
An Implementation of the Behavior Annex

in the AADL-toolset Osate2

Gilles Lasnier, Laurent Pautet

Inst. TELECOM - TELECOM ParisTech - LTCI

Paris, F-75634 CEDEX 13, France

Email: {firstname.lastname}@telecom-paristech.fr

Jérôme Hugues

ISAE - Toulouse University

Toulouse, 31056, France

Email: jerome.hugues@isae.fr

Lutz Wrage

SEI - Carnegie Mellon University

Pittsburgh, PA, 15213, USA

Email: lwrage@sei.cmu.edu

Abstract—AADL is a modeling language to design and analyze
High-Integrity Distributed and Real-time systems. Embedded
sub-languages published as AADL annexes extend an AADL
model to enhance analysis. The behavior annex specifies the
behavior of an AADL application model. Thus, an implantation
of this annex allows to perform behavior analysis. In addition, as
there are several AADL annexes, the implementation of generic
mechanisms to support each one of them is challenging. The
behavior annex is a valid candidate to illustrate these challenges
by combining several sub-languages. In this paper we expose
our experiment to support the behavior annex in the reference
AADL toolset OSATE2. This one, supports the AADL version 2
by providing a front-end and a set of analysis plug-ins to analyze
an AADL model.

Index Terms—AADL; AADL-BA; behavior; annex; Osate2;
MDD.

I. INTRODUCTION

The Architecture Analysis and Design Lan-

guage (AADL [1]) is a Domain Specific Modeling

Language (DSML) targeting High-Integrity (HI) Distributed

and Real-time (DRE) systems. It allows the modeling, the

analysis and the production of software system components [2]

for distributed, reconfigurable, or partitioned systems.

The AADL core language is designed to be extensible and

provides capabilities for users or tools to refine the semantics

of an AADL application model and analysis capabilities using

additional property sets or annex languages, like the error mod-

eling annex or the behavior annex. They integrate approved

external sub-languages to enhance DRE systems analysis.

The AADL Behavior Annex [3] is an extension to specify

the behavior of an AADL application model. It refines the

implicit behavior specified in the core of the language by

attaching a behavioral specification (e.g. a state machine) to

each AADL component. Thus, an implementation of this an-

nex allows to perform behavior analysis on HI-DRE systems.

As there are several annexes to extend the analysis capa-

bilities of an AADL application model, implementing generic

mechanisms to support each one of them is challenging.

The behavior annex is a valid candidate to illustrate many

challenges. 1) it requires to parse and analyse several sub-

languages and not only one. 2) the different AST produced

need to be connected to be analyzed. 3) to complete its

analysis, it requires to ensure the consistency with the core

language. 4) the internal representation of the annex needs to

be compliant with the core language internal representation in

order to provide a unique representation as input in analysis.

To assist the development of HI-DRE systems with AADL,

the Software Engineering Institute (SEI) has developed the

AADL-toolset OSATE2. This one is an extensible open source

platform which includes an AADL front-end, architecture

analysis capabilities and extension mechanisms to integrate

external back-ends as plug-ins.

This paper presents our experiment to support the behavior

annex as an extension plug-in [4] to the reference AADL-

toolset OSATE2. The challenges relate the strategy chosen

to specify the AADL-BA meta-model and the design of the

AADL-BA compiler for its integration in OSATE2. We explain

how we re-use several OSATE2 modules to drive the analysis

of an AADL model completed with AADL-BA elements.

This paper is divided in five parts. Section II shows an

overview of OSATE2 and the sub-language extension process;

Section III exposes a brief overview and the challenges to im-

plement the behavior annex; Section IV presents our strategy

to specify the AADL-BA meta-model; Section V describes

the implementation of the behavior annex and its integration

in OSATE2; and Section VI presents concluding remarks and

our future works.

II. OVERVIEW OF THE AADL TOOLSET OSATE2

A. Tool Architecture

The Open Source AADL Tool Environment (OSATE [5]) has

been developed as a set of plug-ins to the ECLIPSE platform.

OSATE2 is the version supporting AADL version 2. Its main

components are illustrated in the figure 1.

The OSATE2 front-end includes a parser, name resolver,

and semantic checker to process textual AADL models and

translate them into an internal representation. This internal

representation can be serialized back into textual AADL by

an unparser or saved in an XMI-based format (AAXL2 files).

