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ABSTRACT 
Big data systems are becoming pervasive. They are distributed 
systems that include redundant processing nodes, replicated 
storage, and frequently execute on a shared “cloud” infrastructure. 
For these systems, design-time predictions are insufficient to 
assure runtime performance in production. This is due to the scale 
of the deployed system, the continually evolving workloads, and 
the unpredictable quality of service of the shared infrastructure. 
Consequently, a solution for addressing performance requirements 
needs sophisticated runtime observability and measurement. 
Observability gives real-time insights into a system’s health and 
status, both at the system and application level, and provides 
historical data repositories for forensic analysis, capacity 
planning, and predictive analytics. Due to the scale and 
heterogeneity of big data systems, significant challenges exist in 
the design, customization and operations of observability 
capabilities. These challenges include economical creation and 
insertion of monitors into hundreds or thousands of computation 
and data nodes, efficient, low overhead collection and storage of 
measurements (which is itself a big data problem), and 
application-aware aggregation and visualization. In this paper we 
propose a reference architecture to address these challenges, 
which uses a model-driven engineering toolkit to generate 
architecture-aware monitors and application-specific 
visualizations. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques, 
Performance attributes. D.2.11 [Software Engineering]: Software 
Architectures – Domain-specific software architectures, 
languages, patterns. 

General Terms 
Performance, Measurement. 

Keywords 
Observability, Model-Driven Engineering, Big Data 

1. INTRODUCTION 
The exponential growth of data in the last decade has fueled rapid 
evolution in the scale of software systems. Internet-born 
organizations such as Google and Facebook are at the cutting edge 
of this scale-driven revolution, collecting, managing, storing, and 
analyzing several petabytes of new data every day, and operating 
some of the largest data repositories ever constructed [1].  

Beyond the Internet companies, data-intensive systems and big 
data applications are becoming pervasive across a wide range of 
business and scientific domains. For example, 

• Modern commercial airliners produce approximately 0.5TB 
of operational data per flight [2]. This data can be used to 
diagnose faults, optimize fuel consumption, and predict 
maintenance. Airlines must build scalable systems to capture, 
manage, and analyze this data to improve reliability and 
reduce costs.  

• Big data analytics for healthcare could save an estimated 
$450 billion in the USA [3]. Analysis of petabytes of data 
across patient populations, taken from diverse sources such 
as insurance payers, public health, and clinical studies, can 
extract new insights for disease treatment and prevention, 
and reduce costs by improving patient outcomes and 
operational efficiencies. 

• In operation, the Square Kilometer Array telescope will 
generate 1TB/sec of pre-processed data, which results in one 
exabyte of data every 13 days. Even with significant 
aggregation, this system will need a sophisticated data 
archive and distribution system to delivery exabytes of 
observation data to astronomers 
(https://www.skatelescope.org/software-and-computing).  

• By one estimate, there are 14,000 million “things” with 
sensors, generating data that is communicated over the 
Internet. By the year 2020, this Internet of Things (IoT) will 
generate 4 zettabytes of data per year supporting automation 
monitoring, and optimization of processes and services 
around the world [4]. 

With systems at these immense scales, meaningful design time 
performance prediction becomes essentially infeasible, both 
theoretically and pragmatically. Building models to represent 
complex static and dynamic component compositions in both the 
system and the underlying infrastructure, exploiting multiple 
architecture styles, and accurately representing combinations of 
heterogeneous and uncertain workloads challenges the state of the 
art in performance modeling. Pragmatically, even if it were 
possible to build such models, post-deployment data growth, 
shared cloud-based infrastructures, and rapid application 
evolution would render model results invalid more or less 
immediately.  

For these reason, assuring runtime performance at scale must be 
based on observing and analyzing actual application behavior. 
Observability provides real-time insights into system health and 
status, both at the infrastructure and application level, and 
provides historical data repositories for forensic analysis, capacity 
planning, and potentially for predictive analytics based on 
statistical techniques.  

This paper discusses the challenges of building massively 
scalable, easily configurable and lightweight observability 
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solutions that can form the basis of performance monitoring and 
analysis solutions. In response to these challenges, we propose 
and outline an approach for observability based on a model-driven 
toolkit that is the focus of our current research. 

