
Understanding the Role of Constraints on
Architecturally Significant Requirements

Neil A. Ernst, Ipek Ozkaya, Robert L. Nord, Julien Delange, Stephany Bellomo, Ian Gorton
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, USA

{nernst,ozkaya,rn,jdelange,sbellomo,igorton}@sei.cmu.edu

Abstract—A key constraint on software development is
reliance on tools, which we define as COTS products, software
services, languages, frameworks and platforms. These tools may
have significant architectural impacts that are not obvious when
the requirements are elicited, tools selected, and architecture
sketched out. In this paper, we report on a case study we
conducted to identify architecturally significant requirements
(ASRs) that were impacted by tool selection. We identified ASRs
in an existing health IT project, CONNECT, and also identified
the constraints on the project that were tool-related. We produce
a mapping showing how the architectural risks identified in the
initial architectural analysis were impacted by the tool choices
made. We produce metrics showing how much time has been
consumed when implementing ASRs that involve working
around/with these constraints and the risks associated with them.

Index Terms—work items, architecturally significant
requirements, architecture analysis, constraints, CONNECT.

I. INTRODUCTION
Delivering software in a manner that is both rapid and stable

requires some focus on constraints that affect architecture deci-
sions, as our previous work [1] revealed. These constraints are
often embedded in tool choices such as commercial off-the-
shelf (COTS) products, software services, languages, frame-
works, and platforms. Furthermore, a specific finding of that
research was that a key constraint on rapid fielding was COTS
products which could sometime inhibit rapid delivery of value.
In this paper, we examine the nature of these constraints in
more depth, with specific reference to a case study we conduct-
ed on a large-scale government IT system, CONNECT. A note
on ‘constraints’: we use this term in the sense of a decision
which guides future decisions. That is, the presence of a con-
straint in a software project, such as the need to use Java 7,
both enables and inhibits certain project-specific decisions. It
will be more difficult to work with Microsoft systems, perhaps,
but offers a rich set of standard library APIs.

As an example, consider the following situation. A software
development organization has been given the mandate to en-
sure that a system will correctly integrate with external entities.
We call this an architecturally significant requirement (ASR)
[2]. In order to verify that this ASR is implemented, the team
will engage in integration testing. However, the target system
runs on Windows, while the developers are testing the changes

on Linux. This is the constraint—a pre-existing infrastructure
decision that impacts the ASR. In order to proceed with satisfy-
ing the ASR, the team must change its testing practice.

In this paper we:
• identify the presence of constraints by examining the

development artifacts of the team (including issue
tracking, source code, and commit logs);

• define the construct Architecturally Significant Work
Item as a way of measuring architecture tasks using
CONNECT;

• explore how different constraints have different im-
pact on work item completion times.

II. METHODOLOGY
We followed an exploratory case study protocol as described in
Yin [3]. Our research questions are:

1) To what extent is architecture impacted by pre-
existing constraints?

2) What form do these constraints take?
3) How do the constraints impact project success?
4) How easy is it to work with/around the constraints?

We narrowed the research questions to study propositions:
SP 1. Can we identify what constraints are present in the
CONNECT project?

SP 2. Given these constraints, what impact have they had
on project effort?

SP 3. What metrics or measures are useful to derive that
impact?

Our causal claim is that technology choices have significant
impact (either negative or positive) on project architectural
work, which in turn impacts project success. This exploratory
case study is intended to give partial answers to this claim by
deriving metrics which are useful for understanding the con-
struct of impact. We leave the identification of impact on suc-
cess to future work. The case study is conducted with one soft-
ware project, and our unit of analysis is the individual architec-
tural risks as identified in a systematic architectural analysis
using the Architecture Tradeoff Analysis Method [4] undertak-
en in December 2011, by a team which included the second
author [5]. We use a narrative analytical approach to the case
study, relying primarily on the artifacts produced by the project

978-1-4799-0962-9/13/$31.00 c© 2013 IEEE TwinPeaks 2013, Rio de Janeiro, Brasil9

and as output of the architectural analysis, then analyzing these
quantitatively. An outline of our methodology is as follows:

1. Select the risk themes identified in the ATAM for anal-
ysis.

2. From the CONNECT source code and repository, ex-
tract constraints for this project. These constraints are
independent of the risk themes identified in the ATAM
(step 1).

