Elaboration on an Integrated Architecture and Requirement Practice

Prototyping with Quality Attribute Focus

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, USA
sbellomo@sei.cmu.edu, rn@sei.cmu.edu, ozkaya@sei.cmu.edu

Abstract— Projects seeking rapid, sustainable delivery are
combining agile and architecture practices to manage competing
goals of speed in the short term and stability. In a recent study,
we interviewed eight government and commercial project
teams that have adopted incremental and iterative software
development approaches and identified a mix of Agile and
architecture practices that teams apply to rapidly field
software and minimize disruption and delay. In this paper,
we elaborate one practice from this study, Prototyping with
quality attribute focus, to gain a better understanding of
how this practice works and what the benefits of the
approach are. As we analyzed this practice, we observed that it
leverages rapid feedback cycles weaving requirements and
architecture, characteristic of the Twin Peaks concept, at three
levels: feature development/sprint, release, and portfolio planning
levels. We also observed that each of these cycles have differing
degrees of separation and cadences. We also describe several
regularly occurring integration points within the Scrum
framework that allow for synching (weaving of architecture and
requirements). We describe the practice in some detail and also
discuss a few enablers that keep the practice working smoothly.

Index Terms—agile software development, architecture,
quality attribute, prototyping, release planning, requirements,
software development practices, architecture trade-off

I.INTRODUCTION

Projects seeking rapid, sustainable delivery are combining
agile and architecture practices to manage competing goals of
speed in the short term and stability over the long
term[1][2][3]. This paper stems from a study in which we
interviewed eight project teams identifying a set of practices
that enable rapid delivery. The practices that emerged from the
study represent a mix of Agile practices, architecture practices
and practices that combine these together (we refer to these as
integrated practices)[4][5][6]. In this paper, we elaborate one of
the more frequently used integrated practices from the study,
Prototyping with quality attribute focus (shown in Figure 2).
This practice integrates prototyping (often leveraged on Agile
projects to reduce uncertainty instead of developing lengthy
requirements specification documents [7][8]) and architectural
focus (consideration of quality attribute requirements during

prototyping).

During our interviews we captured several examples of
prototyping with quality attribute focus practice from teams in
different organizations. In this paper, we specifically focus on
examples from Team A and Team B (as we refer to them). We
begin with an example from Team A. Team A was giving a
user demo of a prototype concept when they received
unexpected feedback that system performance was slow. The
discovery of a performance issue with the prototype concept
resulted in weeks of delay. Several problems contributed delay.
Due to business pressure, quality attribute aspects of the
prototype concept were largely ignored. The architect and
product owner had not been collaborating on decisions so the
problem was a surprise to the team. The prototyped code was
tightly coupled with the development code so the team couldn’t
make changes to the prototype without holding up the whole
release. All these led to additional delays. Finally, the team
wasn’t prepared to do rapid tradeoff analysis of performance-
related design options. So, rather than elaborating the
prototyped user story in a smooth spiral fashion as depicted in
the Twin Peaks model [9], Team A experienced delays. Figure
1 depicts limitation of trade-off analysis causing delay and
impacting subsequent elaboration spirals.

neral
Geperal.... Plan Specification

User st i i Delay due to
|,.-m-‘,‘|W * Demo limitations in
+ Feedback ¥ I
concept analysis incremental
. ~ PBn lrade-qﬂ
Firstdemo + Develop analysis

with slow =% Demo
performance | * Feedback
analysis

+ Plan \——X-/ v
Seconddemo | - gewmu
emo,
with slow . Foe
performance a“mms

Detailed >
Independent Implementation Dependent
dependence

Figure 1: Team A example of delay shown using
Twin Peaks model



In this paper, we analyze Team B’s Prototyping with
quality attribute focus practice. Team B’s practice examples
demonstrate successful use of prototyping for validation of
requirements and design concepts including quality attribute-
related considerations. A high-level summary of key
observations from our analysis of Team B’s Prototyping with
quality attribute focus practice are summarized below:

e Close collaboration between the architect and product
owner on Team B at several integration points woven into
the project software development lifecycle allow for
weaving of architecture and requirements which enables
the team to reduce the expectation mismatch as well as risk
due to late discovery of requirements (particularly quality
attribute requirements).

e Team B’s prototyping approach as described in this paper,
as well as competency in rapid architectural analysis and a
flexible architecture, additionally contribute to the team’s
ability to smoothly elaborate requirements and architecture
that naturally emerges from prototype feedback.

