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ABSTRACT

Model interchange approaches support the analysis of software
architecture and design by enabling a variety of tools to
automatically exchange performance models using a common
schema. This paper builds on one of those interchange formats,
the Software Performance Model Interchange Format (S-PMIF),
and extends it to support the performance analysis of real-time
systems. Specifically, it addresses real-time system designs
expressed in the Construction and Composition Language (CCL)
and their transformation into the S-PMIF for additional
performance analyses. This paper defines extensions and changes
to the S-PMIF meta-model and schema required for real-time
systems. It describes transformations for both simple, best-case
models and more detailed models of concurrency and
synchronization. A case study demonstrates the techniques and
compares performance results from several analyses.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; D.2.2
[Software Engineering]: Design Tools and Techniques; D.2.12
[Software Engineering]: Interoperability; 1.6.4 [Simulation and
Modeling]: Model Validation and Analysis

General Terms
Performance, Design

Keywords

Performance, software performance engineering, performance
model, performance analysis, model interchange, real-time
systems, architecture analysis, component-based systems

1. INTRODUCTION

Performance is a quality attribute that, in spite of being critical to
a large number of software systems, is often not appropriately
addressed. As a result, many software-based systems fail to meet
their performance requirements as implemented. Fixing
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performance problems often causes cost and schedule overruns
and, in some cases, the software cannot be fixed and must be
abandoned.

Performance cannot be retrofitted; it must be designed into
software from the beginning. Our experience is that performance
problems are most often due to inappropriate architectural choices
rather than inefficient coding. By the time the architecture is
fixed, it may be too late to achieve adequate performance by
tuning. Thus, it is important to be able to assess the impact of
architectural decisions on quality requirements such as
performance and reliability at the time that they are made.

Although sound performance analysis theories and techniques
exist, they are not widely used because they are difficult to
understand and require heavy modeling effort throughout the
development process [1]. Consequently, software engineers
usually resort to testing to determine whether the performance
requirements have been satisfied. To ensure that these theories
and techniques are used, they must be made more accessible—
integrated into the software development process and supported
with tools.

This paper illustrates an approach to making performance analysis
more accessible. It makes several contributions:

e Demonstrates the use of standard performance modeling
techniques for component-based real-time systems

o Illustrates the use of the Software Performance Model
Interchange Format (S-PMIF) with the Construction and
Composition Language (CCL)

e Merges streams of research that have thus far been
independent: predictable assembly of components,
software performance engineering, and model interchange.

The next section provides some background on the merged
streams of research, and then Section 3 discusses related work in
these areas. Section 4 provides an overview of the Construction
and Composition Language (CCL) and the ICM meta-model for
CCL assemblies. Next, Section 5 presents the revised S-PMIF
meta-model for real-time systems. Section 6 describes the
implementation of the interoperability features. Section 7 presents
a case study as proof of concept and Section 8 offers some
conclusions.



2. BACKGROUND

As noted above, this work merges several distinct streams of
research. This section describes these streams and provides an
overview of their merger.

2.1 Predictable Assembly

The research on predictable assembly focuses on the development
of technologies and methods to enable the development of
software with predictable runtime behavior [2-4]. The PACC
initiative at the Software Engineering Institute proposes the use of
smart constraints to achieve predictability by construction [5].
The idea behind this concept is that analysis theories rely on
certain assumptions in order to be applicable, which means that
the behavior of a software system is predictable by a given theory
only if it satisfies its assumptions. Smart constraints can guarantee
the satisfaction of these assumptions so that if a software system
can be constructed under these constraints, then its behavior can
be predicted. Smart constraints can be enforced by different
means, from automated checks at the architecture description level
or design specification to imposition through component
containers [6, 7].

Evaluation is as important as smart constraints in order to achieve
predictability by construction. Since the complexity of
performance evaluation and the effort required for creating the
performance models has been cited as one of the root causes of
software performance failures, it is critical to automate them to
provide a solution to this recurring problem. One way of doing so
is by using reasoning frameworks [8]. A reasoning framework
encapsulates an analysis theory, the generation of theory specific
models from the architecture or design specification, and the
evaluation of these models.

All these concepts of predictable assembly have been integrated
together and demonstrated in the PACC Starter Kit (PSK) [9].
The PSK is a development environment that includes the
Construction and Composition Language (CCL) [10], a language
to describe the interface and behavioral specification of
components and their assembly into systems. The runtime
behavior of these systems specified in CCL can be predicted with
the performance and model checking reasoning frameworks.
Furthermore, executable code targeting the included runtime
environment (the Pin component technology [11] and a real-time
extension for Windows) can be generated from the same
specification, guaranteeing that the code matches the
specification. All the technologies integrated in this model-driven
approach allow making performance predictions throughout the
development lifecycle, from the early stages in which only the
component and connector view of the architecture and execution
time estimates are available, to the point in which executable code
can be generated from the behavioral specification and measured.
It even allows predicting the impact of changes during
maintenance.

Although the architecture of the PSK allows the integration of
third-party performance analysis tools via plug-ins [12], the
integration of each new tool requires the development of a new
transformation to generate a performance model in an input
format suitable for the tool. Even though this approach provides
tight integration and allows exploiting specific features of the
different tools, another promising option is the tool
interoperability approach using an interchange format [13]. This

paper describes the use of the Software Performance Model
Interchange Format (S-PMIF) [14, 15] to allow the analysis of
real-time designs specified in CCL with additional performance
analysis tools.

