
Models of Software Evolution:
Life Cycle and Process

SEI Curriculum Module SEI-CM-10-1.0

October 1987

Walt Scacchi
University of Southern California

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.

Draft For SEI Internal Use Only

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include textbooks and educational software tools.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Requests for additional information should be addressed to the Director of Education, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Comments on SEI materials are solicited, and may be sent to the Director of Education, or to the module author.

Walt Scacchi
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0782

© 1987 Software Engineering Institute

Models of Software Evolution:

Life Cycle and Process

Acknowledgements Contents

Priscilla Fowler provided helpful comments and Capsule Description 1
suggestions during the development of this module. Philosophy 1
Robert Glass and Marc Kellner also provided helpful

Objectives 1comments in review of this module.

Prerequisite Knowledge 1

Module Content 3

Outline 3

Annotated Outline 3

Glossary 13

Teaching Considerations 15

Bibliography 16

SEI-CM-10-1.0 Draft For SEI Internal Use Only iii
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Module Revision History

Version 1.0 (October 1987) draft for SEI internal use only

iv Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution:
Life Cycle and Process

tion models and methodologiesCapsule Description
• techniques for customizing software life

cycle process models to best suit yourThis module presents an introduction to models of
own needs.software system evolution and their role in structur-

ing software development. It includes a review of
traditional software life cycle models as well as soft-
ware process models that have been recently pro-
posed. It identifies three kinds of alternative models Objectives
of software evolution that focus attention to either
the products, production processes, or production The material covered by this module seeks to convey
settings as the major source of influence. It ex- to students the following objectives:
amines how different software engineering tools and

• a basic recognition that software systemstechniques can support life cycle or process ap-
can be produced and consumed accord-proaches. It also identifies techniques for evaluating
ing to different systematic models ofthe practical utility of a given model of software
software evolutionevolution for development projects in different kinds

of organizational settings. • there are alternative ways to organize
software development efforts, and that
the alternatives can focus attention to
software product, production process, or
production setting characteristicsPhilosophy

• more attention is being focussed to
codifying models of software evolutionThis module presents the concepts and approaches
into computational forms amenable tofor organizing software engineering activities over
simulation, analysis, and articulation ofthe life of software systems. As such, it focuses at-
schemes for integrating various softwaretention to:
engineering tools and techniques• what software life cycle models are and

• software evolution is itself a process thathow they are used
can be prototyped, systematically devel-• what software process models are and
oped, (re-)configured, measured, refined,how they can be used to model the soft-
maintained, and managedware life cycle

• traditional software life cycle models

• alternative software evolution models
centered around software product, pro- Prerequisite Knowledge
duction process, or production setting
characteristics The prequisites for this subject matter depend on the

• how software engineering tools and tech- level of coverage intended for students. For a short
niques fit into the models introduction to life cycle models of three hours of

less, an introduction to computer science and pro-• techniques for evaluating software evolu-

SEI-CM-10-1.0 Draft For SEI Internal Use Only 1
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

gramming is sufficient background. For a more in-
depth treatment of traditional and alternative soft-
ware life cycle models of 15-20 hours, then prior ex-
perience as a participant in a software development
project is strongly recommended, as is knowledge of
computational process models (e.g., state machines,
augmented transition networks, petri networks). For
an advanced, full course-length examination of soft-
ware life cycle and process models, then prior cour-
sework in software engineering and large software
project experience is strongly recommended, as is
some prior training or experience with experimental
research design methods.

2 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Module Content

2. Research problems and opportunitiesOutline
VI. Customizable Life Cycle Process Models

I. Introduction 1. Selecting an Existing Model
1. Historical origins for system life cycle models 2. Customizing your own Model
2. Software life cycle activities 3. Using Process Metrics and Empirical

Measurements3. What is a software life cycle model?
4. Staffing the Life Cycle Process Modeling4. How can software life cycle models be used?

Activity5. What is a software process model?

6. Evolutionistic vs. Evolutionary Models

7. The neglected activities of software evolution

II. Traditional Software Life Cycle Models Annotated Outline
1. Classic Software Life Cycle

I. Introduction2. Stepwise Refinement and Iterative
Enhancement Software evolution represents the cycle of activities in-

volved in the development, use, and maintenance of3. Incremental Release
software systems. Software systems come and go

4. Industrial Practices and Military Standards through a series of passages that account for their in-
III. Alternative Life Cycle Models ception, initial development, productive operation, up-

keep, and retirement from one generation to another.1. Software Product Development Models
Material in this section identifies the historical origins

a. Prototyping of the software life cycle concept, the general activities
included, the similarities and differences between soft-b. Assembling Reusable Componentry
ware life cycle and software process models, and re-c. Application Generation
lated issues. This section is therefore appropriate for all

d. Program Evolution Models students of software engineering.
2. Software Production Process Models 1. Historical origins for system life cycle models

a. Non-Operational Process Models
Originally, system life cycle models emerged in the

b. Operational Process Models fields of evolutionary biology and cybernetics. In
turn, models of software evolution date back to the3. Software Production Setting Models
earliest projects developing large software systemsa. Software project management process
[Benington56, Hosier61, Royce70]. Overall, the ap-models
parent purpose of these software life cycle models

b. Organizational software development models was to provide an abstract scheme accounting for the
"natural" or engineered development of softwarec. Customer resource life cycle models
systems. Such a scheme could therefore serve as a

d. Software technology transfer and transition basis for planning, organizing, staffing, coordinat-
models ing, budgeting, and directing software development

activities.e. Other models for the organization of system
production and manufacturing 2. Software life cycle activities

IV. Where do tools and techniques fit into the
For more than a decade, many descriptions of themodels?
classic software life cycle (often referred to as "the

1. Life Cycle support mechanisms waterfall chart") have appeared (e.g., [Royce70,
Boehm76, Distaso80, Scacchi84, Fairley85]) and2. Process support mechanisms
usually include some version of the following activi-

V. Evaluating Life Cycle Models and Methodologies ties:
1. Comparative evaluation of life cycle and • System Initiation/Adoption: where do sys-

process methodologies tems come from? In most situations, new

SEI-CM-10-1.0 Draft For SEI Internal Use Only 3
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

systems replace or supplement existing ful operation of a system in its host/target
processing mechanisms whether they were environment by providing requested func-
previously automated, manual, or infor- tional enhancements, repairs, performance
mal. improvements, and conversions.

• Requirement Analysis and Specification: 3. What is a software life cycle model?
identifies the problems a new software
system is suppose to solve. A sofware life cycle model is either a descriptive or

prescriptive characterization of software evolution.• Functional Specification or Prototyping:
Typically, it is easier to articulate a prescriptive lifeidentifies and potentially formalizes the
cycle model for how software systems should be de-objects of computation, their attributes and
veloped. This is possible since most such modelsrelationships, the operations that transform
are intuitive. This means that many software devel-these objects, the constraints that restrict
opment details can be ignored, glossed over, orsystem behavior, and so forth.
generalized. This, of course, should raise concern

• Partition and Selection (Build vs. Buy vs. for the relative validity and robustness of such life
Reuse): given requirements and functional cycle models when developing different kinds of ap-
specifications, divide the system into plication systems in different kinds of development
managable pieces that denote logical sub- settings. Descriptive life cycle models, on the other
systems, then determine whether new, ex- hand, characterize how software systems are ac-
isting, or reusable software systems cor- tually developed. As such, they are less common
respond to the needed pieces. and more difficult to articulate for an obvious

• Architectural Configuration Specification: reason: one must observe or collect data throughout
defines the interconnection and resource the development of a software system, a period of
interfaces between system modules in elapsed time usually measured in years. Also,
ways suitable for their detailed design and descriptive models are specific to the systems ob-
overall configuration management. served, and only generalizable through systematic

analysis. Therefore, this suggests the prescriptive• Detailed Component Design Specification:
software life cycle models will dominate attentiondefines the procedural methods through
until a sufficient base of observational data is avail-which each module’s data resources are
able to articulate empirically grounded descriptivetransformed from required inputs into pro-
life cycle models.vided outputs.

• Component Implementation and 4. How can software life cycle models be used?
Debugging: codifies the preceding speci-

Some of the ways these models can be used include:fications into operational source code im-
plementations and validates their basic op- • to organize, plan, staff, budget, schedule
eration. and manage software project work over or-

ganizational time, space, and computing• Software Integration and Testing: affirms
environments.and sustains the overall integrity of the

software system architectural configura- • as prescriptive outlines for what docu-
tion through verifying the consistency and ments to produce for delivery to client.
completeness of implemented modules, • as a basis for determining what software
verifying the resource interfaces and inter- engineering tools and methodologies will
connections against their specifications, be most appropriate to support different
and validating the performance of the sys- life cycle activities.
tem and subsystems against their require-

• as frameworks for analyzing or estimatingments.
patterns of resource allocation and con-• Documentation Revision and System sumption during the software life cycle

Delivery: packaging and rationalizing [Boehm81a].
recorded system development description

• as comparative descriptive or prescriptiveinto systematic documents and user
accounts for how software systems comeguides, all in a form suitable for dissemi-
to be the way they are.nation and system support.

• as a basis for conducting empirical studies• Training and Use: providing system users
to determine what affects software produc-with instructional aids and guidance for
tivity, cost, and overall quality.understanding the system’s capabilities

and limits in order to effectively use the 5. What is a software process model?
system.