I1. BACKGROUND

Here we provide a very minimal overview of the findings
of the study from which this practice emerged as a backdrop.
We interviewed eight project teams from government and
commercial organizations that have adopted incremental and
iterative software development practices (such as agile) [4][5].
A set of practices that enable rapid delivery emerged from the
study. These practices spanned the software development
lifecycle and included a mix of different types of practices;
Agile practices, architecture practices and a practices that
combine both. Some practices were more widely used than
others. A summary of the practices from our interviews are
shown in Figure 2 ordered from the most to least used.
Integrated practices are shown bold.

Release planning with architecture considerations
Prototyping with quality attribute focus

Release planning with joint prioritization

Test-driven development with quality attribute focus
Dynamic organization and work assignment

Release planning with legacy migration strategy
Roadmap/vision with external dependency management
Root cause analysis to identify architecture issues
Dedicated team/specialized expertise for tech insertion
10. Technical debt monitoring with quality attribute focus
11. Focus on strengthening infrastructure (runway)

12. Retrospective and periodic design reviews

13. Use of standards and reference models

14. Backlog grooming

15. Fault handling or performance monitoring

16. Vision document with architecture considerations

NGO MWNE

Figure 2: Practices summary table

At the time of the interview, Team B was leveraging the
prototyping with quality attribute focus practice on a project
developing a web-based analysis software system. The
software had been in production and use for twelve years and
used the Scrum development framework. They had organized

software development into two week sprints and six to twelve
month product releases.

I11. PRACTICE DESCRIPTION

As they described their practice, Team B’s emphasized that
prototyping has been important to the organization in the past
but is becoming increasingly important for their survival. As
an industry company, they explained that government and
budget cuts mean the consequences of bad choices become
even bigger; a mismatch in expectations can mean the end of a
project. Consequently, requirements validation, technology
validation, and architecture validation have all become very
important to them. They explained that the value of prototyping
(to their team) is that it helps the team ensure that they are
delivering what business stakeholders expect. In addition, they
said that prototyping also helps them make better estimates,
plan incremental deliveries, validate technical feasibility for
new capabilities, and lay groundwork for the real
implementation.

Team B also explained that the quality attribute focus is
very important to them saying, “A quality attribute focus
enhances all those benefits of prototyping.” They further
explained that prototyping generates design ideas, but new idea
generation is a secondary benefit. Prototyping is part of a
“validate early and often” development philosophy. Vague or
complex requirements, technology integrations, and
architecture changes are important things teams need to
validate. The Team B’s prototyping with quality attributes
practice is summarized in the following bullets and illustrated
in Figure 3:

e RL-1: The product owner and architect agree that a
prototype of a feature should be developed in order to get
early feedback on the architecture’s ability to meet quality
attribute  requirement  (prototyping  activities and
conventional Scrum sprints are planned at the same time at
the beginning of each release cycle).

e RL-2: The first prototype concept is developed on a
separate branch of code (not the development branch) and
is targeted for development in a future sprint.

e RL-3: The team walks the product owner and a subset of
users through a prototype concept demonstration during
the sprint user demo. Feedback on the prototype is
gathered.

e RL-4: The team holds a post-user demo meeting to discuss
feedback from the sprint user demo. If feedback has design
implications, the team rapidly develops architectural trade-
off options and provides them to the product owner.

e RL-5: The architect and product owner collaborate to
select design options (as required) and changes are
incorporated into the release plan. Steps RL-3 to RL-5 are
repeated until all feedback is incorporated.

e RL-6: The product owner decides when all feedback has
been adequately addressed and approves migration of the
prototype concept into the development environment. If
the prototyped code was developed on a separate branch,
the prototype code is merged into the development branch.
If the prototype concept is done in a separate tool or




environment, it is then implemented in the development
environment.

