
Performance Analysis of Real-Time Component

Architectures: A Model Interchange Approach

Gabriel A. Moreno
Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA, USA
+1.412.268.1213

gmoreno@sei.cmu.edu

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, NM 87504
+1.505.988.3811

www.spe-ed.com

Lloyd G. Williams
PerfX

2345 Dogwood Circle
Louisville, CO 80027
+1.720.890.8116

lloydw@perfx.net

ABSTRACT

Model interchange approaches support the analysis of software

architecture and design by enabling a variety of tools to

automatically exchange performance models using a common

schema. This paper builds on one of those interchange formats,

the Software Performance Model Interchange Format (S-PMIF),

and extends it to support the performance analysis of real-time

systems. Specifically, it addresses real-time system designs

expressed in the Construction and Composition Language (CCL)

and their transformation into the S-PMIF for additional

performance analyses. This paper defines extensions and changes

to the S-PMIF meta-model and schema required for real-time

systems. It describes transformations for both simple, best-case

models and more detailed models of concurrency and

synchronization. A case study demonstrates the techniques and

compares performance results from several analyses.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; D.2.2

[Software Engineering]: Design Tools and Techniques; D.2.12

[Software Engineering]: Interoperability; I.6.4 [Simulation and

Modeling]: Model Validation and Analysis

General Terms
Performance, Design

Keywords
Performance, software performance engineering, performance

model, performance analysis, model interchange, real-time

systems, architecture analysis, component-based systems

1. INTRODUCTION
Performance is a quality attribute that, in spite of being critical to

a large number of software systems, is often not appropriately

addressed. As a result, many software-based systems fail to meet

their performance requirements as implemented. Fixing

performance problems often causes cost and schedule overruns

and, in some cases, the software cannot be fixed and must be

abandoned.

Performance cannot be retrofitted; it must be designed into

software from the beginning. Our experience is that performance

problems are most often due to inappropriate architectural choices

rather than inefficient coding. By the time the architecture is

fixed, it may be too late to achieve adequate performance by

tuning. Thus, it is important to be able to assess the impact of

architectural decisions on quality requirements such as

performance and reliability at the time that they are made.

Although sound performance analysis theories and techniques

exist, they are not widely used because they are difficult to

understand and require heavy modeling effort throughout the

development process [1]. Consequently, software engineers

usually resort to testing to determine whether the performance

requirements have been satisfied. To ensure that these theories

and techniques are used, they must be made more accessible—

integrated into the software development process and supported

with tools.

This paper illustrates an approach to making performance analysis

more accessible. It makes several contributions:

• Demonstrates the use of standard performance modeling

techniques for component-based real-time systems

• Illustrates the use of the Software Performance Model

Interchange Format (S-PMIF) with the Construction and

Composition Language (CCL)

• Merges streams of research that have thus far been

independent: predictable assembly of components,

software performance engineering, and model interchange.

The next section provides some background on the merged

streams of research, and then Section 3 discusses related work in

these areas. Section 4 provides an overview of the Construction

and Composition Language (CCL) and the ICM meta-model for

CCL assemblies. Next, Section 5 presents the revised S-PMIF

meta-model for real-time systems. Section 6 describes the

implementation of the interoperability features. Section 7 presents

a case study as proof of concept and Section 8 offers some

conclusions.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WOSP’08, June 24–26, 2008, Princeton, New Jersey, USA.

Copyright 2008 ACM 978-1-59593-873-2/08/06...$5.00.

2. BACKGROUND
As noted above, this work merges several distinct streams of

research. This section describes these streams and provides an

overview of their merger.

2.1 Predictable Assembly
The research on predictable assembly focuses on the development

of technologies and methods to enable the development of

software with predictable runtime behavior [2-4]. The PACC

initiative at the Software Engineering Institute proposes the use of

smart constraints to achieve predictability by construction [5].

The idea behind this concept is that analysis theories rely on

certain assumptions in order to be applicable, which means that

the behavior of a software system is predictable by a given theory

only if it satisfies its assumptions. Smart constraints can guarantee

the satisfaction of these assumptions so that if a software system

can be constructed under these constraints, then its behavior can

be predicted. Smart constraints can be enforced by different

means, from automated checks at the architecture description level

or design specification to imposition through component

containers [6, 7].

Evaluation is as important as smart constraints in order to achieve

predictability by construction. Since the complexity of

performance evaluation and the effort required for creating the

performance models has been cited as one of the root causes of

software performance failures, it is critical to automate them to

provide a solution to this recurring problem. One way of doing so

is by using reasoning frameworks [8]. A reasoning framework

encapsulates an analysis theory, the generation of theory specific

models from the architecture or design specification, and the

evaluation of these models.

All these concepts of predictable assembly have been integrated

together and demonstrated in the PACC Starter Kit (PSK) [9].

The PSK is a development environment that includes the

Construction and Composition Language (CCL) [10], a language

to describe the interface and behavioral specification of

components and their assembly into systems. The runtime

behavior of these systems specified in CCL can be predicted with

the performance and model checking reasoning frameworks.

Furthermore, executable code targeting the included runtime

environment (the Pin component technology [11] and a real-time

extension for Windows) can be generated from the same

specification, guaranteeing that the code matches the

specification. All the technologies integrated in this model-driven

approach allow making performance predictions throughout the

development lifecycle, from the early stages in which only the

component and connector view of the architecture and execution

time estimates are available, to the point in which executable code

can be generated from the behavioral specification and measured.

It even allows predicting the impact of changes during

maintenance.

Although the architecture of the PSK allows the integration of

third-party performance analysis tools via plug-ins [12], the

integration of each new tool requires the development of a new

transformation to generate a performance model in an input

format suitable for the tool. Even though this approach provides

tight integration and allows exploiting specific features of the

different tools, another promising option is the tool

interoperability approach using an interchange format [13]. This

paper describes the use of the Software Performance Model

Interchange Format (S-PMIF) [14, 15] to allow the analysis of

real-time designs specified in CCL with additional performance

analysis tools.

2.2 Software Performance Engineering
Software performance engineering (SPE) is a systematic,

quantitative approach to constructing software systems that meet

performance requirements. SPE prescribes principles for creating

responsive software, the data required for evaluation, procedures

for obtaining performance specifications, and guidelines for the

types of evaluation to be conducted at each development stage. It

incorporates models for representing and predicting performance

as well as a set of analysis methods [16].

SPE advocates three modeling strategies:

1. Simple-model strategy: Start with the simplest possible

model that identifies problems with the system

architecture, design, or implementation plans.

2. Best- and Worst-Case Strategy: Use best- and worst-

case estimates of resource requirements to establish

bounds on expected performance and manage

uncertainty in estimates.