A software process model often represents a net-• Software Maintenance: sustaining the use-

4 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

worked sequence of activities, objects, transfor- izing frameworks for managing and tooling software
mations, and events that embody strategies for ac- development efforts. But they are poor predictors of
complishing software evolution [Potts84, Wileden86, why certain changes are made to a system, and why
Dowson86]. Such models can be used to develop systems evolve in similar or different ways
more precise and formalized descriptions of soft- [Bendifallah87]. Evolutionary models are concerned
ware life cycle activities. Their power emerges from less with the stage of development, but more with
their utilization of a sufficiently rich notation, syn- the technological mechanisms and organizational
tax, or semantics, often suitable for computational processes that guide the emergence of a system over
processing. space and time. As such, it should become apparent

that the traditional models are evolutionistic, while
Software process networks can be viewed as the most of the alternative models are evolutionary.
representing methodical task chains. Task chains

7. The neglected activities of software evolutionstructure the transformation of computational en-
tities through a passage of sequence of actions that

Three activities critical to the overall evolution ofdenote each process activity. Task chains are
software systems are maintenance, technology trans-idealized plans of what actions should be accom-
fer, and evaluation. However, these activities are of-plished, and in what order. For example, a task
ten inadequately addressed in most models of soft-chain for the activity of object-oriented software de-
ware evolution. Thus, any model of software evolu-sign might include the following task actions:
tion should be examined to see to what extent it

• Develop an informal narrative specifica- addresses these activities.
tion of the system.

Software maintenance often seems to be described• Identify the objects and their attributes.
as just another activity in the evolution of software.

• Identify the operations on the objects. However, many studies indicate that software sys-
• Identify the interfaces between objects, at- tems spend most of their useful life in this activity

tributes, or operations. [Boehm76, Boehm81a]. A reasonable examination
of the activity indicates that maintenance represent• Implement the operations.
ongoing incremental iterations through the life cycleTask chains join or split into other task chains result-
activities that precede it [Basili75]. These iterationsing in an overall production lattice. The production
are an effective way to incorporate new functionallattice represents the "organizational system" that
enhancements, remove errors, restructure code, im-transforms raw computational, cognitive, and other
prove system performance, or convert a system toorganizational resources into assembled, integrated
run in another environment. Subsequently, softwaresoftware systems. The production lattice therefore
maintenance activities represent micro-level pas-represents the structure of how a software system is
sages through the life cycle. However, it is alsodeveloped, used, and maintained. However, tasks
clear that many other technical and organizationalchains and actions are never sufficiently described to
circumstances profoundly shape the evolution of aanticipate all possible contingencies or foul-ups that
software system and its host environmentcan emerge in the real-world of software develop-
[Lehman86a, Bendifallah87]. Thus, every softwarement. Thus any software production lattice will in
life cycle or process model should be closely ex-some way realize only an approximate or incomplete
amined to see to what extent its accounts for whatdescription of software development. As such,
happens to a software system during most of its sus-articulation work will be performed when a task
tained operation.chain is inadequate or breaks down. The articulation

work then represents a non-deterministic sequence Concerns for system installation and support need to
of actions taken to restore progress on the disarticu- be addressed during the earliest stages of software
lated task chain, or else to shift the flow of produc- evolution. These concerns eventually become the
tive work onto some other task chain [Bendifallah87]. basis for determining the success or failure of soft-

ware system use and maintenance activities. Early6. Evolutionistic vs. Evolutionary Models
and sustained involvement of users in system devel-
opment is one of the most direct ways to affect aEvery model of software evolution makes certain as-
successful software technology transfer. Failure tosumptions about what is the meaning of evolution.
involve users is one of the most common reasonsIn one such analysis of these assumptions, two dis-
why system use and maintenance is troublesome.tinct views are apparent: evolutionistic models focus
Thus, any model of software evolution can be evalu-attention to the direction of change in terms of
ated according to the extent that it accomodates acti-progress through a series of stages eventually lead-
vities or mechanisms that encourage system devel-ing to some final stage; evolutionary models on the
opers and users to cooperate.other hand focus attention to the mechanisms and

processes that change systems [King84]. Evolutionis-
Evaluating the evolution of software systems helpstic models are often intuitive and useful as organ-

SEI-CM-10-1.0 Draft For SEI Internal Use Only 5
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

determine which development activities or actions opment projects in organizational settings.
could be made more effective. Many models of soft-

2. Stepwise Refinement and Iterativeware evolution do not address how system devel-
Enhancementopers (or users) should evaluate their practices to

determine which of their activities could be im- Developing software systems through ongoing re-
proved or restructured. Technical reviews and soft- finement and enhancement of high-level system
ware inspections often focus attention to how to im- specifications into source code components [Wirth71,
prove the quality of the software products being de- Basili75]. These models have been most effective in
veloped, while the organizational and technological helping to teach individual programmers how to or-
processes leading to these products receive less at- ganize their software development work. Many in-
tention. Evaluating development activities also im- terpretations of the classic software life cycle sub-
plies that both the analytical skills and tools are sume this approach within their design and imple-
available to a development group. Thus, models of mentations.
software evolution can also be scrutinized to deter-
mine to what extent they incorporate or structure 3. Incremental Release
development activities in ways that provide devel-

Developing systems by first providing essentialopers with the means to evaluate the effectiveness of
operating functions, then providing system usersthe engineering practices.
with improved and more capable versions of a sys-
tem at regular intervals [Tully84]. This model com-Finally, one important purpose of evaluating local
bines the classic software life cycle with iterativepractices for software evolution is to identify oppor-
enhancement at the level of system development or-tunities where new technologies can be inserted. In
ganization. It also provides a way to periodicallymany situations, new software engineering tools,
distribute software maintenance updates and ser-techniques, or management strategies are introduced
vices to dispersed user communities. This in turnduring the middle of a system development effort.
accomodates the provision of standard softwareHow do such introductions impact existing prac-
maintenance contracts. It is therefore a populartices? What consequences do such introductions
model of software evolution used by commercialhave on the maintainability of systems currently in
firms.use or in development? Software maintenance, tech-

nology transfer, and process evaluation are each cri-
4. Industrial Practices and Military Standardstical to the effective evolution of software systems,

as is their effect on each other. Thus, they should be Industrial firms often adopt some variation of the
treated collectively, and in turn, models of software classic model as the basis of the software develop-
evolution can be reviewed in terms of how well they ment practice [Royce70, Boehm76, Distaso80,
address this collective. Scacchi84, Scacchi86a]. Many government contrac-

tors organize their activities according to militaryII. Traditional Software Life Cycle Models
standard life cycle models such as that embodied in
MIL-STD-2167 [MIL-STD-2167]. Such standardsThese models of software evolution have been with us
outline not only some variation of the classic lifein some cases since the earliest days of software engi-
cycle activities, but also the content of documentsneering. The classic software life cycle (or "waterfall"
required by clients who procure either software sys-model) and stepwise refinement are widely instantiated
tems or complex mechanisms with embedded soft-in just about all books on modern programming prac-
ware systems. These standards are also intended totice and software engineering. The incremental release
be compatible with provision of software quality as-model is closely related to industrial practices where it
surance, configuration management, and independ-most often occurs. Military standards have also reified
ent verficiation and validation services in a multi-certain forms of the classic life cycle model into re-
contractor development project. More recentquired practice for government contractors. But as all
progress in industrial practice appears inof these life cycle models have been in use for some
[Humphrey85, Radice85, Yacobellis84].time, we refer to them as the traditional models, and

identify each below:
III. Alternative Life Cycle Models

1. Classic Software Life Cycle
There are at least three alternative sets of models of
software evolution. These models are alternatives toThe classic software life cycle is often represented
the traditional software life cycle models. These threeas a simple waterfall software phase model, where
sets focus of attention to either the products,software evolution proceeds through an orderly se-
production processes, or production settings associatedquence of transitions from one phase to the next in
with software evolution. As these models are not inlinear order. Such models resemble finite state ma-
widespread practice, discussion of these models is ap-chine descriptions of software evolution. However,
propriate at an intermediate level of coursework, whilesuch models have been perhaps most useful in help-
in-depth review is appropriate at an advanced level.ing to structure and manage large software devel-

6 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

However, all students of software engineering should of small-grain components in and of itself does
have an overview of models of program evolution and not constitute a distinct approach to software
software technology transfer. evolution. Other approaches attempt to utilize

components resembling functionally complete
1. Software Product Development Models systems or subsystems (e.g., user interface man-

agement system): large-grain components. TheSoftware product development models represent an
use/reuse of large-grain components does appearevolutionary extension to the traditional software
to be an alternative approach to developing soft-life cycle models. The extensions arose due to the
ware systems, and thus is an area of active re-availability of new software development technol-
search. There are probably many ways to utilizeogies such as software prototyping languages and
reusable software components in evolving soft-environments, reusable software, and application
ware systems. However, cited studies suggestgenerators. Each of these technologies seeks to en-
their initial use during architectural or componentable the creation of executable software implemen-
design specification as a way to speed implemen-tations either earlier in the life cycle, or more rapidly
tation. They might also be used for prototypingbut with reduced functionality. Discussion of these
purposes if a suitable software prototyping tech-models is most appropriate when such technologies
nology is available.are available for use or experimentation.