R&D
LEVEL

INITIATE PHASE i+2 RETIRE
PROJECT PROJECT

SPRINT i+1 SPRINT i+1 RELEASE
INTEGRATION

. RELEASE ‘ SPRINT i

RELEASE
LEVEL

|

TARGET |8
SPRINT

RL-4

SPRINT
LEVEL

PROTOTYPE BRANCH

RELEASE BRANCH

[ PROTOTYPING FEEDBACK PHASE [ MeroE PHAsE |

Figure 3: Release Level Prototyping Steps

The prototyping with a quality attribute focus practice and
sprint feature development both leverage feedback points in the
Scrum lifecycle. When described at this high level they may
they seem very similar, but there they are separate and distinct.
The details which clarify these differences are summarized in
Figure 4, Prototyping Rules of the Road.

IVV. PRACTICE ANALYSIS

In this section we present our analysis findings from the
elaboration. For this practice elaboration, we conducted three
phone interviews with Team B. The prototype lead was present
at all three interviews. The first interview was a short call with
the prototype lead focused to gather project context. The
prototype lead and the chief architect were both present for the
second interview which was more structured and recorded. The
third interview was a short call with the prototype lead to
gather more detail about the practice for this elaboration. This
call was not recorded, but detailed notes were taken. We then
review the data from all three interviews to derive these
observations.

Feedback-driven weaving of architecture and requirements

We observed that Team B weaves architecture and
requirements by fostering informal, but regularly occurring,
collaboration  between the architecture  stakeholders
(architect/team) and business representatives  (product
owner/users) as part of their Scrum management activities.
This bringing together of the architecture and requirements
sides allows the team to elaborate requirements earlier in the
lifecycle avoiding surprises from unanticipated prototype
feedback. Three places where this we observed that this occurs
is: release planning, sprint user demo, and post-user demo
feedback analysis. These three integration touch points

represent small feedback loops (shown on Figure 3 with Twin
Peaks symbol).

Integration at release planning. (Shown in Figure 3 at
step RL-1). The product owner and architect collaborate on key
requirements and design for the initial prototype concept in the
beginning of a release planning cycle. Trade-offs are discussed
as required. Because prototyping and feature development
resources are shared, the product owner weighs the value of the
prototype changes against the value of other features in the
release and determines which should move forward.

Integration at the sprint user demo (Figure 3, RL-3).
During the sprint user demo the product owner and users share
feedback on the prototype concept with the architect. During
the user demo, the architect may also begin to ask users
questions to try to get at unstated requirements gently probing
for more information. The team explained how this probing
works through example. The team was assigned to develop a
prototype for a feature; however, no quality attribute
requirements were included in the prototype concept
description (user story). However, when the team demonstrated
the prototype to the user the team said they got a “feeling” that
the user didn’t like it. So, the architect informally asked a few
more questions (during and after the demo) until they identified
an emerging performance requirement. By probing further and
elaborating the requirement, the team was able to start working
on a performance design improvement early avoiding
unanticipated discovery of this requirement late in the lifecycle.

Integration at the post-user demo analysis. (Figure 3,
RL-5) This is the integration point when the product owner and
architect collaborate on design trade-offs that may result from
prototype feedback. In these cases, there may be several design
options and trade-offs that need to be considered (or there may
be no design considerations). Working together, the
architecture and requirements sides discuss options as required.

Overview of Prototyping Rules of the Road (for this team)

Team B described several key elements that define their
prototyping practice shown as rules of the road in Figure 4.

Release Level Prototyping
Rules of the Road

Rule 1

Prototyping should be done at least a full sprint cycle
before targeted feature development so there is time for
at least one feedback cycle (never in the current
development sprint cycle).

Rule2 | Prototyping work should not be done in the same branch
of code or environment as where the current feature

development is work.

Rule3 | Not all features need to be prototyped, but for those
features that are determined to require prototyping
should not be skipped. (We explore criteria for
determining what to prototype in the Discussion

section).

Rule4 | There is no separate “prototyping team”; the same team
members that develop features develop feature

prototypes.

Rule5 | The product owner prioritizes prototype development
and feature development work at the same time during

release planning. The product owner can stop prototype




work at any time or trade off a current prototyping effort
for development of new feature.

Rule 6 | To the extent feasible, prototyping should be done in an
environment technically similar to the target

environment.

Rule 7 | Prototyped features are usually demonstrated at the
weekly user demo feedback sessions (these are the same
user feedback sessions where developed features are
demonstrated) to take advantage of scheduled access to

the stakeholders.

