Models of Software Evolution:
Life Cycle and Process

SEI Curriculum Module SEI-CM-10-1.0
October 1987

Walt Scacchi
University of Southern California

Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.

Draft For SEl Internal Use Only

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include textbooks and educational software tools.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Requests for additional information should be addressed to the Director of Education, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Comments on SEI materials are solicited, and may be sent to the Director of Education, or to the module author.

Walt Scacchi

Computer Science Department
University of Southern California
Los Angeles, CA 90089-0782

© 1987 Softwar e Engineering I nstitute

Models of Software Evolution:

Life Cycle and Process

Acknowledgements

Contents

Priscilla Fowler provided helpful comments and
suggestions during the development of this module.
Robert Glass and Marc Kellner aso provided helpful
commentsin review of this module.

Capsule Description
Philosophy
Objectives
Prerequisite Knowledge
M odule Content
Outline
Annotated Outline
Glossary
Teaching Considerations
Bibliography

SEI-CM-10-1.0 Draft For SEl Internal Use Only
10/16/87 14:56

W W wWRE R PR

13
15
16

Models of Software Evolution: Life Cycle and Process

Module Revision History

Version 1.0 (October 1987) draft for SEI internal use only

iv Draft For SEl Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution:
Life Cycle and Process

Capsule Description

This module presents an introduction to models of
software system evolution and their role in structur-
ing software development. It includes a review of
traditional software life cycle models as well as soft-
ware process models that have been recently pro-
posed. It identifies three kinds of aternative models
of software evolution that focus attention to either
the products, production processes, or production
settings as the major source of influence. It ex-
amines how different software engineering tools and
techniques can support life cycle or process ap-
proaches. It also identifies techniques for evaluating
the practical utility of a given model of software
evolution for development projects in different kinds
of organizational settings.

Philosophy

This module presents the concepts and approaches
for organizing software engineering activities over
the life of software systems. As such, it focuses at-
tention to:

o what software life cycle models are and
how they are used

e what software process models are and
how they can be used to model the soft-
ware life cycle

o traditional software life cycle models

e dternative software evolution models
centered around software product, pro-
duction process, or production setting
characteristics

¢ how software engineering tools and tech-
niques fit into the models

e techniques for evaluating software evolu-

SEI-CM-10-1.0

tion models and methodologies

e techniques for customizing software life
cycle process models to best suit your
own needs.

Objectives

The material covered by this module seeks to convey
to students the following objectives:

¢ a basic recognition that software systems
can be produced and consumed accord-
ing to different systematic models of
software evolution

o there are alternative ways to organize
software development efforts, and that
the alternatives can focus attention to
software product, production process, or
production setting characteristics

e more attention is being focussed to
codifying models of software evolution
into computational forms amenable to
simulation, anaysis, and articulation of
schemes for integrating various software
engineering tools and techniques

o software evolution is itself a process that
can be prototyped, systematically devel-
oped, (re-)configured, measured, refined,
maintained, and managed

Prerequisite Knowledge

The prequisites for this subject matter depend on the
level of coverage intended for students. For a short
introduction to life cycle models of three hours of
less, an introduction to computer science and pro-

Draft For SEl Internal Use Only 1

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

gramming is sufficient background. For a more in-
depth treatment of traditional and alternative soft-
ware life cycle models of 15-20 hours, then prior ex-
perience as a participant in a software development
project is strongly recommended, as is knowledge of
computational process models (e.g., state machines,
augmented transition networks, petri networks). For
an advanced, full course-length examination of soft-
ware life cycle and process models, then prior cour-
sework in software engineering and large software
project experience is strongly recommended, as is
some prior training or experience with experimental
research design methods.

2 Draft For SEl Internal Use Only
10/16/87 14:56

SEI-CM-10-1.0

Models of Software Evolution: Life Cycle and Process

Module Content

Outline

I. Introduction
1. Historical originsfor system life cycle models
2. Software life cycle activities
3. What is a software life cycle model ?
4. How can software life cycle models be used?
5. What is a software process model ?
6. Evolutionistic vs. Evolutionary Models
7. The neglected activities of software evolution
I1. Traditional Software Life Cycle Models
1. Classic Software Life Cycle

2. Stepwise Refinement and Iterative
Enhancement

3. Incremental Release
4. Industrial Practices and Military Standards
[11. Alternative Life Cycle Models

1. Software Product Development Models
a. Prototyping
b. Assembling Reusable Componentry
c. Application Generation
d. Program Evolution Models

2. Software Production Process Models
a. Non-Operationa Process Models
b. Operationa Process Models

3. Software Production Setting Models

a. Software project management process
models

b. Organizational software development models
c¢. Customer resource life cycle models

d. Software technology transfer and transition
models

e. Other models for the organization of system
production and manufacturing

IV. Where do tools and techniques fit into the
models?

1. Life Cycle support mechanisms
2. Process support mechanisms
V. Evaluating Life Cycle Models and Methodologies

1. Comparative evaluation of life cycle and
process methodologies

SEI-CM-10-1.0

2. Research problems and opportunities
V1. Customizable Life Cycle Process Models

1. Selecting an Existing Model

2. Customizing your own Model

3. Using Process Metrics and Empirical
Measurements

4. Staffing the Life Cycle Process Modeling
Activity

Annotated Outline

|. Introduction

Software evolution represents the cycle of activitiesin-
volved in the development, use, and maintenance of
software systems. Software systems come and go
through a series of passages that account for their in-
ception, initial development, productive operation, up-
keep, and retirement from one generation to another.
Materia in this section identifies the historical origins
of the software life cycle concept, the general activities
included, the similarities and differences between soft-
ware life cycle and software process models, and re-
lated issues. This section is therefore appropriate for al
students of software engineering.

1. Historical originsfor system life cycle models

Originally, system life cycle models emerged in the
fields of evolutionary biology and cybernetics. In
turn, models of software evolution date back to the
earliest projects developing large software systems
[Benington56, Hosier61, Royce70]. Overall, the ap-
parent purpose of these software life cycle models
was to provide an abstract scheme accounting for the
"natural” or engineered development of software
systems. Such a scheme could therefore serve as a
basis for planning, organizing, staffing, coordinat-
ing, budgeting, and directing software development
activities.
2. Software life cycle activities

For more than a decade, many descriptions of the
classic software life cycle (often referred to as "the
waterfal chart") have appeared (e.g., [Royce70,
Boehm76, Distaso80, Scacchi84, Fairley85]) and
usually include some version of the following activi-
ties:
e System Initiation/Adoption: where do sys-
tems come from? In most situations, new

Draft For SEl Internal Use Only 3

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

systems replace or supplement existing
processing mechanisms whether they were
previously automated, manual, or infor-
mal.

Requirement Analysis and Specification:
identifies the problems a new software
system is suppose to solve.

Functional Specification or Prototyping:
identifies and potentially formalizes the
objects of computation, their attributes and
relationships, the operations that transform
these objects, the constraints that restrict
system behavior, and so forth.

Partition and Selection (Build vs. Buy vs.
Reuse): given requirements and functional
specifications, divide the system into
managable pieces that denote logical sub-
systems, then determine whether new, ex-
isting, or reusable software systems cor-
respond to the needed pieces.

Architectural Configuration Specification:
defines the interconnection and resource
interfaces between system modules in
ways suitable for their detailed design and
overall configuration management.

Detailed Component Design Specification:
defines the procedural methods through
which each module€'s data resources are
transformed from required inputs into pro-
vided outputs.

Component Implementation and
Debugging: codifies the preceding speci-
fications into operational source code im-
plementations and validates their basic op-
eration.

Software Integration and Testing: affirms
and sustains the overall integrity of the
software system architectural configura-
tion through verifying the consistency and
completeness of implemented modules,
verifying the resource interfaces and inter-
connections against their specifications,
and validating the performance of the sys-
tem and subsystems against their require-

ments.
e Documentation Revision and System
Delivery: packaging and rationalizing

recorded system development description
into systematic documents and user
guides, al in a form suitable for dissemi-
nation and system support.

Training and Use: providing system users
with instructional aids and guidance for
understanding the system’s capabilities
and limits in order to effectively use the
system.

o Software Maintenance: sustaining the use-

3.

5.

Draft For SEl Internal Use Only

10/16/87 14:56

ful operation of a system in its host/target
environment by providing requested func-
tional enhancements, repairs, performance
improvements, and conversions.

What is a software life cycle model ?

A sofware life cycle model is either a descriptive or
prescriptive characterization of software evolution.
Typicaly, it is easier to articulate a prescriptive life
cycle model for how software systems should be de-
veloped. This is possible since most such models
are intuitive. This means that many software devel-
opment details can be ignored, glossed over, or
generalized. This, of course, should raise concern
for the relative validity and robustness of such life
cycle models when developing different kinds of ap-
plication systems in different kinds of development
settings. Descriptive life cycle models, on the other
hand, characterize how software systems are ac-
tually developed. As such, they are less common
and more difficult to articulate for an obvious
reason: one must observe or collect data throughout
the development of a software system, a period of
elapsed time usualy measured in years. Also,
descriptive models are specific to the systems ob-
served, and only generalizable through systematic
analysis. Therefore, this suggests the prescriptive
software life cycle models will dominate attention
until a sufficient base of observational data is avail-
able to articulate empirically grounded descriptive
life cycle models.

. How can software life cycle models be used?

Some of the ways these models can be used include:

e to organize, plan, staff, budget, schedule
and manage software project work over or-
ganizational time, space, and computing
environments.

e as prescriptive outlines for what docu-
ments to produce for delivery to client.

¢ as a basis for determining what software
engineering tools and methodologies will
be most appropriate to support different
life cycle activities.

o as frameworks for analyzing or estimating
patterns of resource allocation and con-
sumption during the software life cycle
[Boehm81a].

e as comparative descriptive or prescriptive
accounts for how software systems come
to be the way they are.

¢ as a basis for conducting empirical studies
to determine what affects software produc-
tivity, cost, and overall quality.

What is a software process model ?

A software process model often represents a net-

SEI-CM-10-1.0

Models of Software Evolution: Life Cycle and Process

SEI-CM-10-1.0

worked sequence of activities, objects, transfor-
mations, and events that embody strategies for ac-
complishing software evolution [Potts84, Wileden86,
Dowson86]. Such models can be used to develop
more precise and formalized descriptions of soft-
ware life cycle activities. Their power emerges from
their utilization of a sufficiently rich notation, syn-
tax, or semantics, often suitable for computational
processing.

Software process networks can be viewed as
representing methodical task chains. Task chains
structure the transformation of computational en-
tities through a passage of sequence of actions that
denote each process activity. Task chains are
idealized plans of what actions should be accom-
plished, and in what order. For example, a task
chain for the activity of object-oriented software de-
sign might include the following task actions:

e Develop an informa narrative specifica-
tion of the system.

o |dentify the objects and their attributes.
o |dentify the operations on the objects.

o |dentify the interfaces between objects, at-
tributes, or operations.

¢ Implement the operations.