3. Adapt-to-Precision Strategy: Match the details

represented in the models to the knowledge of the

software processing details.

Simple models are easily constructed and solved to provide

feedback on whether the proposed software is likely to meet

performance requirements. As the software process proceeds, the

models are refined to more closely represent the performance of

the emerging software (adapt to precision strategy). If the

predicted best-case performance is unsatisfactory, developers seek

feasible alternatives. If the worst- case prediction is satisfactory,

they proceed to the next step of the development process. If the

results are somewhere in-between, analyses identify critical

components and seek more precise data for them. A variety of

techniques can provide more precision, including: further

refining the architecture and constructing more detailed models or

constructing performance prototypes and measuring resource

requirements for key components.

SPE·ED [17] is a tool designed specifically to support the SPE

methods and models defined in [16]. Using a small amount of

data about envisioned software processing, SPE·ED creates and

solves performance models, and presents visual results. It

provides performance data for requirements and design choices

and facilitates comparison of software and hardware alternatives

for solving performance problems.

SPE·ED supports four types of solutions for the performance

models:

1. No contention – analytic solution with one user

2. Contention – analytic solution of multiple users of the

same scenario,

3. System model – simulation solution of all scenarios and

users

4. Advanced model – analysis of communication and

coordination among scenarios and users.

 The simple model solution (no contention) suffices for most

performance analyses early in development. The data that is

available at that time usually doesn’t provide the precision needed

for the more detailed solutions. Later, the advanced system model

solution gives more insight into situations when mean values may

be fine, but queue lengths may build in some circumstances and

lead to unacceptable performance. The advanced system model

executes the simulation and actually “makes calls” to other

processes at the point in the execution where special

synchronization nodes are placed. If the called process is busy, the

calling process waits in a queue.

In SPE•ED, an advanced system execution model is automatically

created and solved to quantify contention effects and delays.

2.3 Model Interchange
Model interchange seeks cooperation among existing tools that

perform different tasks. XML-based interchange formats for

models provide a mechanism whereby model information may be

transferred among modeling and analysis tools. This makes it

possible for a user to create a model in one tool, perform some

studies, and then move the model to another tool for other studies

that are better done in the second tool.

The Software Performance Model Interchange Format (S-PMIF)

[14] is a common representation that can be used to exchange

information between software design tools and software

performance engineering tools. With S-PMIF, a software tool can

capture software architecture and design information along with

some performance information and export it to a software

performance engineering tool for model elaboration and solution

without the need for laborious manual translation from one tool’s

representation to another, and without the need to validate the

resulting specification. Use of the S-PMIF does not require tools

to know about each other’s capabilities, internal data formats, or

even existence. It requires only that the importing and exporting

tools either support the S-PMIF or provide an interface that

reads/writes model specifications from/to a file.

S-PMIF enables the following SPE tasks:

1. Developers can prepare designs as usual and export the

data to SPE tools where performance models can be

constructed automatically.

2. The model transformation can be used to check that the

resulting processing details are those intended by the

software specification.

3. Data available to developers can be captured in the

development tool – other data can be added by

performance specialists in the SPE tool.

4. Rapid production of models makes data available for

supporting design decisions in a timely fashion. This is

good for studying architecture and design tradeoffs

before committing to code.

5. Developers can create and evaluate some SPE models

without needing detailed knowledge of performance

models.

The performance model interchange formats specify the model

and a set of parameters for one run. For model studies, however, it

is useful to be able to specify multiple runs, or experiments, for

the model. In [18] an XML interchange schema extension, called

Experiment Schema Extension (Ex-SE), defines a set of model

runs and the output desired from them. This extension to an

interchange schema provides a means of specifying performance

studies that is independent of a given tool paradigm.

Thus, the model interchange approach makes it possible to create

a software specification in a development tool, then automatically

export the model description and some specifications for

conducting performance assessments, and obtain the results for

use in considering architectural and design alternatives. The

advantages of this approach are: it is relatively easy to accomplish

with existing tools; it requires minor extensions to tool functions

(import and export) or creation of an external translator to convert

file formats to/from interchange formats; and it enables the use of

multiple tools so it is easy to compare results and to use the tool

best suited to the task.

Without a shared interchange format, two tools would need to

develop a custom import and export mechanism. A third tool

would require a custom interface between each of those tools

resulting in a 4· (N! / (2!(N-2)!)) requirement for customized

interfaces. With a shared interchange format, the requirement for

customized interfaces is reduced to 2·N. With XML tools the

complexity and amount of effort to create the interface is quite

small [19]. While XML is verbose, model interchange is a coarse-

grained interface. A file is exported, sent to another tool, it is

imported and the model solved. So the performance impact of

XML as the interface is insignificant compared to a fine-grained

interface that exchanges each XML element as it is generated.

3. RELATED WORK

3.1 Architecture Assessment
Kazman and co-workers describe two related approaches to the

evaluation of software architectures. The Software Architecture

Analysis Method (SAAM) [20] uses scenarios to derive

information about an architecture’s ability to meet certain quality

requirements such as performance, reliability, or modifiability.

The Architecture Tradeoff Analysis Method (ATAM) [21]

extends SAAM to consider interactions among quality

requirements and identify architectural features that are sensitive

to more than one quality attribute. Once these sensitivities have

been identified, tradeoffs between quality requirements can be

evaluated.

PASASM [22] is a method for the performance assessment of

software architectures. It uses the principles and techniques of

SPE [16] to identify potential areas of risk within the architecture

with respect to performance and quality objectives. If a problem is

found, PASA also identifies strategies for reducing or eliminating

those risks. PASA is similar to SAAM and ATAM in that it is

scenario-based. However, there are also important differences. In

SAAM and ATAM, scenarios are informal narratives of uses of

the software. In PASA, performance scenarios are expressed

formally using UML sequence or activity diagrams. ATAM and

PASA differ in their approach to performance modeling. ATAM

uses analytical models of certain architectural features while

PASA uses more general software execution and system execution

models that may be solved analytically or via simulation [16].

Both SAAM and ATAM produce a list of problem areas or risks

while PASA produces a quantitative estimate of the performance

of the system as implemented as well as for proposed changes.

Finally, ATAM is also concerned with interactions between

quality attributes and focuses on architectural features where

tradeoffs may be required. While PASA’s primary focus is on

performance, quality attributes and tradeoffs between them are

considered as well.

Earlier approaches to architecture assessment (e.g., [23], [24]

[25], [26], [27], and [28]) relied on directly connecting a

particular design notation and a particular type of performance

model. More recently, interchange formats have been used to

decouple the architecture description from the model description

(see below).