2. CHARACTERISTICS OF BIG DATA 
SYSTEMS 
The major runtime elements of a typical big data system are 
shown in Figure 1. Inputs from sensors, devices, humans, and 
other systems are delivered to the system, where they are ingested 
through a pipeline that translates and transforms the data and 
writes it to a persistent store. The persistent store is frequently 
“polygot”, employing a heterogeneous mix of SQL, NoSQL, and 
NewSQL technologies [5]. Users query stored data through many 
types of devices and applications. Some applications are within 
the system (i.e. under the same design and operational authority as 
the system), while other applications may be independent of the 
system and integrated through various endpoint mechanisms. The 
system executes in a cloud infrastructure, shared with other 
systems. 

Big data systems are typically horizontally scaled distributed 
systems, operating over clusters of hundreds or thousands of 
compute and storage nodes [6]. Requests to read and write data 
fan out to many nodes, executing pipeline and/or parallel 
topologies, resulting in highly variable response latency [7]. 

In this context, servers are treated as “cattle, not pets” [8], 
meaning that nodes are expected to fail, and to be casually 
replaced with new instances. Redundant processing and replicated 
storage capabilities shift the primary concern to the herd (cluster), 
not to any individual (single server). This strategy requires 
applications to operate with partial failure as a normal condition 
[6]. 

 

Figure 1 - Typical Big Data System 

3. THE NEED FOR OBSERVABILITY 
In the environment presented in Figure 1, design time predictions 
of system performance, produced through modeling or 
prototyping, can help to develop and evaluate the system’s 
architecture and components. However, design time prediction is 
insufficient to assure the runtime performance of these large-scale 
systems in production for two reasons. First, at such scale, high 
fidelity prototyping and model validation is not practical. The 
time and cost to generate petascale data sets, and the cost and 
complexity of thousand-node server clusters with millions of 
clients requires simplification and approximate characterization of 
the actual architecture styles and technologies to be used. 

Furthermore, after the system is deployed and in production, there 
is typically no control over the number of input sources and 
associated inputs data rates (unless the system simply discards 
input data). This means the size of data being managed and 
analyzed quickly grows beyond predicted volumes, rendering 
predictions unreliable. There is also no control over the number of 
users and external applications, and the queries they make (unless 
the system rejects requests). Finally, a shared cloud infrastructure 
may not provide the expected continuous quality of service due to 
contention for resources at all levels (storage, network, and 
processor) and due to infrastructure failures [9][10].  

These challenges of managing and evolving system performance 
must therefore be addressed by instrumenting the system to 
observe runtime behavior, and by aggregating the collected 
performance measurements to identify trends and issues. In 
production, there is a close relationship between performance and 
system health. For example, in a distributed system with 
asynchronous communication, high response latency is generally 
indistinguishable from node failure or network partition. In 
addition, due to the fan out inherent in processing individual 
requests, many nodes will contribute to the latency of any 
particular response. In systems with redundant processing 
capacity and replicated storage, a sequence of identical requests 
may be executed by different sets of nodes, with each set 
inevitably having different composite performance/health 
characteristics. This leads to a complex relationship between the 
performance/health of an individual node and end-to-end system 
performance [7]. 

Redundancy also makes it possible for a system to meet its service 
level requirements even when experiencing partial system 
failures. Seemingly catastrophic numbers of node failures may not 
impact system performance if the failures occur when the system 
contains spare capacity [10]. In scalable systems, components are 
often designed to ‘fail fast’ and employ stateless designs where 
possible to facilitate rapid recovery [11]. 

The performance data collected from the running system serves 
multiple purposes. These include operational monitoring, ongoing 
tuning, and preventative actions, such as adding capacity to 
handle load surges. These measurements also support system and 
architecture evolution, serving as “design time prototypes” for the 
next generation of the system. Finally, they may be used as part of 
an emerging autonomic capability [12]. 

In any runtime monitoring function, there are many common 
concerns. These include the intrusiveness of the monitoring on the 
host performance (measured in additional processor and memory 
utilization), measurement storage footprint (including retention 
and archiving), and user interface usability. However, in large-
scale big data systems, these concerns become challenges that 
have not been solved in practice, except for point solutions that 
are highly customized for a specific business need [13] and have 
required massive investments in time and effort. 

Hence, in the dynamic, uncertain runtime environments in which 
big data systems exist, some specific challenges of observability 
include: 

• Monitoring a heterogeneous deployment at scale (1000s of 
nodes), with an ever-changing dynamic component 
configuration and load. While each component may have its 
own dedicated monitoring interface, nothing exists that can 
seamlessly integrate metrics from each component into the 
same monitoring framework. This forces every organization 
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to develop and maintain a custom observability solution to 
handle the specific components they have composed into 
their systems. 