Task chains join or split into other task chains result-
ing in an overall production lattice. The production
lattice represents the "organizational system" that
transforms raw computational, cognitive, and other
organizational resources into assembled, integrated
software systems. The production lattice therefore
represents the structure of how a software system is
developed, used, and maintained. However, tasks
chains and actions are never sufficiently described to
anticipate all possible contingencies or foul-ups that
can emerge in the real-world of software develop-
ment. Thus any software production lattice will in
some way realize only an approximate or incomplete
description of software development. As such,
articulation work will be performed when a task
chain isinadequate or breaks down. The articulation
work then represents a non-deterministic sequence
of actions taken to restore progress on the disarticu-
lated task chain, or else to shift the flow of produc-
tive work onto some other task chain [Bendifallah87].

. Evolutionistic vs. Evolutionary Models

Every model of software evolution makes certain as-
sumptions about what is the meaning of evolution.
In one such analysis of these assumptions, two dis-
tinct views are apparent: evolutionistic models focus
attention to the direction of change in terms of
progress through a series of stages eventualy lead-
ing to some final stage; evolutionary models on the
other hand focus attention to the mechanisms and
processes that change systems [King84]. Evolutionis-
tic models are often intuitive and useful as organ-

izing frameworks for managing and tooling software
development efforts. But they are poor predictors of
why certain changes are made to a system, and why
systems evolve in similar or different ways
[Bendifallah87]. Evolutionary models are concerned
less with the stage of development, but more with
the technological mechanisms and organizational
processes that guide the emergence of a system over
space and time. As such, it should become apparent
that the traditional models are evolutionistic, while
the most of the aternative models are evolutionary.

7. The neglected activities of software evolution

Three activities critical to the overal evolution of
software systems are maintenance, technology trans-
fer, and evaluation. However, these activities are of-
ten inadequately addressed in most models of soft-
ware evolution. Thus, any model of software evolu-
tion should be examined to see to what extent it
addresses these activities.

Software maintenance often seems to be described
as just another activity in the evolution of software.
However, many studies indicate that software sys-
tems spend most of their useful life in this activity
[Boehm76, Boehm8la]. A reasonable examination
of the activity indicates that maintenance represent
ongoing incremental iterations through the life cycle
activities that precede it [Basili75]. These iterations
are an effective way to incorporate new functional
enhancements, remove errors, restructure code, im-
prove system performance, or convert a system to
run in another environment. Subsequently, software
maintenance activities represent micro-level pas-
sages through the life cycle. However, it is aso
clear that many other technical and organizational
circumstances profoundly shape the evolution of a
software system and its host environment
[Lehman86a, Bendifallah87]. Thus, every software
life cycle or process model should be closely ex-
amined to see to what extent its accounts for what
happens to a software system during most of its sus-
tained operation.

Concerns for system installation and support need to
be addressed during the earliest stages of software
evolution. These concerns eventually become the
basis for determining the success or failure of soft-
ware system use and maintenance activities. Early
and sustained involvement of usersin system devel-
opment is one of the most direct ways to affect a
successful software technology transfer. Failure to
involve users is one of the most common reasons
why system use and maintenance is troublesome.
Thus, any model of software evolution can be evalu-
ated according to the extent that it accomodates acti-
vities or mechanisms that encourage system devel-
opers and users to cooperate.

Evaluating the evolution of software systems helps

Draft For SEl Internal Use Only 5
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

determine which development activities or actions
could be made more effective. Many models of soft-
ware evolution do not address how system devel-
opers (or users) should evaluate their practices to
determine which of their activities could be im-
proved or restructured. Technical reviews and soft-
ware inspections often focus attention to how to im-
prove the quality of the software products being de-
veloped, while the organizational and technological
processes leading to these products receive less at-
tention. Evaluating development activities also im-
plies that both the analytical skills and tools are
available to a development group. Thus, models of
software evolution can also be scrutinized to deter-
mine to what extent they incorporate or structure
development activities in ways that provide devel-
opers with the means to evaluate the effectiveness of
the engineering practices.

Finally, one important purpose of evaluating local
practices for software evolution is to identify oppor-
tunities where new technologies can be inserted. In
many sSituations, new software engineering tools,
techniques, or management strategies are introduced
during the middle of a system development effort.
How do such introductions impact existing prac-
tices? What consequences do such introductions
have on the maintainability of systems currently in
use or in development? Software maintenance, tech-
nology transfer, and process evaluation are each cri-
tical to the effective evolution of software systems,
asistheir effect on each other. Thus, they should be
treated collectively, and in turn, models of software
evolution can be reviewed in terms of how well they
address this collective.

I1. Traditional Software Life Cycle Models

These models of software evolution have been with us
in some cases since the earliest days of software engi-
neering. The classic software life cycle (or "waterfal"
model) and stepwise refinement are widely instantiated
in just about all books on modern programming prac-
tice and software engineering. The incremental release
model is closely related to industrial practices where it
most often occurs. Military standards have also reified
certain forms of the classic life cycle modd into re-
quired practice for government contractors. But as all
of these life cycle models have been in use for some
time, we refer to them as the traditional models, and
identify each below:

1. Classic Software Life Cycle

The classic software life cycle is often represented
as a simple waterfall software phase model, where
software evolution proceeds through an orderly se-
guence of transitions from one phase to the next in
linear order. Such models resemble finite state ma-
chine descriptions of software evolution. However,
such models have been perhaps most useful in help-
ing to structure and manage large software devel-

Draft For SEl Internal Use Only

opment projects in organizational settings.

2. Stepwise Refinement and lterative
Enhancement

Developing software systems through ongoing re-
finement and enhancement of high-level system
specifications into source code components [Wirth71,
Basili75]. These models have been most effective in
helping to teach individual programmers how to or-
ganize their software development work. Many in-
terpretations of the classic software life cycle sub-
sume this approach within their design and imple-
mentations.

3. Incremental Release

Developing systems by first providing essential
operating functions, then providing system users
with improved and more capable versions of a sys-
tem at regular intervals [Tully84]. This model com-
bines the classic software life cycle with iterative
enhancement at the level of system development or-
ganization. It also provides a way to periodically
distribute software maintenance updates and ser-
vices to dispersed user communities. This in turn
accomodates the provision of standard software
maintenance contracts. It is therefore a popular
model of software evolution used by commercial
firms.

4. Industrial Practices and Military Standards

Industrial firms often adopt some variation of the
classic model as the basis of the software develop-
ment practice [Royce70, Boehm76, Distaso80,
Scacchi84, Scacchi86a]. Many government contrac-
tors organize their activities according to military
standard life cycle models such as that embodied in
MIL-STD-2167 [MIL-STD-2167]. Such standards
outline not only some variation of the classic life
cycle activities, but also the content of documents
reguired by clients who procure either software sys-
tems or complex mechanisms with embedded soft-
ware systems. These standards are also intended to
be compatible with provision of software quality as-
surance, configuration management, and independ-
ent verficiation and validation services in a multi-
contractor development project. More recent
progress in industrial practice appears in
[Humphrey85, Radice85, Yacobellis84].

[11. Alternative Life Cycle Models

There are at least three aternative sets of models of
software evolution. These models are alternatives to
the traditional software life cycle models. These three
sets focus of attention to either the products,
production processes, or production settings associated
with software evolution. As these models are not in
widespread practice, discussion of these models is ap-
propriate at an intermediate level of coursework, while
in-depth review is appropriate at an advanced level.

SEI-CM-10-1.0

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

However, al students of software engineering should
have an overview of models of program evolution and
software technology transfer.

1. Software Product Development Models

Software product development models represent an
evolutionary extension to the traditional software
life cycle models. The extensions arose due to the
availability of new software development technol-
ogies such as software prototyping languages and
environments, reusable software, and application
generators. Each of these technologies seeks to en-
able the creation of executable software implemen-
tations either earlier in the life cycle, or more rapidly
but with reduced functionality. Discussion of these
models is most appropriate when such technologies
are available for use or experimentation.

a. Prototyping

Prototyping is atechnique for providing a reduced
functionality version of a software system early in
its development [Balzer82, Boehm84, Budde84,
Hekmatpour87]. Prototyping technologies usually
accept some form of software functional specifi-
cations as input, which in turn are either simu-
lated, analyzed, or directly executed. As such,
these technologies allow software design activi-
ties to be initially skipped or glossed over. In
turn, these technologies can allow developers to
rapidly construct early or primitive versions of
software systems that users can evaluate. These
user evaluations can then be incorporated as feed-
back to refine the emerging system specifications
and designs. Further, depending on the prototyp-
ing technology, the complete working system can
be developed through a continualy
revising/refining the input specifications. This has
the advantage of always providing a working ver-
sion of the developing system, while redefining
software design and testing activities to input
specification refinement and execution. Alter-
natively, other prototyping approaches are best
suited for developing "throwaway"
(demonstration only) systems, or for building
prototypes by reusing part/all of some existing
software systems. Two collections of papers on
the subject can be found in [Sen82, Budde84].

b. Assembling Reusable Componentry

The basic approach of reusablity is to configure
and specialize pre-existing software components
into viable application systems [Biggerstaff84,
Neighbors84, Goguen86]. However, the
granularity of the components (i.e., size, com-
plexity, functional capability) very greatly across
different approaches. Most approaches attempt to
utilize components similar to common data struc-
tures with algorithms for their manipulation:
small-grain components. However, the use/reuse

of small-grain components in and of itself does
not congtitute a distinct approach to software
evolution. Other approaches attempt to utilize
components resembling functionally complete
systems or subsystems (e.g., user interface man-
agement system): large-grain components. The
use/reuse of large-grain components does appear
to be an alternative approach to developing soft-
ware systems, and thus is an area of active re-
search. There are probably many ways to utilize
reusable software components in evolving soft-
ware systems. However, cited studies suggest
their initial use during architectural or component
design specification as a way to speed implemen-
tation. They might also be used for prototyping
purposes if a suitable software prototyping tech-
nology is available.

. Application Generation

Application generation is an approach to software
development similar to reuse of parameterized,
large-grain software components. Such compo-
nents are specialized to an application domain via
a formalized specification language used as input
to the application generator. Common examples
provide standardized interfaces to database man-
agement system applications, and include
generators for reports, graphics, user interfaces,
and application-specific editors. Application
generators give rise to amodel of software evolu-
tion whereby software design activities are either
al but eliminated, or reduced to a data base de-
sign problem. Similarly, users of application
generators are usually expected to provide input
specifications and application maintenance ser-
vices. These capabilities are possible since the
generators can usually only produce software sys-
tems specific to a small number of similar appli-
cation domains, and usually those that depend on
a data base management system [Horowitz85].