3.2 Model Interchange
Several model interchange formats for different types of models

have been proposed. The Performance Model Interchange Format,

PMIF, [13, 29] enables various tools to exchange queueing

network model information. PMIF is based on a meta-model,

which provides an underlying formalism for the schema. The

meta-model for the Software Performance Model Interchange

Format, S-PMIF, was defined and later extended in [15, 30]. It

differs from the PMIF in that it specifies software processing

details and bridges the gap between software architecture and

design tools and performance analysis tools. Woodside et al.

developed a meta-model, PUMA, that combines software and

system models based on layered queueing networks (LQN) in

[31]. D’Ambrogio also defines a MOF meta-model of LQNs and

transfers UML models to LQNs in [32].

Other approaches have focused on transferring information

between UML-based software design tools and software

performance engineering tools, such as [14, 33-35]. Gu and Petriu

[36] and Balsamo and Marzolla [24] use XML to transfer design

specifications into a particular solver; however, they do not

attempt to develop a general format for the interchange of

performance models among different tools. Our work does not

involve UML transformations so other topics such as SPT and

MARTE are not addressed here.

This body of work demonstrates that model interoperability

among a set of tools is viable. Common interchange formats such

as PMIF, S-PMIF, and PUMA are preferable because they enable

the use of a large number of tools without requiring custom

interfaces for each one.

3.3 Component-Based Approaches
Some work has addressed the performance analysis of component-

based systems. Wu and Woodside use an XML Schema to

describe the contents and data types that a Component-Based

Modeling language (CBML) document may have [37]. CBML is

an extended version of the Layered Queuing Network (LQN)

language that adds the capability and flexibility to model software

components and component-based systems.

Becker, et al., address components whose performance behavior

depends on the context in which they are used [38]. They address

sources of variability such as loop iterations, branch conditions,

and parametric resource demand, and then use simulation to

predict performance in a particular usage context.

Grassi, et al., extend the KLAPER MOF meta-model to represent

reconfigurable component-based systems in [39]. It is to be used

in autonomic systems and enable dynamic reconfiguration to meet

QoS goals.

These approaches are performance-centric in that they

create/adapt a model of component based systems specifically for

performance assessment. We prefer to work with generally

accepted architecture representations, and use a common

interchange format (S-PMIF) that allows the use of a variety of

performance modeling tools to provide performance predictions

for architecture and design alternatives. In addition, we have

extended the S-PMIF to include features necessary for evaluating

real-time systems. In the future, it may be possible to unify the

various interchange formats as suggested by [40]. In the

meantime, it makes sense to extend the meta-models as necessary

to create a superset of the necessary information for performance

assessment.

4. CCL AND ICM
The architecture specification language used in this study is the

Construction and Composition Language (CCL) [10]. This

section describes relevant features of CCL and ICM, a meta-

model for facilitating the analysis of CCL specifications.

4.1 Construction and Composition Language
CCL is a language for specifying the behavior of components,

their composition to form assemblies or systems, and the

properties required for reasoning about the assemblies [10]. CCL

enforces the notion of pure composition, which means that all the

behavior is inside the components and systems are assembled by

wiring components together with no “glue” code. Components in

CCL interact through pins. Source pins emit stimuli and sink pins

receive stimuli. When a sink pin receives a stimulus, it triggers a

reaction, which carries out the response to the stimulus. A

reaction can initiate an interaction with other components via its

source pins. Pins can interact synchronously or asynchronously.

Stimuli can carry data, and for that reason, pins have signatures

describing the data they consume and produce.

The following CCL specification declares a component type

MovementPlanner with one asynchronous sink pin and three

source pins (one synchronous and two asynchronous). Then it

declares a reaction in which all the pins participate, that is, it is

triggered by go, the only sink pin, and it can interact with other

components through the source pins. The keyword threaded

indicates that this reaction executes in its own thread.

component MovementPlanner() {
 sink asynch go();
 source synch get(produce int mode, produce
 string in, consume string out);
 source asynch moveX(produce int pos);
 source asynch moveY(produce int pos);

 threaded react reaction go, get, moveX, moveY)
 {

// reaction specification goes here
 }
}

It is important to note that a specification like this that does not

have the behavioral specification of the reaction is a valid CCL

specification. Therefore, analysis can be done in the early stages

of the design, when only the component and connector structure

of the system is known.

An assembly of components is produced by creating component

instances and connecting them as in the following fragment.

 MovementPlanner movementPlanner();
 AxisController controllerX("X");

 movementPlanner:moveX ~> controllerX:move;

For the connection between two pins to be legal, they need to

have the same mode (synchronous or asynchronous) and they

need to have complementing signatures, meaning that the data

produced by one pin is consumed by the other and vice versa. For

example, the signature of the pin move in AxisController is as

follows.

 sink asynch move(consume int pos);

Assemblies declare services (e.g., clocks, keyboard input, console

output, etc.) that they expect the environment to provide. The

specification of a service is identical to that of a component,

except that the keyword service is used instead. One important

semantic difference though, is that services are the only source of

external events because components cannot interact directly with

the environment.

CCL has an annotation mechanism that can be used to provide

information required to analyze the assembly. For example, the

following annotation1 indicates the minimum, average, and

maximum execution time of the move pin in AxisController when

run in isolation (i.e., with no blocking and no preemption).

 annotate AxisController:move {"lambda*",
 const string execTime =
 "G(9.95, 10.01, 10.14)" }

Only the aspects of CCL most relevant for this paper have been

covered here. More details about CCL can be found in [10].

4.2 ICM: A Meta-model for CCL Assemblies
The intermediate constructive model (ICM) is an intermediate

representation of a CCL assembly that makes the generation of

1 The argument “lambda*” indicates the reasoning framework this

annotation is used for.

analysis models simpler. Instead of having to deal with the

language related constructs in the CCL abstract syntax tree while

developing a transformation, it is easier to start from concepts that

are more relevant to reason about the assembly. For example, it is

easier to reason about a source pin with an event interarrival

distribution, than doing the same thinking in terms of a

computational unit, an annotation and a float literal expression.

The ICM meta-model, shown in Figure 1, does not have

information regarding types and only represents instances. That is,

if there are two instances of the same component type, elements

common to both, such as pins, are repeated in the model. This

redundancy also makes it easier to traverse the design in order to

transform it to an analysis model. The root element of the ICM

meta-model is the AssemblyInstance, which contains all the

service and component instances in the assembly. These have a

common base class, ElementInstance, with all the attributes they

share. Components and services have pins that can be either sink

or source. SinkPinInstance has an execution time distribution to

represent the amount of CPU time the sink pin requires. When a

source pin belongs to a service (i.e., it is a ServiceSourcePinIcm),

it has an event interarrival distribution and can optionally have an

execution time distribution as well. Distributions can be of

different kinds, such as constant or exponential. In order to

represent the connections between components, there is a

reference sinks between pins that shows which sink pins are

connected to a source pin. In a similar way, the reactSources

reference indicates the sources that are triggered by a sink pin in

the same component.