• Collection, storage, and compression of millions of time 
series metrics - a big data problem in itself - with acceptable 
overhead and footprint 

• Aggregating individual metrics into meaningful application 
performance indicators (e.g., total request load on all 
database nodes per second in a heterogeneous database 
environment with 1000’s of individual nodes) 

• Analytical environments supporting user-driven data 
exploration and analysis, as well as statistical techniques that 
can find patterns and trends in low level performance 
metrics. 

Collectively, these challenges represent a major area of research 
for the software performance community. Currently, no open 
source or commercial technology exists that organizations can 
acquire, easily customize, and deploy to observe their big data 
systems [13]. This is a major problem given that the inherent 
complexity of building a low overhead and robust observability 
solution is a cost that most organizations are not prepared for as 
their scale up their systems. Creating a solution requires scalable 
and flexible mechanisms for observability, as well as new 
performance analysis techniques, packaged into a framework that 
organizations can rapidly customize to monitor their systems’ 
performance. 

4. RELATED WORK 
Relevant prior work spans several areas. These include 
measurement collection, visualization, architecture-aware 
modeling, and model-based monitoring automation. 

There has been significant prior work on collecting general 
measurements of resource utilization at process and node level. 
This has produced open source packages such as Collectd 
(www.collectd.org), Ganglia [14], and Nagios [15]. Ganglia and 
Splunk (www.splunk.com) support collection of host-level 
measurements across clusters, and provide basic monitoring and 
visualization dashboards. Commercial products from HP 
(http://www8.hp.com/us/en/software-solutions/systems-
management-server-monitoring-tools/), IBM (http:// 
www.ibm.com/software/tivoli), and others also provide similar 
collection and visualization capabilities. Tools such as Chukwa 
(wiki.apache.org/hadoop/Chukwa) and Sawzall 
(research.google.com/archive/sawzall.html) focus on general 
analytics on collected log data, including semantics for time series 
data sets. However, these tools are not designed to enable capture 
and analysis of detailed application-level performance metrics. 
They also have limited coverage for the heterogeneous 
components that commonly comprise big data systems [16], and 
hence have limited utility for a scalable and comprehensive 
observability framework. Experimental tools such as Otus [17], 
have demonstrated how to build on these basic collection 
capabilities to perform architecture-aware measurement and 
analysis. Otus is however limited to support only the Hadoop 
MapReduce architecture.  

In the visualization of large-scale system health and performance, 
work by Yin and colleagues take a novel approach inspired by 
video games to enable navigation through a complex data 
landscape [18]. In this case, the focus was on infrastructure-level 
measurement data, however the approach may be extensible for 

other types of measurements. The Theia system [19] provides 
architecture-specific visualization for Hadoop-based systems. 

Architecture-aware modeling based on architecture styles traces 
back to some of the earliest work in software architecture [20]. 
More recent work such as Rainbow [21] use architectural styles to 
model and generate a runtime framework focused on dynamic 
adaptation. The Rainbow framework uses measurement probes, 
which may include monitoring performance. However, the probes 
must be built into the components of the system, and the 
generation focuses on style-based reaction strategies when a 
probe’s measurement crosses a threshold.  

Finally, there has been very little work on using model-driven 
approaches to generate monitors. He and colleagues present an 
approach that takes steps in this direction [22]. They present a 
model-driven approach to composing monitors, synthesizing a 
compatible metamodel and then transforming heterogeneous 
monitors into that common metamodel. The approach does not 
leverage knowledge of architectural styles in the transformation, 
and generates only monitors, without aggregations, a 
measurement persistence schema, or visualizations.   

5. OUR APPROACH 
We are creating a solution that uses generation and automation to 
address the runtime performance monitoring challenges of big 
data systems. A model of the big data system is created and 
model-driven approaches are used to generate monitors and 
visualizations. These plug into a runtime framework that 
automates their deployment and the collection, aggregation, 
storage, and display of the performance data. 

This solution comprises three elements to address the challenges 
of scale in big data systems. These are: 

1. A model-driven design time toolkit for formally specifying 
the observability requirements for a system, based on an 
architecture-aware metamodel. 

2. An extensible, customizable measurement framework that 
forms the core of the observability runtime architecture. This 
includes the distributed metric collection and aggregation 
framework, adaptors to monitor off-the-shelf components, 
and a data model for storing time series-based metrics.  

3. A visualization toolkit that uses novel metaphors to visualize 
massive amounts of measured data from executing systems. 

