2011 16th IEEE International Conference on Engineering of Complex Computer Systems

An Implementation of the Behavior Annex
in the AADL-toolset Osate2

Gilles Lasnier, Laurent Pautet

Inst. TELECOM - TELECOM ParisTech - LTCI
Paris, F-75634 CEDEX 13, France

Email: {firstname.lastname } @telecom-paristech.fr

Abstract—AADL is a modeling language to design and analyze
High-Integrity Distributed and Real-time systems. Embedded
sub-languages published as AADL annexes extend an AADL
model to enhance analysis. The behavior annex specifies the
behavior of an AADL application model. Thus, an implantation
of this annex allows to perform behavior analysis. In addition, as
there are several AADL annexes, the implementation of generic
mechanisms to support each one of them is challenging. The
behavior annex is a valid candidate to illustrate these challenges
by combining several sub-languages. In this paper we expose
our experiment to support the behavior annex in the reference
AADL toolset OSATE2. This one, supports the AADL version 2
by providing a front-end and a set of analysis plug-ins to analyze
an AADL model.

Index Terms—AADL; AADL-BA; behavior; annex; Osate2;
MDD.

I. INTRODUCTION

The Architecture Analysis and Design Lan-
guage (AADL [1]) is a Domain Specific Modeling
Language (DSML) targeting High-Integrity (HI) Distributed
and Real-time (DRE) systems. It allows the modeling, the
analysis and the production of software system components [2]
for distributed, reconfigurable, or partitioned systems.

The AADL core language is designed to be extensible and
provides capabilities for users or tools to refine the semantics
of an AADL application model and analysis capabilities using
additional property sets or annex languages, like the error mod-
eling annex or the behavior annex. They integrate approved
external sub-languages to enhance DRE systems analysis.

The AADL Behavior Annex [3] is an extension to specify
the behavior of an AADL application model. It refines the
implicit behavior specified in the core of the language by
attaching a behavioral specification (e.g. a state machine) to
each AADL component. Thus, an implementation of this an-
nex allows to perform behavior analysis on HI-DRE systems.

As there are several annexes to extend the analysis capa-
bilities of an AADL application model, implementing generic
mechanisms to support each one of them is challenging.

The behavior annex is a valid candidate to illustrate many
challenges. 1) it requires to parse and analyse several sub-
languages and not only one. 2) the different AST produced
need to be connected to be analyzed. 3) to complete its
analysis, it requires to ensure the consistency with the core
language. 4) the internal representation of the annex needs to

978-0-7695-4381-9/11 $26.00 © 2011 IEEE
DOI 10.1109/ICECCS.2011.39

Jérome Hugues

ISAE - Toulouse University
Toulouse, 31056, France

Email: jerome.hugues@isae.fr

332

Lutz Wrage
SEI - Carnegie Mellon University
Pittsburgh, PA, 15213, USA
Email: lwrage @sei.cmu.edu

be compliant with the core language internal representation in
order to provide a unique representation as input in analysis.

To assist the development of HI-DRE systems with AADL,
the Software Engineering Institute (SEI) has developed the
AADL-toolset OSATE2. This one is an extensible open source
platform which includes an AADL front-end, architecture
analysis capabilities and extension mechanisms to integrate
external back-ends as plug-ins.

This paper presents our experiment to support the behavior
annex as an extension plug-in [4] to the reference AADL-
toolset OSATE2. The challenges relate the strategy chosen
to specify the AADL-BA meta-model and the design of the
AADL-BA compiler for its integration in OSATE2. We explain
how we re-use several OSATE2 modules to drive the analysis
of an AADL model completed with AADL-BA elements.

This paper is divided in five parts. Section II shows an
overview of OSATE2 and the sub-language extension process;
Section III exposes a brief overview and the challenges to im-
plement the behavior annex; Section IV presents our strategy
to specify the AADL-BA meta-model; Section V describes
the implementation of the behavior annex and its integration
in OSATE2; and Section VI presents concluding remarks and
our future works.

II. OVERVIEW OF THE AADL TOOLSET OSATE2
A. Tool Architecture

The Open Source AADL Tool Environment (OSATE [5]) has
been developed as a set of plug-ins to the ECLIPSE platform.
OSATE2 is the version supporting AADL version 2. Its main
components are illustrated in the figure 1.