5. S-PMIF
The S-PMIF is based on the SPE meta-model. This meta-model

defines the essential information required to create the software

and system performance models as defined in [16]. The SPE

Figure 1. ICM Meta-model

meta-model class diagram is shown in Figure 2. The complete

definition is available at www.spe-ed.com/pmif/s-pmif.xml 2

Several changes were made to the meta-model described in [30]

as a result of this work. The first was the creation of the abstract

entity Scenario with subclasses PerformanceScenario and

ServiceScenario. A PerformanceScenario represents an end-to-

end, externally visible interaction (analogous to a Use Case) while

a ServiceScenario is a scenario that provides one or more services

to one or more PerformanceScenarios. Performance Scenarios

have workload intensities which may be specified by a number of

users and think time (closed workload) or an inter-arrival time

(open workload). ServiceScenarios have an optional

intearrivalTime (default is 0) and numberOfInstances.

Several attributes were also added to the meta-model to allow

specification of real-time concepts:

2 You also need ~/OverheadMatrix.xml and ~/Devices.xml. The

extension for all schemas is ~.xml so that it can be viewed from

a browser. Change the extensions to ~.xsd to use them.

• arrivalDistribution (PerformanceScenario) and

serviceDistribution (Device). These take their values from

an enumerated type, DistributionType (exp, normal,

constant, erlang, hyperexp, uniform(u1,u2)). These

attributes are optional (default to exp).

• schedulingDiscipline (Device). This attribute is also an

enumerated type (FCFS, IS, LCFSPR, PR, PS, RR) and is

optional.

• responseTimeRequirement and throughputRequirement

(Scenario). The values of these attributes are real numbers.

In addition, the attributes partnerNodeID and

partnerScenarioName were added to SendNode and attributes

were removed from SynchronizationNode.

TheS-PMIF is implemented using three separate schemas:

Topology, OverheadMatrix, and Device. They can be combined

by including the appropriate schemas. Thus, Topology may

include OverheadMatrix which includes Device. This is useful

because one may use any of the schemas without using the others.

For example, if the overhead matrix specification is coming from

another source it does not need to be included in the topology,

and vice-versa.

Scenario

Execution

Graph

Node Arc

1..n 0..n

Processing

Node

Basic

Node

Expanded

Node

Link

Node

Compound

Node

Case

Node

Pardo

Node

Split

Node

Repetition

Node

Parameter

Resource

Requirement

Device

Overhead

Matrix1..n

0..n

1..n

1..n

1..n

0..2

{All loops in the graph
must be repetition loops}

Synchronization

Node

Receive

Node

Reply

Node

NoReply

Node

Synchronous

Call

Deferred

Synchronous

Call

Asynchronous

Call

Send

Node

Send nodes are paired with receive nodes in
other execution graphs. SynchronousCall and
DeferredSynchronousCall nodes are paired
with ReplyNodes. AsynchronousCall nodes
are paired with NoReply Nodes

Facility
1..n

Project

1..n
Performance

Scenario

Service

Scenario

Intensity

Open

Intensity

Closed

Intensity

Figure 2. S-PMIF Meta-Model

Comparing this meta-model to the MARTE specification is

beyond the scope of this paper and will be addressed in future

work.

6. IMPLEMENTATION

6.1 Generating S-PMIF Models from CCL
Even though from the user’s perspective the transformation to an

S-PMIF model starts from a CCL specification, behind the scenes

the CCL specification is transformed first to an ICM model from

which the S-PMIF is finally generated.

The ICM meta-model is defined as an Ecore model, the meta-

model of the Eclipse Modeling Framework [41]. EMF can

generate the Java implementation classes to load, manipulate and

persist instances of the model. The S-PMIF format is specified as

an XML schema, and since EMF provides the same generative

capabilities starting with an XML schema, EMF was used to

generate the Java implementation to manipulate the S-PMIF

models.

The following sections describe the generation of two flavors of

S-PMIF model from ICM, the simple model, or no contention

model, and the advanced model.

6.2 Generation of the Simple Model
The overall approach to generate the simple model consists of

creating an S-PMIF performance scenario for each service source

pin in the ICM. In that way, the performance scenario

encompasses the complete response to an external event. The

execution graph for the performance scenario is created by

recursively traversing the response by visiting each pin, starting

with the service source pin. Figure 3 shows the pseudocode for

the two functions that implement the core of the transformation.

The function visitSource checks whether the source pin is

synchronous or asynchronous. In the first case, it directly returns

the node that is created by visiting the sink connected to that

source. However, if the source pin is asynchronous, it creates a

SplitNode to represent the initiation of concurrent threads of

execution, and adds to the split node the nodes resulting from

visiting all the sink pins connected to the source node. The

function visitSink creates a BasicNode with a

ResourceRequirement to model the computation carried out by the

sink pin and then it visits in sequence all the source pins in the

same component that are triggered by the reaction of the sink pin.

The order of execution is modeled by creating the arcs connecting

the nodes.

One problem that arose while implementing this algorithm was

the lack of subtype relationships between the different kinds of

nodes in the S-PMIF schema. In the S-PMIF meta-model, both

BasicNode and SplitNode are subtypes of Node. However, in the

XML schema for S-PMIF the hierarchy was flattened and those

relationships were lost [14]. For that reason, in the Java

implementation generated with EMF from the S-PMIF schema,

Node, BasicNode, and SplitNode have no subtype relationship.

This complicates the implementation of the transformation

algorithm. For instance, what is the return type of visitSource if it

can return either a BasicNode or a SplitNode? The problem also

hindered the use of polymorphism because it makes it impossible

to make calls such as lastNode.getNodeId(), where lastNode can

refer to different types of nodes. Although the intent of flattening

the S-PMIF schema was to simplify the XML [14], the lack of

subtype relationships proved to have the opposite effect in

situations where the XML is generated by a high level modeling

technology such as EMF.

The problem of not having node subtyping was overcome in two

different ways. One solution was changing the return type of

visitSource and visitSink to ExpandedNode, and wrapping the

result of each function in its own execution graph contained in an

expanded node. This approached worked well albeit it generated a

lot of expanded nodes and execution graphs that would otherwise

not be needed.