2.2 Software Performance Engineering

Software performance engineering (SPE) is a systematic,
quantitative approach to constructing software systems that meet
performance requirements. SPE prescribes principles for creating
responsive software, the data required for evaluation, procedures
for obtaining performance specifications, and guidelines for the
types of evaluation to be conducted at each development stage. It
incorporates models for representing and predicting performance
as well as a set of analysis methods [16].

SPE advocates three modeling strategies:

1. Simple-model strategy: Start with the simplest possible
model that identifies problems with the system
architecture, design, or implementation plans.

2.  Best- and Worst-Case Strategy: Use best- and worst-
case estimates of resource requirements to establish
bounds on expected performance and manage
uncertainty in estimates.

3. Adapt-to-Precision  Strategy: Match the details
represented in the models to the knowledge of the
software processing details.

Simple models are easily constructed and solved to provide
feedback on whether the proposed software is likely to meet
performance requirements. As the software process proceeds, the
models are refined to more closely represent the performance of
the emerging software (adapt to precision strategy). If the
predicted best-case performance is unsatisfactory, developers seek
feasible alternatives. If the worst- case prediction is satisfactory,
they proceed to the next step of the development process. If the
results are somewhere in-between, analyses identify critical
components and seek more precise data for them. A variety of
techniques can provide more precision, including: further
refining the architecture and constructing more detailed models or
constructing performance prototypes and measuring resource
requirements for key components.

SPE-ED [17] is a tool designed specifically to support the SPE
methods and models defined in [16]. Using a small amount of
data about envisioned software processing, SPE-ED creates and
solves performance models, and presents visual results. It
provides performance data for requirements and design choices
and facilitates comparison of software and hardware alternatives
for solving performance problems.

SPE-ED supports four types of solutions for the performance
models:

1. No contention — analytic solution with one user

2. Contention — analytic solution of multiple users of the
same scenario,

3. System model — simulation solution of all scenarios and
users

4. Advanced model — analysis of communication and
coordination among scenarios and users.



The simple model solution (no contention) suffices for most
performance analyses early in development. The data that is
available at that time usually doesn’t provide the precision needed
for the more detailed solutions. Later, the advanced system model
solution gives more insight into situations when mean values may
be fine, but queue lengths may build in some circumstances and
lead to unacceptable performance. The advanced system model
executes the simulation and actually “makes calls” to other
processes at the point in the execution where special
synchronization nodes are placed. If the called process is busy, the
calling process waits in a queue.

In SPE*ED, an advanced system execution model is automatically
created and solved to quantify contention effects and delays.

2.3 Model Interchange

Model interchange seeks cooperation among existing tools that
perform different tasks. XML-based interchange formats for
models provide a mechanism whereby model information may be
transferred among modeling and analysis tools. This makes it
possible for a user to create a model in one tool, perform some
studies, and then move the model to another tool for other studies
that are better done in the second tool.

The Software Performance Model Interchange Format (S-PMIF)
[14] is a common representation that can be used to exchange
information between software design tools and software
performance engineering tools. With S-PMIF, a software tool can
capture software architecture and design information along with
some performance information and export it to a software
performance engineering tool for model elaboration and solution
without the need for laborious manual translation from one tool’s
representation to another, and without the need to validate the
resulting specification. Use of the S-PMIF does not require tools
to know about each other’s capabilities, internal data formats, or
even existence. It requires only that the importing and exporting
tools either support the S-PMIF or provide an interface that
reads/writes model specifications from/to a file.

S-PMIF enables the following SPE tasks:

1. Developers can prepare designs as usual and export the
data to SPE tools where performance models can be
constructed automatically.

2. The model transformation can be used to check that the
resulting processing details are those intended by the
software specification.

3. Data available to developers can be captured in the
development tool — other data can be added by
performance specialists in the SPE tool.

4. Rapid production of models makes data available for
supporting design decisions in a timely fashion. This is
good for studying architecture and design tradeoffs
before committing to code.

5. Developers can create and evaluate some SPE models
without needing detailed knowledge of performance
models.

The performance model interchange formats specify the model
and a set of parameters for one run. For model studies, however, it
is useful to be able to specify multiple runs, or experiments, for
the model. In [18] an XML interchange schema extension, called

Experiment Schema Extension (Ex-SE), defines a set of model
runs and the output desired from them. This extension to an
interchange schema provides a means of specifying performance
studies that is independent of a given tool paradigm.

Thus, the model interchange approach makes it possible to create
a software specification in a development tool, then automatically
export the model description and some specifications for
conducting performance assessments, and obtain the results for
use in considering architectural and design alternatives. The
advantages of this approach are: it is relatively easy to accomplish
with existing tools; it requires minor extensions to tool functions
(import and export) or creation of an external translator to convert
file formats to/from interchange formats; and it enables the use of
multiple tools so it is easy to compare results and to use the tool
best suited to the task.

Without a shared interchange format, two tools would need to
develop a custom import and export mechanism. A third tool
would require a custom interface between each of those tools
resulting in a 4- ( N! / (2!(N-2)!)) requirement for customized
interfaces. With a shared interchange format, the requirement for
customized interfaces is reduced to 2-N. With XML tools the
complexity and amount of effort to create the interface is quite
small [19]. While XML is verbose, model interchange is a coarse-
grained interface. A file is exported, sent to another tool, it is
imported and the model solved. So the performance impact of
XML as the interface is insignificant compared to a fine-grained
interface that exchanges each XML element as it is generated.

