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ABSTRACT

Big data systems are becoming pervasive. They are distributed
systems that include redundant processing nodes, replicated
storage, and frequently execute on a shared “cloud” infrastructure.
For these systems, design-time predictions are insufficient to
assure runtime performance in production. This is due to the scale
of the deployed system, the continually evolving workloads, and
the unpredictable quality of service of the shared infrastructure.
Consequently, a solution for addressing performance requirements
needs sophisticated runtime observability and measurement.
Observability gives real-time insights into a system’s health and
status, both at the system and application level, and provides
historical data repositories for forensic analysis, capacity
planning, and predictive analytics. Due to the scale and
heterogeneity of big data systems, significant challenges exist in
the design, customization and operations of observability
capabilities. These challenges include economical creation and
insertion of monitors into hundreds or thousands of computation
and data nodes, efficient, low overhead collection and storage of
measurements (which is itself a big data problem), and
application-aware aggregation and visualization. In this paper we
propose a reference architecture to address these challenges,
which uses a model-driven engineering toolkit to generate
architecture-aware monitors and application-specific
visualizations.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques,
Performance attributes. D.2.11 [Software Engineering]: Software
Architectures —  Domain-specific ~ software  architectures,
languages, patterns.

General Terms
Performance, Measurement.

Keywords
Observability, Model-Driven Engineering, Big Data

1. INTRODUCTION

The exponential growth of data in the last decade has fueled rapid
evolution in the scale of software systems. Internet-born
organizations such as Google and Facebook are at the cutting edge
of this scale-driven revolution, collecting, managing, storing, and
analyzing several petabytes of new data every day, and operating
some of the largest data repositories ever constructed [1].
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Beyond the Internet companies, data-intensive systems and big
data applications are becoming pervasive across a wide range of
business and scientific domains. For example,

*  Modern commercial airliners produce approximately 0.5TB
of operational data per flight [2]. This data can be used to
diagnose faults, optimize fuel consumption, and predict
maintenance. Airlines must build scalable systems to capture,
manage, and analyze this data to improve reliability and
reduce costs.

* Big data analytics for healthcare could save an estimated
$450 billion in the USA [3]. Analysis of petabytes of data
across patient populations, taken from diverse sources such
as insurance payers, public health, and clinical studies, can
extract new insights for disease treatment and prevention,
and reduce costs by improving patient outcomes and
operational efficiencies.

* In operation, the Square Kilometer Array telescope will
generate 1TB/sec of pre-processed data, which results in one
exabyte of data every 13 days. Even with significant
aggregation, this system will need a sophisticated data
archive and distribution system to delivery exabytes of
observation data to astronomers
(https://www.skatelescope.org/software-and-computing).

* By one estimate, there are 14,000 million “things” with
sensors, generating data that is communicated over the
Internet. By the year 2020, this Internet of Things (IoT) will
generate 4 zettabytes of data per year supporting automation
monitoring, and optimization of processes and services
around the world [4].

With systems at these immense scales, meaningful design time
performance prediction becomes essentially infeasible, both
theoretically and pragmatically. Building models to represent
complex static and dynamic component compositions in both the
system and the underlying infrastructure, exploiting multiple
architecture styles, and accurately representing combinations of
heterogeneous and uncertain workloads challenges the state of the
art in performance modeling. Pragmatically, even if it were
possible to build such models, post-deployment data growth,
shared cloud-based infrastructures, and rapid application
evolution would render model results invalid more or less
immediately.

For these reason, assuring runtime performance at scale must be
based on observing and analyzing actual application behavior.
Observability provides real-time insights into system health and
status, both at the infrastructure and application level, and
provides historical data repositories for forensic analysis, capacity
planning, and potentially for predictive analytics based on
statistical techniques.

This paper discusses the challenges of building massively
scalable, easily configurable and lightweight observability



solutions that can form the basis of performance monitoring and
analysis solutions. In response to these challenges, we propose
and outline an approach for observability based on a model-driven
toolkit that is the focus of our current research.