The second solution was more complicated because it consisted of

adding subtyping to the schema from which the Java

implementation classes were generated while maintaining an

output format compliant with the original S-PMIF schema. The

subtyping was added by using the schema type extension

mechanism. In addition, containment relationships that were

implemented with XSD choice were changed to use the base type.

For example, the containment relationship shown in Figure 4 was

changed as it appears in Figure 5. This change allowed EMF to

generate Java code with the right subtype relationships. However,

the generated XML for a BasicNode would look as follows.

 <Node xsi:type="BasicNode_type" NodeId="N1" … />

Since this is not compatible with the S-PMIF schema, XSD

substitution groups were defined so that the desired XML output

Node visitSource(SourcePinInstance source) {
 if source is synchronous {
 node = visitSink(sink)
 } else { // source is asynchronous
 node = new SplitNode
 for each sink in source.sinks {
 newNode = visitSink(sink)
 add newNode to children of node
 }
 }
 return node
}

Node visitSink(SinkPinInstance sink) {
 node = new BasicNode
 add ResourceRequirement to node from
 sink.execTimeDistribution
 lastNode = node
 for each source in sink.reactSources {
 newNode = visitSource(source)
 arc = new Arc
 arc.from = lastNode.getNodeId()
 arc.to = newNode.getNodeId()
 lastNode = newNode
 }
 return node
}

Figure 3. Pseudocode for simple S-PMIF model generation

<xs:complexType name="EG_type">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="BasicNode"
 type="BasicNode_type"/>
 <xs:element name="SplitNode"
 type="CPSNode_type"/>
 ...
 </xs:choice>
 </xs:sequence>
 ...
</xs:complexType>

Figure 4. Containment with schema choice

was produced. A substitution group introduced to the schema with

<xs:element name="BasicNode"
 substitutionGroup="Node" type="BasicNode_type"/>

resulted in the right XML produced as in this example:

 <BasicNode NodeId="N1" … />

Figure 5. Containment with base type

6.3 Generation of the Advanced Model
In a component-based real-time system, the response to an event

may be realized by several components that may execute in their

own thread. When creating the advanced S-PMIF model, the

different concurrent threads of execution need to be modeled so

that contention between them can be evaluated.

S-PMIF has the concept of a SynchronizationNode that maps

directly to the different kinds of pins in CCL. Synchronous source

and sink pins can be represented by SynchronousCall and Reply

nodes respectively. Asynchronous source and sink pins can be

modeled by AsynchronousCall and NoReply nodes

correspondingly. The pseudocode for the algorithm used to

generate the advanced model is shown in Figure 6. The most

important function is getPSForSink. This function creates a

scenario for a sink pin in the assembly only if it has not created it

before; otherwise, it returns the already existing scenario. The

performance scenario starts with either a BasicNode or

SynchronizationNode depending on whether it is top level (i.e.,

first in the response to an event) or not. If it is not top level, the

type of the SynchronizationNode is set to match the interaction

mode of the pin. This first node in the scenario has a

ResourceRequirement specifying the execution time required by

the sink pin in the CPU. If the component interacts with other

components via its source pins, synchronization nodes of type

SynchronousCall or AsynchronousCall are created to model the

interactions with the connected sink pins. In order to get the

partner scenario of these synchronization nodes, getPSForSink is

called recursively. The main function of the transformation,

generateModel, just calls getPSForSink for each of the sinks

connected to service source pins in the assembly and sets the

corresponding interarrival time for the top level performance

scenarios.

The algorithm presented here depends on a simplifying

assumption, namely, that all the sink pins in the assembly

participate in threaded reactions. Nevertheless, it would not be

difficult to extend it to support unthreaded reactions as well

because traversing unthreaded reactions would be the same as was

done in the simple model generation algorithm, except that in this

case there would be no split nodes.

6.4 Importing the Models
The S-PMIF is imported into a software performance modeling

tool, like SPE·ED [42, 43], SP[44], or HIT [45] for performance

analysis of the software architecture and design, and evaluation of

alternatives. The software performance modeling tool must either

provide an import mechanism for S-PMIF or read input from a

file that can be generated from a translation of the S-PMIF.

We use the SPE·ED tool. SPE·ED uses the Document Object

Model (DOM) to import the s-pmif.xml. It first loads and parses

the document, then uses DOM calls to walk through each scenario

and create the corresponding nodes and arcs in SPE·ED. Previous

work created a prototype import mechanism [30]. It included

neither the import of resource requirements nor the overhead

matrix so those features were added to handle these models. This

was the only extension required for the simple models. The

following additional features were required for the real-time

extensions used in the advanced models:

• ServiceScenarios are currently mapped to performance

scenarios. In the future, SPE·ED will support

ServiceScenarios, so this is a temporary solution.

Figure 6. Pseudocode for advanced S-PMIF model generation

<xs:complexType name="EG_type">
 <xs:sequence>
 <xs:element maxOccurs="unbounded"
 name="Node" type="Node_type"/>
 ...
 </xs:sequence>
 ...
</xs:complexType>

generateModel() {
 for each serviceSourcePin in assembly {
 linkedSink =
 sink connected to serviceSourcePin
 ps = getPSForSink(linkedSink, true)
 ps.interarrivalTime =
 serviceSourcePin.eventDistribution.mean
 }
}

PS getPSForSink(SinkPinInstance sink,
 bool topLevel) {
 if PS already created for sink {
 return psMap[sink]
 }
 ps = new PS
 ps.priority = sink.priority
 if topLevel {
 node = new BasicNode
 } else {
 node = new SynchronizationNode
 if sink is synchronous {
 node.myType = Reply
 } else {
 node.myType = NoReply
 }
 }
 add ResourceRequirement to node from
 sink.execTimeDistribution
 make node first node in ps
 lastNode = node
 for each source reacting to sink {
 for each linkedSync connected to source {
 node = new SynchronizationNode
 if sink is synchronous {
 node.myType = SynchronousCall
 } else {
 node.myType = AsynchronousCall
 }
 node.partnerPerfScenario =
 getPSForSink(linkedSink, false)
 arc = new Arc
 arc.from = lastNode.getNodeId()
 arc.to = node.getNodeId()
 lastNode = node
 }
 }
 psMap[sink] = ps
 return ps
}

• SPE·ED assumes arrival times and service times are

exponentially distributed, the case study required

constant interarrival and service times

• Preemptive-resume scheduling was required.