c. Application Generationa. Prototyping
Application generation is an approach to softwarePrototyping is a technique for providing a reduced
development similar to reuse of parameterized,functionality version of a software system early in
large-grain software components. Such compo-its development [Balzer82, Boehm84, Budde84,
nents are specialized to an application domain viaHekmatpour87]. Prototyping technologies usually
a formalized specification language used as inputaccept some form of software functional specifi-
to the application generator. Common examplescations as input, which in turn are either simu-
provide standardized interfaces to database man-lated, analyzed, or directly executed. As such,
agement system applications, and includethese technologies allow software design activi-
generators for reports, graphics, user interfaces,ties to be initially skipped or glossed over. In
and application-specific editors. Applicationturn, these technologies can allow developers to
generators give rise to a model of software evolu-rapidly construct early or primitive versions of
tion whereby software design activities are eithersoftware systems that users can evaluate. These
all but eliminated, or reduced to a data base de-user evaluations can then be incorporated as feed-
sign problem. Similarly, users of applicationback to refine the emerging system specifications
generators are usually expected to provide inputand designs. Further, depending on the prototyp-
specifications and application maintenance ser-ing technology, the complete working system can
vices. These capabilities are possible since thebe developed through a continually
generators can usually only produce software sys-revising/refining the input specifications. This has
tems specific to a small number of similar appli-the advantage of always providing a working ver-
cation domains, and usually those that depend onsion of the developing system, while redefining
a data base management system [Horowitz85].software design and testing activities to input

specification refinement and execution. Alter- d. Program Evolution Models
natively, other prototyping approaches are best
suited for developing "throwaway" In contrast to the preceding three models, Lehman
(demonstration only) systems, or for building and Belady sought to develop a descriptive model
prototypes by reusing part/all of some existing of software product evolution. They conducted a
software systems. Two collections of papers on series of studies of the evolution of large software
the subject can be found in [Sen82, Budde84]. systems at IBM during the 1970’s [Lehman85].

Based on their investigations, they identify five
b. Assembling Reusable Componentry properties that characterize the evolution of large

software systems. These are:The basic approach of reusablity is to configure
1. Continuing change: a large softwareand specialize pre-existing software components

system undergoes continuing changeinto viable application systems [Biggerstaff84,
or becomes progressively less usefulNeighbors84, Goguen86]. However, the

granularity of the components (i.e., size, com- 2. Increasing complexity: as a software
plexity, functional capability) very greatly across system evolves, its complexity in-
different approaches. Most approaches attempt to creases unless work is done to main-
utilize components similar to common data struc- tain or reduce it
tures with algorithms for their manipulation:

3. Fundamental law of programsmall-grain components. However, the use/reuse

SEI-CM-10-1.0 Draft For SEI Internal Use Only 7
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

evolution: program evolution, pro- going series of transformations of problem
gramming process, and global meas- statements into abstract specifications into con-
ures of project and system attributes crete implementations [Wirth71, Basili75,
are statistically self-regulating with Bauer76, Balzer81]. Lehman, Stenning, and
determinable trends and invariances Turski, for example, propose a scheme

whereby there is no traditional life cycle nor4. Invariant work rate: the rate of global
separate stages, but instead an ongoing seriesactivity in a large software project is
of reifying transformations of abstract specifi-statistically invariant
cations into more concrete programs

5. Incremental growth limit: during the [Lehman84a, Lehman84b]. In this sense then,
active life of a large program, the vol- problem statements and software systems can
ume of modifications made to succes- emerge somewhat together, and thus can con-
sive releases is statistically invariant. tinue to co-evolve.

However, it is important to observe that these are
Continuous transformation models also ac-global properties of large software systems, not
comodate the interests of software formalistscausal mechanisms of software evolution.
who seek the precise statement of formal

2. Software Production Process Models properties of software system specifications.
Accordingly, the specified formalisms can beThere are two kinds of software production process
mathematically transformed into properties thatmodels: non-operational and operational. Both kinds
a source implementation should satisfy. Theare software process models. The difference be-
potential for automating such models is ap-tween the two primarily stems from the fact that the
parent, but it still the subject of ongoing re-operational models can be viewed as programs: pro-
search (and addressed below).grams that implement a particular regimen of soft-

ware engineering and evolution. Non-operational (iii) Miscellaneous Process Models
models on the other hand denote conceptual ap-

Many variations of the non-operational life cy-proaches that have not yet been sufficiently articu-
cle and process models have been proposed,lated in a form suitable for codification.
and appear in the proceedings of the three soft-

a. Non-Operational Process Models ware process workshops [Potts84, Wileden86,
Dowson86]. These include fully interconnected(i) The Spiral Model
life cycle models which accomodate transitions

The spiral model of software development and between any two phases subject to satifaction
evolution represents a risk-driven approach to of their pre- and post-conditions, as well as
software process analysis and structuring compound variations on the traditional life cy-
[Boehm86]. The approach incorporates ele- cle and continuous transformation models.
ments of specification-driven and prototype- However, the cited reports generally indicate
driven process methods. It does so by that in general most software process models
representing iterative development cycles in a are analytical or theoretical, so little experience
spiral manner, with inner cycles denoting early with these models has been reported.
analysis and prototyping, and outer cycles

b. Operational Process Modelsdenoting the classic system life cycle. The
radial dimension denotes cumulative develop-

(i) Operational specifications for rapidment costs, and the angular dimension denotes
prototypingprogress made in accomplishing each develop-

ment spiral. Risk analysis, which seeks to iden- The operational approach to software develop-
tify situations which might cause a develop- ment assumes the existence of a formal specifi-
ment effort to fail or go over budget/schedule, cation language and processing environment
occurs during each spiral cycle. In each cycle, [Bauer76, Balzer82, Balzer83a, Zave84]. Spec-
it represents roughly the same amount of an- ifications in the language are "coded" and
gular displacement, while the displaced sweep when processable constitute a functional proto-
volume denotes increasing levels of effort re- type of the specified system. When such speci-
quired for risk analysis. System development fications can be developed and processed in-
in this model therefore spirals out only so far crementally, then the resulting systems
as needed according to the risk that must be prototypes can be refined and evolved into
managed. functionally more complete systems, while al-

ways operational during their development.(ii) Continuous Transformation Models
Variations within this approach represent either

These models propose a process whereby soft- efforts where the prototype is the end sought,
ware systems are developed through an on- or where specified prototypes are kept opera-

8 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

tional but refined into a complete system. marked optional, and thus is perhaps most appro-
priate at an advanced level.

(ii) Software process automation and
a. Software project management processprogramming

models
Process automation and programming are con-
cerned with developing "formal" specifications In parallel to (or on top of) a software develop-
of how a (family of) software system(s) should ment effort, there is normally a management su-
be developed. Such specifications therefore perstructure to configure the effort. This structure
should provide an account for an organization also represents a cycle of activities for which
and description of the various software produc- project managers assume the responsibility. The
tion task chains, how they interrelate, when activities include project planning, budgeting and
then can iterate, etc. as well as what software controlling resources, staffing, dividing and coor-
tools to use to support different tasks, and how dinating staff, scheduling deliverables, directing
these tools should be used [Hoffnagel85, and evaluating (measuring) progress, and inter-
Huseth86, Osterweil87]. [Lehman87] and vening to resolve conflicts, breakdowns, or
[Curtis87] provide provocative reviews of the resource distribution anomalies [Thayer81,
potential and limitations of current proposals Scacchi84, Kedzierski84, Radice85,
for software process automation and program- Humphrey85].
ming.

b. Organizational software development models
(iii) Knowledge-based software automation

Software development projects are plagued with
Attempts to take process automation to its many recurring organizational dilemmas which
limits by assuming that process specifications can slow progress. Experienced managers recog-
can be used directly to develop software sys- nize these dilemmas and develop strategies for
tems, and to configure development environ- mitigating or resolving their adverse effects. Such
ments to support the production tasks at hand. strategies therefore form an informal model for
The common approach is to seek to automate how to manage software development throughout
the continuous transformation model. In turn, its life cycle. See [Kling80, Kidder81, Kling82,
this implies an automated environment capable Scacchi84, Gasser86, Curtis87] as well as
of recording the formalized development of op- [Liker86].
erational specifications, successively trans-

c. Customer resource life cycle modelsforming and refining these specifications into
an implemented system, assimilating mainte- With the help of information (i.e., software) sys-
nance requests by inserting the new/enhanced tems, a company can become more competitive in
specifications into the current development all phases of its customer relationships [Ives84,
derivation, then replaying the revised develop- Wiseman85]. The customer resource life cycle
ment toward implementation [Bauer76, (CRLC) model is claimed to make it possible for
Balzer83b, Balzer85]. However, current such companies to determine when opportunities
progress has been limited to demonstrating exist for strategic applications. Such applications
such mechanisms and specifications to change a firm’s product line or the way a firm
narrowly-defined software coding, mainte- competes in its industry. The CRLC model also
nance, project communication and manage- indicates what specific application systems should
ment tasks [Balzer83b, Balzer85, Cheatham86, be developed.
Polak86, Kedzierski84, Sathi85, Sathi86].