3. Examine the CONNECT issue tracker, and other arti-
facts, such as Excel spreadsheets, to derive work items
relevant to our architecture risks, called Architecturally
Significant Work Items (ASWIs).

4. Manually code those work items which are somehow
relevant to the constraints identified in step 2.

5. Derive measures for estimating constraint impact on
ASRs.

A. Background
CONNECT1 is an initiative of the U.S. federal government

to interconnect health-care information, beginning with gov-
ernmental agencies, but ultimately other private organizations.
It is licensed under the BSD license, with the intent that other
vendors adopt the code and use it in proprietary software and
support offerings. CONNECT is developed using a modified
agile approach. They follow Scrum as their agile software de-
velopment methodology. They hold bi-weekly sprints (83 as of
late 2012) and make fairly frequent releases. There have been
45 separate committers.

The project collects requirements from the key stakehold-
ers, some of whom include the Department of Defense (DoD),
Federal Housing Authority, and the Center for Medicare and
Medicaid Services (CMS). It therefore has multiple important
customers, and since it concerns health information, must abide
by many governmental regulations. The development is con-
tracted to private consultants and developed in several different
offices. Periodic code sprints bring all developers together to
sync. A change control board (CCB) made up of the cooperat-
ing agencies governs the process of prioritizing development.

All agencies have developed a list of requirements before-
hand, which are then amalgamated through the CCB. However,
because the development is iterative, certain stories are left for
future sprints, and the requirement is not fully described until it
becomes part of an active sprint, as needed. JIRA, the project’s
issue tracker, uses a particular ontology of software develop-
ment, anchored in the Epic/User Story/Task/Bug hierarchy, but
this is not the same as the breakdown CONNECT uses, which
includes separate requirements labels (e.g., REQ-097, EST009
are both names for the logging requirement). Thus the JIRA
fields are a mélange of JIRA labels and CONNECT language.
For example, in the Description field, CONNECT developers
had added:
QA: No new tests required, Validation Suite should suffice.
CC: Codereview, checkin, validation suite passes.

1 http://www.connectopensource.org

It should be noted that JIRA supports full customization of
the field labels and organization, which has been done to add
the “Epic” issue type, but nothing more.

B. Architecture Tradeoff Analysis
The second author was involved in a multi-day workshop

that conducted architecture risk analysis using the Software
Engineering Institute’s Architecture Tradeoff Analysis Method
(ATAM)2. Broadly speaking, an ATAM involves a team of
experts and stakeholders meeting in person to construct system
scenarios. These scenarios capture both functional require-
ments and quality attributes the system should satisfy, such as
performance or usability. The existing system architecture is
evaluated with respect to a subset of these scenarios, which
allows for the identification of risks, non-risks, sensitivity
points, and tradeoffs. Risks are grouped into risk themes that
are traced back to their impact on the architecture and business
goals. The ATAM approach is shown in Fig. 1.

Figure 1 - Conceptual Flow of ATAM [4]

Key risk themes for CONNECT were identified during the
ATAM. The ATAM evaluation was conducted for release 3.x
and the risks identified for this version included (with our code
in parentheses):

• (NA) Missing and incomplete analysis – this refers to
the lack of testing and modeling of essential properties
like performance. One key requirement the stakehold-
ers identified was the need to handle large image files,
but there was no easy way to assess whether this re-
quirement was satisfied.

• (CC) Configuration and integration complexity –
since CONNECT is middleware, configuration of
CONNECT for the variety of systems to which it in-
tegrates is highly complex.