• Synchronization nodes were not supported in the earlier

prototype

7. PROOF OF CONCEPT
In order to demonstrate the viability of the performance model

exchange approach, we selected a real-time application that was

specified with CCL. The application is a simple robot controller

that takes high-level work orders for a robot and translates them to

low-level movement commands for the robot’s two axes. Figure 7

shows the design of the controller. The solid black boxes are

sources of events, and in this case, they all have constant

interarrival intervals. For clarity, the period of the event has been

included in the name of the service (e.g., clock130 has a period of

130ms). Components are depicted as hollow boxes in the diagram,

with sink pins on the left, and source pins on the right. Single and

double arrow pins indicate synchronous and asynchronous

interaction respectively.

The trajectory planner periodically receives high-level orders for

the robot and, using information it gets from the position monitor,

decomposes them into subwork orders, which it then puts in the

work order repository. The movement planner gets orders from

the repository and translates them into movement commands for

the axis-controllers controllerX and controllerY. The position

monitor receives input from a sensor that is read periodically, and

the monitor component performs low-priority monitoring tasks.

It is critical that the movement planner never finds the repository

empty because if it does, it has to abort the operation of the robot.

Both planners cannot miss their deadline at the end of their

period. Therefore, this is a hard real-time situation. All the sink

pins in this design execute on their own thread at different

priorities.

The simple model consists of four performance scenarios. Figure

8 shows the generated S-PMIF for one of them.

The advanced system model has nine scenarios. Figure 9 shows

the S-PMIF for the same scenario in the advanced model.

Figure 10 shows the imported models. On the left is a portion of

the simple model corresponding to the execution graph for the

expanded node, E_trajectoryPlanner.go. Its “no contention”

solution is shown. On the right is the generated advanced model

consisting of the N_trajectoryPlanner.go basic node followed by

two synchronous call nodes.

In order to have a baseline for comparing the results, the

controller was analyzed using the worst-case latency prediction

capability provided by the PSK performance-reasoning

framework. This analysis first transforms the design specification

into a performance model in which the response to each external

event is expressed as a linear sequence of actions, even if the

original response presents branching and internal concurrency.

The resulting performance model is then analyzed using the

technique for varying priorities in Rate Monotonic Analysis

Figure 7. Robot controller design

Figure 8. S-PMIF for clock450.tick Simple Model

<PerformanceScenario EGId="clock450.tick"
InterarrivalTime="450.0" NumberOfJobs="1"
Priority="1" ScenarioName="clock450.tick"
SWmodelfilename="icm">
 <ExecutionGraph EGId="clock450.tick"
EGname="clock450.tick" IsMainEG="true"
StartNode="S_clock450.tick">
 <SplitNode NodeId="S_clock450.tick"
NodeName="S_clock450.tick">
 <ExpandedNode
NodeId="X_trajectoryPlanner.go"
NodeName="X_trajectoryPlanner.go"
Probability="1.0"
EGId="E_trajectoryPlanner.go"
EGname="E_trajectoryPlanner.go"/>
 </SplitNode>
 </ExecutionGraph>
 <ExecutionGraph
EGId="E_trajectoryPlanner.go"
EGname="E_trajectoryPlanner.go"
IsMainEG="false"
StartNode="N_trajectoryPlanner.go">
 <BasicNode
NodeId="N_trajectoryPlanner.go"
NodeName="N_trajectoryPlanner.go"
Probability="1.0">
 <ResourceRequirement ResourceId="R_CPU"
UnitsOfService="89.66507"/>
 </BasicNode>
 <BasicNode
NodeId="N_positionMonitor.read"
NodeName="N_positionMonitor.read"
Probability="1.0">
 <ResourceRequirement ResourceId="R_CPU"
UnitsOfService="3.0634942"/>
 </BasicNode>
 <BasicNode NodeId="N_repository.access"
NodeName="N_repository.access"
Probability="1.0">
 <ResourceRequirement ResourceId="R_CPU"
UnitsOfService="19.920586"/>
 </BasicNode>
 <Arc FromNode="N_trajectoryPlanner.go"
ToNode="N_positionMonitor.read"/>
 <Arc FromNode="N_positionMonitor.read"
ToNode="N_repository.access"/>
 </ExecutionGraph>
</PerformanceScenario>

(RMA) [46]. This analysis is carried out by MAST [12], a third-

party tool integrated with the PSK’s performance reasoning

framework. For each response being analyzed, RMA creates the

worst phasing of tasks in order to compute an upper bound for the

worst-case latency or response time. Therefore, it is expected that

results obtained by other means be no higher than those provided

by RMA.

Table 1 shows the performance results. The first two sections are

the results from the RMA analysis and a discrete event simulation

integrated in the PSK. The third section shows the SPE·ED results.

The best case is the analytic solution of the SPE·ED simple model.

The average and worst cases are the simulation solution of the

SPE·ED advanced system model. As expected, the analytic best

case for both RMA and SPE·ED are exact. The simulation

solutions are also comparable, but not exact. This is especially

noticeable in the best case because the discrete event simulation

best case does include contention. For example, even in the best

case, the response to clock450.tick will be preempted twice by

clock150.tick, resulting in a response time higher than the no-

contention best case.

The next step is to evaluate an alternative architecture that

replaces the X and Y controllers with controllers that also provide

position feedback to the position monitor. This changes the

scenario for clock150.tick in the simple model to make two

additional calls. It changes the ControllerX and ControllerY

threads in the advanced model to make asynchronous calls to the

PositionMonitor.input. Table 2 shows the results for this

architectural alternative.

