the design specification 

into a performance model in which the response to each external 

event is expressed as a linear sequence of actions, even if the 

original response presents branching and internal concurrency. 

The resulting performance model is then analyzed using the 

technique for varying priorities in Rate Monotonic Analysis 

 

Figure 7. Robot controller design 

 

Figure 8. S-PMIF for clock450.tick Simple Model 

<PerformanceScenario EGId="clock450.tick" 
InterarrivalTime="450.0" NumberOfJobs="1" 
Priority="1" ScenarioName="clock450.tick" 
SWmodelfilename="icm"> 
  <ExecutionGraph EGId="clock450.tick" 
EGname="clock450.tick" IsMainEG="true" 
StartNode="S_clock450.tick"> 
    <SplitNode NodeId="S_clock450.tick" 
NodeName="S_clock450.tick"> 
      <ExpandedNode 
NodeId="X_trajectoryPlanner.go" 
NodeName="X_trajectoryPlanner.go" 
Probability="1.0" 
EGId="E_trajectoryPlanner.go" 
EGname="E_trajectoryPlanner.go"/> 
    </SplitNode> 
  </ExecutionGraph> 
  <ExecutionGraph 
EGId="E_trajectoryPlanner.go" 
EGname="E_trajectoryPlanner.go" 
IsMainEG="false" 
StartNode="N_trajectoryPlanner.go"> 
    <BasicNode 
NodeId="N_trajectoryPlanner.go" 
NodeName="N_trajectoryPlanner.go" 
Probability="1.0"> 
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="89.66507"/> 
    </BasicNode> 
    <BasicNode 
NodeId="N_positionMonitor.read" 
NodeName="N_positionMonitor.read" 
Probability="1.0"> 
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="3.0634942"/> 
    </BasicNode> 
    <BasicNode NodeId="N_repository.access" 
NodeName="N_repository.access" 
Probability="1.0"> 
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="19.920586"/> 
    </BasicNode> 
    <Arc FromNode="N_trajectoryPlanner.go" 
ToNode="N_positionMonitor.read"/> 
    <Arc FromNode="N_positionMonitor.read" 
ToNode="N_repository.access"/> 
  </ExecutionGraph> 
</PerformanceScenario> 



(RMA) [46]. This analysis is carried out by MAST [12], a third-

party tool integrated with the PSK’s performance reasoning 

framework. For each response being analyzed, RMA creates the 

worst phasing of tasks in order to compute an upper bound for the 

worst-case latency or response time. Therefore, it is expected that 

results obtained by other means be no higher than those provided 

by RMA. 

Table 1 shows the performance results. The first two sections are 

the results from the RMA analysis and a discrete event simulation 

integrated in the PSK. The third section shows the SPE·ED results. 

The best case is the analytic solution of the SPE·ED simple model. 

The average and worst cases are the simulation solution of the 

SPE·ED advanced system model. As expected, the analytic best 

case for both RMA and SPE·ED are exact. The simulation 

solutions are also comparable, but not exact. This is especially 

noticeable in the best case because the discrete event simulation 

best case does include contention. For example, even in the best 

case, the response to clock450.tick will be preempted twice by 

clock150.tick, resulting in a response time higher than the no-

contention best case. 

The next step is to evaluate an alternative architecture that 

replaces the X and Y controllers with controllers that also provide 

position feedback to the position monitor. This changes the 

scenario for clock150.tick in the simple model to make two 

additional calls. It changes the ControllerX and ControllerY 

threads in the advanced model to make asynchronous calls to the 

PositionMonitor.input. Table 2 shows the results for this 

architectural alternative. 

As before, the best case analytic results are exact. However, these 

results show some differences in the simulation solutions for the 

 