• (CDM) CONNECT/DIRECT goal mismatch – the DI-
RECT project is a related health integration approach
that has a focus on a lightweight data exchange format
using SMTP messaging.

• (AGS) Adapter/gateway separation – CONNECT ini-
tially separated the handling of messages from the in-
tegration with other systems. However, these roles
have become confused over time, and it is not clear
how the roles should be separated.

2 http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

10

• (AO) Architecture and requirements omissions – The
ATAM revealed some architectural decisions had not
yet been made or understood.

• (MG) Glassfish/Metro dependency – CONNECT used
Glassfish for its Java Enterprise Edition implementa-
tion, with Metro as a framework for various web ser-
vice specifications. However, Metro is not the choice
of many potential partners.

• (DOC) Documentation – Missing, out-of-date, and in-
complete documentation for the architecture and
CONNECT developers, impacting future open-source
growth, upgrades and maintainability.

We use these as assumed architectural risk themes for the
CONNECT project, with the exception of architectural omis-
sions, as that theme was too broad to be useful. The question
that this case study examines is the degree to which constraints
impacted these risks.

C. Constraints
We defined constraints in the introduction as tool choices

impacting the software project. Ideally identifying constraints
would be automated, but for this study, the first author scanned
the publically available source code3 of the project, including
the build instructions, and identified constraints using the fol-
lowing categories.

1) Commercial Off The Shelf Software (COTS)
This includes middleware, database products, and other inter-
nal but not product-specific dependencies. We automatically
scanned all Java code for import statements and compared
package names for these imports. We defined COTS use as a
package that did not start with CONNECT packages.	
 There
were 17,800 import statements in total.

• 7154 were CONNECT internal dependencies, i.e.,
started with gov.hhs.fha.nhinc.*.	

• 2340 were other health IT dependencies, most of
which were to the HL7 messaging standard.

• 2411 were Java SDK dependencies.
• 2706 were test dependencies including JUnit.
• Remaining dependencies were numbered in the hun-

dreds, including OASIS standards, log4j logging de-
pendencies, webservices specific including Apache’s
CXF product and OpenSAML, Hibernate, an object-
relational data persistence tool, and Spring, the de-
pendency injection framework.

CONNECT’s build and installation instructions also make
note of dependency on MySQL for database server, and a
number of MySQL SQL schema files are present.

2) Software services
This category includes external dependencies on web services
and other external API calls. For CONNECT we searched the
source for occurrences of the word URL, since Java’s standard
URL class is commonly used to encode external API calls. The
majority of the results referred to CONNECT’s own service

3 https://github.com/CONNECT-Solution, HEAD branch, as
of April 1 2013.

implementation of URL endpoints, so we do not consider
CONNECT to be directly using software as a service (SAAS).

3) Languages
A simple measure using the tool CLOC4 identifies what pro-
gramming languages were used. For the entire package, which
includes build scripts, but no archives, CONNECT has 3.8 mil-
lion lines of XML source code (without comments), 134 thou-
sand lines of Java source code, and then much smaller amounts
of Javascript, SQL, CSS, XSD, etc. The extensive amount of
XML comes from web service test cases for CONNECT’s ser-
vice endpoints.

4) Frameworks
A framework is an internal dependency, much like COTS, that
involves a significant architectural commitment, in terms of
adopting the key architectural styles of those frameworks, such
as Spring or Ruby on Rails. These dependencies were identi-
fied by examining the build information in the source down-
load directory for version 4. The major framework choice for
CONNECT has been its use of the Java Enterprise Edition
(JEE) application server specification and a choice to use Web
Services, and SOAP for implementation, initially with Glass-
fish as the application server and Metro as the Web Services
stack. These choices bring significant benefits (such as Java
Server Pages technology, among many others) but is difficult
to disentangle from core business logic. Web services and
SOAP have been criticized for undue complexity [6].

5) Platforms
Software platforms are deploy-time constraints. CONNECT is
distributed using Apache’s Maven build tool, which is respon-
sible for downloading and configuring the software, running
build scripts, and installing database schemas.