3. RELATED WORK

3.1 Architecture Assessment

Kazman and co-workers describe two related approaches to the
evaluation of software architectures. The Software Architecture
Analysis Method (SAAM) [20] wuses scenarios to derive
information about an architecture’s ability to meet certain quality
requirements such as performance, reliability, or modifiability.
The Architecture Tradeoff Analysis Method (ATAM) [21]
extends SAAM to consider interactions among quality
requirements and identify architectural features that are sensitive
to more than one quality attribute. Once these sensitivities have
been identified, tradeoffs between quality requirements can be
evaluated.

PASAS™ [22] is a method for the performance assessment of
software architectures. It uses the principles and techniques of
SPE [16] to identify potential areas of risk within the architecture
with respect to performance and quality objectives. If a problem is
found, PASA also identifies strategies for reducing or eliminating
those risks. PASA is similar to SAAM and ATAM in that it is
scenario-based. However, there are also important differences. In
SAAM and ATAM, scenarios are informal narratives of uses of
the software. In PASA, performance scenarios are expressed
formally using UML sequence or activity diagrams. ATAM and
PASA differ in their approach to performance modeling. ATAM
uses analytical models of certain architectural features while
PASA uses more general software execution and system execution
models that may be solved analytically or via simulation [16].
Both SAAM and ATAM produce a list of problem areas or risks
while PASA produces a quantitative estimate of the performance
of the system as implemented as well as for proposed changes.
Finally, ATAM is also concerned with interactions between



quality attributes and focuses on architectural features where
tradeoffs may be required. While PASA’s primary focus is on
performance, quality attributes and tradeoffs between them are
considered as well.

Earlier approaches to architecture assessment (e.g., [23], [24]
[25], [26], [27], and [28]) relied on directly connecting a
particular design notation and a particular type of performance
model. More recently, interchange formats have been used to
decouple the architecture description from the model description
(see below).

3.2 Model Interchange

Several model interchange formats for different types of models
have been proposed. The Performance Model Interchange Format,
PMIF, [13, 29] enables various tools to exchange queueing
network model information. PMIF is based on a meta-model,
which provides an underlying formalism for the schema. The
meta-model for the Software Performance Model Interchange
Format, S-PMIF, was defined and later extended in [15, 30]. It
differs from the PMIF in that it specifies software processing
details and bridges the gap between software architecture and
design tools and performance analysis tools. Woodside et al.
developed a meta-model, PUMA, that combines software and
system models based on layered queueing networks (LQN) in
[31]. D’Ambrogio also defines a MOF meta-model of LQNs and
transfers UML models to LQNSs in [32].

Other approaches have focused on transferring information
between UML-based software design tools and software
performance engineering tools, such as [14, 33-35]. Gu and Petriu
[36] and Balsamo and Marzolla [24] use XML to transfer design
specifications into a particular solver; however, they do not
attempt to develop a general format for the interchange of
performance models among different tools. Our work does not
involve UML transformations so other topics such as SPT and
MARTE are not addressed here.

This body of work demonstrates that model interoperability
among a set of tools is viable. Common interchange formats such
as PMIF, S-PMIF, and PUMA are preferable because they enable
the use of a large number of tools without requiring custom
interfaces for each one.

3.3 Component-Based Approaches

Some work has addressed the performance analysis of component-
based systems. Wu and Woodside use an XML Schema to
describe the contents and data types that a Component-Based
Modeling language (CBML) document may have [37]. CBML is
an extended version of the Layered Queuing Network (LQN)
language that adds the capability and flexibility to model software
components and component-based systems.

Becker, et al., address components whose performance behavior
depends on the context in which they are used [38]. They address
sources of variability such as loop iterations, branch conditions,
and parametric resource demand, and then use simulation to
predict performance in a particular usage context.

Grassi, et al., extend the KLAPER MOF meta-model to represent
reconfigurable component-based systems in [39]. It is to be used
in autonomic systems and enable dynamic reconfiguration to meet
QoS goals.

These approaches are performance-centric in that they
create/adapt a model of component based systems specifically for
performance assessment. We prefer to work with generally
accepted architecture representations, and use a common
interchange format (S-PMIF) that allows the use of a variety of
performance modeling tools to provide performance predictions
for architecture and design alternatives. In addition, we have
extended the S-PMIF to include features necessary for evaluating
real-time systems. In the future, it may be possible to unify the
various interchange formats as suggested by [40]. In the
meantime, it makes sense to extend the meta-models as necessary
to create a superset of the necessary information for performance
assessment.

4. CCL AND ICM

The architecture specification language used in this study is the
Construction and Composition Language (CCL) [10]. This
section describes relevant features of CCL and ICM, a meta-
model for facilitating the analysis of CCL specifications.

4.1 Construction and Composition Language
CCL is a language for specifying the behavior of components,
their composition to form assemblies or systems, and the
properties required for reasoning about the assemblies [10]. CCL
enforces the notion of pure composition, which means that all the
behavior is inside the components and systems are assembled by
wiring components together with no “glue” code. Components in
CCL interact through pins. Source pins emit stimuli and sink pins
receive stimuli. When a sink pin receives a stimulus, it triggers a
reaction, which carries out the response to the stimulus. A
reaction can initiate an interaction with other components via its
source pins. Pins can interact synchronously or asynchronously.
Stimuli can carry data, and for that reason, pins have signatures
describing the data they consume and produce.