Figure 9. S-PMIF for clock450.tick Advanced Model 

Table 1. Robot Controller Results 

Transaction Best Average Worst 

RMA Analytic    

clock130.tick 15.04  98.04 

clock450.tick 112.65  262.77 

clock150.tick 60.02  79.94 

clock2000.tick 0.32  278.14 

DE Simulation    

clock130.tick 15.04 33.71 75.08 

clock450.tick 247.73 259.49 262.83 

clock150.tick 60.02 60.00 60.04 

clock2000.tick 0.32 103.08 278.20 

SPE·ED Results    

clock130.tick 15.04 33.78 99.07 

clock450.tick 112.65 259.67 262.77 

clock150.tick 60.02 60.02 60.02 

clock2000.tick 0.32 71.61 278.14 
 

Table 2. Results for Architectural Alternative 

Transaction Best Average Worst 

RMA Analytic    

clock130.tick 15.04  124.06 

clock450.tick 112.65  496.91 

clock150.tick 86.03  109.02 

clock2000.tick 0.32  431.24 

DE Simulation    

clock130.tick 15.04 52.18 115.99 

clock450.tick 314.80 347.63 431.04 

clock150.tick 86.03 89.57 105.99 

clock2000.tick 16.19 220.18 431.36 

SPE·ED Results    

clock130.tick 15.04 46.51 208.16 

clock450.tick 112.65 305.60 317.88 

clock150.tick 86.03 90.08 192.65 

clock2000.tick 0.32 128.68 413.30 

Time, no contention: 112.65

89.67

 3.06

19.92

E_trajectoryPlanner.go

N_trajectory
Planner.go

N_position
Monitor.read

N_reposi-
tory.access

 

trajecoryPlanner.go

posMonitor.read

repository.access

 

Figure 10. Imported Clock450.tick Simple and Advanced 

Model 

<PerformanceScenario 
EGId="trajectoryPlanner.go" 
InterarrivalTime="450.0" Priority="4" 
ScenarioName="trajectoryPlanner.go" 
SWmodelfilename="icm"> 
  <ExecutionGraph EGId="trajectoryPlanner.go" 
EGname="trajectoryPlanner.go" IsMainEG="true" 
StartNode="N_trajectoryPlanner.go"> 
    <BasicNode 
NodeId="N_trajectoryPlanner.go" 
NodeName="N_trajectoryPlanner.go"> 
      <ResourceRequirement ResourceId="R_CPU" 
UnitsOfService="89.66507"/> 
    </BasicNode> 
    <SynchronizationNode 
NodeId="N_trajectoryPlanner.read" 
NodeName="N_trajectoryPlanner.read" 
myType="SynchronousCall" 
partnerID="N_positionMonitor.read" 
partnerPerfScenarioName="positionMonitor.read
"/> 
    <SynchronizationNode 
NodeId="N_trajectoryPlanner.put" 
NodeName="N_trajectoryPlanner.put" 
myType="SynchronousCall" 
partnerID="N_repository.access" 
partnerPerfScenarioName="repository.access"/> 
    <Arc FromNode="N_trajectoryPlanner.go" 
ToNode="N_trajectoryPlanner.read"/> 
    <Arc FromNode="N_trajectoryPlanner.read" 
ToNode="N_trajectoryPlanner.put"/> 
  </ExecutionGraph> 
</PerformanceScenario> 



advanced model. In particular, SPE·ED models have higher worst 

case times for the clock130.tick and clock150.tick scenarios than 

RMA analytic results, which should never happen. This is because 

SPE·ED computes the average time for all calls to the 

positionMonitor.input thread. RMA, however, distinguishes 

between the calls from the different clocks. For example, 

positionMonitor.input participates in the responses to clock130 

and clock150. The problem is that it will have different response 

times for each of the clocks. For instance, when participating in 

clock130, positionMonitor.input could be preempted by an arrival 

from clock150. That preemption would last for approximately 

65ms. However, when participating in clock150, 

positionMonitor.input obviously would never be preempted by an 

arrival from clock150. It is possible to compute more precise 

results manually from SPE·ED output. 

This proof of concept demonstrates the viability of the model 

interchange approach for the performance assessment of real-time 

system architectures. It is helpful to compare the solutions from 

different software performance modeling tools.  

8. CONCLUSIONS 
This paper has illustrated the use of a model interchange format to 

support the performance analysis of real-time systems. It builds on 

previous work in the areas of component-based systems, software 

performance engineering, and model interchange. 

Transformations between the Construction and Composition 

Language and the Software Performance Model Interchange 

Format (S-PMIF) were defined for both simple and advanced 

models. A case study illustrates the process and compares model 

solutions obtained using the SPE·ED software performance 

engineering tool with those obtained using rate-monotonic 

analysis and discrete event simulation. 

In defining the model transformation, we identified changes to the 

S-PMIF that were needed for analyzing a real-time design. We 

also found that preserving the type hierarchy of the S-PMIF meta-

model in the schema would facilitate the implementation of S-

PMIF interchange support by tools using strongly typed modeling 

technologies to generate the XML such as EMF or some model 

transformation languages. 

This work has opened a door to allow the performance analysis of 

CCL specifications with other analysis tools without the need for 

additional integration effort. This means that standard SPE 

models can easily be used for analysis of systems specified in 

CCL. 

Finally, this paper has demonstrated the ease with which the S-

PMIF can be employed to transform additional design notations 

(other than UML) into software performance models. 
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