With these as our list of constraints, it should now be possi-
ble to use these to identify where they impact work on the ar-
chitectural risks identified above.

D. Architecturally Significant Work Items
We define an Architecturally Significant Work Item

(ASWI) as an element tracked in the CONNECT issue tracker
(Jira), that has some relevance to the architectural risks identi-
fied above. All ASWIs comprise the set of units of analysis for
this case study. That is, we use the ASWIs we identify as signi-
fiers of possible constraint impact on ASRs. We identified all
ASWI in the CONNECT issue tracker. Since we need to con-
sider the impact of the ATAM, we selected only those issues
opened since the ATAM was prepared—January 1, 2012. All
decisions (architecture, tools) up to that point in time represent
the constraints that future development is working with. We
leave ‘relevance’ under-defined: it means that somewhere in
the text of the issue some reference is made to the risks identi-
fied in Section II.B above. The CONNECT issue tracker is
made up of several different fields, including comments by
interested parties, including non-core members (such as mem-
bers of the public or affected agencies), issue descriptions,
links to related issues. In future the notion of relevance might
be expanded to examine temporality (e.g., issues closed at the

4 http://cloc.sourceforge.net/

11

same approximate time) or social measures such as churn (how
many people/which people were involved in the issue).

CONNECT’s issue tracker5 has over three thousand issues,
which is on the edge of tractability for manual analysis. We
scanned through all issues that were not labeled as ‘bugs’ in
order to identify only those issues that were significant feature
work. CONNECT served as a good candidate for our goals as
the CONNECT development process is not only open but also
moderately rigorous, with useful standards in place to describe
issues. A representative issue title is as follows:

“As a CONNECT product owner/adopter, I want to execute
smoke tests(initiating) so that we can proceed with pilot testing
(issue CONN-212)”. We might code this as relevant to the In-
sufficient Analysis risk theme (NA).

Our query consisted of all user stories, improvements, and
feature requests that were closed or resolved, and marked fixed.
We looked at 65 User Stories, 116 Improvements, and 82 Fea-
ture Requests. We used the ATAM release date of Jan 1, 2012
as a milestone for our analysis.

III. DISCUSSION

A. Data Analysis
In order to account for possible effects from the ATAM, we

looked at the difference between pre- and post-ATAM num-
bers.

• Pre-ATAM: There are 106 work items (i.e., user-stories,
feature requests and improvements). 67 we coded as
ASWI (associated with a risk theme) and 50 as con-
straints. 63% of work items are risk-related.

• Post-ATAM: There are 157 work items, 134 of which
were coded as ASWI, and 126 as constraints. 85% of
items are risk-related.

We can conclude that the ATAM had an impact on what
was worked on, so the remainder of our analysis considers only
items created after the ATAM was delivered.
Table 1 – ASWIs per risk theme, post-ATAM.

Risk theme Number of ASWIs
Lack of analysis (NA) 35

Config. Complexity (CC) 40
CONNECT-DIRECT (CDM) 19

Adapter-gateway (AGS) 5
Metro-Glassfish (MGS) 21
Documentation (DOC) 14

From that subset, we went through the data to identify those
which were impacted by or possibly enabled by the constraints
identified previously. This was done by examining once again
the issue itself to see where some of the constraints were men-
tioned or were possibly relevant. For example, some work
items mentioned the need to do testing on Java 6 platforms as
well as (standard) Java 7, in order to support partners who used
Java 6. Here we have a risk theme, configuration complexity,
an ASWI (the fact that testing needs to be done), and a con-

5 http://issues.connectopensource.org

straint that impacts that theme (the fact that Java 7 is the default
and not Java 6).
Table 1 shows the summary for Architecturally Significant Work
Items found per risk theme. Notice the total is 134, which is the
same as the number of post-ATAM items with a risk theme
above. Table 2 shows the numbers for constraints.
Table 2 – ASWIs per constraint, post-ATAM.