The CRLC model is based on the following
3. Software Production Setting Models premises: the products that an organization pro-

vides to its customers are, from the customerIn contrast to product or production process models
viewpoint, supporting resources. A customer thenof software evolution, production setting models
goes through a cycle of resource definition, adop-draw attention to organizational and management
tion, implementation and use. This can require astrategies for developing and evolving software sys-
substantial investment in time, effort, and man-tems. With rare exception, such models are non-
agement attention. But if the supplier organizationoperational. As such, the focus is less technological,
can assist the customer in managing this resourceand more strategic. But it should become clear that
life cycle, the supplier may then be able to dif-such strategies do affect what software products get
ferentiate itself from its competitors via enhanceddeveloped, and how software production processes
customer service or direct cost savings. Thus, thewill be organized.
supplier organization should seek to develop and

Also, note that the last entry in this section on other apply software systems that support the
models of system production and manufacturing is customer’s resource life cycle. [Ives84] and

SEI-CM-10-1.0 Draft For SEI Internal Use Only 9
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

[Wiseman85] describe two approaches for ar- have far greater affect in determining the success-
ticulating CRLC models and identifying strategic ful use and evolution of a software innovation,
software system applications to support them. than the innovation’s technical merit. However,

software technology transfer is an area requiring
The purpose of examining such models is to ob- much more research.
serve that forces and opportunities in a

e. Other models for the organization of systemmarketplace such as customer relationships, cor-
porate strategy, and competitive advantage can production and manufacturing
help determine the evolution of certain kinds of

(This section is optional.) What other kinds ofsoftware systems.
models of software production might be possible?

d. Software technology transfer and transition If we look to see how other technological systems
are developed, we find the following sort ofmodels
models for system production:

The software innovation life cycle circumscribes
• Ad-hoc problem solving, tinkering, andthe technological and organizational passage of

articulation work: the weakest modelsoftware system technologies. This life cycle
of production is when people approachtherefore includes the activities that represent the
a development effort with little or notransfer and transition of a software system from
preparation or task chain plan at hand,its producers to its consumers. This life cycle
and thus rely solely upon their skill, adincludes the following activities [Redwine85,
hoc tools, or the loosely coordinated ef-Scacchi86b]:
forts of others get them through. It is

• Invention and prototyping: software re- situation specific, and driven by ac-
search and exploratory prototyping comodations to local circumstances. It

is therefore perhaps the most widely• Product development: the software de-
practiced form of production and sys-velopment life cycle
tem evolution.• Diffusion: packaging and marketing

• Group project: software life cycle andsystems in a form suitable for wide-
process efforts are usually realized onespread dissemination and use
at a time, with every system being• Adoption and Acquisition: deciding to
treated somewhat uniquely. Thus suchcommit organizational resources to get
efforts are often organized as groupnew systems installed
projects.

• Implementation: actions performed to
• Custom job shop: job shops take onassimilate newly acquired systems into

only particular kinds of group projectexisting work and computing arrange-
work, due to more substantial invest-ments
ment in tooling and production

• Routinization: using implemented sys- skill/technique refinement.
tems in ways that seem inevitable and

• Batched production: provides the cus-part of standard procedures
tomization of job shops but for a larger

• Evolution: sustaining the equilibrium of production volume. Subsystems in de-
routine use for systems embedded in velopment are configured on jigs that
community of organizational settings can either be brought to workers and
through enhancements, restructuring, production tools, or that tools and
debugging, conversions, and replace- workers can be brought to the
ments with newer systems. workpieces or subsystems.

Available research indicates that progress through • Pipeline: when system development re-
the software innovation life cycle can take 7-20 quires the customization of job shops or
years for major software technologies (e.g., Unix, the specialization of volume of batched
expert systems, programming environments, Ada) production, while at the same time al-
[Redwine85]. Thus, moving a software develop- lowing for concurrent development se-
ment organization to a new technology can take a quences of subsystems.
long time and great effort. Research also indicates

• Flexible manufacturing systems: seek tothat most software innovations (small or large)
provide the customization capabilitiesfail to get properly implemented, and thus result
of job shops, while relying upon ad-in wasted effort and resources [Scacchi86b]. The
vanced automation to allow economiesfailure here is generally not technical, but instead
of scale, task standardization, andprimarily organizational. Thus, organizational cir-
delivery of workpieces of transfers linescumstances and the people who animate them
realized through rapidly reconfigurable

10 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

workstation tooling and process pro- 2. Process support mechanisms
gramming. Recent proposals for

There are at least three kinds of software process"software factories" have adopted a var-
support mechanisms:iation of this model [Scacchi87].

• Process articulation technologies denote• Transfer (assembly) lines: when raw in-
the prototyping, reusable software, and ap-put resources or semi-finished sub-
plication generator languages and environ-assemblies can be moved through a net-
ments for rapidly developing new softwarework of single action workcells, then
systems.transfer lines are appropriate.

• Process measurement and analysis• Continuous process control: when the
technologies denote the questionnaire, sur-rate or volume of uniform raw input
vey, or performance monitoring instru-resources and finished output products
ments used to collect quantifiable data oncan be made continuous and automat-
the evolving characteristics of softwareically variable, then a continuous proc-
products and processes. Collected data caness control form of production is appro-
in turn be analyzed with statistical tools topriate. Oil refining is an example of
determine descriptive and inferentialsuch a process, with crude oil from
relationships within the data. Thesewells as input, and petroleum products
relationships can then be interpreted as in-(gasoline, kerosene, multi-grade motor
dicators for where to make changes in cur-oil) as outputs. Whether software can be
rent practices through a restructuring ofproduced in such a manner is unlikely at
work/resources, or through the introduc-this time.
tion of new software engineering technol-

IV. Where do tools and techniques fit into the ogies. Such measurement and analyusis
technologies can therefore accomodatemodels?
process refinements that improve its over-

Given the diversity of software life cycle and process all performance and product quality.
models, where do software engineering tools and tech-

• Computational process models denote for-niques fit into the picture? This section briefly identi-
malized descriptions of software develop-fies some of the places where different software engi-
ment activities in a form suitable for auto-neering technologies can be matched to certain models.
mated processing. Such models are envi-Another way to look at this section might be to look
sioned to eventually be strongly coupled toinstead at what software engineering technologies
available software engineering tools andmight be available in your setting, then seek a model of
techniques in ways that allow their config-software evolution that is compatible.
uration and use to be programmed. How-
ever, at present, such models serve to help1. Life Cycle support mechanisms
articulate more precise descriptions for

Most of the traditional life cycle models are decom- how to conduct different software engi-
posed as stages. These stages then provide bound- neering activities.
aries whereby software engineering technolgies are

V. Evaluating Life Cycle Models and Methodologiestargeted. Thus, we find engineering techniques or
methods (e.g., Yourdon structured design, TRW’s

Given the diversity of software life cycle and processsoftware requirements engineering methodology
models, how do we decide which if any is best, or(SREM)) being targeted to support different life cy-
should be the one to follow? Answering this questioncle stages, and tools (e.g., TRW’s requirements en-
requires further research. Therefore, material in thisgineering and verification system (REVS)) targeted
section is perhaps most appropriate at an advancedto support the associated activities. However, there
level.are very few, if any, package of tools and techniques

that purport to provide integrated support for engi- 1. Comparative evaluation of life cycle and
neering software systems throughout their life cycle process methodologies
[Scacchi87]. Perhaps this is a shortcoming of the tra-

As noted in Section I, descriptive life cycle modelsditional models, perhaps indicative that the integra-
require the empirical study of software evolutiontion required is too substantial to justify its expected
products and processes. Therefore, how should suchcosts or benefits, or prehaps the necessary technol-
a study be designed to realize useful, generalizableogy is still in its infancy. Thus, at present, we are
results?more likely to find ad-hoc or loose collections of

software engineering tools and techniques that pro-
Basically, empirical studies of actual software lifevide partial support for software life cycle engineer-
cycles or processes should ultimately lead to modelsing.
of evolution with testable predictions [Curtis80,

SEI-CM-10-1.0 Draft For SEI Internal Use Only 11
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Basili86]. Such models in turn must therefore be ap- research design methods, data sampling, collection,
plicable across different sets of comparable data. and analysis are all critical topics that require careful
This means that such studies must utilize measure- articulation and scrutiny [Basili86]. And each of the
ments that are reliable, valid, and stable. Reliability alternative models, whether focussing attention to
refers to the extent that the measures are accurate either software products, production processes, pro-
and repeatable. Validity indicates whether the meas- duction settings, or their combination can ideally
ured values of process variables are in fact correct. draw upon descriptive studies as the basis of their
Stability denotes that the instrument measures one or prescriptions. Thus, we are at a point where empiri-
more process variables in a consistent manner across cal studies of software life cycle or process models
different data sets [Curtis80]. (or their components) are needed, and likely to be

very influential if performed systematically and
However, most statistical instruments are geared for rigorously.
snapshot studies where certain variables can be con-
trolled, while others are independent. Lehman and Therefore, for advanced level students, it is appro-
Belady utilize such instruments in their evaluation of priate to devote some attention to the problem of
large software system attributes [Lehman85]. Their designing a set of experiments intended to substan-
study utilizes data collected over periodic intervals tiate or refute a model of software evolution, where
for a sample of large software systems over a num- critical attention should then be devoted to evalu-
ber of years. However, their results only make ating the quality and practicality (i.e., time, effort,
strong predictions about global program evolution and resources required) of the proposed research.
dynamics. That is, they cannot predict what will