Textual AADL models only declare components and must be

instantiated (by the AADL instantiator) for analysis. Instance

models are also persisted in XMI format.

To analyze AADL models, OSATE2 provides a set of

analysis plugins. An analysis plugin is an ECLIPSE plugin

that uses the OSATE2 infrastructure to access models, report

errors, etc. Analysis plugins are typically implemented in

Java, but other implementation languages can be chosen, e.g.,

2011 16th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-4381-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ICECCS.2011.39

332

Fig. 1: OSATE2 architecture

Groovy [6]. External analysis tools can be integrated into

OSATE2 by creating plugins that extract data needed by the

tool from an AADL model and invoke the tool. Analysis tools

may also access the XMI interchange format directly.

OSATE2 uses the AADL2 meta-model for the internal

representation of AADL models (declarative and instance).

This meta-model is defined in UML2 and implemented using

the ECLIPSE/UML2 together with the ECLIPSE Modeling

Framework (EMF). This automatically provides the XMI

format and code to read and write the corresponding AAXL2

files built from AADL models.

B. Sub-languages in AADL

AADL is extensible by (a) user defined property sets and

(b) embedded sub-languages. Users can define new properties

as part of a model and associate them with modeling elements.

These properties can be evaluated during model analysis.

The property set mechanism is used mainly to add those

characteristics to modeling elements that can be expressed

in the form of structured values such as strings, enumerated

values, numeric values with or withour units, references to

other model elements, and lists or records composed of such

values. Sub-languages allow more complex structures to be

added to an AADL model. A sub-language can be standardized

and published as AADL annex. Several such annexes have

been defined, for example, the error modeling sub-language is

used to define error states and fault propagation for an AADL

model, and the behavior annex allows modeling of detailed

component behavior as a state machine.

A sub-language fragment is included in a textual AADL

model as either an annex library or an annex subclause.

An annex library is included directly in an AADL package. It

contains declarations of annex elements that can be used in an-

nex libraries and subclauses. In contrast, annex subclauses are

included in classifier declarations, which makes the elements

defined in the subclause part of the component. This is similar

to the way in which core AADL classifiers are declared in a

package and used in the declarations of other classifiers, for

example, as subcomponents.

Fig. 2: OSATE2 annex extension

Annexes are separate from the core AADL in the following

sense: if all annex libraries, subclauses, and annex-related

property associations are removed from an AADL model,

the resulting model is a valid core AADL model. Also, the

different annexes are assumed to be independent of each other.

C. Sub-languages in OSATE2

Support for a sub-language can be added to OSATE2 by

creating one or more plug-ins that implement the necessary

components. Typically, these include (a) an internal represen-

tation for annex libraries and subclauses, and (b) components

to process the sub-language, e.g., a parser and unparser, name

resolver, and semantic checker.

The core AADL meta-model contains two abstract

UML classes that represent the top level annex elements:

AnnexLibrary and AnnexSubclause (see figure 2). These

classes must be extended by the meta-model for a sub-

language. When the annex is implemented in ECLIPSE, the

annex meta-model can be defined using UML2 and reference

the core AADL meta-model. The UML2/EMF infrastructure

in ECLIPSE can then be used to generate an implementation

of the annex-metamodel that defines the internal representation

for annex libraries and subclauses, and supports serialization

and de-serialization in XMI.

OSATE2 provides a registry for sub-language processing

components where plug-ins can register parsers, name re-

solvers, etc. The core language processing functions invoke

the annex specific functionalities when needed, e.g., the core

AADL parser invokes the behavior annex parser whenever it

reaches a behavior annex subclause in the AADL source text.

As different annexes are treated as independent of each

other and the core language, it is possible to ignore an annex

when processing a model. OSATE2 supports this by defining

a default annex meta-model, parser, and unparser. The default

annex meta-model simply stores the source text of an annex

library or subclause as a string, and the default parser and

333

unparser are trivial as they don’t process the annex content.

This allows processing of AADL models with annex elements

even if the plug-ins for a particular annex are not installed.

III. AADL-BA AND MODEL-DRIVEN DEVELOPMENT

A. Overview of the AADL Behavior Annex

The AADL Behavior Annex allows to attach a “behav-

ior specification”, specified through five sub-languages, to

each AADL component. Each of the sub-languages defines

behavior concepts with: a syntax; a set of naming and legality

rules to validate a behavior specification; a set of semantic

rules to validate the specification towards its semantics; and a

set of rules to ensure the consistency with the core language.