2. CHARACTERISTICS OF BIG DATA
SYSTEMS

The major runtime elements of a typical big data system are
shown in Figure 1. Inputs from sensors, devices, humans, and
other systems are delivered to the system, where they are ingested
through a pipeline that translates and transforms the data and
writes it to a persistent store. The persistent store is frequently
“polygot”, employing a heterogeneous mix of SQL, NoSQL, and
NewSQL technologies [5]. Users query stored data through many
types of devices and applications. Some applications are within
the system (i.e. under the same design and operational authority as
the system), while other applications may be independent of the
system and integrated through various endpoint mechanisms. The
system executes in a cloud infrastructure, shared with other
systems.

Big data systems are typically horizontally scaled distributed
systems, operating over clusters of hundreds or thousands of
compute and storage nodes [6]. Requests to read and write data
fan out to many nodes, executing pipeline and/or parallel
topologies, resulting in highly variable response latency [7].

In this context, servers are treated as “cattle, not pets” [8],
meaning that nodes are expected to fail, and to be casually
replaced with new instances. Redundant processing and replicated
storage capabilities shift the primary concern to the herd (cluster),
not to any individual (single server). This strategy requires
applications to operate with partial failure as a normal condition

[6].
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Figure 1 - Typical Big Data System
3. THE NEED FOR OBSERVABILITY

In the environment presented in Figure 1, design time predictions
of system performance, produced through modeling or
prototyping, can help to develop and evaluate the system’s
architecture and components. However, design time prediction is
insufficient to assure the runtime performance of these large-scale
systems in production for two reasons. First, at such scale, high
fidelity prototyping and model validation is not practical. The
time and cost to generate petascale data sets, and the cost and
complexity of thousand-node server clusters with millions of
clients requires simplification and approximate characterization of
the actual architecture styles and technologies to be used.
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Furthermore, after the system is deployed and in production, there
is typically no control over the number of input sources and
associated inputs data rates (unless the system simply discards
input data). This means the size of data being managed and
analyzed quickly grows beyond predicted volumes, rendering
predictions unreliable. There is also no control over the number of
users and external applications, and the queries they make (unless
the system rejects requests). Finally, a shared cloud infrastructure
may not provide the expected continuous quality of service due to
contention for resources at all levels (storage, network, and
processor) and due to infrastructure failures [9][10].

These challenges of managing and evolving system performance
must therefore be addressed by instrumenting the system to
observe runtime behavior, and by aggregating the collected
performance measurements to identify trends and issues. In
production, there is a close relationship between performance and
system health. For example, in a distributed system with
asynchronous communication, high response latency is generally
indistinguishable from node failure or network partition. In
addition, due to the fan out inherent in processing individual
requests, many nodes will contribute to the latency of any
particular response. In systems with redundant processing
capacity and replicated storage, a sequence of identical requests
may be executed by different sets of nodes, with each set
inevitably having different composite performance/health
characteristics. This leads to a complex relationship between the
performance/health of an individual node and end-to-end system
performance [7].

Redundancy also makes it possible for a system to meet its service
level requirements even when experiencing partial system
failures. Seemingly catastrophic numbers of node failures may not
impact system performance if the failures occur when the system
contains spare capacity [10]. In scalable systems, components are
often designed to ‘fail fast’ and employ stateless designs where
possible to facilitate rapid recovery [11].

The performance data collected from the running system serves
multiple purposes. These include operational monitoring, ongoing
tuning, and preventative actions, such as adding capacity to
handle load surges. These measurements also support system and
architecture evolution, serving as “design time prototypes” for the
next generation of the system. Finally, they may be used as part of
an emerging autonomic capability [12].

In any runtime monitoring function, there are many common
concerns. These include the intrusiveness of the monitoring on the
host performance (measured in additional processor and memory
utilization), measurement storage footprint (including retention
and archiving), and user interface usability. However, in large-
scale big data systems, these concerns become challenges that
have not been solved in practice, except for point solutions that
are highly customized for a specific business need [13] and have
required massive investments in time and effort.