VI. Customizable Life Cycle Process Modelshappen at different life cycle stages, in different cir-
cumstances, or for different kinds of software sys- Given the emerging plethora of models of software
tems. To make such predictions requires a different evolution, how does one choose which model to put
kind of study. into practice? This will be a recurring question in the

absence of empirical support for the value of one[vandenBosch82] and [Curtis87] propose two alter-
model over others. We can choose whether to select annative approaches to studying software evolution.
existing model, or else to develop a custom model.Both rely upon long-term field studies of a sample
Either way, the purpose of having a model is to use itof software efforts in different organizational set-
to organize software development efforts in a more ef-tings. There approach is targeted to constructing a
fective, more productive way. But this is not a one-framework for discovering the mechanisms and or-
shot undertaking. Instead, a model of software evolu-ganizational processes that shape software evolution
tion is likely to be most informing when not only usedwith a comparative study sample. The generality of
to prescribe software development organization, butthe results they derive can thus be assessed in terms
also when used to continually measure, tune, and refineof their sample space.
the organization to be more productive, risk-reducing,
and quality driven [Humphrey85, Radice85, Basili87].[Kelly87] provides an informing comparative anal-

ysis of four methods for the design of real-time soft-
1. Selecting an Existing Modelware systems. Although his investigation does not

compare models of software evolution, his Choosing the one that’s right for your software proj-
framework is suggestive of what might be accom- ect and organization is the basic concern. At this
plished through comparative analysis of such time, we can make no specific recommendation for
models. which model is best in different circumstances. The

choice is therefore open-ended. However, we mightOther approaches that report on the comparative
expect to see the following kinds of choices beinganalysis of software evolution activities and out-
made with respect to existing models: Generally,comes can be found elsewhere [Kling80, Basili81,
most software development organizations are likely

Boehm81b].
to adopt one of the traditional life cycle models.
Then they will act to customize it to be compatible2. Research problems and opportunities
with other organizational policies, procedures, and

As should be apparent, most of the alternative market conditions. Software research organizations
models of software evolution are relatively new, and will more likely adopt an alternative model, since
in need of improvement and empirical grounding. It they are likely to be interested in evaluating the po-
should however also be clear that such matters re- tential of emerging software technologies. When
quire research investigations. Prescriptive models development organizations adopt software technol-
can be easy to come by, whereas descriptive models ogies more closely aligned to the alternative models
require systematic research regimens which can be (e.g., reusable components, rapid prototyping), they
costly. Nonetheless, there are many opportunities to may try to use them either experimentally, or to
further develop, combine, or refute any of the alter- shoehorn them into a traditional life cycle model,
native models of software evolution. Comparative with many evolutionary activities kept informal and

12 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

undocumented. Alternatively, another strategy to terial outlined in this curriculum module. That is, a
follow is to do what some similar organization has staff member who has only had an introductory or
done, and to use the model they employ. Studies even intermediate level exposure to this material is
published by researchers at IBM and AT&T Bell not likely to perform software life cycle or process
Laboratories are often influential in this regard modeling competently. Large software development
[Humphrey85, Radice85, Yacobellis84]. organizations with dozens, hundreds, or even

thousands of software developers are likely to rely
2. Customizing your own Model upon one or more staff members with a reasonably

strong background in local software development[Basili87] can be recognized as one of the foremost
practices and experimental research skills. This sug-advocates for developing a custom life cycle process
gests that such staff are therefore likely to possessmodel for each project and organization. Empirical
the equivalent of a masters or doctoral degree soft-studies of software development seem to indicate
ware engineering or experimental computer science.that life cycle process modeling will be most effec-
In particular, a strong familarity with experimentaltive and have the greatest benefit if practiced as a
research methods, sampling strategies, questionnaireregular activity. Process metrics and measurements
design, survey analysis, statistical data analysisneed to be regularly applied to capture data on the
packages, and emerging software technologies areeffectiveness of current process activities. As sug-
the appropriate prerequisites. Simply put, this is notgested above, it seems likely that at this time, the
a job for any software engineer, but instead a job forconservative strategy will be to adopt a traditional
software engineer (or industrial engineer) with ad-life cycle model and then seek to modify or extend it
vanced training and experience in experimental re-to accomodate new software product or production
search tools and techniques.process technologies. However, it seems just as like-

ly that software development efforts that adopt soft-
ware product, production process and production
setting concerns into a comprehensive model may
have the greatest potential for realizing substantial Glossary
improvement in software productivity, quality, and
cost reduction [Scacchi86c].

articulation work
3. Using Process Metrics and Empirical a non-deterministic series of actions taken by

Measurements people in response to foul-ups, breakdowns,
mistakes, resource bottlenecks, or other un-One important purpose of building or buying a proc-
expected circumstances that cause planned taskess model is to be able to apply it to current software

development projects in order to improve their chains to disarticulate. Hacking together soft-
productivity, quality, and cost-effectiveness ware kludges in response to system glitches is a
[Humphrey85, Radice85]. The models therefore pro- frequently observed form of articulation work
vide a basis for instrumenting the software process that occurs during software evolution.
in ways that potentially reveal where development
activities are less effective, where resource bot- evolutionary models
tlenecks occur, and where management interventions

represent software evolution in terms that focusor new technologies could have a beneficial impact
attention to the mechanisms that give rise to[Basili87, Yacobellis84]. [Scacchi86c] goes so far as
changes made in a system. Such models seek toto advocate a radical approach involving the appli-
account for how and why software systemscation of knowledge-based technologies for model-

ing and simulating software product, production emerge the way they do. Systems evolve not so
process, and production setting interactions based much according to prescriptive stages, but rather
upon empirical data (i.e., knowledge) acquired in response to the actions people take to make
through questionnaire surveys, staff interviews, ob- the system fit their circumstantial needs. Thus,
servations, and online monitoring systems. Such an when circumstances change, people will seek
approach is clearly within the realm of basic re- opportunities to change the system.
search, but perhaps indicative of the interest in de-
veloping high-potential, customizable models of

evolutionist modelssoftware evolution.
represent software evolution in terms that focus

4. Staffing the Life Cycle Process Modeling attention to the direction of changes made to
Activity systems. Such models seek to explain the logic

of development typically in the form of stagesIdeally, the staff candidate best equipped to organize
the follow one another, where each stage is theor analyze an organizational’s model of software
precursor for the next one, and ultimately towardevolution is one who has mastered the range of ma-

SEI-CM-10-1.0 Draft For SEI Internal Use Only 13
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

a final state. (e.g., Classic waterfall life cycle
model).

production lattice
the intersecting network of task chains that col-
lectively denote the structure of software devel-
opment activities

software evolution
the collection of software life cycle or process
activities that cause systems to be produced and
consumed

software life cycle
a typical sequence of phased activities that rep-
resent the various stages of engineering through
which software system pass.

software process
the network of object states and transitional
events that represent the production of a soft-
ware system in a form suitable for computational
encoding and processing

task chain
a planned, possibly iterative sequence of actions
taken by people in order to transform raw pro-
duction resources into consumable product
resources.

14 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Teaching Considerations

This module collects and organizes a body of knowl-
edge about software evolution for the first time. It
has not been taught in this form, and therefore sug-
gestions for effective teaching have not been devel-
oped. However, prior experience in teaching part of
this material suggests the use of case studies of large
system development projects as an excellent source
material for study and review For an advanced level
course, a book such as The Soul of a new Machine
by Tracy Kidder is an excellent choice. For an inter-
mediate level of coverage, individual case studies
provide a suitable source material that can introduce
students to the interrelationship of software prod-
ucts, production processes, and production settings
as sources of influence in system evolution. A subse-
quent release of this module will include suggestions
from instructors who have taught the material.

SEI-CM-10-1.0 Draft For SEI Internal Use Only 15
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Bibliography

Balzer81 Balzer83b
Balzer, R. ‘‘Transformational Implementation: An Balzer, R., T. Cheatham, and C. Green. ‘‘Software
Example.’’ IEEE Trans. Software Eng. SE-7, 1 Technology in the 1990’s: Using a New Paradigm.’’
(1981), 3-14. Computer 16, 11 (Nov. 1983), 39-46.

Abstract: A system for mechanically transforming Proposes a radical alternative to traditional ap-
formal program specifications into efficient imple- proaches to software development and evolution
mentations under interactive user control is de- through the use of knowledge-based operational
scribed and illustrated through a detailed example. specification languages and tools. The approach
The potential benefits and problems of this ap- seeks to introduce and rely upon a degree of
proach to software implementation are discussed. automation in software development far beyond

what is available at present. However, it is alos
clear that the approach is inherently long-term in itsBalzer82
orientation thus may take a decade or more before itBalzer, R., N. Goldman, and D. Wile. ‘‘Operational
is fully implemented in a form suitable for large-Specifications as the Basis for Rapid Prototyping.’’
scale experimentaion.

ACM Software Engineering Notes 7, 5 (1982), 3-16.