The figure 3 shows how the five sub-languages are combined

to describe the behavior of the sporadic thread Receiver. At

the reception of a data on its port Data_Sink, the sporadic

thread increments the last value received with the new one

and stores the result in a shared data.

1 thread R e c e i v e r

2 f e a t u r e s

3 Da ta S in k : in ev ent data port d t ;

4 Sh a red Da ta : r e q u i r e s data a c c e s s sd ;

5 p r o p e r t i e s

6 D i s p a t c h P r o t o c o l => S p o r a d i c ;

7 end R e c e i v e r ;

8

9 thread R e c e i v e r . impl

10 c a l l s

11 t o C a l l : { doUpdate : subprogram Sh ared Da ta . Update ; } ;

12 annex b e h a v i o r s p e c i f i c a t i o n {∗∗
13 v a r i a b l e s

14 l a s t V a l u e : d t ;

15 s t a t e s

16 s t I n i t : i n i t i a l s t a t e ;

17 s t E x e c : complete f i n a l s t a t e ;

18 t r a n s i t i o n s

19 s t I n i t E x e c : s t I n i t −[]−> s t E x e c { h o ld Va lu e := 0 } ;

20 s tEx ec Ex ec : s t E x e c −[on d i s p a t c h Data S in k]−> s t E x e c

21 { l a s t V a l u e := l a s t V a l u e + Da ta S in k ;

22 doUpdate ! (l a s t V a l u e) ; }
23 ∗∗} ;

24 end R e c e i v e r . impl ;

Fig. 3: Sporadic thread behavior specification

The first language defines a state/transition automaton with

variables, behavior condition (e.g., guards) and actions to

describe the Receiver component execution behavior. It spec-

ifies the different kinds of states as the ”complete” state

stExec (line 17) which represents a suspend/resume state out

of which the thread is dispatched.

A transition represents a change from the current state to a

destination state and is activated when its behavior condition

is evaluated to true. Then the action block (’{’...’}’) attached

to the transition is performed.

Behavior conditions are expressed as execution or dis-

patch conditions. Dispatch conditions are defined by a second

language and refine the use of ports and subprogram calls

involved as triggers in the AADL thread dispatch behavior [1].

In our example, the Data_Sink port defined in the AADL

thread interface (line 3) is used to specify the dispatch condi-

tion in the behavior specification (line 20).

A third language defines interaction operations to refine

the AADL component interactions described through AADL

shared data, ports, subprogram calls, etc. Actions processed

when a transition triggers are expressed through behavior

actions (fourth language). This uses the interaction operations

language to define actions between components as the call to

the subprogram doUpdate (line 22) provided by the shared

data to update its internal value.

The last language is an expression language which pro-

vides logical, relational and arithmetic expressions to ma-

nipulate AADL data components and behavior variables as

the lastValue incremented by the value received on the

Data_Sink port (line 21).

Finally, several approaches for defining or for interpreting

the semantics of the AADL-BA have already been pro-

posed [7], [8]. An implementation of an old AADL-BA

specification based on AADL 1.0 has also been developed [9].

However, the several modifications made on the AADL meta-

model to support its version 2.0 and the current AADL-BA

draft do not allow to re-use this first experiment.

B. Building Blocks to Implement AADL-BA

a) MDD Approach: A DSML such as AADL expresses

concisely the common concepts of its domain. It provides sev-

eral features as: an abstract syntax, described by a meta-model,

which defines domain’s concepts and their relations; concrete

syntax(es) (textual or graphical) which define how concepts

are represented; and semantics described by definition of

transformations to map concepts with formal methods or target

programming languages as Ada, etc. In such approach, the

meta-model is elevated to a “central” and “governing” role.

AADL-BA is a DSML to express the behavior of HI-

DRE systems and provides relevant elements to use an MDD

approach for its implementation. As the annex defines several

sub-languages we need to efficiently design its meta-model.