The OSATE2 front-end includes a parser, name resolver,
and semantic checker to process textual AADL models and
translate them into an internal representation. This internal
representation can be serialized back into textual AADL by
an unparser or saved in an XMI-based format (AAXL?2 files).
Textual AADL models only declare components and must be
instantiated (by the AADL instantiator) for analysis. Instance
models are also persisted in XMI format.

To analyze AADL models, OSATE2 provides a set of
analysis plugins. An analysis plugin is an ECLIPSE plugin
that uses the OSATE2 infrastructure to access models, report
errors, etc. Analysis plugins are typically implemented in
Java, but other implementation languages can be chosen, e.g.,

IEEE
computer
psoaety

AADL Front-end
Textual Graphical
AADL @ AADL

-
Declarative AADL Model
Layout
g AADL Instance Model Model

7
Scheduling @ @ @ % AADL Runtime
Analysis Generator

Reliability Safety

Commercial Tool CATEIRES

Analysis
Project-Specific

Research prototype In-House

Fig. 1: OSATE2 architecture

Semantic
Checking

Graphical \

Groovy [6]. External analysis tools can be integrated into
OSATE2 by creating plugins that extract data needed by the
tool from an AADL model and invoke the tool. Analysis tools
may also access the XMI interchange format directly.

OSATE2 uses the AADL2 meta-model for the internal
representation of AADL models (declarative and instance).
This meta-model is defined in UML?2 and implemented using
the ECLIPSE/UML2 together with the ECLIPSE Modeling
Framework (EMF). This automatically provides the XMI
format and code to read and write the corresponding AAXL.2
files built from AADL models.

B. Sub-languages in AADL

AADL is extensible by (a) user defined property sets and
(b) embedded sub-languages. Users can define new properties
as part of a model and associate them with modeling elements.
These properties can be evaluated during model analysis.
The property set mechanism is used mainly to add those
characteristics to modeling elements that can be expressed
in the form of structured values such as strings, enumerated
values, numeric values with or withour units, references to
other model elements, and lists or records composed of such
values. Sub-languages allow more complex structures to be
added to an AADL model. A sub-language can be standardized
and published as AADL annex. Several such annexes have
been defined, for example, the error modeling sub-language is
used to define error states and fault propagation for an AADL
model, and the behavior annex allows modeling of detailed
component behavior as a state machine.

A sub-language fragment is included in a textual AADL
model as either an annex library or an annex subclause.
An annex library is included directly in an AADL package. It
contains declarations of annex elements that can be used in an-
nex libraries and subclauses. In contrast, annex subclauses are
included in classifier declarations, which makes the elements
defined in the subclause part of the component. This is similar
to the way in which core AADL classifiers are declared in a
package and used in the declarations of other classifiers, for
example, as subcomponents.

333

| E NamedElement

5 AnnexLibrary

[E DefaultAnnexLibrary
= sourceText ; EString

[ModalElement

B Classifier
]

[DefaultAnnexSubclause

= sourceText : EString

Fig. 2: OSATE2 annex extension

Annexes are separate from the core AADL in the following
sense: if all annex libraries, subclauses, and annex-related
property associations are removed from an AADL model,
the resulting model is a valid core AADL model. Also, the
different annexes are assumed to be independent of each other.

C. Sub-languages in OSATE2

Support for a sub-language can be added to OSATE2 by
creating one or more plug-ins that implement the necessary
components. Typically, these include (a) an internal represen-
tation for annex libraries and subclauses, and (b) components
to process the sub-language, e.g., a parser and unparser, name
resolver, and semantic checker.

The core AADL meta-model contains two abstract
UML classes that represent the top level annex elements:
AnnexLibrary and AnnexSubclause (see figure 2). These
classes must be extended by the meta-model for a sub-
language. When the annex is implemented in ECLIPSE, the
annex meta-model can be defined using UML2 and reference
the core AADL meta-model. The UML2/EMF infrastructure
in ECLIPSE can then be used to generate an implementation
of the annex-metamodel that defines the internal representation
for annex libraries and subclauses, and supports serialization
and de-serialization in XMI.