Figure 2 shows how these solution elements are used together. 
Our current focus is on elements (1) and (2), which we expand 
upon below. Element (3) is discussed briefly in Section 6, as 
future work. 

5.1 Model-Driven Design Time Toolkit  
Our model-driven toolkit is based on a metamodel for big data 
systems that links the runtime functional structure of the system 
with the observability and analysis framework discussed in the 
next section. The metamodel precisely represents, in terms of 
components, properties, relationships and constraints, the syntax 
and semantics of an observability framework for scalable, big data 
architectures. 

Figure 3 shows some of the key concepts in the metamodel. The 
elements represent the common, reusable components that form 
an observability framework. The Observability element is the root 
of the metamodel, and has a collection of properties that must be 
specified in a system model to configure the basic observability 
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framework behavior. These properties include, for example, the 
data model for measurements capture, default behavior for 
handling failures, and storage location for the collected 
measurements.  

 

Figure 2 - Toolset Workflow 

The metamodel also contains elements that can be used to specify 
the architecture styles that a system utilizes. An architectural style 
(also referred to as an architectural pattern) defines a family of 
related systems, typically by providing a domain-specific design 
vocabulary together with constraints on relationships among the 
design elements. System-specific components, such as those that 
execute business logic, data transformations, and analytics, 
typically are based on architecture styles, and in a large-scale 
system, multiple architecture styles will be instantiated. Styles 
metamodel elements have associated properties that a system 
model must specify. For example, a MapReduce Style element has 
properties that specify the framework type (e.g. Hadoop), job 
names to monitor, location of the cluster, and end-to-end metrics 
to capture.  

Assets represent the components that comprise a big data system. 
The selection of an architecture style constrains the types of assets 
that can be instantiated in a model, and also constrains the 
topology of connections among the assets. For example, in the 
MapReduce style, allowable assets include Source Data Store, 
Mappers, Reducers, and an optional Destination Data Store (used 
only if the result will be persisted).  

Asset definitions for a number of off-the-shelf packages will be 
included in the initial solution, and extensibility to represent 
custom-developed packages will be provided. A general asset 
element has properties that include the set of metrics that can be 
captured from a given asset. Metric properties are expressed in 
categories that we have defined to mask the differences in 
terminologies used across different asset types. For example, with 
data base assets, properties are described in terms of categories 
representing database characteristics (e.g., size, number of 
replicas, data collections), database access (e.g., read and write 
performance), and host characteristics (e.g., memory usage, CPU 
load).  

Exploiting architectures styles in the metamodel makes our 
modeling toolkit “architecture aware”, as knowledge of the 
architectural style is used to identify the role of runtime 
component in the system [23]. We are utilizing the Acme 

architecture description language (ADL) [24] to create a formal 
description of the semantics of components and connectors within 
a particular architectural style, and the composition constraints for 
creating configurations (systems) that conform to the style. 
However, the solution does not depend on specific features of 
Acme, and other ADLs that allow representation of runtime 
components and connectors (e.g., AADL) could be used. The 
formal description also specifies the properties that should be 
exposed as performance metrics by elements of the metamodel 
that conform to the style. As shown in Figure 2, experts or 
researchers use an ADL to create the formal definition of an 
architectural style. This formal definition then becomes part of the 
metamodel for the model-driven toolkit. This approach has the 
strength of being extensible, enabling new architecture styles to be 
formally defined and incorporated into the metamodel.  

 

Figure 3 – Metamodel Key Concepts 

As shown in Figure 2, based on this metamodel, a system 
architect uses our model-driven toolkit to select and customize 
elements to create a system-specific model. We are utilizing an 
Eclipse Modeling Framework (EMF) tool chain 
(www.eclipse.org/emf) to specify the metamodel, build the model 
editor, and generate custom observability framework code. The 
EMF provides an extensible platform for both the architecture-
aware design time editor and the monitor and visualization 
generators. The architectural style defined using the ADL is 
transformed into a representation in the EMF Ecore metamodel, 
which can then be used by the EMF.Edit and EMF.Codegen 
frameworks. EMF.Edit supports construction of a graphical editor 
for use by big data system architects to describe an architecture 
that is an instantiation of a particular architecture style. After the 
architecture is described using EMF.Edit, EMF.Codegen will 
generate monitors compatible with the runtime framework, and 
visualizations compatible with the visualization toolkit’s 
dashboard. 