Hence, in the dynamic, uncertain runtime environments in which
big data systems exist, some specific challenges of observability
include:

*  Monitoring a heterogeneous deployment at scale (1000s of
nodes), with an ever-changing dynamic component
configuration and load. While each component may have its
own dedicated monitoring interface, nothing exists that can
seamlessly integrate metrics from each component into the
same monitoring framework. This forces every organization



to develop and maintain a custom observability solution to
handle the specific components they have composed into
their systems.

*  Collection, storage, and compression of millions of time
series metrics - a big data problem in itself - with acceptable
overhead and footprint

*  Aggregating individual metrics into meaningful application
performance indicators (e.g., total request load on all
database nodes per second in a heterogeneous database
environment with 1000’s of individual nodes)

*  Analytical environments supporting user-driven data
exploration and analysis, as well as statistical techniques that
can find patterns and trends in low level performance
metrics.

Collectively, these challenges represent a major area of research
for the software performance community. Currently, no open
source or commercial technology exists that organizations can
acquire, easily customize, and deploy to observe their big data
systems [13]. This is a major problem given that the inherent
complexity of building a low overhead and robust observability
solution is a cost that most organizations are not prepared for as
their scale up their systems. Creating a solution requires scalable
and flexible mechanisms for observability, as well as new
performance analysis techniques, packaged into a framework that
organizations can rapidly customize to monitor their systems’
performance.

4. RELATED WORK

Relevant prior work spans several areas. These include
measurement  collection,  visualization, architecture-aware
modeling, and model-based monitoring automation.

There has been significant prior work on collecting general
measurements of resource utilization at process and node level.
This has produced open source packages such as Collectd
(www.collectd.org), Ganglia [14], and Nagios [15]. Ganglia and
Splunk (www.splunk.com) support collection of host-level
measurements across clusters, and provide basic monitoring and

visualization dashboards. Commercial products from HP
(http://www8.hp.com/us/en/software-solutions/systems-
management-server-monitoring-tools/), IBM (http:/

www.ibm.com/software/tivoli), and others also provide similar
collection and visualization capabilities. Tools such as Chukwa
(wiki.apache.org/hadoop/Chukwa) and Sawzall
(research.google.com/archive/sawzall.html) focus on general
analytics on collected log data, including semantics for time series
data sets. However, these tools are not designed to enable capture
and analysis of detailed application-level performance metrics.
They also have limited coverage for the heterogeneous
components that commonly comprise big data systems [16], and
hence have limited utility for a scalable and comprehensive
observability framework. Experimental tools such as Otus [17],
have demonstrated how to build on these basic collection
capabilities to perform architecture-aware measurement and
analysis. Otus is however limited to support only the Hadoop
MapReduce architecture.

In the visualization of large-scale system health and performance,
work by Yin and colleagues take a novel approach inspired by
video games to enable navigation through a complex data
landscape [18]. In this case, the focus was on infrastructure-level
measurement data, however the approach may be extensible for
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other types of measurements. The Theia system [19] provides
architecture-specific visualization for Hadoop-based systems.

Architecture-aware modeling based on architecture styles traces
back to some of the earliest work in software architecture [20].
More recent work such as Rainbow [21] use architectural styles to
model and generate a runtime framework focused on dynamic
adaptation. The Rainbow framework uses measurement probes,
which may include monitoring performance. However, the probes
must be built into the components of the system, and the
generation focuses on style-based reaction strategies when a
probe’s measurement crosses a threshold.

Finally, there has been very little work on using model-driven
approaches to generate monitors. He and colleagues present an
approach that takes steps in this direction [22]. They present a
model-driven approach to composing monitors, synthesizing a
compatible metamodel and then transforming heterogeneous
monitors into that common metamodel. The approach does not
leverage knowledge of architectural styles in the transformation,
and generates only monitors, without aggregations, a
measurement persistence schema, or visualizations.

5. OUR APPROACH

We are creating a solution that uses generation and automation to
address the runtime performance monitoring challenges of big
data systems. A model of the big data system is created and
model-driven approaches are used to generate monitors and
visualizations. These plug into a runtime framework that
automates their deployment and the collection, aggregation,
storage, and display of the performance data.

This solution comprises three elements to address the challenges
of scale in big data systems. These are:

1. A model-driven design time toolkit for formally specifying
the observability requirements for a system, based on an
architecture-aware metamodel.