Constraint Number of ASWIs
Platform (PLT) 27

Framework (FMK) 43
Language (LAN) 5

Services 0
COTS 51

Configuration complexity and lack of analysis seem to have
been given the most attention of the risk themes. Similarly,
COTS and Framework constraints would be expected to play a
large role in a project so highly dependent on integration with
existing libraries and tools, not only for testing and analysis,
but also for doing the complex lifting of web-services work.
These results lend support to our study proposition 1, identify-
ing constraints present in the project.

Our next analysis step was to estimate, given a work item,
how impacted it might be because of the existing constraints.
For this we have a number of possible measures. One is how
long those issues were open, i.e., the time between issue crea-
tion and issue close date, as shown in Table 3.
Table 3 – Mean elapsed time to close an ASWI, by risk theme.

Risk Code Mean Elapsed
Time to Close (hrs)

DOC 133.8
CC 66.2
MG 100.1
AGS 233.2
NA 154.6
CDM 70.0

We can compare this to the mean elapsed time to close (in
hours) for all closed, resolved user stories, improvements and
feature requests, which is 134.5 hrs. For Configuration Com-
plexity, Metro-Glassfish, and Connect-Direct, these issues were
resolved significantly quicker than average.

Table 3 shows the average time for each issue tagged with
that risk. An improvement to this calculation might look at how
long each tuple of <risk,constraint> took to close. This is
shown in Table 4. We omit language and services due to the low
or non-existent numbers of tagged items.

What is the meaning of this table? One thing we can see is
that for the “NA” or “Insufficient Analysis” risk theme, the
longest time to close issues on average belongs to the COTS
constraint. This makes sense, since testing in CONNECT uses
tools like JUnit and SOAPUI. We can read this as saying that
testing has a lot of dependency on these COTS libraries, or
alternately, that these libraries are a problem point for the pro-
ject.

12

Table 4 -- Risks and Constraints elapsed time to close

Risk
Code

Constraint
Code

Mean ETC
(hrs)

Number
ASWIs

DOC PLT 36.0 2
DOC FMK 19.8 7
DOC COTS 22.4 3
CC PLT 32.7 13
CC FMK 50.6 22
CC COTS 44.4 20
MG PLT 175.1 9
MG FMK 85.8 10
MG COTS 41.5 6
AGS PLT n/a 0
AGS FMK 24 5
AGS COTS 20.2 4
NA PLT 50.3 4
NA FMK 64.9 12
NA COTS 137.5 24
CDM PLT 30.6 5
CDM FMK 65.2 7
CDM COTS 33.2 8

Our analysis did not examine the sentiment behind the is-
sues. We can also compare across constraints: here, Framework
constraints caused the longest mean time to close for the Met-
ro-Glassfish issue (85.8 hrs), possibly explained by the depend-
ency on JEE, e.g., for the issue with FMK-MG codes, number
GATEWAY-3412, is summarized in Jira as “integrate and de-
ploy CONNECT to a new Open Source Application Server”.

B. Study Propositions
We now return to our study propositions from Section I.

They were:
SP 1. Can we identify what constraints are present in the
CONNECT project?

We conclude that at a broad level we can estimate what exter-
nal constraints existed, using automated dependency analysis
and some knowledge of software frameworks.

SP 2. Given these constraints, what impact have they had
on project effort?

SP 3. What metrics or measures are useful to derive that
impact?

We defined a simple measure of Elapsed Time to Close for an
ASWI in the project task management system. We used that to
estimate how long these tasks stayed open for as a proxy for
level of effort/pain that item required. We found that there were
important distinctions between both risks and constraints. 85%
of the issues in the 18 months since the ATAM evaluation are
related to risk themes (ASWIs) and of these 94% had an asso-
ciated constraint. Also, the number of ASWIs related to specif-
ic risk theme and constraint pairs is another simple measure to
understand the dependencies.