As before, the best case analytic results are exact. However, these

results show some differences in the simulation solutions for the

Figure 9. S-PMIF for clock450.tick Advanced Model

Table 1. Robot Controller Results

Transaction Best Average Worst

RMA Analytic

clock130.tick 15.04 98.04

clock450.tick 112.65 262.77

clock150.tick 60.02 79.94

clock2000.tick 0.32 278.14

DE Simulation

clock130.tick 15.04 33.71 75.08

clock450.tick 247.73 259.49 262.83

clock150.tick 60.02 60.00 60.04

clock2000.tick 0.32 103.08 278.20

SPE·ED Results

clock130.tick 15.04 33.78 99.07

clock450.tick 112.65 259.67 262.77

clock150.tick 60.02 60.02 60.02

clock2000.tick 0.32 71.61 278.14

Table 2. Results for Architectural Alternative

Transaction Best Average Worst

RMA Analytic

clock130.tick 15.04 124.06

clock450.tick 112.65 496.91

clock150.tick 86.03 109.02

clock2000.tick 0.32 431.24

DE Simulation

clock130.tick 15.04 52.18 115.99

clock450.tick 314.80 347.63 431.04

clock150.tick 86.03 89.57 105.99

clock2000.tick 16.19 220.18 431.36

SPE·ED Results

clock130.tick 15.04 46.51 208.16

clock450.tick 112.65 305.60 317.88

clock150.tick 86.03 90.08 192.65

clock2000.tick 0.32 128.68 413.30

Time, no contention: 112.65

89.67

 3.06

19.92

E_trajectoryPlanner.go

N_trajectory
Planner.go

N_position
Monitor.read

N_reposi-
tory.access

trajecoryPlanner.go

posMonitor.read

repository.access

Figure 10. Imported Clock450.tick Simple and Advanced

Model

<PerformanceScenario
EGId="trajectoryPlanner.go"
InterarrivalTime="450.0" Priority="4"
ScenarioName="trajectoryPlanner.go"
SWmodelfilename="icm">
 <ExecutionGraph EGId="trajectoryPlanner.go"
EGname="trajectoryPlanner.go" IsMainEG="true"
StartNode="N_trajectoryPlanner.go">
 <BasicNode
NodeId="N_trajectoryPlanner.go"
NodeName="N_trajectoryPlanner.go">
 <ResourceRequirement ResourceId="R_CPU"
UnitsOfService="89.66507"/>
 </BasicNode>
 <SynchronizationNode
NodeId="N_trajectoryPlanner.read"
NodeName="N_trajectoryPlanner.read"
myType="SynchronousCall"
partnerID="N_positionMonitor.read"
partnerPerfScenarioName="positionMonitor.read
"/>
 <SynchronizationNode
NodeId="N_trajectoryPlanner.put"
NodeName="N_trajectoryPlanner.put"
myType="SynchronousCall"
partnerID="N_repository.access"
partnerPerfScenarioName="repository.access"/>
 <Arc FromNode="N_trajectoryPlanner.go"
ToNode="N_trajectoryPlanner.read"/>
 <Arc FromNode="N_trajectoryPlanner.read"
ToNode="N_trajectoryPlanner.put"/>
 </ExecutionGraph>
</PerformanceScenario>

advanced model. In particular, SPE·ED models have higher worst

case times for the clock130.tick and clock150.tick scenarios than

RMA analytic results, which should never happen. This is because

SPE·ED computes the average time for all calls to the

positionMonitor.input thread. RMA, however, distinguishes

between the calls from the different clocks. For example,

positionMonitor.input participates in the responses to clock130

and clock150. The problem is that it will have different response

times for each of the clocks. For instance, when participating in

clock130, positionMonitor.input could be preempted by an arrival

from clock150. That preemption would last for approximately

65ms. However, when participating in clock150,

positionMonitor.input obviously would never be preempted by an

arrival from clock150. It is possible to compute more precise

results manually from SPE·ED output.

This proof of concept demonstrates the viability of the model

interchange approach for the performance assessment of real-time

system architectures. It is helpful to compare the solutions from

different software performance modeling tools.

8. CONCLUSIONS
This paper has illustrated the use of a model interchange format to

support the performance analysis of real-time systems. It builds on

previous work in the areas of component-based systems, software

performance engineering, and model interchange.

Transformations between the Construction and Composition

Language and the Software Performance Model Interchange

Format (S-PMIF) were defined for both simple and advanced

models. A case study illustrates the process and compares model

solutions obtained using the SPE·ED software performance

engineering tool with those obtained using rate-monotonic

analysis and discrete event simulation.

In defining the model transformation, we identified changes to the

S-PMIF that were needed for analyzing a real-time design. We

also found that preserving the type hierarchy of the S-PMIF meta-

model in the schema would facilitate the implementation of S-

PMIF interchange support by tools using strongly typed modeling

technologies to generate the XML such as EMF or some model

transformation languages.

This work has opened a door to allow the performance analysis of

CCL specifications with other analysis tools without the need for

additional integration effort. This means that standard SPE

models can easily be used for analysis of systems specified in

CCL.

Finally, this paper has demonstrated the ease with which the S-

PMIF can be employed to transform additional design notations

(other than UML) into software performance models.

9. REFERENCES
1. Woodside, C.M., G. Franks, and D.C. Petriu. The Future of

Software Performance Engineering. in International

Conference on Software Engineering (ICSE). 2007.

Washington, DC: IEEE Computer Society.

2. Hissam, S.A., et al., Enabling Predictable Assembly. Journal of

Systems and Software: Special Issue on Component-Based

Software Engineering, 2003. 65(3): p. 185-198.

3. Larsson, M., Predicting quality attributes in component-based

software systems. 2004, Mälardalen University.

4. Liu, V., I. Gorton, and A. Fekete, Design-level performance

prediction of component-based applications. IEEE Trans. on

Software Engineering, 2005. 31(11): p. 928-941.

5. Merson, P. and S.A. Hissam. Predictability by construction. in

SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA05). 2005.

San Diego, CA: ACM.

6. Hissam, S.A., G.A. Moreno, and K.C. Wallnau, Using

containers to enforce smart constraints for performance in

industrial systems. 2005, Software Engineering Institute -

Carnegie Mellon University: Pittsburgh, PA.

7. Moreno, G.A. Creating custom containers with generative

techniques. in Proc. 5th International Conference on

Generative Programming and Component Engineering

(GPCE06). 2006. Portland, OR.

8. Bass, L., et al., Reasoning Frameworks. 2005, Software

Engineering Institute - Carnegie Mellon University: Pittsburgh,

PA.

9. Ivers, J. and G.A. Moreno. Model-driven development with

predictable quality. in SIGPLAN Conference on Object

Oriented Programming Systems and Applications

(OOPSLA07). 2007. Montreal, Quebec, Canada: ACM.

10. Wallnau, K.C. and J. Ivers, Snapshot of CCL: A language for

predictable assembly. 2003, Software Engineering Institute -

Carnegie Mellon University: Pittsburgh, PA.

11. Hissam, S.A., et al., Pin component technology (V1.0) and its

C interface. 2005, Software Engineering Institute - Carnegie

Mellon University: Pittsburgh, PA.

12. Gonzalez Harbour, M., et al. MAST: Modeling and Analysis

Suite for Real-Time Applications. in Proceedings 13th

Euromicro Conference on Real-Time Systems (ECRTS). 2001.

Washington, DC: IEEE Computer Society.

13. Smith, C.U. and C.M. Lladó. Performance Model Interchange

Format (PMIF 2.0): XML Definition and Implementation. in

Proc. 1st Int. Conf. on Quantitative Evaluation of Systems

(QEST). 2004. Enschede, NL: IEEE Computer Society.

14. Smith, C.U., et al. From UML Models to Software

Performance Results: An SPE Process Based on XML

Interchange Formats. in Workshop on Software and

Performance (WOSP05). 2005. Palma de Mallorca: ACM.