. Program Evolution Models

In contrast to the preceding three models, Lehman
and Belady sought to develop a descriptive model
of software product evolution. They conducted a
series of studies of the evolution of large software
systems at IBM during the 1970's [Lehman85].
Based on their investigations, they identify five
properties that characterize the evolution of large
software systems. These are;

1. Continuing change: a large software
system undergoes continuing change
or becomes progressively less useful

2. Increasing complexity: as a software
system evolves, its complexity in-
creases unless work is done to main-
tain or reduce it

3. Fundamental law of program

SEI-CM-10-1.0 Draft For SEl Internal Use Only 7

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

evolution: program evolution, pro-
gramming process, and global meas-
ures of project and system attributes
are statistically self-regulating with
determinable trends and invariances

4. Invariant work rate: the rate of global
activity in a large software project is
statistically invariant

5. Incremental growth limit; during the
active life of alarge program, the vol-
ume of modifications made to succes-
sivereleasesis statistically invariant.

However, it is important to observe that these are
global properties of large software systems, not
causal mechanisms of software evolution.

2. Software Production Process Models

There are two kinds of software production process
models: non-operational and operational. Both kinds
are software process models. The difference be-
tween the two primarily stems from the fact that the
operational models can be viewed as programs: pro-
grams that implement a particular regimen of soft-
ware engineering and evolution. Non-operational
models on the other hand denote conceptual ap-
proaches that have not yet been sufficiently articu-
lated in aform suitable for codification.

a. Non-Operationa Process Models
(i) The Spiral Model

The spiral model of software development and
evolution represents a risk-driven approach to
software process analysis and structuring
[Boehm86]. The approach incorporates ele-
ments of specification-driven and prototype-
driven process methods. It does so by
representing iterative development cycles in a
spiral manner, with inner cycles denoting early
analysis and prototyping, and outer cycles
denoting the classic system life cycle. The
radial dimension denotes cumulative develop-
ment costs, and the angular dimension denotes
progress made in accomplishing each develop-
ment spiral. Risk analysis, which seeks to iden-
tify situations which might cause a develop-
ment effort to fail or go over budget/schedule,
occurs during each spiral cycle. In each cycle,
it represents roughly the same amount of an-
gular displacement, while the displaced sweep
volume denotes increasing levels of effort re-
quired for risk analysis. System devel opment
in this model therefore spirals out only so far
as needed according to the risk that must be
managed.

(i) Continuous Transformation Models

These models propose a process whereby soft-
ware systems are developed through an on-

going series of transformations of problem
statements into abstract specifications into con-
crete implementations [Wirth71, Basili75,
Bauer76, Balzer81]. Lehman, Stenning, and
Turski, for example, propose a scheme
whereby there is no traditional life cycle nor
separate stages, but instead an ongoing series
of reifying transformations of abstract specifi-
cations into more concrete programs
[Lehman84a, Lehman84b]. In this sense then,
problem statements and software systems can
emerge somewhat together, and thus can con-
tinue to co-evolve.

Continuous transformation models also ac-
comodate the interests of software formalists
who seek the precise statement of formal
properties of software system specifications.
Accordingly, the specified formalisms can be
mathematically transformed into properties that
a source implementation should satisfy. The
potential for automating such models is ap-
parent, but it still the subject of ongoing re-
search (and addressed below).

(i) Miscellaneous Process Models

Many variations of the non-operationa life cy-
cle and process models have been proposed,
and appear in the proceedings of the three soft-
ware process workshops [Potts84, Wileden86,
Dowson86]. These include fully interconnected
life cycle models which accomodate transitions
between any two phases subject to satifaction
of their pre- and post-conditions, as well as
compound variations on the traditional life cy-
cle and continuous transformation models.
However, the cited reports generally indicate
that in general most software process models
are analytical or theoretical, so little experience
with these models has been reported.

b. Operationa Process Models
(i) Operational specifications for rapid

prototyping

The operationa approach to software develop-
ment assumes the existence of aformal specifi-
cation language and processing environment
[Bauer76, Balzer82, Balzer83a, Zave84]. Spec-
ifications in the language are "coded" and
when processable constitute a functional proto-
type of the specified system. When such speci-
fications can be developed and processed in-
crementally, then the resulting systems
prototypes can be refined and evolved into
functionally more complete systems, while al-
ways operational during their development.
Variations within this approach represent either
efforts where the prototype is the end sought,
or where specified prototypes are kept opera-

Draft For SEl Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

tional but refined into a complete system.

(i) Software process automation and
programming

Process automation and programming are con-
cerned with developing "formal" specifications
of how a (family of) software system(s) should
be developed. Such specifications therefore
should provide an account for an organization
and description of the various software produc-
tion task chains, how they interrelate, when
then can iterate, etc. as well as what software
tools to use to support different tasks, and how
these tools should be used [Hoffnagel85,
Huseth86, Osterweil87]. [Lehman87] and
[Curtis87] provide provocative reviews of the
potential and limitations of current proposals
for software process automation and program-
ming.

(iii) Knowledge-based software automation

Attempts to take process automation to its
limits by assuming that process specifications
can be used directly to develop software sys-
tems, and to configure development environ-
ments to support the production tasks at hand.
The common approach is to seek to automate
the continuous transformation model. In turn,
this implies an automated environment capable
of recording the formalized development of op-
erational specifications, successively trans
forming and refining these specifications into
an implemented system, assimilating mainte-
nance requests by inserting the new/enhanced
specifications into the current development
derivation, then replaying the revised develop-
ment toward implementation [Bauer76,
Balzer83b, Balzer85]. However, current
progress has been limited to demonstrating
such mechanisms and specifications to
narrowly-defined software coding, mainte-
nance, project communication and manage-
ment tasks [Balzer83b, Balzer85, Cheatham86,
Polak86, Kedzierski84, Sathi85, Sathi86].

3. Software Production Setting Models

In contrast to product or production process models
of software evolution, production setting models
draw attention to organizational and management
strategies for developing and evolving software sys-
tems. With rare exception, such models are non-
operational. As such, the focus is less technological,
and more strategic. But it should become clear that
such strategies do affect what software products get
developed, and how software production processes
will be organized.

Also, note that the last entry in this section on other
models of system production and manufacturing is

marked optional, and thus is perhaps most appro-
priate at an advanced level.

a. Software project management process

models

In parallel to (or on top of) a software develop-
ment effort, there is normally a management su-
perstructure to configure the effort. This structure
also represents a cycle of activities for which
project managers assume the responsibility. The
activities include project planning, budgeting and
controlling resources, staffing, dividing and coor-
dinating staff, scheduling deliverables, directing
and evaluating (measuring) progress, and inter-
vening to resolve conflicts, breakdowns, or
resource distribution anomalies [Thayer8i,
Scacchi84, Kedzierski84, Radice85,
Humphrey85].

. Organizational software development models

Software development projects are plagued with
many recurring organizational dilemmas which
can slow progress. Experienced managers recog-
nize these dilemmas and develop strategies for
mitigating or resolving their adverse effects. Such
strategies therefore form an informal model for
how to manage software development throughout
its life cycle. See [Kling80, Kidder81, Kling82,
Scacchi84, Gasser86, Curtis87] as well as
[Liker86].

. Customer resource life cycle models

With the help of information (i.e., software) sys-
tems, a company can become more competitive in
al phases of its customer relationships [Ives84,
Wiseman85]. The customer resource life cycle
(CRLC) modd is claimed to make it possible for
such companies to determine when opportunities
exist for strategic applications. Such applications
change a firm’'s product line or the way a firm
competes in its industry. The CRLC model aso
indicates what specific application systems should
be devel oped.

The CRLC model is based on the following
premises. the products that an organization pro-
vides to its customers are, from the customer
viewpoint, supporting resources. A customer then
goes through a cycle of resource definition, adop-
tion, implementation and use. This can require a
substantial investment in time, effort, and man-
agement attention. But if the supplier organization
can assist the customer in managing this resource
life cycle, the supplier may then be able to dif-
ferentiate itself from its competitors via enhanced
customer service or direct cost savings. Thus, the
supplier organization should seek to develop and
apply software systems that support the
customer’s resource life cycle. [lves84] and

SEI-CM-10-1.0 Draft For SEI Internal Use Only 9

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

10

[wiseman85] describe two approaches for ar-
ticulating CRLC models and identifying strategic
software system applications to support them.

The purpose of examining such models is to ob-
serve that forces and opportunities in a
marketplace such as customer relationships, cor-
porate strategy, and competitive advantage can
help determine the evolution of certain kinds of
software systems.

. Software technology transfer and transition

models

The software innovation life cycle circumscribes
the technological and organizational passage of
software system technologies. This life cycle
therefore includes the activities that represent the
transfer and transition of a software system from
its producers to its consumers. This life cycle
includes the following activities [Redwine8s,
Scacchi86éb]:

e Invention and prototyping: software re-
search and exploratory prototyping

e Product development: the software de-
velopment life cycle

o Diffusion: packaging and marketing
systems in a form suitable for wide-
spread dissemination and use

e Adoption and Acquisition; deciding to
commit organizational resources to get
new systemsinstalled

o Implementation: actions performed to
assimilate newly acquired systems into
existing work and computing arrange-
ments

¢ Routinization: using implemented sys-
tems in ways that seem inevitable and
part of standard procedures

¢ Evolution: sustaining the equilibrium of
routine use for systems embedded in
community of organizational settings
through enhancements, restructuring,
debugging, conversions, and replace-
ments with newer systems.

Available research indicates that progress through
the software innovation life cycle can take 7-20
years for major software technologies (e.g., Unix,
expert systems, programming environments, Ada)
[Redwine85]. Thus, moving a software develop-
ment organization to a new technology can take a
long time and great effort. Research also indicates
that most software innovations (small or large)
fail to get properly implemented, and thus result
in wasted effort and resources [Scacchi86b]. The
failure here is generally not technical, but instead
primarily organizational. Thus, organizational cir-
cumstances and the people who animate them

Draft For SEl Internal Use Only
10/16/87 14:56

have far greater affect in determining the success-
ful use and evolution of a software innovation,
than the innovation’s technical merit. However,
software technology transfer is an area requiring
much more research.

. Other models for the organization of system

production and manufacturing

(This section is optional.) What other kinds of
models of software production might be possible?
If we look to see how other technological systems
are developed, we find the following sort of
models for system production:

¢ Ad-hoc problem solving, tinkering, and
articulation work: the weakest model
of production is when people approach
a development effort with little or no
preparation or task chain plan at hand,
and thus rely solely upon their skill, ad
hoc tools, or the loosely coordinated ef-
forts of others get them through. It is
situation specific, and driven by ac-
comodations to local circumstances. It
is therefore perhaps the most widely
practiced form of production and sys-
tem evolution.

Group project: software life cycle and
process efforts are usually realized one
at a time, with every system being
treated somewhat uniquely. Thus such
efforts are often organized as group
projects.

Custom job shop: job shops take on
only particular kinds of group project
work, due to more substantial invest-
ment in tooling and production
skill/technique refinement.

Batched production: provides the cus-
tomization of job shops but for a larger
production volume. Subsystems in de-
velopment are configured on jigs that
can either be brought to workers and
production tools, or that tools and
workers can be brought to the
workpieces or subsystems.

Pipeline: when system development re-
quires the customization of job shops or
the specialization of volume of batched
production, while at the same time al-
lowing for concurrent development se-
quences of subsystems.