The following CCL specification declares a component type
MovementPlanner with one asynchronous sink pin and three
source pins (one synchronous and two asynchronous). Then it
declares a reaction in which all the pins participate, that is, it is
triggered by go, the only sink pin, and it can interact with other
components through the source pins. The keyword threaded
indicates that this reaction executes in its own thread.
component MovementPlanner () {

sink asynch go () ;

source synch get (produce int mode, produce

string in, consume string out);
source asynch moveX (produce int pos);
source asynch moveY (produce int pos);

threaded react reaction go, get, moveX, moveY)

{
// reaction specification goes here

}
}
It is important to note that a specification like this that does not
have the behavioral specification of the reaction is a valid CCL
specification. Therefore, analysis can be done in the early stages
of the design, when only the component and connector structure
of the system is known.

An assembly of components is produced by creating component
instances and connecting them as in the following fragment.



AssemblyInstance ElementInstance PinInstance
name 0. hame pins ~ hodeNum
connectionOverhead " nodeNum 0% name
sourceFile typeName - id
elements typeNodeNum
SinkPinInstance | 0..* sinks SourcePinInstance
SinkPinMode IcmComponent IcmService deth reactSouE)ceE mode
asynch riori priort ) "
mxtex priority downsamplingFactorreoaff;l;f""ks
reenter " linkSources
0..%
SourcePinMode SSComponent N
unicast budget execTimeDIStribution o, e cTimeDistribution , ,
multicast replenishmentPeriod - buti ServiceSourcePinIcm
synch backgroundPriority Distribution | 0..1 deadline
reenter
add 1..1 eventDistribution

Constant Exponential Normal Uniform Unknown

value mean mean max mean

offset stdDev min min

max

Figure 1. ICM Meta-model

MovementPlanner movementPlanner () ;
AxisController controllerX("X");

movementPlanner:moveX ~> controllerX:move;

For the connection between two pins to be legal, they need to
have the same mode (synchronous or asynchronous) and they
need to have complementing signatures, meaning that the data
produced by one pin is consumed by the other and vice versa. For
example, the signature of the pin move in AxisController is as
follows.

sink asynch move (consume int pos);

Assemblies declare services (e.g., clocks, keyboard input, console
output, etc.) that they expect the environment to provide. The
specification of a service is identical to that of a component,
except that the keyword service is used instead. One important
semantic difference though, is that services are the only source of
external events because components cannot interact directly with
the environment.

CCL has an annotation mechanism that can be used to provide
information required to analyze the assembly. For example, the
following annotation' indicates the minimum, average, and
maximum execution time of the move pin in AxisController when
run in isolation (i.e., with no blocking and no preemption).

annotate AxisController:move {"lambda*",
const string execTime =
"G(9.95, 10.01, 10.14)"™ }

Only the aspects of CCL most relevant for this paper have been
covered here. More details about CCL can be found in [10].

4.2 ICM: A Meta-model for CCL Assemblies

The intermediate constructive model (ICM) is an intermediate
representation of a CCL assembly that makes the generation of

! The argument “lambda*” indicates the reasoning framework this
annotation is used for.

analysis models simpler. Instead of having to deal with the
language related constructs in the CCL abstract syntax tree while
developing a transformation, it is easier to start from concepts that
are more relevant to reason about the assembly. For example, it is
easier to reason about a source pin with an event interarrival
distribution, than doing the same thinking in terms of a
computational unit, an annotation and a float literal expression.

The ICM meta-model, shown in Figure 1, does not have
information regarding types and only represents instances. That is,
if there are two instances of the same component type, elements
common to both, such as pins, are repeated in the model. This
redundancy also makes it easier to traverse the design in order to
transform it to an analysis model. The root element of the ICM
meta-model is the Assemblylnstance, which contains all the
service and component instances in the assembly. These have a
common base class, Elementlnstance, with all the attributes they
share. Components and services have pins that can be either sink
or source. SinkPinlnstance has an execution time distribution to
represent the amount of CPU time the sink pin requires. When a
source pin belongs to a service (i.e., it is a ServiceSourcePinlcm),
it has an event interarrival distribution and can optionally have an
execution time distribution as well. Distributions can be of
different kinds, such as constant or exponential. In order to
represent the connections between components, there is a
reference sinks between pins that shows which sink pins are
connected to a source pin. In a similar way, the reactSources
reference indicates the sources that are triggered by a sink pin in
the same component.

5. S-PMIF

The S-PMIF is based on the SPE meta-model. This meta-model
defines the essential information required to create the software
and system performance models as defined in [16]. The SPE
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Figure 2. S-PMIF Meta-Model

meta-model class diagram is shown in Figure 2. The complete
definition is available at www.spe-ed.com/pmif/s-pmif.xml >

Several changes were made to the meta-model described in [30]
as a result of this work. The first was the creation of the abstract
entity Scenario with subclasses PerformanceScenario and
ServiceScenario. A PerformanceScenario represents an end-to-
end, externally visible interaction (analogous to a Use Case) while
a ServiceScenario is a scenario that provides one or more services
to one or more PerformanceScenarios. Performance Scenarios
have workload intensities which may be specified by a number of
users and think time (closed workload) or an inter-arrival time
(open  workload).  ServiceScenarios have an  optional
intearrival Time (default is 0) and numberOfInstances.