OSATE2 provides a registry for sub-language processing
components where plug-ins can register parsers, name re-
solvers, etc. The core language processing functions invoke
the annex specific functionalities when needed, e.g., the core
AADL parser invokes the behavior annex parser whenever it
reaches a behavior annex subclause in the AADL source text.

As different annexes are treated as independent of each
other and the core language, it is possible to ignore an annex
when processing a model. OSATE2 supports this by defining
a default annex meta-model, parser, and unparser. The default
annex meta-model simply stores the source text of an annex
library or subclause as a string, and the default parser and

unparser are trivial as they don’t process the annex content.
This allows processing of AADL models with annex elements
even if the plug-ins for a particular annex are not installed.

III. AADL-BA AND MODEL-DRIVEN DEVELOPMENT
A. Overview of the AADL Behavior Annex

The AADL Behavior Annex allows to attach a “behav-
ior_specification”, specified through five sub-languages, to
each AADL component. Each of the sub-languages defines
behavior concepts with: a syntax; a set of naming and legality
rules to validate a behavior specification; a set of semantic
rules to validate the specification towards its semantics; and a
set of rules to ensure the consistency with the core language.

The figure 3 shows how the five sub-languages are combined
to describe the behavior of the sporadic thread Receiver. At
the reception of a data on its port Data_Sink, the sporadic
thread increments the last value received with the new one
and stores the result in a shared data.

1 thread Receiver

2 features

3 Data_Sink: in event data port dt;

4 Shared_Data : requires data access sd:
5 | properties

6 Dispatch_Protocol => Sporadic :

7 end Receiver;

9 | thread Receiver.impl

calls

1 toCall : { doUpdate

annex behavior_specification
variables
lastValue :
states
stInit :

: subprogram Shared_Data.Update; };
(s

des

initial state:

stExec : complete final state;

transitions

stInit_Exec : stlInit —[]-> stExec { holdValue := 0 };

stExec_Exec : stExec —[on dispatch Data_Sink]-> stExec

{ lastValue := lastValue + Data_Sink:

doUpdate ! (lastValue);

)

end Receiver.impl;

Fig. 3: Sporadic thread behavior specification

The first language defines a state/transition automaton with
variables, behavior condition (e.g., guards) and actions to
describe the Receiver component execution behavior. It spec-
ifies the different kinds of states as the “complete” state
stExec (line 17) which represents a suspend/resume state out
of which the thread is dispatched.

A transition represents a change from the current state to a
destination state and is activated when its behavior condition
is evaluated to true. Then the action block (*{’...’}") attached
to the transition is performed.

Behavior conditions are expressed as execution or dis-
patch conditions. Dispatch conditions are defined by a second
language and refine the use of ports and subprogram calls
involved as triggers in the AADL thread dispatch behavior [1].
In our example, the Data_Sink port defined in the AADL
thread interface (line 3) is used to specify the dispatch condi-
tion in the behavior specification (line 20).

A third language defines interaction operations to refine
the AADL component interactions described through AADL
shared data, ports, subprogram calls, etc. Actions processed
when a transition triggers are expressed through behavior

334

actions (fourth language). This uses the interaction operations
language to define actions between components as the call to
the subprogram doUpdate (line 22) provided by the shared
data to update its internal value.

The last language is an expression language which pro-
vides logical, relational and arithmetic expressions to ma-
nipulate AADL data components and behavior variables as
the lastValue incremented by the value received on the
Data_Sink port (line 21).

Finally, several approaches for defining or for interpreting
the semantics of the AADL-BA have already been pro-
posed [7], [8]. An implementation of an old AADL-BA
specification based on AADL 1.0 has also been developed [9].
However, the several modifications made on the AADL meta-
model to support its version 2.0 and the current AADL-BA
draft do not allow to re-use this first experiment.

B. Building Blocks to Implement AADL-BA

a) MDD Approach: A DSML such as AADL expresses
concisely the common concepts of its domain. It provides sev-
eral features as: an abstract syntax, described by a meta-model,
which defines domain’s concepts and their relations; concrete
syntax(es) (textual or graphical) which define how concepts
are represented; and semantics described by definition of
transformations to map concepts with formal methods or target
programming languages as Ada, etc. In such approach, the
meta-model is elevated to a “central” and “governing” role.