2. An extensible, customizable measurement framework that
forms the core of the observability runtime architecture. This
includes the distributed metric collection and aggregation
framework, adaptors to monitor off-the-shelf components,
and a data model for storing time series-based metrics.

3. A visualization toolkit that uses novel metaphors to visualize
massive amounts of measured data from executing systems.

Figure 2 shows how these solution elements are used together.
Our current focus is on elements (1) and (2), which we expand
upon below. Element (3) is discussed briefly in Section 6, as
future work.

5.1 Model-Driven Design Time Toolkit

Our model-driven toolkit is based on a metamodel for big data
systems that links the runtime functional structure of the system
with the observability and analysis framework discussed in the
next section. The metamodel precisely represents, in terms of
components, properties, relationships and constraints, the syntax
and semantics of an observability framework for scalable, big data
architectures.

Figure 3 shows some of the key concepts in the metamodel. The
elements represent the common, reusable components that form
an observability framework. The Observability element is the root
of the metamodel, and has a collection of properties that must be
specified in a system model to configure the basic observability



framework behavior. These properties include, for example, the
data model for measurements capture, default behavior for
handling failures, and storage location for the collected
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The metamodel also contains elements that can be used to specify
the architecture styles that a system utilizes. An architectural style
(also referred to as an architectural pattern) defines a family of
related systems, typically by providing a domain-specific design
vocabulary together with constraints on relationships among the
design elements. System-specific components, such as those that
execute business logic, data transformations, and analytics,
typically are based on architecture styles, and in a large-scale
system, multiple architecture styles will be instantiated. Styles
metamodel elements have associated properties that a system
model must specify. For example, a MapReduce Style element has
properties that specify the framework type (e.g. Hadoop), job
names to monitor, location of the cluster, and end-to-end metrics
to capture.

Assets represent the components that comprise a big data system.
The selection of an architecture style constrains the types of assets
that can be instantiated in a model, and also constrains the
topology of connections among the assets. For example, in the
MapReduce style, allowable assets include Source Data Store,
Mappers, Reducers, and an optional Destination Data Store (used
only if the result will be persisted).

Asset definitions for a number of off-the-shelf packages will be
included in the initial solution, and extensibility to represent
custom-developed packages will be provided. A general asset
element has properties that include the set of metrics that can be
captured from a given asset. Metric properties are expressed in
categories that we have defined to mask the differences in
terminologies used across different asset types. For example, with
data base assets, properties are described in terms of categories
representing database characteristics (e.g., size, number of
replicas, data collections), database access (e.g., read and write
performance), and host characteristics (e.g., memory usage, CPU
load).

Exploiting architectures styles in the metamodel makes our
modeling toolkit “architecture aware”, as knowledge of the
architectural style is used to identify the role of runtime
component in the system [23]. We are utilizing the Acme
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Figure 3 — Metamodel Key Concepts

As shown in Figure 2, based on this metamodel, a system
architect uses our model-driven toolkit to select and customize
elements to create a system-specific model. We are utilizing an
Eclipse Modeling Framework (EMF) tool chain
(www.eclipse.org/emf) to specify the metamodel, build the model
editor, and generate custom observability framework code. The
EMEF provides an extensible platform for both the architecture-
aware design time editor and the monitor and visualization
generators. The architectural style defined using the ADL is
transformed into a representation in the EMF Ecore metamodel,
which can then be used by the EMF.Edit and EMF.Codegen
frameworks. EMF.Edit supports construction of a graphical editor
for use by big data system architects to describe an architecture
that is an instantiation of a particular architecture style. After the
architecture is described using EMF.Edit, EMF.Codegen will
generate monitors compatible with the runtime framework, and
visualizations compatible with the visualization toolkit’s
dashboard.