Rule 8 | Minimalistic prototyping is encouraged. Objectives to
achieve validation of the concept to be prototyped
(whether it be to validate a requirement or an
architectural design) should be well defined and

prototyping depth and breadth should be in accordance.

Rule 9 | The product owner and a subset of users (subject matter
experts) jointly provide feedback during prototype

demonstrations.

Rule 10 | Validation of critical requirements and design concepts
is the focus of the prototyping practice, not generating

new and novel design ideas

Figure 4: Release Level Prototyping "Rules of the
Road" (from Team B)

The team gave an example to illustrate the importance of
Rule 1 (prototype prior to the target sprint). They were pressed
for time and decided to not start prototyping prior to the target
sprint (for a feature that they said needed prototyping). Since
the team started the prototype during target development sprint
(not before as the team usually does), when the team received
feedback there was no time to incorporate it. In this example
the team also broke Rule 2, and did not prototype in a separate
environment from the development environment. As a result
they could not separate prototype-related changes from other
development work and the whole release was delayed.

We observe that these rules are really guideposts, not hard-
and-fast rules, and should be applied as appropriate. For
example, Team B also explained that Rule 6 is encouraged but
is not always feasible or cost effective. They explained that the
decision to prototype in an environment that is technically
similar to the development environment (or target
environment) depends on a lot of things, particularly the focus
of the prototype. For example, if the team is validating user
interface requirements, they may want the prototype to visually
be accurate so they need to use the actual tools for building that
interface. They explained that the team also considers the cost
(time, resources, etc.) involved in building a technically similar
environment against the value derived from the prototype. In
Rule 8 the Team B explained that the use of minimal
prototypes is strongly encouraged and that prototyping should
reflect the depth and breadth necessary to validate the desired
requirement or concept. They suggest that detailed
development and design that is not directly related to validating
the prototype concept should not be part of the prototype
concept development. This supports Royce’s notion that
unjustified early precision in requirements and planning are
counterproductive giving the illusion of progress but leaving
important areas gray [10].

Architecture-related factors to enable rapid response

We observed some other factors in Team B’s examples that
contribute to the effectiveness of the prototyping approach. We
summarized these here.

Rapid architecture trade-off analysis. As prototype
feedback is collected from users during a user demonstration
(integration point RL-3), the team and architect must be
prepared to quickly respond with architectural trade-off
options. Team B suggested that the following items help enable
rapid architectural analysis during prototyping for them:

e Knowledgeable, involved, and vocal architect
e  Good understanding of how the system behaves
e “Key architecture documentation”

With respect to the last bullet, Team B explained that their
project was lacking in “key architecture documentation”. They
said they would have been able to respond to prototype
feedback more rapidly if they had key architectural views (or
some type of representation). The Team A example also
illustrates the importance of rapid trade-off analysis in the
prototyping practice. Because Team A did not have the ability
to rapidly re-evaluate design options there was additional
delay. Rapid architecture trade-off analysis is shown in in the
context of the practice execution in Figure 5.

Flexible architecture. Team B described their software
product as “mature and flexible” explaining this allowed them
to experiment more freely with prototype concepts. Perhaps we
are seeing signs of the idea suggested by Royce that when
projects have reached a mature state they can better balance
their resource investments between defensive efforts (such as
bug fixes, feature commitments, and schedule commitments)
and offensive efforts (such as new integrations, new
innovations, improved performance, earlier releases, and higher
quality) [10]. Flexible architecture to support prototype
experimentation is shown in in the context of the practice
execution in Figure 5.