It would be interesting in future research to see if we can
better understand nature of constraint as enabler or inhibitor.
To do that more dependency information is needed to under-
stand what is being changed and the breakdown of the effort in
terms of the implementation effort, work around effort (tempo-
rary fixes), and re-architecting (permanent fixes).

C. Rival Theories:
While our metrics are largely cost-oriented, it is important

to note that tool-selections are not inherently negative. They are
enablers of significant value [7]. Like all artifact studies, this
paper suffers from only considering the artifacts in the issue
trackers, which may not tell the whole story [8]. For example,
one issue marked “Fixed” was also commented on with
“Closed. Unable to validate requirement.” which would seem
to imply that it wasn’t fixed, but instead should have been
marked “Won’t Fix”. Rival explanations for the results we ob-
served might include that the issue tracker is a product of a
particular approach to software development and that the bene-
fits of the constraints are not being surfaced. Furthermore, it is
to some extent irrelevant what constraints exist, since those
choices may have been imposed from outside the project (i.e.,
that a full Web Services stack be used rather than a REST ap-
proach).

D. Threats to Validity
1) Internal Validity

The ATAM was conducted 18 months prior to this study, and
its guidance might not have been followed, or if it was, those
threats might be already addressed or not a priority at this mo-
ment. We assume that the date an ASWI is closed is signifi-
cant, but this might be a house-keeping close with the actual
date of the fix much earlier (for example, someone goes
through the Jira tool and gets rid of issues that are no longer
relevant). Another problem is that we ignored low-level issues
such as tasks or bugs, mainly in the interest of tractability. The
large numbers of these issues suggest an automated approach is
necessary, perhaps using a technique such as Latent Dirichlet
Allocation [9]. Finally, there are artifact repositories that in-
form planning efforts—such as Word or Excel documents—
which we were unable to access reliably.

2) External Validity
CONNECT is a unique project: it is relatively open, yet also a
large government software project. As such it may be unrepre-
sentative of other projects. Furthermore, because CONNECT
is a middleware application, a lot of effort has to be spent
making it interconnect with other software and platforms. This
means that architecture is of greater importance.

3) Construct Validity
Our constructs, such as ASWI, were loosely defined in order to
focus on exploring their potential. Not all architecturally signif-
icant requirements (ASRs) may be ASWIs, and in fact, one risk
theme was omitted entirely due to its loose definition. A tighter
definition, which for example states what isn’t architecturally
significant, would be important in further studies. The study
only shows problems, not those things made possible by the
technology, e.g. the lines of code saved by not having to do it
that way.

13

4) Reliability
Our work is replicable to the extent that the CONNECT issues
are all available, and we have shared our coding scheme. How-
ever, there is a high degree of subjectivity in how the codes
were assigned to the work items. In particular, we used the
notion of constraint loosely—in future, we think considering
the specific technologies that are constraints, such as a web
application server, would make more sense than these poorly
defined categories.

IV. RELATED WORK
Any technology selection, whether it be a development tool

or a COTS technology, has positive and negative implications
for the success of an agile project [10]. For complex technolo-
gies and projects, it is impractical to perform an a priori, full
cost-benefit analysis of a particular tool selection, as research
on COTS selection has suggested [11], and hence its implica-
tions, both positive and negative, are only discovered as the
project iterations are undertaken.

Software ecosystems research has also identified that there
are complex tradeoff and technology dependencies that drive
architectural and organizational decisions, such as [12]. The
Mining Software Repositories community has made a recent
push to explore development analytics [13]. Related work has
looked at extracting architecture dependencies [14] and quite a
lot of attention paid to architecture metrics, e.g. [15].

V. CONCLUSION
Technology constraints on software development include

framework decisions, platform choices, and available COTS
products. All of these design choices have impact on the archi-
tecture and the ability of the system to meet its quality and
business goals. This paper has shown a technique for analyzing
the relationship between constraints and architectural risks
themes identified in a prior architectural evaluation. The analy-
sis approach leveraged available project data (e.g., Architectur-
ally Significant Work Items) to provide greater insight into the
impact of constraints. Architecturally significant requirements
and architecture decisions are not always easy to tease apart.
Technology constraints provide a concrete example where their
influence on each other is not only specific to the business con-
text, but also the stage of the project. Our exploratory case
study suggests that risk themes that are identified, possibly
through an architecture evaluation, can guide the identification
and prioritization of architecturally significant work items.