Among the first papers to assert the desirability to Balzer85
rapidly develop software systems through the use of Balzer, R. ‘‘A 15 Year Perspective on Automatic
operational process and data base oriented specifi- Programming.’’ IEEE Trans. Software Eng. SE-11,
cations and supporting environment. Also asserts 11 (Nov. 1985), 1257-1267.
the importance of being able to specify hence proto-
type descriptions of the user and computational en- Abstract: Automatic programming consists not only
vironments in which the emerging system is to of an automatic compiler, but also some means of
operate as an equally important component. acquiring the high-level specification to be com-

piled, some means of determining that it is the in-
tended specification, and some (interactive) meansBalzer83a
of translating this high-level specification into aBalzer, R., D. Cohen, M. Feather, N. Goldman
lower-level one which can be automatically com-

W. Swartout, and D. Wile. ‘‘Operational Specifica- piled.
tions as the Basis for Specification Validation.’’ In

We have been working on this extended automaticTheory and Practice of Software Technology, Fer-
programming problem for nearly 15 years, and thisrari, Bolognani, and Goguen, eds. Amsterdam:
paper presents our perspective and approach to thisNorth-Holland, 1983.
problem and justifies it in terms of our successes
and failures. Much of our recent work centers onAbstract: This paper describes a set of freedoms
an operational testbed incorporating usable aspectswhich both simplify the task of specifing systems
of this technology. This testbed is being used as aand make the resulting specification more com-
prototyping vehicle for our own research and willprehensible. These freedoms eliminate the need, in
soon be released to the research community as aspecific areas, to consider: the mechanisms for ac-
framework for development and evolution of Com-complishing certain capabilities, the careful coor-
mon Lisp systems.dination and integration of separate operations, the

cost of those operations, and other detailed con-
cerns which characterize implementation. Basili75

Basili, V. R., and A. J. Turner. ‘‘Iterative Enhance-These freedoms are partitioned into the areas of
efficiency, method, and data, and providing them ment: A Practical Technique for Software
has resulted in a novel formal specification lan- Development.’’ IEEE Trans. Software Eng. SE-1, 4
guage, Gist. The main features of this language are (Dec. 1975), 390-396.
described in terms of the freedoms it affords. An

Abstract: This paper recommends the "iterativeoverview of the language is then presented together
enhancement" technique as a practical means ofwith an example of its use to specify the behavior of
using a top-down, stepwise refinement approach toa real system.
software development. This technique begins with a
simple initial implementation of a properly chosen
(skeletal) subproject which is followed by the

16 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

gradual enhancement of successive implementations is currently being developed.
in order to build the full implementation. The de-
velopment and quantitative analysis of a production Bauer76
compiler for the language SIMPL-T is used to dem- Bauer, F. L. ‘‘Programming as an Evolutionaryonstrate that the application of iterative enhance-

Process.’’ Proc. 2nd. Intern. Conf. Softwarement to software development is practical and effi-
Engineering. IEEE Computer Society, Jan. 1976,cient, encourages the generation of an easily
223-234.modifiable product, and facilitates reliability.

Describes one of the first approaches to the devel-
Basili81 opment of a wide-spectrum language for both speci-

fying and implementing evolving software systems.Basili, V. R., and R. W. Reiter. ‘‘A Controlled Ex-
periment Quantitatively Comparing Software Devel-
opment Approaches.’’ IEEE Trans. Software Eng. Bendifallah87
SE-7, 3 (May 1981), 299-320. Bendifallah, S., and W. Scacchi. ‘‘Understanding

Software Maintenance Work.’’ IEEE Trans. Soft-One of the earliest experimental studies to compare
ware Eng. SE-13, 3 (March 1987), 311-323.the utility and effectiveness of software develop-

ment techniques available at that time. Abstract: Software maintenance can be success-
fully accomplished if the computing arrangements
of the people doing the maintenance are compatibleBasili86
with their established patterns of work in the set-Basili, V. R., R. Selby, and D. Hutchens.
ting. To foster and achieve such compatibility re-‘‘Experimentation in Software Engineering.’’ IEEE
quires an understanding of the reasons and the cir-Trans. Software Eng. SE-12, 7 (July 1986), 733-743.
cumstances in which participants carry out mainte-
nance activities. In particular, it requires an under-Presents a survey of the issues, techniques, and
standing of how software users and maintainers actpublished studies that involve experimental studies
toward the changing circumstances and unexpectedof software development practices. An excellent
events in their work situation that give rise to soft-companion paper to Curtis80 for those who seek to
ware system alterations. To contribute to such andevelop a deeper understanding of the challenges
understanding, we describe a comparative analysisand rigors of experimental research in software en-
of the work involved in maintaining and evolvinggineering.
text-processing systems in two academic computer
science organizations. This analysis shows thatBasili87
how and why software systems are maintained de-

Basili, V. R., and H. D. Rombach. ‘‘Tailoring the pends on occupational and workplace contin-
Software Process to Project Goals and gencies, and vice versa.
Environments.’’ Proc. 9th. Intern. Conf. Software
Engineering. IEEE Computer Society, 1987, Benington56
345-357. Benington, H. D. ‘‘Production of Large Computer

Programs.’’ Annals of the History of Computing 5, 4Abstract: This paper presents a methodology for
improving the software process by tailoring it to the (1983), 350-361. (Original version appeared in 1956.
specific project goals and environment. This im- Also appears in Proc. 9th. Intern. Conf. Software
provement process is aimed at the global software Engineering, 299-310).
process model as well as methods and tools sup-

Abstract: This paper is adapted from a presen-porting that model. The basic idea is to use defect
tation at a symposium on advanced programmingprofiles to help characterize the environment and
methods for digital computers sponsored by theevaluate the project goals and the effectiveness of
Navy Mathematical Computing Advisory Panel andmethods and tools in a quantitative way. The im-
the Office of Naval Research in June 1956. Theprovement process is implemented iteratively by set-
author describes the techniques used to produce theting project improvement goals, characterizing
programs for the Semi-Automatic Ground Environ-those goals and the environment, in part, via defect
ment (SAGE) system.profiles in a quantitative way, choosing methods

and tools fitting those characteristics, evaluating
the actual behavior of the chosen set of methods Biggerstaff84
and tools, and refining the project goals based on Special Issues on Software Reusability.
the evaluation results. All these activities require T. Biggerstaff and A. Perlis, eds. IEEE Trans. Soft-analysis of large amounts of data and, therefore,

ware Eng. SE-10, 5 (Sept. 1984).support by an automated tool. Such a tool —
TAME (Tailoring A Measurement Environment) — This is a special issues of IEEE Trans. Software

SEI-CM-10-1.0 Draft For SEI Internal Use Only 17
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Engineering that collects 15 or so papers on differ- • Most of the code in a small application
ent approaches to software reuse that originally software product is devoted to
were presented at a workshop on the topic spon- "housekeeping."
sored by ITT. The paper presents the experimental data support-

ing these conclusions, and discusses their context
and implications.Boehm76

Boehm, B. ‘‘Software Engineering.’’ IEEE Trans.
Computers C-25, 12 (Dec. 1976), 1226-1241. Boehm84

Boehm, B. W., T. Gray, and T. Seewaldt.One of the classic papers in the field of software
‘‘Prototyping vs. Specifying: A Multi-projectengineering that focuses attention to the primacy of
Experiment.’’ Proc. 7th. Intern. Conf. Soft. Engr. ,engineering software systems throughout their de-
1984, 473-484.velopment life cycle, rather than just to improved

programming practice. Abstract: In this experiment, seven software teams
developed versions of the same small-size

Boehm81a (2000-4000 source instruction) application software
product. Four teams used the Specifying approach.Boehm, B. W. Software Engineering Economics.
Three teams used the Prototyping approach.Englewood Cliffs, N. J.: Prentice-Hall, 1981.
The main results of the experiment were:Presents an extensive motivation and treatment of

• Prototyping yielded products with roughlysoftware development and evolution in terms of
equivalent performance, but with aboutcosts, quality, and productivity issues. Among the
40% less code and 45% less effort.results, Boehm indicates that personnel/team capa-

bility and other attributes of a software production • The prototyped products rated somewhat
setting usually have far greater affect on the quality lower on functionality and robustness, but
and cost of software products than do new software higher on case of use and ease of learning.
engineering tools and techniques. It also presents • Specifying produced more coherent de-
an in-depth discussion of the development and de- signs and software that were easier to inte-
tails of the software cost estimation model, grate.
COCOMO that draws upon the extensive studies

The paper presents the experimental data support-and analyses that Boehm and associates at TRW
ing these and a number of additional conclusions.have conducted over the years.

Boehm86Boehm81b
Boehm, B. W. ‘‘A Spiral Model of Software Devel-Boehm, B. ‘‘An Experiment in Small-Scale Software
opment and Enhancement.’’ ACM Software Engi-Engineering.’’ IEEE Trans. Software Eng. SE-7, 5
neering Notes 11, 4 (1986), 22-42.(Sept. 1981), 482-493.

Presents a new model for modeling the softwareAbstract: This paper reports the results of an ex-
process that explicitly attempts to address how toperiment in applying large-scale software engineer-
manage the risks associated with the developmenting procedures to small software projects. Two
of different kinds of software systems. The presen-USC student teams developed a small, interactive
tation of the model is somewhat obscure, howeverapplication software product to the same specifi-
its focus on addressing risk as a central componentcation, one using Fortran and one using Pascal.
in determining how to structure the software devel-Several hypotheses were tested, and extensive ex-
opment process is unique and worth careful ex-perimental data collected. The major conclusions
amination.were as follows.