Continuing from previous architecture
integration elaboration spiral...

p—

Team develops prototype and walks user through
the prototype concept demonstration

The team holds a post-demo meeting to discuss

: feedback; provides archi ire trade opti Rapid

. architecture
Elaboration of Feedback is gathered from users trade-off

one spiral The user and product owner review, analysis
illustrating options and approve changes ;
Flexible
several . architecture to
integration Team makes architectural changes and walks support

user through another demonstration

prototype
experimentation

touchpoints

Figure 5: Example enablers for rapid architecture-
side elaboration



V. DISCUSSION

The team described another prototyping practice, Research
and Development (R&D) prototyping practice. The R&D
prototyping practice description starts at the portfolio level
shown at the top of Figure 3. The first phase of the R&D
prototyping practice is separate from the Scrum sprint
development cycle. The second phase feeds into it. The team
summarized some of the differentiating factors between R&D
prototyping and release level prototyping as:

e The R&D prototype is typically funded by the
organization, rather than the client.

e The work is done in an R&D environment using tools and
hardware typically purchased by the organization (not the
development project).

e R&D prototypes are often prototypes of infrastructure
components or features that serve as foundational
capability for multiple features or products.

e R&D prototype concept is not shared with the prototype
concept until the team feels it is “ready to be shared”.

Team B gave the following example to illustrate R&D
prototyping. In the first phase, the Team B’s organization
decides to develop an R&D prototype of a server clustering
capability (to enhance web-based system performance) with
hopes that this capability could be offered to multiple clients.
The clustering prototype is developed in the organization’s
R&D environment (not a project environment). There are
several internal feedback discussions between the architect and
the Team B’s organizational business stakeholders reviewing
the prototype. The R&D prototype is presented to the product
owner when/if there is an appropriate opportunity do so. If the
prototype is accepted by the product owner, the second phase
of the R&D practice begins. At this point the R&D practice
merges with the Scrum development cycle and follows steps
RL-1 through RL-6 (Figure 3). For Team B, this generally
means rewriting the code or installing and configuring tools
into a project environment.

From the examples gathered from Team B, we observe
three levels of weaving requirements and architecture: Scrum
feature development level, release level prototyping, and R&D
prototyping level. Traversing from bottom to the top of Figure
3, feature development level contains integration points at the
user demo and post-user demo meetings. The release level
weaves architecture and requirements when the product owner
and architect come together during release planning. The R&D
prototype level supports integration points at the portfolio level
and also leverages integration points at the release/sprint levels
(if the prototype is accepted by the product owner). The release
level prototyping only looks forward a few sprints at a time and
is generally for smaller feature prototyping efforts. R&D level
prototyping looks further ahead than releases to consider
prototypes that support the organization’s product roadmaps
and product portfolios. At the R&D prototyping level the team
has the option to decouple the prototyping environment from
the development environment.

There are several areas we would like to investigate further.
Team B said that the mature nature of their software
architecture was an enabler for rapid and effective prototyping.

We would better understand what architecture structures
enabled release and R&D level prototyping. We would also be
interested in learning more about the influence of business
pressure the prototyping practice. Team A was still in the early
stages of its software product life. We would like a better
understanding of the relationship between project maturity and
consideration of quality attributes in prototyping. Team B also
noted that quality attribute focus is difficult to achieve in
prototyping if projects don’t define quality attributes well.
They suggested that sample quality attribute requirements for
enterprise systems could be useful and worthwhile to explore.
Perhaps this suggests applicability of generic quality attribute
scenarios for prototyping on iterative, incremental projects
[11].

We also observed differing degrees of separation and
cadence in the R&D prototype practice. This raises several
questions for future investigation with respect to the parameters
that influence successful weaving, as well as when it is
appropriate to move from one level to the next:

e What are the criteria for determining what should be
developed as a feature, prototyped at the release
level, and prototyped at the R&D level? Could be
business driven (need high level of requirements
validation) or architecturally driven (need to validate
architectural changes)?

e What are the appropriate time bounds for each level?

e What is the optimal size of prototyped efforts at each
level?

e How is the prototyping effort measured? How are
prototyping artifacts valued in terms of team
productivity and product quality?

e How much prototyping is appropriate and when is it
best utilized?

e Is the approach of focusing on high-risk prototyping
(through skeletal development) over feature-driven
prototyping counter to Scrum or complementary?

V1. CONCLUSION

Counter to the traditional practice of conducting formal and
separate requirements and architecture reviews, we observe
through this practice elaboration that natural integration points
throughout the Scrum framework (such as sprint planning,
demo, and retrospective, release planning meeting, user demo,
and post-user demo feedback analysis) can provide
opportunities for weaving architecture and requirements into
the incremental development lifecycle. The natural rhythm of
Scrum lifecycle provides a time-bound structured feedback to
identify potential hidden requirements.