We observe that each of the AADL-BA sub-languages

requires the use of AADL components described in the core

language. Some languages as the state/transition language

(resp. the behavior action) require the use of other AADL-BA

sub-languages, e.g., the dispatch condition (resp. interaction

operations) sub-language. These requirements are expressed

as dependencies between the different sub-languages of the

annex and the AADL core language. These dependencies have

an impact on the strategy chosen to design the AADL-BA

meta-model detailed in section IV.

b) Rules Implementation: The standard defines rules to

verify that behavior concepts are ”legal” and to verify their se-

mantics. As a behavior concept defined in a sub-language can

be combined with a behavior concept defined in another sub-

language some rules can be specified in both sub-languages

section. To avoid code duplication and simplify maintenance

in our analyzers we select a subset of the rules which verify

the whole behavior specification.

In the following sections we expose the AADL-BA meta-

model and the architecture of the AADL-BA compiler.

IV. THE AADL-BA META-MODEL

In the previous section we showed a brief overview of the

behavior annex which provides all the features required for an

implementation using an MDD approach.

334

To design the AADL-BA meta-model we re-use the EMF

framework utilized to specify the AADL meta-model. On the

one hand its facilitates the integration of the AADL-BA in

OSATE2 in terms of dependencies and embedded Java API. On

the other hand, using the same formalism to specify the two

meta-models eases the expression of the object dependencies

and simplifies the navigation between them.

In the followings we describe the strategy and our rules to

map an AADL-BA concept to an EMF meta-model element.

A. A Single AADL-BA Meta-Model

In a classical meta-model development process a natural

solution would be to define a meta-model for each AADL-BA

language. As a consequence, it requires to express several de-

pendencies between the different meta-models and to duplicate

the dependencies with the AADL meta-model.

To ease the navigation between the objects of a behavior

specification and the core language and to reduce the different

dependencies we choose to develop a single meta-model for

all languages specified in the AADL-BA annex.

B. Mapping AADL-BA Concepts to Meta-Model Elements

Fig. 4: AADL-BA meta-model dependencies

An AADL-BA EMF meta-model describes the structure of

a behavior specification (e.g., AADL-BA model) and makes

explicit all concepts expressed by the standard. Then, EMF

generates the Java implementation classes corresponding to

the meta-model objects (see figure 4).

To specify the AADL-BA meta-model we define some rules

to map an AADL-BA concept to an object of the meta-model.

These rules simplify the complexity and the generation of

classes from the meta-model by focusing on 1) limiting the

number of generated classes, 2) keeping only the relevant

elements used to define a concept, and 3) facilitating their

re-use in external analysis tools.

In the following we give the main rules:

R1: Behavior concepts with strong semantics and con-

crete textual representation (e.g, a BNF) are mapped to

meta-model EClass (e.g, a java class). Several AADL-BA

concepts as the BehaviorAnnex described in figure 5 come

with a concrete textual representation and rules to describe

precisely its semantic. Thus, it is quite natural to map these

concepts as an EClass of the EMF meta-model.

R2: Behavior concepts with weak or no semantic but

used to clarify the concept hierarchy are mapped to

abstract EClass. Some concepts as the BehaviorCondition

(see figure 5) do not have a concrete textual representation

and a real semantic but are expressed to simplify and clarify

the understanding of the annex. In this case, we map these

concept as an abstract class. Their use is helpful to simplify

the class hierarchy and the implementation of visitors in our

analyzers and external model-based analysis tool.

R3: Behavior concepts belonging to the same fam-

ily are mapped with respect to the Java’s inheritance

mechanism. Some concepts in AADL-BA as loop statements

(e.g., for/forall, while, etc) share common attributes. In this

case, their mapping defines parent as abstract EClass, sub-

classes as EClass using the Java’s inheritance mechanism.

This rule allows to factorize code and simplifies the compiler

development and its maintenance.

R4: Links to express that a behavior concept requires

another behavior concept are mapped to EReferences. As

an EMF EReference represents one end of an association

between two classes it is used to link (e.g., to reference) two

behavior concepts.

Fig. 5: AADL-BA: meta-model and BNF

C. AADL Meta-Model Dependency

The behavior annex requires to attach a behavior specifica-

tion to an AADL component and to link AADL-BA objects

with AADL objects. It is reinforced by the implementation of

the OSATE2 sub-language extension which requires to link a

BehaviorAnnex object to the AnnexSubclause object of the

AADL component (see figure 4).

In addition, the standard provides several rules to ensure the

consistency between an AADL architecture component and

its behavioral specification. These rules are verified by our

different AADL-BA analyzers and require to navigate across

the AADL-BA meta-model and the AADL meta-model.