5.2 Monitoring and Analysis Runtime 
Framework 
The generated monitors plug into the MDE toolkit’s runtime 
framework. The main elements of the runtime framework are 
shown in Figure 4. The runtime framework supports deployment 
of monitors to thousands of nodes, and provides services for 
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measurement collection from monitors, sampling and 
compression (as needed), measurement storage and archiving, and 
the visualization dashboard.  

 

Figure 4 - Runtime Framework 

Monitors collect node-level performance metrics. The metamodel 
identifies the node-level metrics to be collected for a particular 
architecture style and asset type. Based on the property values 
specified in the specific system model, appropriate monitors are 
generated by the MDE Design Time Toolkit. We use the Ganglia 
framework [14] for node-level monitor insertion and management, 
and for measurement collection. The generated monitor code 
extends the Gmond (Ganglia Monitoring Daemon), which is 
deployed to every node in the big data system. 

The architectural style defined in the metamodel identifies 
architecture-specific performance metrics, and how these top-
level metrics relate to node-level metrics. This knowledge is used 
by the generator in the MDE Design Time Toolkit to identify 
opportunities for node-level aggregation of metrics, prior to 
collection, and to generate extensions for the Ganglia Gmetad 
daemon to perform architecture-aware measurement aggregation 
data at the cluster level, with the cluster definition being derived 
from the architectural styles being used. The number and 
placement of the generated Gmetad instances is determined by the 
architectural style and system model properties. 

The runtime framework also includes storage for the collected 
measurements. This storage must scale to support writing millions 
of records per sampling interval while executing ongoing queries 
from the visualization dashboard. Here we diverge from the 
Ganglia framework. While Ganglia uses RRDtool (Round-Robin 
Database) for measurement storage, our initial solution is based 
on the Cassandra wide column NoSQL database 
(cassandra.apache.org), which balances high write performance 
with query flexibility. Although this NoSQL database does not 
impose a schema on the data, writers and readers must share a 
common data model. This data model is architecture-aware, 
generated from knowledge of the architectural style in the 
metamodel and from specific property values specified in the 
system model.  

6. FUTURE WORK 
Creation of this model-driven observability solution poses 
significant research challenges. The first is the identification and 
characterization of big data architecture styles. A style definition 
includes the structure of the style (element types and composition 
rules), and the allowable property values for the elements. Both 
must be sufficiently general to be reusable for performance 

monitoring, but sufficiently specific and constrained to enable 
generation of monitors and visualizations.  

Next, the measures collected by the generated monitors will likely 
require sampling and compression. Resource utilization (CPU and 
network) for the monitors on each node must be minimized 
(typically less than 1%), and so time-series compression or other 
approaches will be needed. For some types of metrics, an 
approach may include local storage of fine-grained measurements 
at each node or cluster, along with distributed filtering so that only 
exceptions or deviations are intelligently reported up to the 
runtime framework. An essential challenge is that we would like 
precise and fine-grained measurements when the system is at peak 
load and resources are already stretched thin. Tradeoffs between 
push and pull of measurement data, variable sampling 
frequencies, and aggregation/compression approaches will be 
explored. 

Development of the proposed solution also presents a number of 
significant engineering challenges. The collection and storage 
components of the solution are themselves a big data system, 
which must ingest and store data at terabyte- to petabyte-scale. 

To address the scale of the data to be monitored, the visualizations 
will have to use advanced visual metaphors such as clustering, 
trending, hotspots, and correlations, performed in real time and at 
scale. The architectural style definitions must also model the 
relationships between node-level resource measurements and end-
to-end system-level measures, and the visualizations must allow 
navigation up and down these relationships. 

This runtime performance monitoring solution can also be used as 
the foundation for automation of design time benchmarking and 
performance characterization tasks. The architecture for the 
prototype is described using the Design Time Editor, and monitors 
and visualizations are generated. For benchmarking, an additional 
component, a test client, is added to the solution, and architecture-
aware workloads can be generated for execution by the test client. 
The test client is based on the Yahoo! Cloud Serving Benchmark 
(YCSB) framework [25], or the YCSB++ extension [26] that 
supports coordination of multiple client instances for higher 
performance. 

7. CONCLUSION 
At the scale and dynamic runtime environment of big data 
systems, design time performance predictions must be followed 
by runtime performance monitoring. We described the 
architecture of a proposed toolset for runtime performance 
monitoring. The toolset leveraging architectural styles to enable 
generation of architecture-aware monitors and visualizations that 
execute within a runtime framework for measurement collection, 
storage, and visualization. Realizing this toolkit presents 
significant engineering and research challenges, which are the 
focus of our research. 
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