Several attributes were also added to the meta-model to allow
specification of real-time concepts:

2 You also need ~/OverheadMatrix.xml and ~/Devices.xml. The
extension for all schemas is ~.xml so that it can be viewed from
a browser. Change the extensions to ~.xsd to use them.

e arrivalDistribution (PerformanceScenario) and
serviceDistribution (Device). These take their values from
an enumerated type, DistributionType (exp, normal,
constant, erlang, hyperexp, uniform(ul,u2)). These
attributes are optional (default to exp).

schedulingDiscipline (Device). This attribute is also an
enumerated type (FCFES, IS, LCFSPR, PR, PS, RR) and is
optional.

responseTimeRequirement and throughputRequirement
(Scenario). The values of these attributes are real numbers.

In addition, the attributes partnerNodelD and
partnerScenarioName were added to SendNode and attributes
were removed from SynchronizationNode.

TheS-PMIF is implemented using three separate schemas:
Topology, OverheadMatrix, and Device. They can be combined
by including the appropriate schemas. Thus, Topology may
include OverheadMatrix which includes Device. This is useful
because one may use any of the schemas without using the others.
For example, if the overhead matrix specification is coming from
another source it does not need to be included in the topology,
and vice-versa.



Comparing this meta-model to the MARTE specification is
beyond the scope of this paper and will be addressed in future
work.

6. IMPLEMENTATION
6.1 Generating S-PMIF Models from CCL

Even though from the user’s perspective the transformation to an
S-PMIF model starts from a CCL specification, behind the scenes
the CCL specification is transformed first to an ICM model from
which the S-PMIF is finally generated.

The ICM meta-model is defined as an Ecore model, the meta-
model of the Eclipse Modeling Framework [41]. EMF can
generate the Java implementation classes to load, manipulate and
persist instances of the model. The S-PMIF format is specified as
an XML schema, and since EMF provides the same generative
capabilities starting with an XML schema, EMF was used to
generate the Java implementation to manipulate the S-PMIF
models.

The following sections describe the generation of two flavors of
S-PMIF model from ICM, the simple model, or no contention
model, and the advanced model.

6.2 Generation of the Simple Model

The overall approach to generate the simple model consists of
creating an S-PMIF performance scenario for each service source
pin in the ICM. In that way, the performance scenario
encompasses the complete response to an external event. The
execution graph for the performance scenario is created by
recursively traversing the response by visiting each pin, starting
with the service source pin. Figure 3 shows the pseudocode for
the two functions that implement the core of the transformation.
The function visitSource checks whether the source pin is
synchronous or asynchronous. In the first case, it directly returns
the node that is created by visiting the sink connected to that
source. However, if the source pin is asynchronous, it creates a

Node visitSource (SourcePinInstance source) {
if source is synchronous {
node = visitSink (sink)
} else { // source is asynchronous
node = new SplitNode
for each sink in source.sinks {
newNode = visitSink (sink)
add newNode to children of node
}
}
return node

}

Node visitSink (SinkPinInstance sink) {
node = new BasicNode
add ResourceRequirement to node from
sink.execTimeDistribution
lastNode = node
for each source in sink.reactSources {
newNode = visitSource (source)
arc = new Arc
arc.from = lastNode.getNodeId ()
arc.to = newNode.getNodeId ()
lastNode = newNode
}

return node

Figure 3. Pseudocode for simple S-PMIF model generation

SplitNode to represent the initiation of concurrent threads of
execution, and adds to the split node the nodes resulting from
visiting all the sink pins connected to the source node. The
function  visitSink  creates a  BasicNode  with a
ResourceRequirement to model the computation carried out by the
sink pin and then it visits in sequence all the source pins in the
same component that are triggered by the reaction of the sink pin.
The order of execution is modeled by creating the arcs connecting
the nodes.

One problem that arose while implementing this algorithm was
the lack of subtype relationships between the different kinds of
nodes in the S-PMIF schema. In the S-PMIF meta-model, both
BasicNode and SplitNode are subtypes of Node. However, in the
XML schema for S-PMIF the hierarchy was flattened and those
relationships were lost [14]. For that reason, in the Java
implementation generated with EMF from the S-PMIF schema,
Node, BasicNode, and SplitNode have no subtype relationship.
This complicates the implementation of the transformation
algorithm. For instance, what is the return type of visitSource if it
can return either a BasicNode or a SplitNode? The problem also
hindered the use of polymorphism because it makes it impossible
to make calls such as lastNode.getNodeld(), where lastNode can
refer to different types of nodes. Although the intent of flattening
the S-PMIF schema was to simplify the XML [14], the lack of
subtype relationships proved to have the opposite effect in
situations where the XML is generated by a high level modeling
technology such as EMF.

The problem of not having node subtyping was overcome in two
different ways. One solution was changing the return type of
visitSource and visitSink to ExpandedNode, and wrapping the
result of each function in its own execution graph contained in an
expanded node. This approached worked well albeit it generated a
lot of expanded nodes and execution graphs that would otherwise
not be needed.