AADL-BA is a DSML to express the behavior of HI-
DRE systems and provides relevant elements to use an MDD
approach for its implementation. As the annex defines several
sub-languages we need to efficiently design its meta-model.

We observe that each of the AADL-BA sub-languages
requires the use of AADL components described in the core
language. Some languages as the state/transition language
(resp. the behavior action) require the use of other AADL-BA
sub-languages, e.g., the dispatch condition (resp. interaction
operations) sub-language. These requirements are expressed
as dependencies between the different sub-languages of the
annex and the AADL core language. These dependencies have
an impact on the strategy chosen to design the AADL-BA
meta-model detailed in section IV.

b) Rules Implementation: The standard defines rules to
verify that behavior concepts are “legal” and to verify their se-
mantics. As a behavior concept defined in a sub-language can
be combined with a behavior concept defined in another sub-
language some rules can be specified in both sub-languages
section. To avoid code duplication and simplify maintenance
in our analyzers we select a subset of the rules which verify
the whole behavior specification.

In the following sections we expose the AADL-BA meta-
model and the architecture of the AADL-BA compiler.

IV. THE AADL-BA META-MODEL

In the previous section we showed a brief overview of the
behavior annex which provides all the features required for an
implementation using an MDD approach.

To design the AADL-BA meta-model we re-use the EMF
framework utilized to specify the AADL meta-model. On the
one hand its facilitates the integration of the AADL-BA in
OSATE?2 in terms of dependencies and embedded Java APIL. On
the other hand, using the same formalism to specify the two
meta-models eases the expression of the object dependencies
and simplifies the navigation between them.

In the followings we describe the strategy and our rules to
map an AADL-BA concept to an EMF meta-model element.

A. A Single AADL-BA Meta-Model

In a classical meta-model development process a natural
solution would be to define a meta-model for each AADL-BA
language. As a consequence, it requires to express several de-
pendencies between the different meta-models and to duplicate
the dependencies with the AADL meta-model.

To ease the navigation between the objects of a behavior
specification and the core language and to reduce the different
dependencies we choose to develop a single meta-model for
all languages specified in the AADL-BA annex.

B. Mapping AADL-BA Concepts to Meta-Model Elements

& Aadiz AADL Meta-model (EMF) : extends
| E AnnexSubclause] | [Elemem | EMF/GenModel
l ! E— | » | | AnnexSubclause
I e : I 7 : java class
Aadiga |
= EMF/GenModel
BehaviorAnnex BAE]
l | e - % | | (BehaviorAnnex
java class

AADL-BA Meta-model (EMF)

Fig. 4: AADL-BA meta-model dependencies

An AADL-BA EMF meta-model describes the structure of
a behavior specification (e.g., AADL-BA model) and makes
explicit all concepts expressed by the standard. Then, EMF
generates the Java implementation classes corresponding to
the meta-model objects (see figure 4).

To specify the AADL-BA meta-model we define some rules
to map an AADL-BA concept to an object of the meta-model.
These rules simplify the complexity and the generation of
classes from the meta-model by focusing on 1) limiting the
number of generated classes, 2) keeping only the relevant
elements used to define a concept, and 3) facilitating their
re-use in external analysis tools.

In the following we give the main rules:

R1: Behavior concepts with strong semantics and con-
crete textual representation (e.g, a BNF) are mapped to
meta-model EClass (e.g, a java class). Several AADL-BA
concepts as the BehaviorAnnex described in figure 5 come
with a concrete textual representation and rules to describe
precisely its semantic. Thus, it is quite natural to map these
concepts as an EClass of the EMF meta-model.

335

R2: Behavior concepts with weak or no semantic but
used to clarify the concept hierarchy are mapped to
abstract EClass. Some concepts as the BehaviorCondition
(see figure 5) do not have a concrete textual representation
and a real semantic but are expressed to simplify and clarify
the understanding of the annex. In this case, we map these
concept as an abstract class. Their use is helpful to simplify
the class hierarchy and the implementation of visitors in our
analyzers and external model-based analysis tool.