Flexible manufacturing systems: seek to
provide the customization capabilities
of job shops, while relying upon ad-
vanced automation to allow economies
of scale, task standardization, and
delivery of workpieces of transfers lines
realized through rapidly reconfigurable

SEI-CM-10-1.0

Models of Software Evolution: Life Cycle and Process

SEI-CM-10-1.0

workstation tooling and process pro-
gramming. Recent proposals for
"software factories' have adopted a var-
iation of this model [Scacchig7].

Transfer (assembly) lines: when raw in-
put resources or semi-finished sub-
assemblies can be moved through a net-
work of single action workcells, then
transfer lines are appropriate.

Continuous process control: when the
rate or volume of uniform raw input
resources and finished output products
can be made continuous and automat-
icaly variable, then a continuous proc-
ess control form of production is appro-
priate. Oil refining is an example of
such a process, with crude oil from
wells as input, and petroleum products
(gasoline, kerosene, multi-grade motor
oil) as outputs. Whether software can be
produced in such amanner is unlikely at
thistime.

IV. Where do tools and techniques fit into the
models?

Given the diversity of software life cycle and process
models, where do software engineering tools and tech-
niques fit into the picture? This section briefly identi-
fies some of the places where different software engi-
neering technologies can be matched to certain models.
Another way to look at this section might be to look
instead at what software engineering technologies
might be available in your setting, then seek amodel of
software evolution that is compatible.

1. Life Cycle support mechanisms

Most of the traditional life cycle models are decom-
posed as stages. These stages then provide bound-
aries whereby software engineering technolgies are
targeted. Thus, we find engineering techniques or
methods (e.g., Yourdon structured design, TRW'’s
software requirements engineering methodology
(SREM)) being targeted to support different life cy-
cle stages, and tools (e.g., TRW’s requirements en-
gineering and verification system (REVS)) targeted
to support the associated activities. However, there
are very few, if any, package of tools and techniques
that purport to provide integrated support for engi-
neering software systems throughout their life cycle
[Scacchi87]. Perhaps this is a shortcoming of the tra-
ditional models, perhaps indicative that the integra-
tion required is too substantial to justify its expected
costs or benefits, or prehaps the necessary technol-
ogy is dtill inits infancy. Thus, a present, we are
more likely to find ad-hoc or loose collections of
software engineering tools and techniques that pro-
vide partial support for software life cycle engineer-

ing.

2. Process support mechanisms

There are at least three kinds of software process
support mechanisms:

e Process articulation technologies denote
the prototyping, reusable software, and ap-
plication generator languages and environ-
ments for rapidly developing new software
systems.

e Process measurement and analysis
technologies denote the questionnaire, sur-
vey, or performance monitoring instru-
ments used to collect quantifiable data on
the evolving characteristics of software
products and processes. Collected data can
in turn be analyzed with statistical tools to
determine descriptive and inferential
relationships within the data These
relationships can then be interpreted as in-
dicators for where to make changes in cur-
rent practices through a restructuring of
work/resources, or through the introduc-
tion of new software engineering technol-
ogies. Such measurement and anayusis
technologies can therefore accomodate
process refinements that improve its over-
al performance and product quality.

Computational process models denote for-
malized descriptions of software develop-
ment activities in a form suitable for auto-
mated processing. Such models are envi-
sioned to eventually be strongly coupled to
available software engineering tools and
techniques in ways that allow their config-
uration and use to be programmed. How-
ever, at present, such models serve to help
articulate more precise descriptions for
how to conduct different software engi-
neering activities.

V. Evaluating Life Cycle Models and Methodologies

Given the diversity of software life cycle and process
models, how do we decide which if any is best, or
should be the one to follow? Answering this question
requires further research. Therefore, material in this
section is perhaps most appropriate at an advanced
level.

1. Comparative evaluation of life cycle and
process methodologies

As noted in Section |, descriptive life cycle models
require the empirical study of software evolution
products and processes. Therefore, how should such
a study be designed to realize useful, generalizable
results?

Basically, empirical studies of actual software life
cycles or processes should ultimately lead to models
of evolution with testable predictions [Curtis80,

Draft For SEI Internal Use Only 11

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Basilig6]. Such models in turn must therefore be ap-
plicable across different sets of comparable data.
This means that such studies must utilize measure-
ments that are reliable, valid, and stable. Reliability
refers to the extent that the measures are accurate
and repeatable. Validity indicates whether the meas-
ured values of process variables are in fact correct.
Stability denotes that the instrument measures one or
more process variables in a consistent manner across
different data sets [Curtis80].

However, most statistical instruments are geared for
snapshot studies where certain variables can be con-
trolled, while others are independent. Lehman and
Belady utilize such instrumentsin their evaluation of
large software system attributes [Lehman85]. Their
study utilizes data collected over periodic intervals
for a sample of large software systems over a num-
ber of years. However, their results only make
strong predictions about global program evolution
dynamics. That is, they cannot predict what will
happen at different life cycle stages, in different cir-
cumstances, or for different kinds of software sys-
tems. To make such predictions requires a different
kind of study.

[vandenBosch82] and [Curtis87] propose two alter-
native approaches to studying software evolution.
Both rely upon long-term field studies of a sample
of software efforts in different organizational set-
tings. There approach is targeted to constructing a
framework for discovering the mechanisms and or-
ganizational processes that shape software evolution
with a comparative study sample. The generality of
the results they derive can thus be assessed in terms
of their sample space.

[Kelly87] provides an informing comparative anal-
ysis of four methods for the design of real-time soft-
ware systems. Although his investigation does not
compare models of software evolution, his
framework is suggestive of what might be accom-
plished through comparative anaysis of such
models.

Other approaches that report on the comparative
analysis of software evolution activities and out-
comes can be found elsewhere [Kling80, Basili81,
Boehm81b].

. Research problems and opportunities

As should be apparent, most of the aternative
models of software evolution are relatively new, and
in need of improvement and empirical grounding. It
should however aso be clear that such matters re-
quire research investigations. Prescriptive models
can be easy to come by, whereas descriptive models
reguire systematic research regimens which can be
costly. Nonetheless, there are many opportunities to
further develop, combine, or refute any of the alter-
native models of software evolution. Comparative

Draft For SEl Internal Use Only

research design methods, data sampling, collection,
and analysis are all critical topics that require careful
articulation and scrutiny [Basili86]. And each of the
aternative models, whether focussing attention to
either software products, production processes, pro-
duction settings, or their combination can idealy
draw upon descriptive studies as the basis of their
prescriptions. Thus, we are at a point where empiri-
cal studies of software life cycle or process models
(or their components) are needed, and likely to be
very influentia if performed systematicaly and
rigoroudly.

Therefore, for advanced level students, it is appro-
priate to devote some attention to the problem of
designing a set of experiments intended to substan-
tiate or refute a model of software evolution, where
critical attention should then be devoted to evau-
ating the quality and practicality (i.e., time, effort,
and resources required) of the proposed research.

V1. Customizable Life Cycle Process Models

Given the emerging plethora of models of software
evolution, how does one choose which model to put
into practice? This will be a recurring question in the
absence of empirica support for the value of one
model over others. We can choose whether to select an
existing model, or else to develop a custom model.
Either way, the purpose of having a model is to use it
to organize software development efforts in a more ef-
fective, more productive way. But this is not a one-
shot undertaking. Instead, a model of software evolu-
tion is likely to be most informing when not only used
to prescribe software development organization, but
also when used to continually measure, tune, and refine
the organization to be more productive, risk-reducing,
and quality driven [Humphrey85, Radice85, Basili87].

1. Selecting an Existing Model

Choosing the one that’s right for your software proj-
ect and organization is the basic concern. At this
time, we can make no specific recommendation for
which model is best in different circumstances. The
choice is therefore open-ended. However, we might
expect to see the following kinds of choices being
made with respect to existing models. Generally,
most software development organizations are likely
to adopt one of the traditiona life cycle models.
Then they will act to customize it to be compatible
with other organizational policies, procedures, and
market conditions. Software research organizations
will more likely adopt an aternative model, since
they are likely to be interested in evaluating the po-
tential of emerging software technologies. When
development organizations adopt software technol-
ogies more closely aligned to the alternative models
(e.g., reusable components, rapid prototyping), they
may try to use them either experimentally, or to
shoehorn them into a traditiona life cycle model,
with many evolutionary activities kept informal and

SEI-CM-10-1.0

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

SEI-CM-10-1.0

undocumented. Alternatively, another strategy to
follow is to do what some similar organization has
done, and to use the model they employ. Studies
published by researchers at IBM and AT&T Bell
Laboratories are often influential in this regard
[Humphrey85, Radice85, Yacobellis84].

. Customizing your own Model

[Basilig7] can be recognized as one of the foremost
advocates for developing a custom life cycle process
model for each project and organization. Empirical
studies of software development seem to indicate
that life cycle process modeling will be most effec-
tive and have the greatest benefit if practiced as a
regular activity. Process metrics and measurements
need to be regularly applied to capture data on the
effectiveness of current process activities. As sug-
gested above, it seems likely that at this time, the
conservative strategy will be to adopt a traditional
life cycle model and then seek to modify or extend it
to accomodate new software product or production
process technologies. However, it seems just as like-
ly that software development efforts that adopt soft-
ware product, production process and production
setting concerns into a comprehensive model may
have the greatest potential for realizing substantial
improvement in software productivity, quality, and
cost reduction [Scacchi86c].

. Using Process Metrics and Empirical
M easurements

One important purpose of building or buying a proc-
ess model isto be able to apply it to current software
development projects in order to improve their
productivity, quality, and cost-effectiveness
[Humphrey85, Radice85]. The models therefore pro-
vide a basis for instrumenting the software process
in ways that potentially reveal where development
activities are less effective, where resource bot-
tlenecks occur, and where management interventions
or new technologies could have a beneficial impact
[Basili87, Yacobellis84]. [Scacchig86c] goes so far as
to advocate a radical approach involving the appli-
cation of knowledge-based technologies for model-
ing and simulating software product, production
process, and production setting interactions based
upon empirical data (i.e, knowledge) acquired
through questionnaire surveys, staff interviews, ob-
servations, and online monitoring systems. Such an
approach is clearly within the realm of basic re-
search, but perhaps indicative of the interest in de-
veloping high-potential, customizable models of
software evolution.

4. Staffing the Life Cycle Process Modeling
Activity

Idedlly, the staff candidate best equipped to organize
or analyze an organizationa’s model of software
evolution is one who has mastered the range of ma-

terial outlined in this curriculum module. That is, a
staff member who has only had an introductory or
even intermediate level exposure to this material is
not likely to perform software life cycle or process
modeling competently. Large software development
organizations with dozens, hundreds, or even
thousands of software developers are likely to rely
upon one or more staff members with a reasonably
strong background in local software development
practices and experimental research skills. This sug-
gests that such staff are therefore likely to possess
the equivalent of a masters or doctoral degree soft-
ware engineering or experimental computer science.
In particular, a strong familarity with experimental
research methods, sampling strategies, questionnaire
design, survey andysis, statistical data analysis
packages, and emerging software technologies are
the appropriate prerequisites. Simply put, thisis not
ajob for any software engineer, but instead a job for
software engineer (or industrial engineer) with ad-
vanced training and experience in experimental re-
search tools and techniques.