The second solution was more complicated because it consisted of
adding subtyping to the schema from which the Java
implementation classes were generated while maintaining an
output format compliant with the original S-PMIF schema. The
subtyping was added by using the schema type extension
mechanism. In addition, containment relationships that were
implemented with XSD choice were changed to use the base type.
For example, the containment relationship shown in Figure 4 was
changed as it appears in Figure 5. This change allowed EMF to
generate Java code with the right subtype relationships. However,
the generated XML for a BasicNode would look as follows.

<Node xsi:type="BasicNode type" NodeId="N1" .. />

Since this is not compatible with the S-PMIF schema, XSD
substitution groups were defined so that the desired XML output

<xs:complexType name="EG type">
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element name="BasicNode"
type="BasicNode type"/>
<xs:element name="SplitNode"
type="CPSNode type"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

Figure 4. Containment with schema choice



was produced. A substitution group introduced to the schema with

<xs:element name="BasicNode"
substitutionGroup="Node" type="BasicNode type"/>

resulted in the right XML produced as in this example:
<BasicNode NodeId="N1" .. />

<xs:complexType name="EG_type">
<xs:sequence>
<xs:element maxOccurs="unbounded"
name="Node" type="Node type"/>

</xs:sequence>

</xs:complexType>

Figure 5. Containment with base type

6.3 Generation of the Advanced Model

In a component-based real-time system, the response to an event
may be realized by several components that may execute in their
own thread. When creating the advanced S-PMIF model, the
different concurrent threads of execution need to be modeled so
that contention between them can be evaluated.

S-PMIF has the concept of a SynchronizationNode that maps
directly to the different kinds of pins in CCL. Synchronous source
and sink pins can be represented by SynchronousCall and Reply
nodes respectively. Asynchronous source and sink pins can be
modeled by  AsynchronousCall ~and  NoReply  nodes
correspondingly. The pseudocode for the algorithm used to
generate the advanced model is shown in Figure 6. The most
important function is getPSForSink. This function creates a
scenario for a sink pin in the assembly only if it has not created it
before; otherwise, it returns the already existing scenario. The
performance scenario starts with either a BasicNode or
SynchronizationNode depending on whether it is top level (i.e.,
first in the response to an event) or not. If it is not top level, the
type of the SynchronizationNode is set to match the interaction
mode of the pin. This first node in the scenario has a
ResourceRequirement specifying the execution time required by
the sink pin in the CPU. If the component interacts with other
components via its source pins, synchronization nodes of type
SynchronousCall or AsynchronousCall are created to model the
interactions with the connected sink pins. In order to get the
partner scenario of these synchronization nodes, getPSForSink is
called recursively. The main function of the transformation,
generateModel, just calls getPSForSink for each of the sinks
connected to service source pins in the assembly and sets the
corresponding interarrival time for the top level performance
scenarios.

The algorithm presented here depends on a simplifying
assumption, namely, that all the sink pins in the assembly
participate in threaded reactions. Nevertheless, it would not be
difficult to extend it to support unthreaded reactions as well
because traversing unthreaded reactions would be the same as was
done in the simple model generation algorithm, except that in this
case there would be no split nodes.

6.4 Importing the Models

The S-PMIF is imported into a software performance modeling
tool, like SPE-ED [42, 43], SP[44], or HIT [45] for performance
analysis of the software architecture and design, and evaluation of
alternatives. The software performance modeling tool must either

generateModel () {
for each serviceSourcePin in assembly {
linkedSink =

sink connected to serviceSourcePin
ps = getPSForSink(linkedSink, true)
ps.interarrivalTime =
serviceSourcePin.eventDistribution.mean

PS getPSForSink (SinkPinInstance sink,
bool topLevel) {
if PS already created for sink {
return psMap[sink]
}
ps = new PS
ps.priority = sink.priority
if topLlevel {
node = new BasicNode
} else {
node = new SynchronizationNode
if sink is synchronous {
node.myType = Reply
} else {
node.myType = NoReply
}
}
add ResourceRequirement to node from
sink.execTimeDistribution
make node first node in ps
lastNode = node
for each source reacting to sink {
for each linkedSync connected to source {
node = new SynchronizationNode
if sink is synchronous {
node.myType = SynchronousCall
} else {
node.myType = AsynchronousCall
}
node.partnerPerfScenario =
getPSForSink (linkedSink, false)
arc = new Arc
arc.from = lastNode.getNodeId()
arc.to = node.getNodeId()
lastNode = node
}
}
psMap[sink] = ps
return ps

}
Figure 6. Pseudocode for advanced S-PMIF model generation

provide an import mechanism for S-PMIF or read input from a
file that can be generated from a translation of the S-PMIF.