R3: Behavior concepts belonging to the same fam-
ily are mapped with respect to the Java’s inheritance
mechanism. Some concepts in AADL-BA as loop statements
(e.g., for/forall, while, etc) share common attributes. In this
case, their mapping defines parent as abstract EClass, sub-
classes as EClass using the Java’s inheritance mechanism.
This rule allows to factorize code and simplifies the compiler
development and its maintenance.

R4: Links to express that a behavior concept requires
another behavior concept are mapped to EReferences. As
an EMF EReference represents one end of an association
between two classes it is used to link (e.g., to reference) two
behavior concepts.

behavior_annex ::=
[variables { behavior_variable }+]
[states { behavior_state }+]
[transitions { behavior_transition }+]

behavior_transition ::=
[transition_identifier [[behavior_transition_priority 113 1
source_state_identifier { , source_state_identifier }*
-[behavior_condition]-> destination_state_identifier
[{ behavior_actions } [timeout behavior_time]] ;

behavior_condition ::= dispatch_condition | execute_condition

AADL-BA BNF

& Aadifa

[5 BehaviorAnnex

lzhaulnrimzsl

[et |
} |

LE BehaviorVariablg
]
L 1

H BehaviorConditios

lE DispatchConditiod
1
L J

E ExecuteCondition
|
L 1

Fig. 5: AADL-BA: meta-model and BNF

C. AADL Meta-Model Dependency

The behavior annex requires to attach a behavior specifica-
tion to an AADL component and to link AADL-BA objects
with AADL objects. It is reinforced by the implementation of
the OSATE2 sub-language extension which requires to link a
BehaviorAnnex object to the AnnexSubclause object of the
AADL component (see figure 4).

In addition, the standard provides several rules to ensure the
consistency between an AADL architecture component and
its behavioral specification. These rules are verified by our
different AADL-BA analyzers and require to navigate across
the AADL-BA meta-model and the AADL meta-model.

Figure 4 shows how we use EMF extensions (e.g., Java’s
inheritance mechanism) to express the dependencies between
the two meta-models. Thus, a BehaviorAnnex extends an
AnnexSubclause and an BAElement extends an Element. The
last one eases the navigation from an AADL-BA model to an
AADL model by enabling to reference an AADL object in a
behavior specification and to retrieve easily the corresponding
AADL object during analysis.

In the next section we describe how we use the AADL-BA
meta-model as backbone to build several modules involved in
the architecture of the AADL-BA compiler.

V. IMPLEMENTATION AND INTEGRATION OF THE
AADL-BA COMPILER

The integration of the behavior annex in OSATE2 allows to
re-use the AADL meta-model, the AADL front-end and the
annex plug-in which implements the sub-language extension
mechanism provided by OSATE2.

In this section, we detail the implementation of the AADL-
BA compiler as an ECLIPSE plug-in integrated to OSATE2
and how the AADL-BA meta-model acts as backbone to build
several modules of the compiler.

A. Compiler Architecture

Figure 6 shows the “classical” AADL-BA compiler archi-
tecture with two parts: a front-end and a back-end. From the
AADL-BA meta-model and EMF we generate the AADL-BA
builder factory to build and manipulate AADL-BA objects
used in the compiler. The front-end contains two modules:
a parser and an analyzer. Error handling is managed by the
OSATE2 error manager.

AADL-BA BNF AADL-BA Parser module
o |(AADLBA lexer
i Ik javacode
AADL-BA -
ANTLR grammar] ””‘ ANTLR ‘ - T
T !
' !

AADL-BA parser
> H
avacode

EMF/GenModel
7777777777 >

v r——‘
AADL-BA Metamodel (EMF) " AadIBa

classes
builder factory

———4> compliant
——-» produces
—> uses

Fig. 7: AADL-BA parser

1) Parser: AADL-BA BNF to ANTLR Grammar: The
figure 7 represents the architecture of the parser. We used
the ANTLR framework to build the parser according to the
AADL-BA BNF. The figure 8 shows that the rules defined by
the BNF were easily mapped to the ANTLR grammar.