Glossary

articulation work

a non-deterministic series of actions taken by
people in response to foul-ups, breakdowns,
mistakes, resource bottlenecks, or other un-
expected circumstances that cause planned task
chains to disarticulate. Hacking together soft-
ware kludges in response to system glitchesis a
frequently observed form of articulation work
that occurs during software evolution.

evolutionary models

represent software evolution in terms that focus
attention to the mechanisms that give rise to
changes made in a system. Such models seek to
account for how and why software systems
emerge the way they do. Systems evolve not so
much according to prescriptive stages, but rather
in response to the actions people take to make
the system fit their circumstantial needs. Thus,
when circumstances change, people will seek
opportunities to change the system.

evolutionist models

represent software evolution in terms that focus
attention to the direction of changes made to
systems. Such models seek to explain the logic
of development typically in the form of stages
the follow one another, where each stage is the
precursor for the next one, and ultimately toward

Draft For SEl Internal Use Only 13

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

a final state. (e.g., Classic waterfal life cycle
model).

production lattice

the intersecting network of task chains that col-
lectively denote the structure of software devel-
opment activities

softwar e evolution

the collection of software life cycle or process
activities that cause systems to be produced and
consumed

softwarelife cycle

atypical sequence of phased activities that rep-
resent the various stages of engineering through
which software system pass.

softwar e process

the network of object states and transitional
events that represent the production of a soft-
ware system in aform suitable for computational
encoding and processing

task chain

a planned, possibly iterative sequence of actions
taken by people in order to transform raw pro-
duction resources into consumable product
resources.

14 Draft For SEl Internal Use Only
10/16/87 14:56

SEI-CM-10-1.0

Models of Software Evolution: Life Cycle and Process

Teaching Considerations

This module collects and organizes a body of knowl-
edge about software evolution for the first time. It
has not been taught in this form, and therefore sug-
gestions for effective teaching have not been devel-
oped. However, prior experience in teaching part of
this material suggests the use of case studies of large
system development projects as an excellent source
material for study and review For an advanced level
course, a book such as The Soul of a hew Machine
by Tracy Kidder is an excellent choice. For an inter-
mediate level of coverage, individual case studies
provide a suitable source material that can introduce
students to the interrelationship of software prod-
ucts, production processes, and production settings
as sources of influence in system evolution. A subse-
quent release of this module will include suggestions
from instructors who have taught the material.

SEI-CM-10-1.0

Draft For SEl Internal Use Only 15

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Bibliography

Balzer81

Balzer, R. “Transformational Implementation: An
Example” |EEE Trans. Software Eng. SE-7, 1
(1981), 3-14.

Abstract: A system for mechanically transforming
formal program specifications into efficient imple-
mentations under interactive user control is de-
scribed and illustrated through a detailed example.
The potential benefits and problems of this ap-
proach to software implementation are discussed.

Balzer82

Balzer, R., N. Goldman, and D. Wile. * Operational
Specifications as the Basis for Rapid Prototyping.”
ACM Software Engineering Notes 7, 5 (1982), 3-16.

Among the first papers to assert the desirability to
rapidly develop software systems through the use of
operational process and data base oriented specifi-
cations and supporting environment. Also asserts
the importance of being able to specify hence proto-
type descriptions of the user and computational en-
vironments in which the emerging system is to
operate as an equally important component.

Balzer83a

Balzer, R., D. Cohen, M. Feather, N. Goldman
W. Swartout, and D. Wile. *“Operational Specifica-
tions as the Basis for Specification Validation.” In
Theory and Practice of Software Technology, Fer-
rari, Bolognani, and Goguen, eds. Amsterdam:
North-Holland, 1983.

Abstract: This paper describes a set of freedoms
which both simplify the task of specifing systems
and make the resulting specification more com-
prehensible. These freedoms eliminate the need, in
specific areas, to consider: the mechanisms for ac-
complishing certain capabilities, the careful coor-
dination and integration of separate operations, the
cost of those operations, and other detailed con-
cerns which characterize implementation.

These freedoms are partitioned into the areas of
efficiency, method, and data, and providing them
has resulted in a novel formal specification lan-
guage, Gist. The main features of thislanguage are
described in terms of the freedoms it affords. An
overview of the language is then presented together
with an example of its use to specify the behavior of
areal system.

16 Draft For SEl Internal Use Only

Balzer83b
Bazer, R., T. Cheatham, and C. Green. ‘‘ Software

Technology in the 1990's: Using a New Paradigm.”

Computer 16, 11 (Nov. 1983), 39-46.

Proposes a radical alternative to traditional ap-
proaches to software development and evolution
through the use of knowledge-based operational
specification languages and tools. The approach
seeks to introduce and rely upon a degree of
automation in software development far beyond
what is available at present. However, it is aos
clear that the approach is inherently long-term in its
orientation thus may take a decade or more before it
is fully implemented in a form suitable for large-
scale experimentaion.

Balzer85

Balzer, R. “A 15 Year Perspective on Automatic
Programming.” |EEE Trans. Software Eng. SE-11,
11 (Nov. 1985), 1257-1267.

Abstract: Automatic programming consists not only
of an automatic compiler, but also some means of
acquiring the high-level specification to be com-
piled, some means of determining that it is the in-
tended specification, and some (interactive) means
of trandlating this high-level specification into a
lower-level one which can be automatically com-
piled.

We have been working on this extended automatic
programming problem for nearly 15 years, and this
paper presents our perspective and approach to this
problem and justifies it in terms of our successes
and failures. Much of our recent work centers on
an operational testbed incorporating usable aspects
of this technology. This testbed is being used as a
prototyping vehicle for our own research and will
soon be released to the research community as a
framework for development and evolution of Com+
mon Lisp systems.

Basili75

Basili, V. R., and A. J. Turner. ‘“Iterative Enhance-
ment: A Practical Technique for Software
Development.” |EEE Trans. Software Eng. SE-1, 4
(Dec. 1975), 390-396.

Abstract: This paper recommends the "iterative
enhancement” technique as a practical means of
using a top-down, stepwise refinement approach to
software development. This technique begins with a
simple initial implementation of a properly chosen
(skeletal) subproject which is followed by the

SEI-CM-10-1.0

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

gradual enhancement of successive implementations
in order to build the full implementation. The de-
velopment and quantitative analysis of a production
compiler for the language SMPL-T is used to dem-
onstrate that the application of iterative enhance-
ment to software development is practical and effi-
cient, encourages the generation of an easly
modifiable product, and facilitates reliability.

Basili81

Basili, V. R., and R. W. Reiter. “A Controlled Ex-
periment Quantitatively Comparing Software Devel-
opment Approaches.” |EEE Trans. Software Eng.
SE-7, 3 (May 1981), 299-320.

One of the earliest experimental studies to compare
the utility and effectiveness of software develop-
ment techniques available at that time.

Basili86

Basili, V. R, R. Seby, and D. Hutchens.
“ Experimentation in Software Engineering.” |EEE
Trans. Software Eng. SE-12, 7 (July 1986), 733-743.

Presents a survey of the issues, techniques, and
published studies that involve experimental studies
of software development practices. An excellent
companion paper to Curtis80 for those who seek to
develop a deeper understanding of the challenges
and rigors of experimental research in software en-
gineering.

Basili87
Basili, V. R., and H. D. Rombach. “Tailoring the
Software Process to Project Goas and
Environments.” Proc. 9th. Intern. Conf. Software
Engineering. |IEEE Computer Society, 1987,
345-357.

Abstract: This paper presents a methodology for
improving the software process by tailoring it to the
specific project goals and environment. This im-
provement process is aimed at the global software
process model as well as methods and tools sup-
porting that model. The basic idea is to use defect
profiles to help characterize the environment and
evaluate the project goals and the effectiveness of
methods and tools in a quantitative way. The im-
provement process is implemented iteratively by set-
ting project improvement goals, characterizing
those goals and the environment, in part, via defect
profiles in a quantitative way, choosing methods
and tools fitting those characteristics, evaluating
the actual behavior of the chosen set of methods
and tools, and refining the project goals based on
the evaluation results. All these activities require
analysis of large amounts of data and, therefore,
support by an automated tool. Such a tool —
TAME (Tailoring A Measurement Environment) —

SEI-CM-10-1.0

is currently being devel oped.

Bauer76
Bauer, F. L. “Progranming as an Evolutionary
Process.” Proc. 2nd. Intern. Conf. Software
Engineering. 1EEE Computer Society, Jan. 1976,
223-234.

Describes one of the first approaches to the devel-
opment of awide-spectrum language for both speci-
fying and implementing evolving software systems.

Bendifallah87

Bendifallah, S., and W. Scacchi. *Understanding
Software Maintenance Work.” |EEE Trans. Soft-
ware Eng. SE-13, 3 (March 1987), 311-323.

Abstract: Software maintenance can be success-
fully accomplished if the computing arrangements
of the people doing the maintenance are compatible
with their established patterns of work in the set-
ting. To foster and achieve such compatibility re-
quires an understanding of the reasons and the cir-
cumstances in which participants carry out mainte-
nance activities. In particular, it requires an under-
standing of how software users and maintainers act
toward the changing circumstances and unexpected
events in their work situation that give rise to soft-
ware system alterations. To contribute to such an
under standing, we describe a comparative analysis
of the work involved in maintaining and evolving
text-processing systems in two academic computer
science organizations. This analysis shows that
how and why software systems are maintained de-
pends on occupational and workplace contin-
gencies, and vice versa.

Benington56

Benington, H. D. *“Production of Large Computer
Programs.” Annals of the History of Computing 5, 4
(1983), 350-361. (Criginal version appeared in 1956.
Also appears in Proc. 9th. Intern. Conf. Software
Engineering, 299-310).

Abstract: This paper is adapted from a presen-
tation at a symposium on advanced programming
methods for digital computers sponsored by the
Navy Mathematical Computing Advisory Panel and
the Office of Naval Research in June 1956. The
author describes the techniques used to produce the
programs for the Semi-Automatic Ground Environ-
ment (SAGE) system.

Biggerstaff84

Secial Issues on Software Reusability.
T. Biggerstaff and A. Perlis, eds. IEEE Trans. Soft-
ware Eng. SE-10, 5 (Sept. 1984).

This is a specid issues of |IEEE Trans. Software

Draft For SEl Internal Use Only 17

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Engineering that collects 15 or so papers on differ-
ent approaches to software reuse that originaly
were presented at a workshop on the topic spon-
sored by ITT.

Boehm76
Boehm, B. “ Software Engineering.” |EEE Trans.
Computers C-25, 12 (Dec. 1976), 1226-1241.

One of the classic papers in the field of software
engineering that focuses attention to the primacy of
engineering software systems throughout their de-
velopment life cycle, rather than just to improved
programming practice.