We use the SPE-ED tool. SPE-ED uses the Document Object
Model (DOM) to import the s-pmif.xml. It first loads and parses
the document, then uses DOM calls to walk through each scenario
and create the corresponding nodes and arcs in SPE-ED. Previous
work created a prototype import mechanism [30]. It included
neither the import of resource requirements nor the overhead
matrix so those features were added to handle these models. This
was the only extension required for the simple models. The
following additional features were required for the real-time
extensions used in the advanced models:

e  ServiceScenarios are currently mapped to performance
scenarios. In the future, SPE-ED will support
ServiceScenarios, so this is a temporary solution.
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Figure 7. Robot controller design

e  SPE‘ED assumes arrival times and service times are
exponentially distributed, the case study required
constant interarrival and service times

e  Preemptive-resume scheduling was required.

e  Synchronization nodes were not supported in the earlier
prototype

7. PROOF OF CONCEPT

In order to demonstrate the viability of the performance model
exchange approach, we selected a real-time application that was
specified with CCL. The application is a simple robot controller
that takes high-level work orders for a robot and translates them to
low-level movement commands for the robot’s two axes. Figure 7
shows the design of the controller. The solid black boxes are
sources of events, and in this case, they all have constant
interarrival intervals. For clarity, the period of the event has been
included in the name of the service (e.g., clock130 has a period of
130ms). Components are depicted as hollow boxes in the diagram,
with sink pins on the left, and source pins on the right. Single and
double arrow pins indicate synchronous and asynchronous
interaction respectively.

The trajectory planner periodically receives high-level orders for
the robot and, using information it gets from the position monitor,
decomposes them into subwork orders, which it then puts in the
work order repository. The movement planner gets orders from
the repository and translates them into movement commands for
the axis-controllers controllerX and controllerY. The position
monitor receives input from a sensor that is read periodically, and
the monitor component performs low-priority monitoring tasks.

It is critical that the movement planner never finds the repository
empty because if it does, it has to abort the operation of the robot.
Both planners cannot miss their deadline at the end of their
period. Therefore, this is a hard real-time situation. All the sink
pins in this design execute on their own thread at different
priorities.

<PerformanceScenario EGId="clock450.tick"
InterarrivalTime="450.0" NumberOfJobs="1"
Priority="1" ScenarioName="clock450.tick"
SWmodelfilename="icm">
<ExecutionGraph EGId="clock450.tick"
EGname="clock450.tick" IsMainEG="true"
StartNode="S_clock450.tick">
<SplitNode NodeId="S clock450.tick"
NodeName="S_clock450.tick">
<ExpandedNode
NodeId="X trajectoryPlanner.go"
NodeName="X trajectoryPlanner.go"
Probability="1.0"
EGId="E_ trajectoryPlanner.go"
EGname="E trajectoryPlanner.go"/>
</SplitNode>
</ExecutionGraph>
<ExecutionGraph
EGId="E trajectoryPlanner.go"
EGname="E_trajectoryPlanner.go"
IsMainEG="false"
StartNode="N_trajectoryPlanner.go">
<BasicNode
NodeId="N_trajectoryPlanner.go"
NodeName="N trajectoryPlanner.go"
Probability="1.0">
<ResourceRequirement Resourceld="R_CPU"
UnitsOfService="89.66507"/>
</BasicNode>
<BasicNode
NodeId="N_positionMonitor.read"
NodeName="N_positionMonitor.read"
Probability="1.0">
<ResourceRequirement Resourceld="R_CPU"
UnitsOfService="3.0634942"/>
</BasicNode>
<BasicNode NodeId="N_ repository.access"
NodeName="N_repository.access"
Probability="1.0">
<ResourceRequirement Resourceld="R_CPU"
UnitsOfService="19.920586"/>
</BasicNode>
<Arc FromNode="N trajectoryPlanner.go"
ToNode="N_positionMonitor.read"/>
<Arc FromNode="N_positionMonitor.read"
ToNode="N_repository.access"/>
</ExecutionGraph>
</PerformanceScenario>

Figure 8. S-PMIF for clock450.tick Simple Model

The simple model consists of four performance scenarios. Figure
8 shows the generated S-PMIF for one of them.

The advanced system model has nine scenarios. Figure 9 shows
the S-PMIF for the same scenario in the advanced model.

Figure 10 shows the imported models. On the left is a portion of
the simple model corresponding to the execution graph for the
expanded node, E trajectoryPlanner.go. Its “no contention”
solution is shown. On the right is the generated advanced model
consisting of the N_trajectoryPlanner.go basic node followed by
two synchronous call nodes.

In order to have a baseline for comparing the results, the
controller was analyzed using the worst-case latency prediction
capability provided by the PSK performance-reasoning
framework. This analysis first transforms the design specification
into a performance model in which the response to each external
event is expressed as a linear sequence of actions, even if the
original response presents branching and internal concurrency.
The resulting performance model is then analyzed using the
technique for varying priorities in Rate Monotonic Analysis



<PerformanceScenario
EGId="trajectoryPlanner.go"
InterarrivalTime="450.0" Priority="4"
ScenarioName="trajectoryPlanner.go"
SWmodelfilename="icm">
<ExecutionGraph EGId="trajectoryPlanner.go"
EGname="trajectoryPlanner.go" IsMainEG="true"
StartNode="N trajectoryPlanner.go">
<BasicNode
NodeId="N_ trajectoryPlanner.go"
NodeName="N_trajectoryPlanner.go">
<ResourceRequirement ResourceId="R CPU"
UnitsOfService="89.66507"/>
</BasicNode>
<SynchronizationNode
NodeId="N_trajectoryPlanner.read"
NodeName="N_trajectoryPlanner.read"
mnyType="SynchronousCall"
partnerID="N_positionMonitor.read"
partnerPerfScenarioName="positionMonitor.read
ll/>
<SynchronizationNode
NodeId="N_trajectoryPlanner.put"
NodeName="N_ trajectoryPlanner.put"
myType="SynchronousCall"
partnerID="N repository.access"
partnerPerfScenarioName="repository.access"/>
<Arc FromNode="N_ trajectoryPlanner.go"
ToNode="N_trajectoryPlanner.read"/>
<Arc FromNode="N_trajectoryPlanner.read"
ToNode="N_trajectoryPlanner.put"/>
</ExecutionGraph>
</PerformanceScenario>

Figure 9. S-PMIF for clock450.tick Advanced Model

(RMA) [46]. This analysis is carried out by MAST [12], a third-
party tool integrated with the PSK’s performance reasoning
framework. For each response being analyzed, RMA creates the
worst phasing of tasks in order to compute an upper bound for the
worst-case latency or response time. Therefore, it is expected that
results obtained by other means be no higher than those provided
by RMA.