Achieving quantification of “how much architecting is
enough” or “when to start architecting” or “how to quantita-
tively relate requirements to architecting” has been difficult.
While it is well-known that technology choices and constraints
impact project success (negatively or positively) quantifying
that impact needs to be part of the decision making process. In
this study, we demonstrate one approach where such quantifi-
cation can be achieved.

ACKNOWLEDGEMENTS
This paper does not necessarily reflect the opinions of the

CONNECT project or its funders and developers. This material

is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development cen-
ter. This material has been approved for public release and un-
limited distribution. Architecture Tradeoff Analysis Method®,
ATAM® are registered in the U.S. Patent and Trademark Of-
fice by Carnegie Mellon University. DM-0000390

REFERENCES
[1] S. Bellomo, R. L. Nord, and I. Ozkaya, “A Study of Enabling

Factors for Rapid Fielding: Combined Practices to Balance Ten-
sion Between Speed and Stability,” in ICSE - SE in Practice
Track, San Francisco, 2013.

[2] P. Clements and L. Bass, “Relating Business Goals to Architec-
turally Significant Requirements for Software Systems,” SEI,
Technical Note CMU/SEI-2010-TN-018, 2010.

[3] R. K. Yin, Case Study Research: Design and Methods, vol. 5.
Beverly Hills, CA: Sage Publications, Inc, 2003.

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 3rd ed. Addison-Wesley Professional, 2012.

[5] J. Klein and I. Ozkaya, “CONNECT Gateway Architecture
Evaluation,” Software Engineering Institute, Carnegie Mellon,
Dec. 2011.

[6] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, “Devel-
oping web services choreography standards—the case of REST
vs. SOAP,” Decision Support Systems, vol. 40, no. 1, pp. 9–29,
Jul. 2005.

[7] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using version
control data to evaluate the impact of software tools,” in Inter-
national Conference on Software Engineering, 1999, pp. 324–
333.

[8] J. Aranda and G. Venolia, “The secret life of bugs: Going past
the errors and omissions in software repositories,” in Interna-
tional Conference on Software Engineering, Vancouver, 2009,
pp. 298–308.

[9] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos,
“Automated topic naming to support cross-project analysis of
software maintenance activities,” in MSR, Honolulu, 2011.

[10] I. Gorton, “Cyber Dumpster Diving: Creating New Software
Systems for Less,” IEEE Software, vol. 30, no. 1, pp. 9–13,
2013.

[11] K. Smiley, Q. He, E. Kielczewski, and A. Dagnino, “Architec-
tural requirements prioritization and analysis applied to software
technology evaluation,” in Symposium on Applied Computing,
Honolulu, Hawaii, USA, 2009, pp. 397–398.

 [12] J. D. McGregor, “Ecosystem modeling and analysis,” in Inter-
national Software Product Line Conference - Volume 2, Salva-
dor, Brazil, 2012, pp. 268–268.

[13] T. Menzies and T. Zimmermann, “Goldfish bowl panel: Soft-
ware development analytics,” presented at the International
Conference on Software Engineering, Zurich, 2012, pp. 1032–
1033.

[14] W. Hu, D. Han, A. Hindle, and K. Wong, “The build dependen-
cy perspective of Android’s concrete architecture,” presented at
the Working Conference on Mining Software Repositories, Zur-
ich, 2012, pp. 128–131.

[15] E. Bouwers, J. P. Correia, A. van Deursen, and J. Visser,
“Quantifying the Analyzability of Software Architectures,” in
Working IEEE/IFIP Conference on Software Architecture,
Boulder, CO, 2011, pp. 83–92.

14