Boehm81la
Boehm, B. W. Software Engineering Economics.
Englewood Cliffs, N. J.: Prentice-Hall, 1981.

Presents an extensive motivation and treatment of
software development and evolution in terms of
costs, quality, and productivity issues. Among the
results, Boehm indicates that personnel/team capa-
bility and other attributes of a software production
setting usually have far greater affect on the quality
and cost of software products than do new software
engineering tools and techniques. It also presents
an in-depth discussion of the development and de-
tails of the software cost estimation model,
COCOMO that draws upon the extensive studies
and analyses that Boehm and associates at TRW
have conducted over the years.

Boehm81b

Boehm, B. *“ An Experiment in Small-Scale Software
Engineering.” |EEE Trans. Software Eng. SE-7, 5
(Sept. 1981), 482-493.

Abstract: This paper reports the results of an ex-
periment in applying large-scale software engineer-
ing procedures to small software projects. Two
USC student teams developed a small, interactive
application software product to the same specifi-
cation, one using Fortran and one using Pascal.
Several hypotheses were tested, and extensive ex-
perimental data collected. The major conclusions
were as follows.

e Large-project software engineering proce-
dures can be cost-effectively tailored to
small projects.

e The choice of programming language is
not the dominant factor in small applica-
tion software product devel opment.

e Programming is not the dominant activity
in small software product development.

e The "deadline effect" holds on small soft-
ware projects, and can be used to help
manage softwar e devel opment.

18 Draft For SEl Internal Use Only

e Most of the code in a small application
software product is devoted to
"housekeeping."

The paper presents the experimental data support-
ing these conclusions, and discusses their context
and implications.

Boehm84

Boehm, B. W., T. Gray, and T. Seewaldt.
“Prototyping vs. Specifying: A Multi-project
Experiment.” Proc. 7th. Intern. Conf. Soft. Engr.
1984, 473-484.

Abstract: In this experiment, seven software teams
developed versions of the same small-size
(2000-4000 source instruction) application software
product. Four teams used the Specifying approach.
Three teams used the Prototyping approach.

The main results of the experiment were:

¢ Prototyping yielded products with roughly
equivalent performance, but with about
40% less code and 45% |ess effort.

e The prototyped products rated somewhat
lower on functionality and robustness, but
higher on case of use and ease of learning.

e Specifying produced more coherent de-
signs and software that were easier to inte-
grate.

The paper presents the experimental data support-
ing these and a number of additional conclusions.

Boehm86

Boehm, B. W. “A Spiral Model of Software Devel-
opment and Enhancement.” ACM Software Engi-
neering Notes 11, 4 (1986), 22-42.

Presents a new model for modeling the software
process that explicitly attempts to address how to
manage the risks associated with the development
of different kinds of software systems. The presen-
tation of the model is somewhat obscure, however
its focus on addressing risk as a central component
in determining how to structure the software devel-
opment process is unique and worth careful ex-
amination.

Budde84

Budde, R., K. Kuhlenkamp, L. Mathiassen, and
H. Zullighoven. Approaches to Prototyping. New
York: Springer-Verlag, 1984.

Presents a collection of papers on software
prototyping originally presented at a conference on
tht topic in Europe in 1984. After SEN82, the most
extensive survey of approaches to software devel-
opment and evolution through the use of prototyp-
ing tools and techniques.

SEI-CM-10-1.0

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Cheatham86
Cheatham, T. “Supporting the Software Process.”
Proc. 19th. Hawaii Intern. Conf. Systems Sciences. ,
1986, 814-821.

Describes a segment of the radical approach to auto-
mating software development introduced in
Balzer83h. This segment addresses how to support
development and debugging of software compo-
nents through use of task-level protocols and associ-
ated tools.

Curtis87

Curtis, B., H. Krasner, V. Shen, and N. Iscoe. “On
Building Software Process Models Under the
Lamppost.” Proc. 9th. Intern. Conf. Software
Engineering. |EEE Computer Society, April 1987,
96-103.

Abstract: Most software process models are based
on the management tracking and control of a proj-
ect. The popular alternatives to these models such
as rapid prototyping and program transformation
are built around specific technologies, many of
which are still in their adolescence. Neither of
these approaches describe the actual processes that
occur during the development of a software system.
That is, these models focus on the series of artifacts
that exist at the end of phases of the process, rather
than on the actual processes that are conducted to
create the artifacts. We conducted a field study of
large system devel opment projects to gather empiri-
cal information about the communication and tech-
nical decision-making process that underlie the de-
sign of such systems. The findings of this study are
reviewed for their implications on modeling the
process of designing large software systems. The
thesis of the paper is that while there are many foci
for process models, the most valuable are those
which capture the processes that control the most
variance in software productivity and quality.

Curtis80

Curtis, B. “Measurement and Experimentation i
Software Engineering.” Proceedings |IEEE 68, 9
(1980), 1144-1157.

Provides a survey of basic concerns that should be
addressed in any systematic or experimental study
of software development practices.

=

Distaso80
Distaso, J. “* Software Management — A Survey of
Practice in 1980.” Proceedings |IEEE 68, 9 (1980),
1103-1119.

Provides a survey of the general issues of software
project management based upon experiences in
large projects during the 1970's.

SEI-CM-10-1.0

Dowson86

Proc. 3rd. Intern. Software Process Workshop,
M. Dowson, ed. I[EEE Computer Society, Los
Alamitos, Cdlif., 1986.

Proceedings of the most recent workshop on soft-
ware process models. Presents short papers on a
variety of different approaches to process modeling
including object-oriented process programming.

Fairley85
Fairley, R. Software Engineering Concepts. New
York: McGraw-Hill, 1985.

One of the best textbooks on software engineering
currently available.

Gasser86

Gasser, L. “The Integration of Computing and
Routine Work.” ACM Trans. Office Info. Sys. 4, 3
(July 1986), 205-225.

Describes the results of an empirical study of soft-
ware evolution practices in a large manufacturing
organization. Gasser reports that software systems
regularly fail to be compatible with the instrumental
work activities they are suppose to support, and that
a variety of forms of "work-arounds' and other ac-
comodations are performed by users and main-
tainers to deal with such systems. These accomoda-
tions and negotiations therefore play a central role
in shaping the evolution of such systems.

Goguen86
Goguen, J. “Reusing and Interconnecting Software
Components.” Computer 19, 2 (Feb. 1986), 16-28.

Abstract: Realizing the considerable economic po-
tential of software reuse requires new programming
environment ideas. This article presents a library
interconnection language featuring modest use of
semantics.

Hekmatpour87

Hekmatpour, S. ‘“Experience with Evolutionary
Prototyping in a Large Software Project.”” ACM
Software Engineering Notes 12, 1 (1987), 38-41.

Describes three aternative approaches to evolving
the development of software systems through
prototyping techniques and tools.

Hoffnagel85

Hoffnagel, G. F., and W. Beregi. ‘Automating the
Software Development Process.” IBM Systems
J. 24, 2 (1985), 102-120.

Describes a complementary approach to Radice85
that introduces automated mechanisms and tech-

Draft For SEl Internal Use Only 19

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

niques for supporting large-scale software produc- Huseth86
tion processes. Huseth, S., and D. Vines. ‘' Describing the Software
Process.” Proc. 3rd. Intern. Software Process
Horowitz85 Workshop. |EEE Computer Society, 1986, 33-35.

Horowitz, E., A. Kemper, and B. Narasimhan. “A
Survey of Application Generators.” |EEE Software
2, 1 (Jan. 1985), 40-54.

Briefly describes an approach to the use of object-
oriented and frame-oriented knowledge specifica-
tion languages in developing operational models of

As the title suggests, this article provides a survey software products and production processes.

of the basic software mechanisms and components

used in many application generators. The presen- lves84

tation is clear and succinct, and represents one of lves, B., and G. P. Learmonth. “The Information

the few published descriptions of the increasingly System as a Competitive Weapon.” Comm. ACM

important software devel opment technology. 27,12 (Dec. 1984), 1193-1201.
Hosier61 Abstract: With the help of information system_tech-
Hosier, W. A. “Pitfalls and Safeguardsin Real-Time ”g'ogy' a company can elbe_co”;_compe;'“"e in all
Digital Systems with Emphasis on Programming.” phases of Its customer relationships. The customer

g . . resource life cycle model makes it possible for such
IRE Trans. Engineering Management EM-8 (June companies to determine not only when opportunities
ware Engineering, 311-327). cific applications should be devel oped.

Abstract: Real-time digital systems are largely a)]

technical innovation of the past decade, but they Kedzierskig84

appear destined to become more wide spread in the Kedzierski, B. I. “Knowledge-Based Project Man-

future. They monitor or control a real physical en- agement and Communication Support in a System

vironment, such as an air-traffic situation, as distin- Development Environment.” Proc. 4th. Jerusalem

guished from simulating that environment on an ar- Conf. Info. Techology. , 1984, 444-451.

bitrary time scale. The complexity and rapid varia- ’ '

tion of such an environment necessitates use of a Describes the development of a knowledge-based

fast and versatile central-control device, a role well approach to representing software development task

suited to digital computers. The usual system will
include some combination of sensors, communica-
tion, control, display, and effectors. Although many
parts of such a system pose no novel management
problems, their distinguishing feature, the central
digital device, frequently presents unusually strict
requirements for speed, capacity, reliability and
compatibility, together with the need for a carefully
designed stored program. These feature, particu-
larly the last, have implications that are not always
foreseen by management. An attempt is made to
point out specific hazards common to most real-
time digital systems and to show a few ways of min-
imizing the risks associated with them.

Humphrey85

Humphrey, W. S. “The IBM Large-Systems Soft-
ware Development Process: Objectives and

Direction.” IBM Systems J. 24, 2 (1985), 76-78.

20

The companion paper to Radice85 and Hoffnagel 85
that introduces and motivates the approaches to
modeling and measuring software production at
IBM with explicit attention to process organization
and management.

chains and communications between coordinated
development agents. A prototype processing sup-
port environment is described, as is its suggested
use.

Kelly87

Kely, J. C. " A Comparison of Four Design Methods
for Rea-Time Systems.” Proc. 9th. Intern. Conf.
Software Engineering. |EEE Computer Society,
1987, 238-252.

Presents an elaborate but practical scheme for ex-
amining and comparing different tools/techniques
for designing real-time software systems. Such a
comparative framework and analysis of various
models of software evolution might be derived from
this approach. Alternatively, van den Bosch82
presents a different approach to evaluating software
development methodologies (or models) through
the use of a comparative framework.

Kidder81
Kidder, T. The Soul of a New Machine. New York:
Atlantic Monthly Press, 1981.

This Pulitzer Prize-winning story describes the de-
velopment life cycle of a new computing system
(hardware and software) by a major computer ven-

Draft For SEl Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

dor, together with the dilemmas, opportunites, and
social dynamics that shaped its development.

they are produced, and the settings where they are
produced and consumed in order to best understand

Strongly recommended as one of the few descrip-
tions of the real organizational complexities sur-
rounding the development of computing systems.

how they will evolve.