Table 1 shows the performance results. The first two sections are
the results from the RMA analysis and a discrete event simulation
integrated in the PSK. The third section shows the SPE-ED results.
The best case is the analytic solution of the SPE-ED simple model.
The average and worst cases are the simulation solution of the
SPE-ED advanced system model. As expected, the analytic best
case for both RMA and SPE-ED are exact. The simulation

E trajectoryPanner.go

Time, no contention: 112.65

trgecoryFannerigo

posbnitor.t

<___)

repository.a

Figure 10. Imported Clock450.tick Simple and Advanced
Model

Table 1. Robot Controller Results

Transaction Best Average Worst
RMA Analytic

clock130.tick 15.04 98.04]
clock450.tick 112.65 262.77
clock150.tick 60.02 79.94]
clock2000.tick 0.32 278.14
DE Simulation

clock130.tick 15.04 33.71 75.08]
clock450.tick 247.73 259.49 262.83
clock150.tick 60.02 60.00] 60.04]
clock2000.tick 0.32 103.08 278.20
SPE-ED Results

clock130.tick 15.04 33.78] 99.07|
clock450.tick 112.65 259.67 262.77
clock150.tick 60.02 60.02 60.02
clock2000.tick 0.32 71.61 278.14

solutions are also comparable, but not exact. This is especially
noticeable in the best case because the discrete event simulation
best case does include contention. For example, even in the best
case, the response to clock450.tick will be preempted twice by
clock150.tick, resulting in a response time higher than the no-
contention best case.

The next step is to evaluate an alternative architecture that
replaces the X and Y controllers with controllers that also provide
position feedback to the position monitor. This changes the
scenario for clock150.tick in the simple model to make two
additional calls. It changes the ControllerX and ControllerY
threads in the advanced model to make asynchronous calls to the
PositionMonitor.input. Table 2 shows the results for this
architectural alternative.

As before, the best case analytic results are exact. However, these
results show some differences in the simulation solutions for the

Table 2. Results for Architectural Alternative

Transaction Best Average Worst
RMA Analytic

clock130.tick 15.04 124.06
clock450.tick 112.65 496.91
clock150.tick 86.03 109.02
clock2000.tick 0.32 431.24
DE Simulation

clock130.tick 15.04 52.18 115.99
clock450.tick 314.80 347.63 431.04
clock150.tick 86.03 89.57| 105.99
clock2000.tick 16.19 220.18 431.36
SPE-ED Results

clock130.tick 15.04 46.51 208.16
clock450.tick 112.65 305.60 317.88
clock150.tick 86.03 90.08, 192.65
clock2000.tick 0.32 128.68 413.30




advanced model. In particular, SPE-ED models have higher worst
case times for the clock130.tick and clock150.tick scenarios than
RMA analytic results, which should never happen. This is because
SPE-ED computes the average time for all calls to the
positionMonitor.input thread. RMA, however, distinguishes
between the calls from the different clocks. For example,
positionMonitor.input participates in the responses to clock130
and clock150. The problem is that it will have different response
times for each of the clocks. For instance, when participating in
clock130, positionMonitor.input could be preempted by an arrival
from clock150. That preemption would last for approximately
65ms.  However, when participating in  clockl50,
positionMonitor.input obviously would never be preempted by an
arrival from clock150. It is possible to compute more precise
results manually from SPE-ED output.

This proof of concept demonstrates the viability of the model
interchange approach for the performance assessment of real-time
system architectures. It is helpful to compare the solutions from
different software performance modeling tools.

8. CONCLUSIONS

This paper has illustrated the use of a model interchange format to
support the performance analysis of real-time systems. It builds on
previous work in the areas of component-based systems, software
performance engineering, and model interchange.
Transformations between the Construction and Composition
Language and the Software Performance Model Interchange
Format (S-PMIF) were defined for both simple and advanced
models. A case study illustrates the process and compares model
solutions obtained using the SPE-ED software performance
engineering tool with those obtained using rate-monotonic
analysis and discrete event simulation.

In defining the model transformation, we identified changes to the
S-PMIF that were needed for analyzing a real-time design. We
also found that preserving the type hierarchy of the S-PMIF meta-
model in the schema would facilitate the implementation of S-
PMIF interchange support by tools using strongly typed modeling
technologies to generate the XML such as EMF or some model
transformation languages.

This work has opened a door to allow the performance analysis of
CCL specifications with other analysis tools without the need for
additional integration effort. This means that standard SPE
models can easily be used for analysis of systems specified in
CCL.

Finally, this paper has demonstrated the ease with which the S-
PMIF can be employed to transform additional design notations
(other than UML) into software performance models.
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