335

Figure 4 shows how we use EMF extensions (e.g., Java’s

inheritance mechanism) to express the dependencies between

the two meta-models. Thus, a BehaviorAnnex extends an

AnnexSubclause and an BAElement extends an Element. The

last one eases the navigation from an AADL-BA model to an

AADL model by enabling to reference an AADL object in a

behavior specification and to retrieve easily the corresponding

AADL object during analysis.

In the next section we describe how we use the AADL-BA

meta-model as backbone to build several modules involved in

the architecture of the AADL-BA compiler.

V. IMPLEMENTATION AND INTEGRATION OF THE

AADL-BA COMPILER

The integration of the behavior annex in OSATE2 allows to

re-use the AADL meta-model, the AADL front-end and the

annex plug-in which implements the sub-language extension

mechanism provided by OSATE2.

In this section, we detail the implementation of the AADL-

BA compiler as an ECLIPSE plug-in integrated to OSATE2

and how the AADL-BA meta-model acts as backbone to build

several modules of the compiler.

A. Compiler Architecture

Figure 6 shows the “classical” AADL-BA compiler archi-

tecture with two parts: a front-end and a back-end. From the

AADL-BA meta-model and EMF we generate the AADL-BA

builder factory to build and manipulate AADL-BA objects

used in the compiler. The front-end contains two modules:

a parser and an analyzer. Error handling is managed by the

OSATE2 error manager.

Fig. 7: AADL-BA parser

1) Parser: AADL-BA BNF to ANTLR Grammar: The

figure 7 represents the architecture of the parser. We used

the ANTLR framework to build the parser according to the

AADL-BA BNF. The figure 8 shows that the rules defined by

the BNF were easily mapped to the ANTLR grammar.

ANTLR allows to attach Java code declarations in grammar

rules. Thanks to our rules R1, R2, R3 and R4 (see section IV)

to specify the AADL-BA meta-model, we use only methods

of the AADL-BA builder factory in the ANTLR grammar

to specify how to build the abstract syntax tree (AST) with

AADL-BA objects. It ensures that the AST is compliant

with the AADL-BA meta-model. Finally we use the ANTLR

framework to generate the Java classes of the parser and the

lexer from the AADL-BA ANTLR grammar defined.

Fig. 8: AADL-BA BNF to ANTLR grammar

2) Naming, Legality, Consistency and Semantic Analyz-

ers: The analyzer module scans the AST and checks the

semantics of the AADL-BA model. First, it proceeds to a

resolution phase (e.g, naming resolver) which links AADL-BA

objects to their corresponding AADL objects or AADL-BA

objects (see figure 3, source identifier stExec and transition

stExec_stExec). To achieve this phase we use the visitors

(e.g, java classes) provided by OSATE2 to retrieve AADL

objects. For AADL-BA we have developed the visitors re-

quired to navigate through the AADL-BA AST. This phase

adds information to the AST and makes its use easier.

Secondly, we have implemented the subset of rules sufficient

to verify a whole behavior specification. The second phase

proceeds to the verification of this subset of legality, semantic

and consistency rules.

To verify the consistency with AADL components we have

developed some specific visitors to navigate across the AADL

model. The result of this analyze leads to an AST conforms

to the AADL-BA semantics and consistent with the AADL

model. This AST acts as internal representation of the annex

and can be used as input in the back-end part or external tools.

We chose the same strategy to implement our analyzers. We

consider the whole behavior specification (see figure 3). First,

we analyse variables and states. Then, we analyze the structure

of transitions, behavior conditions and finally the action block

attached to the transition.

3) Back-end Integration: The AADL-BA is a formalism to

describe the behavior of an AADL application model. An im-

plementation of the standard only focuses on the verification of

the syntax and the semantic of a behavior specification. Thus,

it is possible to describe a “legal” thread behavior specification

with deadlocks. To verify these kinds of properties we need

the use of model checker.

To achieve this goal we provide a back-end registry. Thanks

to the ECLIPSE plug-in extension points, we allow to register

an external ECLIPSE-based plug-in as back-end and to use as

input the AST produced from the AADL-BA front-end.

We have also developed an unparser back-end to produce

from an AADL-BA AST the corresponding textual behavior

specification. It allows us to verify the different modules

of our compiler by building intermediate models. It is also

used to produce the different outputs of our test-suite which

is constituted by examples of the standard and AADL-BA

models developed by our team.