Lehman84a

Lehman, M. M., V. Stenning, and W. Turski.
“Another Look a Software Development
Methodology.” ACM Software Engineering Notes
9, 2 (April 1984), 21-37.

Abstract: Software design — from ’topmost’ speci-
fication down to final implementation — is viewed

King84

King, J. L., and K. K. Kraemer. “Evolution and Or-
ganizational Information Systems: An Assessment
of Nolan's Stage Model.” Comm. ACM 27, 5 (May
1984), 466-475.

Abstract: Richard Nolan's stage model is the best
known and most widely cited model of computing
evolution in organizations. The model’s develop-
ment over a decade demonstrates its own evolution
from a simple theory, based on the factoring of
change states indicated by changes in computing
budgets, to an elaborate account of the character-
istics of six stages of computing growth. An anal-
ysis of the model’s logical and empirical structure
reveals a number of problemsin its formulation that
help to account for the fact that its principal tenets
have not been independently validated. The model
is shown to be an "evolutionistic" theory within the
theories of evolution in the social sciences, focusing

as a chain of uniform steps, each step being a trans-
formation between two linguistic levels. A canoni-
cal form of the step is discussed and it is argued
that all rational design activities are expressible as
a combination of canonical steps. The role of back-
tracking in software design is explained and a
mechanism for introducing changes, both in-
digeneous and exogeneous, is proposed, again en-
tirely by a combination of canonical steps. The
main tenet of the ' canonical step approach’ isthat a
design step contains a degree of unconstrained, cre-
ative invention and a calculable part which is the
actual transformation effected.

on assumed directions of growth and an implied end
state toward which growth proceeds, and suffering
from problems inherent in such theories. Further
research based on an "evolutionary" view of com-
puting growth is suggested as a means of improving
theories of computing in organizations.

Lehman84b

Lehman, M. M. “A Further Model of Coherent Pro-
gramming Processes.” Proc. Software Process
Workshop. |EEE Computer Society, 1984, 27-33.

Abstract: Computer applications and the software
that implements them evolve both during initial de-
velopment and under subsequent usage. Current
industrial processes to achieve such evolution are
ad hoc. The individual activities from which they
are constituted do not have a common theoretical
base, are now unified by a single conceptua
framework and so cannot be combined into a

Kling80

Kling, R., and W. Scacchi. “Computing as Social
Action: The Social Dynamics of Computing in Com-
plex Organizations.” Advances in Computers 19
(1980), 249-327. Academic Press, New Y ork.

Provides a survey of the organizational dilemmas
that can occur during the development and use of
system embedded in complex organizational set-
tings. Uses a case study of the life cycle of one
system to help articulate six different analytical
perspectives for understanding these dilemmas and
their interaction.

coherent process. Yet the latter is essential for the
design of integrated programming support
environments and it is widely recognized that such
support is necessary for the creation and evolution
(maintenance) of correct, reliable, cost-effective
programs in a manner that is responsive to societal
needs.

Coherent processes, that facilitate evolution of a

Kling82

Kling, R., and W. Scacchi. “The Web of Comput-
ing: Computer Technology as Social Organization.”
Advances in Computers 21 (1982), 1-90. Academic
Press, New York.

program over its lifetime, cannot be expected to
evolve by juxtaposition of established practices, ex-
cept over many generations of process instances.
The rate at which computerization is penetrating all
aspects of societal activity and the reliance this im-
plies on correct definition and operation of software

SEI-CM-10-1.0

Asserts the thesis that computing systems and the
ways how they are developed and used are in-
separably bound to the settings where they are pro-
duced and consumed. This work employs case
studies to assert the primacy of understanding the
interrelationship between software systems, how

systems, suggest that mankind cannot wait for the
‘natural’ evolution of responsive and reliable proc-
esses. Their design and implementation is a matter
of some urgency.

This paper outlines the first steps in the design of
coherent programming processes by decomposition

Draft For SEl Internal Use Only

10/16/87 14:56

21

Models of Software Evolution: Life Cycle and Process

and successive refinement of a model of program
development and evolution based on a view of pro-
gramming as a transformation process.

Lehman85

Lehman, M. M., and L. Belady. Program Evolution:
Processes of Software Change. New York: Aca
demic Press, 1985.

Presents a collection of previously published papers
that identify and reiterate the "laws" of large pro-
gram evolution as discovered through empirical in-
vestigations at IBM and elsewhere over the preced-
ing 10 year period. Unfortunately, many of the
papers state the same data and results, and therefore
limit the impact of its contribution.

Lehman86a

Lehman, M. M. “Modes of Evolution.” Proc. 3rd.
Intern. Software Process Workshop. 1EEE Comput-
er Society, 1986, 29-32.

Abstract: Computer applications inevitably evolve.
The very activity of designing and creating a
mechanistic system to automate some human acti-
vity leads to a change of perspective and an in-
crease of insight into the problems and approaches
to its solution. Installation and operation of the
completed system only increases and broadens this
effect. The pressures that arise from the changed
perceptions, newly recognized needs and opportu-
nities can be controlled but not suppressed. They
lead inevitably to demand and, hence, authorization
and implementation of system change. And the key
to system functional and quality change is primarily
through modification of its software. Hence the un-
ending maintenance burden, the continuing process
of change and evolution of programs.

Lehman86b

Lehman, M. M. “Approach to a Disciplined Devel-
opment Process:. The ISTAR Integrated Project
Support Environment.” ACM Software Engineering
Notes 11, 4 (1986), 49-60.

As part of the papers presented at the second work-
shop on software process, L ehman describes the de-
velopment of an approach and an environment that
support the production of large software systems by
teams of "sub-contractors" working on the project.

Lehman87

Lehman, M. M. “Process Models, Pracess Program-
ming, Programming Support.”” Proc. 9th. Intern.
Conf. Software Engineering. |EEE Computer Soci-
ety, April 1987, 14-16.

An invited paper that responds to and debates the
proposal by Osterweil87 for programming the soft-

22 Draft For SEl Internal Use Only

ware process. His critique cites the inherent openess
of software development practices and the limits of
being able to characterize such practices with al-
gorithmic languages.

Liker86

Liker, J. K., and W. M. Hancock. ‘Organizational
Systems Barriers to Engineering Effectiveness.”
IEEE Trans. Engineering Management EM-33, 2
(1986), 82-91.

Identifies a number of organizational conditions that
inhibit or reduce the productivity and effectiveness
of engineers wokring in large organizational set-
tings. Although not specific to software engineer-
ing, its analysis and findings are easily applied to
this domain.

MIL-STD-2167

Dept. of Defense. DRAFT Military Standard: De-
fense System Software Development. DOD-
STD-2167A.

The current draft of the standard guidelines for de-
veloping and documenting software systems by
contractors working for the U.S. Department of De-
fense.

Narayanaswamy87

Narayanaswamy, K., and W. Scacchi. A Database
Foundation to Support Software System Evolution.”
J. Sys. and Software 7, 1 (March 1987), 37-49.

Abstract: Most software engineering researchers
focus on supporting the maintenance of large-scale
software systems to tackle problems such as manag-
ing source code alterations or automating the
reconstruction and release of incrementally altered
systems from descriptions of their configurations.
In this paper, we take the view that information per-
taining to the configurations of a system constitute
a basic source of knowledge about the system's de-
sign and how its component modules fit together.
This knowledge is articulated by the use of a special
language called NuMIL, which captures the inter-
dependencies between the interfaces of components
within a system. We then use a relational database
system to store the descriptions. This enables man-
agement of the description of large software config-
urations in an elegant manner, and it facilitates the
interactive use of the descriptions in analyzing in-
cremental system alterations and in enhancing the
maintainer’ s under standing of a system.

Neighbors84

Neighbors, J. “ The Draco Approach to Constructing
Software from Reusable Components.” IEEE
Trans. Software Eng. SE-10, 5 (Sept. 1984),
564-574.

SEI-CM-10-1.0

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Abstract: This paper discusses an approach called
Draco to the construction of software systems from
reusable software parts. In particular we are con-
cerned with the reuse of analysis and design infor-
mation in addition to programming language code.

vironment supporting the (semi-)automated trans-
formation of software specifications into an imple-
mentation language. This techniques and
mechanisms employed have since migrated into a
commercial product called REFINE.

The goal of the work on Draco has been to increase
increase the productivity of software specialists in Potts84

the construction of similar systems. The particular
approach we have taken is to organize reusable Proc. Software Prc_)cess Worksho_p, C. Potts, ed.
|EEE Computer Society, Los Alamitos, CA, 1984.

software components by problem area or dpmai n.

Satements of programs in these specialized Proceedings of the first workshop on software proc-

domains are then optimized by source-to-source ess modeling which brought attention to the inade-
quacies of traditional life cycle models as well as

program transformations and refine_ad i_nt_o other
domains. ~ The problems of maintaining the suggesting some alternative ways for describing
software evolution.

representational consistency of the developing pro-
gram and producing efficient practical programs
are discussed. Some examples from a prototype

system are also given. Radice85
Radice, R. A., N. K. Roth, A. L. O'Hara, Jr., and
Nolan73 W. A. Ciafela “A Programming Process

Architecture.” IBM Systems J. 24, 2 (1985), 79-90.

Describes experiences with the development and

Nolan, R. “Managing the Computer Resource: A
Stage Hypothesis.”” Comm. ACM 16, 7 (July 1973),

Abstract: Based on the study of expenditures for
data processing, a descriptive stage hypothesis is
presented. It is suggested that the planning, organ-
izing, and controlling activities associated with
managing the computer resource will change in
character over a period of time, and will evolve in
patterns roughly correlated to four stages of the
computer budget: Stage | (computer acquisition),

39-405. practice of an approach to engineering large soft-

ware systems at IBM. The PPA is aframework for
describing the required activities for an operational
process for developing software systems. The ar-
chitecture includes process management tasks,
mechanisms for analysis and development of the
process, and product quality reviews. It aso re-
quires explicit entry criteria, validation, and exit cri-
teria for each task in the software production proc-
ess.

Sage Il (intense system development), Stage IlI
(proliferation of controls), and Save IV
(user/service orientation). Each stage is described
and related to individual tasks for managing the
computer resource.

Redwine85

Redwine, S., and W. Riddle. * Software Technology
Maturation.” Proc. 8th. Intern. Conf. Software
Engineering. |IEEE Computer Society, 1985,

Osterweil87 189-200.
Osterweil, L. “Software Processes are Software . ;
Too.” Proc. 9th. Intern. Conf. Software Abstract: We have reviewed the growth and

; .) ' propagation of a variety of software technologiesin
Engineering. |EEE COmputer Society, April 1987, an attempt to discover natural characteristics of the
2-13. process as well as principles and techniques useful
in transitioning modern software technology into

' : widespread use. What we have looked at is the
erational programs that characterize how software technology maturation process, the process by

devegloprggt activities ﬁhould occur and how tools which a piece of technology is first conceived, then

can be used to support these activities. shaped into something usable, and finally
"marketed" to the point that it is found in the reper-

Polak86 toire of a majority of professionals.