• Large-project software engineering proce-
Budde84dures can be cost-effectively tailored to
Budde, R., K. Kuhlenkamp, L. Mathiassen, andsmall projects.
H. Zullighoven. Approaches to Prototyping. New• The choice of programming language is
York: Springer-Verlag, 1984.not the dominant factor in small applica-

tion software product development. Presents a collection of papers on software
• Programming is not the dominant activity prototyping originally presented at a conference on

in small software product development. tht topic in Europe in 1984. After SEN82, the most
extensive survey of approaches to software devel-• The "deadline effect" holds on small soft-
opment and evolution through the use of prototyp-ware projects, and can be used to help
ing tools and techniques.manage software development.

18 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Cheatham86 Dowson86
Cheatham, T. ‘‘Supporting the Software Process.’’ Proc. 3rd. Intern. Software Process Workshop,
Proc. 19th. Hawaii Intern. Conf. Systems Sciences. , M. Dowson, ed. IEEE Computer Society, Los
1986, 814-821. Alamitos, Calif., 1986.

Describes a segment of the radical approach to auto- Proceedings of the most recent workshop on soft-
mating software development introduced in ware process models. Presents short papers on a
Balzer83b. This segment addresses how to support variety of different approaches to process modeling
development and debugging of software compo- including object-oriented process programming.
nents through use of task-level protocols and associ-
ated tools. Fairley85

Fairley, R. Software Engineering Concepts. New
Curtis87 York: McGraw-Hill, 1985.
Curtis, B., H. Krasner, V. Shen, and N. Iscoe. ‘‘On

One of the best textbooks on software engineeringBuilding Software Process Models Under the
currently available.Lamppost.’’ Proc. 9th. Intern. Conf. Software

Engineering. IEEE Computer Society, April 1987,
Gasser8696-103.
Gasser, L. ‘‘The Integration of Computing and

Abstract: Most software process models are based Routine Work.’’ ACM Trans. Office Info. Sys. 4, 3
on the management tracking and control of a proj- (July 1986), 205-225.
ect. The popular alternatives to these models such
as rapid prototyping and program transformation Describes the results of an empirical study of soft-
are built around specific technologies, many of ware evolution practices in a large manufacturing
which are still in their adolescence. Neither of organization. Gasser reports that software systems
these approaches describe the actual processes that regularly fail to be compatible with the instrumental
occur during the development of a software system. work activities they are suppose to support, and that
That is, these models focus on the series of artifacts a variety of forms of "work-arounds" and other ac-
that exist at the end of phases of the process, rather comodations are performed by users and main-
than on the actual processes that are conducted to tainers to deal with such systems. These accomoda-
create the artifacts. We conducted a field study of tions and negotiations therefore play a central role
large system development projects to gather empiri- in shaping the evolution of such systems.
cal information about the communication and tech-
nical decision-making process that underlie the de- Goguen86sign of such systems. The findings of this study are

Goguen, J. ‘‘Reusing and Interconnecting Softwarereviewed for their implications on modeling the
Components.’’ Computer 19, 2 (Feb. 1986), 16-28.process of designing large software systems. The

thesis of the paper is that while there are many foci Abstract: Realizing the considerable economic po-
for process models, the most valuable are those tential of software reuse requires new programming
which capture the processes that control the most environment ideas. This article presents a library
variance in software productivity and quality. interconnection language featuring modest use of

semantics.
Curtis80
Curtis, B. ‘‘Measurement and Experimentation in Hekmatpour87
Software Engineering.’’ Proceedings IEEE 68, 9 Hekmatpour, S. ‘‘Experience with Evolutionary
(1980), 1144-1157. Prototyping in a Large Software Project.’’ ACM

Software Engineering Notes 12, 1 (1987), 38-41.Provides a survey of basic concerns that should be
addressed in any systematic or experimental study Describes three alternative approaches to evolving
of software development practices. the development of software systems through

prototyping techniques and tools.
Distaso80
Distaso, J. ‘‘Software Management — A Survey of Hoffnagel85
Practice in 1980.’’ Proceedings IEEE 68, 9 (1980), Hoffnagel, G. F., and W. Beregi. ‘‘Automating the
1103-1119. Software Development Process.’’ IBM Systems

J. 24, 2 (1985), 102-120.Provides a survey of the general issues of software
project management based upon experiences in Describes a complementary approach to Radice85
large projects during the 1970’s. that introduces automated mechanisms and tech-

SEI-CM-10-1.0 Draft For SEI Internal Use Only 19
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

niques for supporting large-scale software produc- Huseth86
tion processes. Huseth, S., and D. Vines. ‘‘Describing the Software

Process.’’ Proc. 3rd. Intern. Software Process
Horowitz85 Workshop. IEEE Computer Society, 1986, 33-35.
Horowitz, E., A. Kemper, and B. Narasimhan. ‘‘A

Briefly describes an approach to the use of object-Survey of Application Generators.’’ IEEE Software oriented and frame-oriented knowledge specifica-
2, 1 (Jan. 1985), 40-54. tion languages in developing operational models of

software products and production processes.As the title suggests, this article provides a survey
of the basic software mechanisms and components
used in many application generators. The presen- Ives84
tation is clear and succinct, and represents one of Ives, B., and G. P. Learmonth. ‘‘The Information
the few published descriptions of the increasingly System as a Competitive Weapon.’’ Comm. ACM
important software development technology. 27, 12 (Dec. 1984), 1193-1201.

Abstract: With the help of information system tech-Hosier61
nology, a company can become competitive in allHosier, W. A. ‘‘Pitfalls and Safeguards in Real-Time
phases of its customer relationships. The customer

Digital Systems with Emphasis on Programming.’’ resource life cycle model makes it possible for such
IRE Trans. Engineering Management EM-8 (June companies to determine not only when opportunities
1961). (Also appears in Proc. 9th. Intern. Conf. Soft- exist for strategic applications, but also what spe-
ware Engineering, 311-327). cific applications should be developed.

Abstract: Real-time digital systems are largely a
Kedzierski84technical innovation of the past decade, but they

appear destined to become more wide spread in the Kedzierski, B. I. ‘‘Knowledge-Based Project Man-
future. They monitor or control a real physical en- agement and Communication Support in a System
vironment, such as an air-traffic situation, as distin- Development Environment.’’ Proc. 4th. Jerusalem
guished from simulating that environment on an ar- Conf. Info. Techology. , 1984, 444-451.
bitrary time scale. The complexity and rapid varia-

Describes the development of a knowledge-basedtion of such an environment necessitates use of a
approach to representing software development taskfast and versatile central-control device, a role well
chains and communications between coordinatedsuited to digital computers. The usual system will

include some combination of sensors, communica- development agents. A prototype processing sup-
tion, control, display, and effectors. Although many port environment is described, as is its suggested
parts of such a system pose no novel management use.
problems, their distinguishing feature, the central
digital device, frequently presents unusually strict Kelly87
requirements for speed, capacity, reliability and Kelly, J. C. ‘‘A Comparison of Four Design Methodscompatibility, together with the need for a carefully

for Real-Time Systems.’’ Proc. 9th. Intern. Conf.designed stored program. These feature, particu-
Software Engineering. IEEE Computer Society,larly the last, have implications that are not always
1987, 238-252.foreseen by management. An attempt is made to

point out specific hazards common to most real- Presents an elaborate but practical scheme for ex-
time digital systems and to show a few ways of min- amining and comparing different tools/techniquesimizing the risks associated with them.

for designing real-time software systems. Such a
comparative framework and analysis of various

Humphrey85 models of software evolution might be derived from
Humphrey, W. S. ‘‘The IBM Large-Systems Soft- this approach. Alternatively, van den Bosch82

presents a different approach to evaluating softwareware Development Process: Objectives and
development methodologies (or models) throughDirection.’’ IBM Systems J. 24, 2 (1985), 76-78.
the use of a comparative framework.

The companion paper to Radice85 and Hoffnagel85
that introduces and motivates the approaches to Kidder81modeling and measuring software production at

Kidder, T. The Soul of a New Machine. New York:IBM with explicit attention to process organization
Atlantic Monthly Press, 1981.and management.