ANTLR allows to attach Java code declarations in grammar
rules. Thanks to our rules R1, R2, R3 and R4 (see section 1V)
to specify the AADL-BA meta-model, we use only methods
of the AADL-BA builder factory in the ANTLR grammar
to specify how to build the abstract syntax tree (AST) with
AADL-BA objects. It ensures that the AST is compliant
with the AADL-BA meta-model. Finally we use the ANTLR
framework to generate the Java classes of the parser and the
lexer from the AADL-BA ANTLR grammar defined.

336

behavior_annex returns [BehaviorAnnex ba]
@init{ ba = AadIBaF.createBehaviorAnnex();
ba.setLocationReference(new LocationReference(this.getFilename(), input.get(0).getLine())) ;
(VARIABLES (bVars=behavior_variable { ba.getBehaviorVariables().add(bVars);})+)?

(STATES (bStates=behavior_state { ba.getBehaviorStates().add(bStates); })+)?

catch [RecognitionException ex] {

(TRANSITIONS (bTrans=behavior_transition {ba.getBehaviorTransitions().add(bTrans); })+)?
reportError(ex); l: behavi -
consumeUntil(input, SEMICOLON); ehavior_annex ::= .
input.consume(); [variables { behavior_variable }+]
} [states { behavior_state }+]
[tr i { behavior_transition }+]

AADL-BA BNF

Fig. 8: AADL-BA BNF to ANTLR grammar

2) Naming, Legality, Consistency and Semantic Analyz-
ers: The analyzer module scans the AST and checks the
semantics of the AADL-BA model. First, it proceeds to a
resolution phase (e.g, naming resolver) which links AADL-BA
objects to their corresponding AADL objects or AADL-BA
objects (see figure 3, source identifier stExec and transition
stExec_stExec). To achieve this phase we use the visitors
(e.g, java classes) provided by OSATE2 to retriecve AADL
objects. For AADL-BA we have developed the visitors re-
quired to navigate through the AADL-BA AST. This phase
adds information to the AST and makes its use easier.

Secondly, we have implemented the subset of rules sufficient
to verify a whole behavior specification. The second phase
proceeds to the verification of this subset of legality, semantic
and consistency rules.

To verify the consistency with AADL components we have
developed some specific visitors to navigate across the AADL
model. The result of this analyze leads to an AST conforms
to the AADL-BA semantics and consistent with the AADL
model. This AST acts as internal representation of the annex
and can be used as input in the back-end part or external tools.

We chose the same strategy to implement our analyzers. We
consider the whole behavior specification (see figure 3). First,
we analyse variables and states. Then, we analyze the structure
of transitions, behavior conditions and finally the action block
attached to the transition.

3) Back-end Integration: The AADL-BA is a formalism to
describe the behavior of an AADL application model. An im-
plementation of the standard only focuses on the verification of
the syntax and the semantic of a behavior specification. Thus,
it is possible to describe a “legal” thread behavior specification
with deadlocks. To verify these kinds of properties we need
the use of model checker.

To achieve this goal we provide a back-end registry. Thanks
to the ECLIPSE plug-in extension points, we allow to register
an external ECLIPSE-based plug-in as back-end and to use as
input the AST produced from the AADL-BA front-end.

We have also developed an unparser back-end to produce
from an AADL-BA AST the corresponding textual behavior
specification. It allows us to verify the different modules
of our compiler by building intermediate models. It is also
used to produce the different outputs of our test-suite which
is constituted by examples of the standard and AADL-BA
models developed by our team.

|

AADLv2
AAXL2

X

AADLv2

Parser | A i
AAXL2 !

AAX
AAXL2 |- |Analyzers *

L2 >
nce:

‘ SDK \
[AADL-BA Metamodel (EMF) | B o
A
| i | c :
AADL-BA Parser K
specifications —1> | AADL-BA —» | AAXL2-BA | —> |Analyzers| —» E
| g AADLBA UNPARSER
5 |(AAXL2-BAtOAADL-BA)
\AADL-BA FRONTEND 7
Iy Y
T) \ 4
Parser Editors

AADLv2 UNPARSER

—
(AAXL2toAADL)

Translators

IAADLV2-BA

SDK

Instances

nwogzmxAxnOrw

| AADL Metamodels (EMF)

—— > | AAXL2-BA

[CAADLv2]
KOsateZ FRONTEND

—> workflow
----> compliant

—&— extension

> extends

Fig. 6: AADL-BA plug-in integrated to OSATE2

B. Integration in OSATE2

The figure 6 shows the integration of our behavior annex
plug-in in OSATE2.