Polak, W. ““ Framework for a Knowledge-Based Pro-

gramming Environment.” Workshop on Advanced maturation — and our conclusion is that technol-

Programming Environments. Springer-Verlag, ogy maturation generally takes much longer than

1986. popularly thought, especially for major technology
areas. But our prime interest is in determining

Describes an innovative approach to developing op-

A major interest is the time required for technology

SEI-CM-10-1.0

Describes another segment of the knowledge-based
approach to automating software production
originally presented in Balzer83b. This segment
focuses attention to a specification language and en-

Draft For SEl Internal Use Only

what actions, if any can accelerate the maturation
of technology, in particular that part of maturation
that has to do with transitioning the technology into
widespread use. Our observations concerning mat-

23

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

uration facilitators and inhibitors are the major requires people who can organize the process for
subject of this paper. developing and evolving software products with lo-
cally available resources. Managing software engi-
neering projects is as much a job of social inter-
action asit is one of technical direction. This paper
examines the social arrangements that a software
manager must deal with in developing and using

Royce70
Royce, W. W. “Managing the Development of
Large Software Systems.” Proc. 9th. Intern. Conf.

Software Engineering. IEEE Computer Society, new computing systems, evaluating the appropriate-
1987, 328-338. Originaly published in Proc. WES- ness of software engineering tools or techniques,
CON, 1970. directing the evolution of a system through its life

Often cited as the first article to explicate the soft- cycle, organizing and staffing software engineering

ware life cycle through use of the classic waterfall
chart. However, it wasn't until Boehm76 that the
central focus of software engineering was explicitly
linked to the tools and techniques required to ade-
quately support software life cycle engineering.

Sathi85

projects, and assessing the distributed costs and
benefits of local software engineering practices.
The purpose is to underscore the role of social
analysis of software engineering practices as a cor-
nerstone in understanding what it takes to produc-
tively manage software projects.

Scacchi86a

Sathi, A, M. S Fox, and M. Greenberg. Scacchi, W. “ Shaping Software Behemoths.” UNIX
Representation of Activity Knowledge for Project Review 4, 10 (Oct. 1986), 46-55.

Management.” |EEE Trans. Patt. Anal. and Mach.

Intell. PAMI-7, 5 (1985), 531-552.

Describes a schematic language for representing
knowledge about complex production processes.
Use of such a knowledge representation language
and its associates intelligent system (shell) environ-
ment provides an advanced basis for developing
knowledge-based models of software products, pro-
duction processes and their interactions.

Sathi86

Sathi, A., T. Morton, and S. Roth.

Intelligent Project Management System.”
Magazine 7, 5 (1986), 34-52.

The follow-on report to Sathi85 which describes the
continuing development of a knowledge-based ap-
proach to representing and processing complex de-
velopment projects, with emphasis on emerging is-
sues in knowledge representation.

Scacchig84

Scacchi, W. ““Managing Software Engineering Proj-
ects. A Social Analysis.”

Eng. SE-10, 1 (Jan. 1984), 49-50.

24

Abstract: Managing software engineering projects
requires an ability to comprehend and balance the
technological, economic, and social bases through
which large software systems are developed. It re-
quires people who can formulate strategies for de-
veloping systems in the presence of ill-defined re-
quirements, new computing technologies, and
recurring dilemmas with existing computing ar-
rangements. This necessarily assumes skill in ac-
quiring adegquate computing resources, controlling
projects, coordinating development schedules, and
employing and directing competent staff. It also

“Cdlisto: An

Al

IEEE Trans. Software

Describes in an accessible manner how to support
the life cycle engineering of large software systems
through the use of tools available in the Unix
operating system environment.

Scacchi86b
Scacchi, W. and J. Babcock. Understanding Soft-
ware Technology Transfer. Internal report, Software
Technology Program, Microel ectronics and Comput-
er Technology Corp., Austin, Texas. (Submitted for
publication).

This report surveys empirical studies of software
technology transfer and transitions experiences and
proposes a framework for understanding how differ-
ent software technologies should be developed and
packages to facilitate their transfer to other settings.

Scacchi86c¢

Scacchi, W., and C. M. K. Kintala. Understanding
Software Productivity. Internal report, Advanced
Software Concepts Dept., AT&T Bell Laboratories,
Murray Hill, N. J. (Submitted for publication).

This report surveys empirical studies of software
productivity measurement. It reports that there are
still no adequate quantitative measures or devices
that can reliably and accurately measure software
productivity. As an dternative, a radical approach
to understanding what affects software productivity
is proposed that utilizes a knowledge-based ap-
proach to modeling and simulating software prod-
ucts, production processes, and production settings
aswell astheir interactions.

Draft For SEl Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Scacchi87

Scacchi, W. “The System Factory Approach to Soft-
ware Engineering Education.” In Educational |Is-
sues in Software Engineering, R. Fairley and
P. Freeman, eds. New York: Springer-Verlag, 1987.

(To appear).

This chapter describes an approach to engineering
large software systems in a graduate-level software
engineering project course. The report describes
some of the software engineering tools, techniques,
and project management strategies that have been
developed over the history of the SF project, as well
as some experiences in transferring these technol-
ogies to other organizational settings.

system development process, and presents a number
of modes both of systems and of system devel-
opment. It also presents one of the few descriptions
of the incremental release model of software devel-
opment practiced by many large system develop-
ment organizations.

vandenBosch82

van den Bosch, F., J. Ellis, P. Freeman, L. Johnson,
C, McClure D. Robinson, W. Scacchi, B. Scheft,
A. van Staa, and L. Tripp. “Evauating the Imple-
mentation of Software Development Life Cycle
Methodologies.” ACM Software Engineering Notes
7,1 (Jan. 1982), 45-61.

Abstract: The cost of developing, maintaining and
enhancing software is a major cost factor in many
projects. The inability to understand, on a quanti-
tative basis, what factors affect this process severely
limits the ability of an organization to make
Presents the first collection of full papers on the changes that will have a predictable affect on im-
subject of rapid prototyping of software systems proving quality and productivity of software prod-
originally appearing at a small workshop on the ucts.

same topic. Most of the techniques for rapid
prototyping that have appeared in subsequent litera-
ture and research investigations further explore
work appearing in this collection.

SEN82
Soecial Issue on Rapid Prototyping. ACM Software
Engineering Notes 7, 5 (Dec. 1982).

In the past decade most software organizations
have developed a life cycle approach for their or-
ganization. The approaches which describe the ac-
tions and decisions of the life cycle phases have
been formalized as a methodology. Little has been
done, however, to define a basis for comparison of
these methodologies or even portions of these meth-
odologies. Therefore, there is little data to guide
management to direct its organization on what
methodologies should be used in the life cycle
phases in order to enhance performance in terms of
cost, schedule, and technical quality.

Thayer81

Thayer, R., A. Pyster, and R. Wood. ‘“Major |ssues
in Software Engineering Project Management.”
|EEE Trans. Software Eng. SE-7, 4 (July 1981).

Abstract: Software engineering project manage-
ment (SEPM) has been the focus of much recent

attention because of the enormous penalties in-
curred during software development and mainte-
nance resulting from poor management. To date
there has been no comprehensive study performed
to determine the most significant problems of
SEPM, their relative importance, or the research
directions necessary to solve them. We conducted a
major survey of individuals from all areas of the
computer field to determine the general consensus
on SEPM problems. Twenty hypothesized problems
were submitted to several hundred individuals for
their opinions. The 294 respondents validated most
of these propositions. None of the propositions was
rejected by the respondents as unimportant. A num-
ber of research directions were indicated by the
respondents which, if followed, the respondents be-
lieved would lead to solutions for these problems.

This is a proposal for a project to develop a basis
for a standard quantitative and qualitative analysis
of a software life cycle methodology. The goals of
this project are to define a process by which an
organization can monitor its life cycle and develop
this process to produce better quality software
product at a cheaper and more competitive price.
In addition, this project will provide a means by
which methodologies can be compared across or-
ganizations or phases of the software development
life cycle. Thiswould be invaluable to large corpo-
rations that have many different software develop-
ment organizations and large agencies who have
their own internal software development agencies
as well as funding other organizations for large
software development projects. This project would
provide data that would enable these corporations
to specify methodologies to the suborganizations in

Tully84

Tully, C. “Software Development Models.” Proc.
Software Process Workshop. |EEE Computer Soci-
ety, 1984, 37-44.

This paper discusses information systems, and the

order to have a positive control on the quality and
price of the software product produced.

This project consists of two phases. Both phases
will be discussed by this proposal but the actual
funding request will only cover the pilot phase. The

SEI-CM-10-1.0 Draft For SEI Internal Use Only 25

10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

pilot phase is a one-year $100,000 project to vali-
date the case study approach to this problem and to
redefine the type of questions and methods by which
to conduct the interviews and the case study anal-
ysis. This pilot project will be followed by a three
year project that will begin by studying approxi-
mately seven projects and will be the start of estab-
lishing the data base to compare methodologies
across organizations and phases of a software life

cycle.

ment as the basis for studying and improving large-
scale industrial software devel opment practices.

Zave84

Zave, P. " The Operational Versus the Conventional
Approach to Software Development.” Comm. ACM
27 (Feb. 1984), 104-118.

Abstract: The conventional approach to software
development is being challenged by new ideas,
many of which can be organized into an alternative

Wileden86 decision structure called the "operational” ap-
Intern. Workshop on Software Process and Software proach. The operational approach is explained and
Environments. J. Wileden and M. Dowson, eds. compared to the conventional one.

ACM Software Engineering Notes 11, 4 (1986).

Proceedings of the second workshop on software
process modeling. Includes short papers that con-
tinue debates over the appropriateness of alternative
models of software evolution started in the first
software process workshop.

Wirth71

Wirth, N. “Program Development by Stepwise

Refinement.” Comm. ACM 14, 4 (April 1971),

221-227.

Abstract: The creative activity of programming —
to be distinguished from coding — is usually taught
by examples serving to exhibit certain techniques.
It is here considered as a sequence of design deci-
sions concerning the decomposition of tasks into
subtasks and of data into data structures. The proc-
ess of successive refinement of specifications is il-
lustrated by a short but nontrivial example, from
which a number of conclusions are drawn regard-
ing the art and the instruction of programming.

Wiseman85

Wiseman, C. Strategy and Computers: |nformation
Systems as Competitive Weapons. New York: Dow

Jones Irwin, 1985.

An elaboration of some of the ideas presented in
Ives84 that focus attention to viewing the devel-
opment and evolution of software systems as corpo-
rate resources whose capabilities create or inhibit
competitive opportunities in the marketplace.

Yacobellis84

Y acobellis, R. H. ** Software and Development Proc-
ess Quality Metrics.” Proc. COMPSAC 84. |EEE

Computer Saciety, 1984, 262-269.

26

Describes some early experiments at AT& T Bell
Laboratories to monitor and measure software pro-
duction processes and products. Together with the
studies at IBM (cf. Humphrey85), this suggests the
growing importance of software process measure-

Draft For SEl Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