5.2 Monitoring and Analysis Runtime

Framework

The generated monitors plug into the MDE toolkit’s runtime
framework. The main elements of the runtime framework are
shown in Figure 4. The runtime framework supports deployment
of monitors to thousands of nodes, and provides services for



measurement  collection from monitors, sampling and
compression (as needed), measurement storage and archiving, and
the visualization dashboard.
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Figure 4 - Runtime Framework

Monitors collect node-level performance metrics. The metamodel
identifies the node-level metrics to be collected for a particular
architecture style and asset type. Based on the property values
specified in the specific system model, appropriate monitors are
generated by the MDE Design Time Toolkit. We use the Ganglia
framework [14] for node-level monitor insertion and management,
and for measurement collection. The generated monitor code
extends the Gmond (Ganglia Monitoring Daemon), which is
deployed to every node in the big data system.

The architectural style defined in the metamodel identifies
architecture-specific performance metrics, and how these top-
level metrics relate to node-level metrics. This knowledge is used
by the generator in the MDE Design Time Toolkit to identify
opportunities for node-level aggregation of metrics, prior to
collection, and to generate extensions for the Ganglia Gmetad
daemon to perform architecture-aware measurement aggregation
data at the cluster level, with the cluster definition being derived
from the architectural styles being used. The number and
placement of the generated Gmetad instances is determined by the
architectural style and system model properties.

The runtime framework also includes storage for the collected
measurements. This storage must scale to support writing millions
of records per sampling interval while executing ongoing queries
from the visualization dashboard. Here we diverge from the
Ganglia framework. While Ganglia uses RRDtool (Round-Robin
Database) for measurement storage, our initial solution is based
on the Cassandra wide column NoSQL database
(cassandra.apache.org), which balances high write performance
with query flexibility. Although this NoSQL database does not
impose a schema on the data, writers and readers must share a
common data model. This data model is architecture-aware,
generated from knowledge of the architectural style in the
metamodel and from specific property values specified in the
system model.

6. FUTURE WORK

Creation of this model-driven observability solution poses
significant research challenges. The first is the identification and
characterization of big data architecture styles. A style definition
includes the structure of the style (element types and composition
rules), and the allowable property values for the elements. Both
must be sufficiently general to be reusable for performance
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monitoring, but sufficiently specific and constrained to enable
generation of monitors and visualizations.

Next, the measures collected by the generated monitors will likely
require sampling and compression. Resource utilization (CPU and
network) for the monitors on each node must be minimized
(typically less than 1%), and so time-series compression or other
approaches will be needed. For some types of metrics, an
approach may include local storage of fine-grained measurements
at each node or cluster, along with distributed filtering so that only
exceptions or deviations are intelligently reported up to the
runtime framework. An essential challenge is that we would like
precise and fine-grained measurements when the system is at peak
load and resources are already stretched thin. Tradeoffs between
push and pull of measurement data, variable sampling
frequencies, and aggregation/compression approaches will be
explored.

Development of the proposed solution also presents a number of
significant engineering challenges. The collection and storage
components of the solution are themselves a big data system,
which must ingest and store data at terabyte- to petabyte-scale.

To address the scale of the data to be monitored, the visualizations
will have to use advanced visual metaphors such as clustering,
trending, hotspots, and correlations, performed in real time and at
scale. The architectural style definitions must also model the
relationships between node-level resource measurements and end-
to-end system-level measures, and the visualizations must allow
navigation up and down these relationships.

This runtime performance monitoring solution can also be used as
the foundation for automation of design time benchmarking and
performance characterization tasks. The architecture for the
prototype is described using the Design Time Editor, and monitors
and visualizations are generated. For benchmarking, an additional
component, a test client, is added to the solution, and architecture-
aware workloads can be generated for execution by the test client.
The test client is based on the Yahoo! Cloud Serving Benchmark
(YCSB) framework [25], or the YCSB++ extension [26] that
supports coordination of multiple client instances for higher
performance.

7. CONCLUSION

At the scale and dynamic runtime environment of big data
systems, design time performance predictions must be followed
by runtime performance monitoring. We described the
architecture of a proposed toolset for runtime performance
monitoring. The toolset leveraging architectural styles to enable
generation of architecture-aware monitors and visualizations that
execute within a runtime framework for measurement collection,
storage, and visualization. Realizing this toolkit presents
significant engineering and research challenges, which are the
focus of our research.
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