1) Plug-in Extensions: The integration of the AADL-BA
plug-in is a two-steps process. First, we link the AADL-
BA plug-in to the OSATE2 annex plug-in. The annex plug-in
defines ECLIPSE extension points which allow plug-ins to be
connected together. A plug-in extends another by declaring an
extension. In our AADL-BA plug-in we declare the extension
corresponding to the extension points declared by OSATE2 to
extend the AADL parser and analyzers.

Second, we have to register our parser (resp. analyzers) in
the OSATE2 annex registry. As the AADL-BA is a part of the
AADL description, the AADL-BA plug-in is not a back-end
but is directly integrated and driven by OSATE2.

2) Outputs and Back-end Extension: The AADL-BA AST
is the internal representation of the behavior annex. As the
AADL-BA meta-model uses the same formalism of the AADL
meta-model it facilitates the integration of this representation
in the internal representation of the AADL model.

We also support serialization and de-serialization in XMI
following the same XML schema. It allows to produce a
unique AAXL?2 representation including the serialized behav-
ior annex objects. Thus, we provide a persistent representation
including the whole description AADL architecture + behavior
annex. It can be used as inputs in different back-ends. Figure 6
describes how OSATE2 uses the AADL unparser back-end to
produce an AADL textual description from an AAXL2 file.
It provides the extension point to extend this back-end with
the different annex unparsers. We use this extension point to
link our AADL-BA unparser and to produce an AADL textual
model including textual behavior specifications.

VI. CONCLUSION AND FUTURE WORK

This paper presented our implementation of the AADL
behavior annex as ECLIPSE plug-in [4]. We showed how we

337

specified the AADL-BA meta-model used as backbone to
develop several modules of our compiler. As the behavior
annex defines several simple interconnected sub-languages,
the design of a single meta-model allows to produce and
to analyze a unique AST. This internal representation of an
AADL-BA model is used as input in external back-ends which
are integrated using our back-end registry.

Our plug-in is integrated in the reference AADL toolset
OSATE2. This one provides an AADL front-end and an
annex plug-in which drives the behavior annex analysis
(parser+analyzers). The same technologies used to define the
AADL and the AADL-BA meta-models ease the navigation
across both meta-models and the production of a unique per-
sistent XMI representation (AADL model+behavior elements)
which facilitates its use as input in external back-ends.

Our future work will focus on the analysis of behavior
automaton properties by integration of external back-ends e.g.,
as model checker to verify deadlock and model-based tool
to enhance scheduling analysis by refining WCET estimation
and blocking time on shared resources, thanks to the behavior
annex capabilities.

REFERENCES

SAE, AADL v2.0 (AS5506), Sep. 2008.

J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the Prototype to
the Final Embedded System using the Ocarina AADL Tool Suite,” ACM
Transactions in Embedded Computing Systems (TECS), vol. 7, Jul. 2008.
SAE, Annex X Behavior Annex (AS5506-X draft-2.13), Aug. 2010.
Telecom ParisTech, “AADL-BA Project,” http://eve.enst.fr/aadlba, 2010.
SAE AADL, “OSATE,” http://www.aadl.info, 2010.

D. Koening, Groovy in Action. Manning Publications Co., 2007.

Y. Ma, J.-P. Talpin, and T. Gautier, “Interpretation of AADL Behavior
Annex into Synchronous Formalism Using SSA,” International Confer-
ence on Computer and Information Technology, pp. 2361-2366, 2010.
Z. Yang, K. Hu, D. Ma, and L. Pi, “Towards a Formal Semantics for
the AADL Behavior Annex,” in Design, Automation Test in Europe
Conference Exhibition - DATE’09., Apr. 2009, pp. 1166 —1171.

R. Frana, J.-P. Bodeveix, M. Filali, and J.-F. Rolland, “The AADL
Behaviour Annex — Experiments and Roadmap,” in Engineering Complex
Computer Systems, 12th IEEE International Conference on, Jul. 2007, pp.
377 -382.

[1]
[2]

[3]
[4]
[5]
[6]
[71

[8]

[9]