336

Fig. 6: AADL-BA plug-in integrated to OSATE2

B. Integration in OSATE2

The figure 6 shows the integration of our behavior annex

plug-in in OSATE2.

1) Plug-in Extensions: The integration of the AADL-BA

plug-in is a two-steps process. First, we link the AADL-

BA plug-in to the OSATE2 annex plug-in. The annex plug-in

defines ECLIPSE extension points which allow plug-ins to be

connected together. A plug-in extends another by declaring an

extension. In our AADL-BA plug-in we declare the extension

corresponding to the extension points declared by OSATE2 to

extend the AADL parser and analyzers.

Second, we have to register our parser (resp. analyzers) in

the OSATE2 annex registry. As the AADL-BA is a part of the

AADL description, the AADL-BA plug-in is not a back-end

but is directly integrated and driven by OSATE2.

2) Outputs and Back-end Extension: The AADL-BA AST

is the internal representation of the behavior annex. As the

AADL-BA meta-model uses the same formalism of the AADL

meta-model it facilitates the integration of this representation

in the internal representation of the AADL model.

We also support serialization and de-serialization in XMI

following the same XML schema. It allows to produce a

unique AAXL2 representation including the serialized behav-

ior annex objects. Thus, we provide a persistent representation

including the whole description AADL architecture + behavior

annex. It can be used as inputs in different back-ends. Figure 6

describes how OSATE2 uses the AADL unparser back-end to

produce an AADL textual description from an AAXL2 file.

It provides the extension point to extend this back-end with

the different annex unparsers. We use this extension point to

link our AADL-BA unparser and to produce an AADL textual

model including textual behavior specifications.

VI. CONCLUSION AND FUTURE WORK

This paper presented our implementation of the AADL

behavior annex as ECLIPSE plug-in [4]. We showed how we

specified the AADL-BA meta-model used as backbone to

develop several modules of our compiler. As the behavior

annex defines several simple interconnected sub-languages,

the design of a single meta-model allows to produce and

to analyze a unique AST. This internal representation of an

AADL-BA model is used as input in external back-ends which

are integrated using our back-end registry.

Our plug-in is integrated in the reference AADL toolset

OSATE2. This one provides an AADL front-end and an

annex plug-in which drives the behavior annex analysis

(parser+analyzers). The same technologies used to define the

AADL and the AADL-BA meta-models ease the navigation

across both meta-models and the production of a unique per-

sistent XMI representation (AADL model+behavior elements)

which facilitates its use as input in external back-ends.

Our future work will focus on the analysis of behavior

automaton properties by integration of external back-ends e.g.,

as model checker to verify deadlock and model-based tool

to enhance scheduling analysis by refining WCET estimation

and blocking time on shared resources, thanks to the behavior

annex capabilities.

REFERENCES

[1] SAE, AADL v2.0 (AS5506), Sep. 2008.
[2] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the Prototype to

the Final Embedded System using the Ocarina AADL Tool Suite,” ACM

Transactions in Embedded Computing Systems (TECS), vol. 7, Jul. 2008.
[3] SAE, Annex X Behavior Annex (AS5506-X draft-2.13), Aug. 2010.
[4] Telecom ParisTech, “AADL-BA Project,” http://eve.enst.fr/aadlba, 2010.
[5] SAE AADL, “OSATE,” http://www.aadl.info, 2010.
[6] D. Koening, Groovy in Action. Manning Publications Co., 2007.
[7] Y. Ma, J.-P. Talpin, and T. Gautier, “Interpretation of AADL Behavior

Annex into Synchronous Formalism Using SSA,” International Confer-

ence on Computer and Information Technology, pp. 2361–2366, 2010.
[8] Z. Yang, K. Hu, D. Ma, and L. Pi, “Towards a Formal Semantics for

the AADL Behavior Annex,” in Design, Automation Test in Europe

Conference Exhibition - DATE’09., Apr. 2009, pp. 1166 –1171.
[9] R. Frana, J.-P. Bodeveix, M. Filali, and J.-F. Rolland, “The AADL

Behaviour Annex – Experiments and Roadmap,” in Engineering Complex

Computer Systems, 12th IEEE International Conference on, Jul. 2007, pp.
377 –382.

337