Team B’s prototyping with quality attribute focus practice
requires collaboration between architect and product owner
which is not present in Scrum. Requirements analysis and
prioritization are done by the product owner and architectural
design is done by the development team in Scrum [12]. The
problem with this approach is that no one really has the whole
picture which can leave room for unwelcome surprises. For
example, if important information, such as the performance
requirement in the Team A example, is not discovered or



shared until late in the development lifecycle the project is
likely to encounter unexpected delay when the discovery is
made. In addition Scrum, being a project management
framework, does not provide much guidance in terms of
incorporating architecture practices into the development
lifecycle.

This practice also sheds light on several aspects of the
development effort that position the team to respond quickly
and efficiently when prototype feedback suggests architectural
change. The ideas suggested in the Team B’s prototyping rules
of the road as well as the suggested enablers for rapid trade-off
analysis and flexible architecture may be provide useful
insights for other projects that would like to leverage the
benefits of prototyping with quality attribute focus.

This practice elaboration provides an example of how
architecture practices was integrated into Scrum incremental
development (for example, the weaving of probing style
requirement elicitation as part of the user demo). The idea of
integrating practices is beginning to gain traction in the Agile
community. In a recent blog posting, Ken Schwaber described
“Scrum And” as a path of continuous improvement in software
development beyond the basic use of Scrum [13]. In the future,
we would like to elaborate some of the other integrated
practices listed in Figure 1 to see what other new insights can
be gained.

ACKNOWLEDGMENT

Copyright 2013 Carnegie Mellon University and IEEE

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center.

This material has been approved for public release and
unlimited distribution. DM-0000168

REFERENCES

[1] Director of Defense Research and Engineering, “Rapicapability
fielding toolbox study,” Final Report, March 2010.
http://www.cogility.com/Documents/Rapid_Capability Fielding
-Public_Release.pdf

[2] M. Denne and J. Cleland-Huang, “Software by Numbers,”
Prentice Hall, 2003.

[3] M. Hotle, D. Norton, and N. Wilson, “The end of the waterfall
as we know it.” Gartner Research, August 20, 2012.

[4] S. Bellomo, I. Ozkaya, R. Nord, “A Study of Enabling Factors
for Rapid Fielding, Combined Practices to Balance Tension
between Speed and Stability “ (ICSE Conference 2013)

[5] A. Martini, L. Pareto, and J. Bosch, “Enablers and inhibitors for
speed with reuse,” Proceedings of the 16™ Software Product
Line Conference, ACM, New York, v. 1, pp. 116-125,
September 2012.

[6] F. Bachmann, R. L. Nord, and 1. Ozkaya, “Architectural Tactics
to support rapid and agile stability.” CrossTalk: The Journal of
Defense Software Engineering, Special Issue on Rapid and
Agile Stability, May/June 2012.

[7] K.Beck et al., Agile Manifesto, http://agilemanifesto.org/

[8] Boehm B. A spiral model of software development and
enhancement. IEEE Computer, May 1988, 21(5): 61{72.

[9] Hall, Jon G., et al. "Relating software requirements and
architectures using problem frames." Requirements Engineering,
2002. Proceedings. IEEE Joint International Conference on.
IEEE, 2002.

[10] W. Royce, “Measuring Agility and Architectural Integrity”,
International Journal of Software and Informatics, VVolume 5,
Issue 3, 2011

[11] L. Bass, P. Clements, R. Kazman, “Software Architecture in
Practice, Third Edition.” Addison-Wesley, October 5, 2012

[12] K. Schwaber and J. Sutherland, “Scrum guidebook,” Scrum.org
and Scrum Inc., 2011.

[13] K.  Schwaber, (blog) “Telling it like it is,”
http://kenschwaber.wordpress.com/2012/04/05/Scrum-but
replaced-by-Scrum-and/ , April 52012.



http://www.cogility.com/Documents/Rapid_Capability_Fielding-Public_Release.pdf
http://www.cogility.com/Documents/Rapid_Capability_Fielding-Public_Release.pdf
http://kenschwaber.wordpress.com/2012/04/05/scrum-but%20replaced-by-scrum-and/
http://kenschwaber.wordpress.com/2012/04/05/scrum-but%20replaced-by-scrum-and/