15. Williams, L.G. and C.U. Smith. Information Requirements for

Software Performance Engineering. in Proceedings 1995

International Conference on Modeling Techniques and Tools

for Computer Performance Evaluation. 1995. Heidelberg,

Germany: Springer.

16. Smith, C.U. and L.G. Williams, Performance Solutions: A

Practical Guide to Creating Responsive, Scalable Software.

2002, Boston: Addison-Wesley.

17. L&S, Computer Technology, Inc., Performance Engineering

Services Division, in # 110, PO Box 9802, (505) 988-3811,

www.spe-ed.com: Austin, TX 78766.

18. Smith, C.U., et al. Interchange formats for performance

models: Experimentation and output. in Proc. Quantative

Evaluation of Systems (QEST). 2007. Edinburgh, Scotland:

IEEE.

19. W3C, World Wide Web Consortium. 2001, www.w3c.org.

20. Kazman, R., et al., Scenario-Based Analysis of Software

Architecture. IEEE Software, 1996. 13(6): p. 47-55.

21. Kazman, R., et al. The Architecture Tradeoff Analysis Method.

in International Conference on Engineering of Complex

Computer Systems (ICECCS98). 1998.

22. Williams, L.G. and C.U. Smith. PASASM: A Method for the

Performance Assessment of Software Architectures. in Proc.

3rd Int. Workshop on Software and Performance. 2002. Rome,

IT: ACM Press.

23. Balsamo, S., P. Inverardi, and C. Mangano. An Approach to

Performance Evaluation of Software Architectures. in

Workshop on Software and Performance. 1998. Santa Fe, NM:

ACM.

24. Balsamo, S. and M. Marzolla. Performance Evaluation of

UML Software Architectures with Multiclass Queueing

Network Models. in WOSP 2005. 2005. Palma de Mallorca:

ACM.

25. Gu, G. and D. Petriu. From UML to LQN by XML Algebra-

based Model Transformations. in WOSP 2005. 2005. Palma de

Mallorca: ACM.

26. López-Grao, J.P., J. Merseguer, and J. Campos. From UML

Activity Diagrams to Stochastic Petri Nets: Application to

Software Performance Engineering. in Proc. Workshop on

Software and Performance. 2004. Redwood Shores, CA:

ACM.

27. Petriu, D. and C.M. Woodside. Analyzing Software

Performance Requirements Specification for Performance. in

Proc. Workshop on Software and Performance 2002. 2002.

Rome: ACM.

28. Savino, N., et al. Extending UML to Manage Performance

Models for Software Architectures: A Queuing Network

Approach. in Proc. 9th Int. Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems,

SPECTS. 2002. San Diego, CA.

29. Smith, C.U. and C.M. Lladó, Performance Model Interchange

Format (PMIF 2.0): XML Definition and Implementation

Update Technical Report.. 2007, L&S Computer Technology,

Inc.: Santa Fe, NM.

30. Smith, C.U., et al. From UML models to software performance

results: An SPE process based on XML interchange formats. in

Proc. 5th Int. Workshop on Software and Performance. 2005.

Palma, Illes Balears, Spain: ACM Press.

31. Woodside, C.M., et al. Performance by Unified Model

Analysis (PUMA). in WOSP 2005. 2005. Palma de Mallorca:

ACM.

32. D'Ambrogio, A. A Model Transformation Framework for the

Automated Building of Performance Models from UML

Models. in Proc. 2005 Workshop on Software and

Performance. 2005. Palma de Mallorca: ACM Press.

33. Bertolino, A., et al., From UML to Execution Graphs and

Queueing Networks: Design and Implementation of the XML-

based tool XPRIMAT. 2004, Universita del L'Aquila: L'Aquila,

Italy.

34. Cortellessa, V., M. Gentile, and M. Pizzuti. XPRIT: An XML-

based Tool to Translate UML Diagrams into Execution

Graphs and Queueing Networks (Tool Paper). in Proc. of 1st

Int. Conf. on the Quantitative Evaluation of Systems. 2004.

Enschede, NL: IEEE Computer Society.

35. Gomaa, H. and D.A. Menasce, Performance Engineering of

Component-Based Distributed Software Systems, in LNCS

2047: Performance Engineering State of the Art and Current

Trends, Dumke, et al., Editors. 2001, Springer-Verlag: Berlin.

p. 40-55.

36. Gu, G. and D. Petriu. XSLT Transformation from UML Models

to LQN Performance Models. in Proc. Workshop on Software

and Performance. 2002. Rome: ACM.

37. Wu, X. and C.M. Woodside. Performance Modeling from

Software Components. in Proc. Workshop on Software and

Performance. 2004. Redwood Shores, CA: ACM.

38. Becker, S., H. Koziolek, and R. Reussner. Model-based

performance prediction with the Palladio component model. in

Workshop on Software and Performance (WOSP07). 2007.

Buenos Aires, Argentina: ACM.

39. Grassi, V., R. Mirandola, and A. Sabetta. A model-driven

approach to performability analysis of dynamically

reconfigurable component-based systems. in Woskshop on

Software and Performance (WOSP07). 2007. Buenos Aires,

Argentina: ACM.

40. Cortellessa, V. How Far Are We From the Definition of a

Common Software Performance Ontology? in WOSP 2005.

2005. Palma de Mallorca: ACM.

41. Budinsky, F., E. Merks, and D. Steinberg, Eclipse Modeling

Framework 2.0 (2nd Edition). 2006: Addison-Wesley

Professional.

42. Smith, C.U. and L.G. Williams, Performance Engineering

Evaluation of CORBA-based Distributed Systems with SPEED,

in Lecture Notes in Computer Science, R. Puigjaner, Editor.

1998, Springer: Berlin, Germany.

43. Smith, C.U. and L.G. Williams, Performance Engineering of

Object-Oriented Systems with SPEED, in Lecture Notes in

Computer Science 1245: Computer Performance Evaluation,

M. R., et al., Editors. 1997, Springer: Berlin, Germany. p. 135-

154.

44. Hughes, P., SP Principles. 1988, STC Technology.

45. Beilner, H., J. Mäter, and N. Weissenburg. Towards a

Performance Modeling Environment: News on HIT. in

Proceedings 4th International Conference on Modeling

Techniques and Tools for Computer Performance Evaluation.

1988: Plenum Publishing.

46. Gonzalez Harbour, M., M. Klein, and J. Lehoczky, Timing

analysis for fixed-priority scheduling of hard real-time

systems. IEEE Trans. on Software Engineering, 1994. 20(1): p.

13-28.