This Pulitzer Prize-winning story describes the de-
velopment life cycle of a new computing system
(hardware and software) by a major computer ven-

20 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

dor, together with the dilemmas, opportunites, and they are produced, and the settings where they are
social dynamics that shaped its development. produced and consumed in order to best understand
Strongly recommended as one of the few descrip- how they will evolve.
tions of the real organizational complexities sur-
rounding the development of computing systems. Lehman84a

Lehman, M. M., V. Stenning, and W. Turski.
King84 ‘‘Another Look at Software Development
King, J. L., and K. K. Kraemer. ‘‘Evolution and Or- Methodology.’’ ACM Software Engineering Notes
ganizational Information Systems: An Assessment 9, 2 (April 1984), 21-37.
of Nolan’s Stage Model.’’ Comm. ACM 27, 5 (May

Abstract: Software design — from ’topmost’ speci-1984), 466-475.
fication down to final implementation — is viewed

Abstract: Richard Nolan’s stage model is the best as a chain of uniform steps, each step being a trans-
known and most widely cited model of computing formation between two linguistic levels. A canoni-
evolution in organizations. The model’s develop- cal form of the step is discussed and it is argued
ment over a decade demonstrates its own evolution that all rational design activities are expressible as
from a simple theory, based on the factoring of a combination of canonical steps. The role of back-
change states indicated by changes in computing tracking in software design is explained and a
budgets, to an elaborate account of the character- mechanism for introducing changes, both in-
istics of six stages of computing growth. An anal- digeneous and exogeneous, is proposed, again en-
ysis of the model’s logical and empirical structure tirely by a combination of canonical steps. The
reveals a number of problems in its formulation that main tenet of the ’canonical step approach’ is that a
help to account for the fact that its principal tenets design step contains a degree of unconstrained, cre-
have not been independently validated. The model ative invention and a calculable part which is the
is shown to be an "evolutionistic" theory within the actual transformation effected.
theories of evolution in the social sciences, focusing
on assumed directions of growth and an implied end Lehman84b
state toward which growth proceeds, and suffering

Lehman, M. M. ‘‘A Further Model of Coherent Pro-from problems inherent in such theories. Further
gramming Processes.’’ Proc. Software Processresearch based on an "evolutionary" view of com-
Workshop. IEEE Computer Society, 1984, 27-33.puting growth is suggested as a means of improving

theories of computing in organizations. Abstract: Computer applications and the software
that implements them evolve both during initial de-

Kling80 velopment and under subsequent usage. Current
industrial processes to achieve such evolution areKling, R., and W. Scacchi. ‘‘Computing as Social
ad hoc. The individual activities from which theyAction: The Social Dynamics of Computing in Com-
are constituted do not have a common theoreticalplex Organizations.’’ Advances in Computers 19
base, are now unified by a single conceptual(1980), 249-327. Academic Press, New York.
framework and so cannot be combined into a
coherent process. Yet the latter is essential for theProvides a survey of the organizational dilemmas
design of integrated programming supportthat can occur during the development and use of
environments and it is widely recognized that suchsystem embedded in complex organizational set-
support is necessary for the creation and evolutiontings. Uses a case study of the life cycle of one
(maintenance) of correct, reliable, cost-effectivesystem to help articulate six different analytical
programs in a manner that is responsive to societalperspectives for understanding these dilemmas and
needs.their interaction.

Coherent processes, that facilitate evolution of a
Kling82 program over its lifetime, cannot be expected to

evolve by juxtaposition of established practices, ex-Kling, R., and W. Scacchi. ‘‘The Web of Comput-
cept over many generations of process instances.ing: Computer Technology as Social Organization.’’
The rate at which computerization is penetrating allAdvances in Computers 21 (1982), 1-90. Academic
aspects of societal activity and the reliance this im-Press, New York.
plies on correct definition and operation of software
systems, suggest that mankind cannot wait for theAsserts the thesis that computing systems and the
‘natural’ evolution of responsive and reliable proc-ways how they are developed and used are in-
esses. Their design and implementation is a matterseparably bound to the settings where they are pro-
of some urgency.duced and consumed. This work employs case

studies to assert the primacy of understanding the This paper outlines the first steps in the design of
interrelationship between software systems, how coherent programming processes by decomposition

SEI-CM-10-1.0 Draft For SEI Internal Use Only 21
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

and successive refinement of a model of program ware process. His critique cites the inherent openess
development and evolution based on a view of pro- of software development practices and the limits of
gramming as a transformation process. being able to characterize such practices with al-

gorithmic languages.

Lehman85
Liker86Lehman, M. M., and L. Belady. Program Evolution:
Liker, J. K., and W. M. Hancock. ‘‘OrganizationalProcesses of Software Change. New York: Aca-
Systems Barriers to Engineering Effectiveness.’’demic Press, 1985.
IEEE Trans. Engineering Management EM-33, 2

Presents a collection of previously published papers (1986), 82-91.
that identify and reiterate the "laws" of large pro-
gram evolution as discovered through empirical in- Identifies a number of organizational conditions that
vestigations at IBM and elsewhere over the preced- inhibit or reduce the productivity and effectiveness
ing 10 year period. Unfortunately, many of the of engineers wokring in large organizational set-
papers state the same data and results, and therefore tings. Although not specific to software engineer-
limit the impact of its contribution. ing, its analysis and findings are easily applied to

this domain.
Lehman86a

MIL-STD-2167Lehman, M. M. ‘‘Modes of Evolution.’’ Proc. 3rd.
Intern. Software Process Workshop. IEEE Comput- Dept. of Defense. DRAFT Military Standard: De-
er Society, 1986, 29-32. fense System Software Development. DOD-

STD-2167A.Abstract: Computer applications inevitably evolve.
The very activity of designing and creating a The current draft of the standard guidelines for de-
mechanistic system to automate some human acti- veloping and documenting software systems by
vity leads to a change of perspective and an in- contractors working for the U.S. Department of De-
crease of insight into the problems and approaches fense.
to its solution. Installation and operation of the
completed system only increases and broadens this Narayanaswamy87effect. The pressures that arise from the changed

Narayanaswamy, K., and W. Scacchi. ‘‘A Databaseperceptions, newly recognized needs and opportu-
Foundation to Support Software System Evolution.’’nities can be controlled but not suppressed. They
J. Sys. and Software 7, 1 (March 1987), 37-49.lead inevitably to demand and, hence, authorization

and implementation of system change. And the key
Abstract: Most software engineering researchersto system functional and quality change is primarily
focus on supporting the maintenance of large-scalethrough modification of its software. Hence the un-
software systems to tackle problems such as manag-ending maintenance burden, the continuing process
ing source code alterations or automating theof change and evolution of programs.
reconstruction and release of incrementally altered
systems from descriptions of their configurations.

Lehman86b In this paper, we take the view that information per-
Lehman, M. M. ‘‘Approach to a Disciplined Devel- taining to the configurations of a system constitute

a basic source of knowledge about the system’s de-opment Process: The ISTAR Integrated Project
sign and how its component modules fit together.Support Environment.’’ ACM Software Engineering
This knowledge is articulated by the use of a specialNotes 11, 4 (1986), 49-60.
language called NuMIL, which captures the inter-

As part of the papers presented at the second work- dependencies between the interfaces of components
shop on software process, Lehman describes the de- within a system. We then use a relational database
velopment of an approach and an environment that system to store the descriptions. This enables man-
support the production of large software systems by agement of the description of large software config-
teams of "sub-contractors" working on the project. urations in an elegant manner, and it facilitates the

interactive use of the descriptions in analyzing in-
cremental system alterations and in enhancing theLehman87
maintainer’s understanding of a system.Lehman, M. M. ‘‘Process Models, Process Program-

ming, Programming Support.’’ Proc. 9th. Intern.
Neighbors84Conf. Software Engineering. IEEE Computer Soci-
Neighbors, J. ‘‘The Draco Approach to Constructingety, April 1987, 14-16.
Software from Reusable Components.’’ IEEE

An invited paper that responds to and debates the Trans. Software Eng. SE-10, 5 (Sept. 1984),
proposal by Osterweil87 for programming the soft- 564-574.

22 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

Abstract: This paper discusses an approach called vironment supporting the (semi-)automated trans-
Draco to the construction of software systems from formation of software specifications into an imple-
reusable software parts. In particular we are con- mentation language. This techniques and
cerned with the reuse of analysis and design infor- mechanisms employed have since migrated into a
mation in addition to programming language code. commercial product called REFINE.
The goal of the work on Draco has been to increase
increase the productivity of software specialists in Potts84
the construction of similar systems. The particular

Proc. Software Process Workshop, C. Potts, ed.approach we have taken is to organize reusable
IEEE Computer Society, Los Alamitos, CA, 1984.software components by problem area or domain.

Statements of programs in these specialized Proceedings of the first workshop on software proc-
domains are then optimized by source-to-source ess modeling which brought attention to the inade-
program transformations and refined into other quacies of traditional life cycle models as well as
domains. The problems of maintaining the suggesting some alternative ways for describing
representational consistency of the developing pro- software evolution.
gram and producing efficient practical programs
are discussed. Some examples from a prototype

Radice85system are also given.
Radice, R. A., N. K. Roth, A. L. O’Hara, Jr., and
W. A. Ciarfella. ‘‘A Programming ProcessNolan73
Architecture.’’ IBM Systems J. 24, 2 (1985), 79-90.Nolan, R. ‘‘Managing the Computer Resource: A

Stage Hypothesis.’’ Comm. ACM 16, 7 (July 1973), Describes experiences with the development and
39-405. practice of an approach to engineering large soft-

ware systems at IBM. The PPA is a framework for
Abstract: Based on the study of expenditures for describing the required activities for an operational
data processing, a descriptive stage hypothesis is process for developing software systems. The ar-
presented. It is suggested that the planning, organ- chitecture includes process management tasks,
izing, and controlling activities associated with mechanisms for analysis and development of the
managing the computer resource will change in process, and product quality reviews. It also re-
character over a period of time, and will evolve in quires explicit entry criteria, validation, and exit cri-patterns roughly correlated to four stages of the teria for each task in the software production proc-computer budget: Stage I (computer acquisition),

ess.Stage II (intense system development), Stage III
(proliferation of controls), and Stave IV

Redwine85(user/service orientation). Each stage is described
and related to individual tasks for managing the Redwine, S., and W. Riddle. ‘‘Software Technology
computer resource. Maturation.’’ Proc. 8th. Intern. Conf. Software

Engineering. IEEE Computer Society, 1985,
189-200.Osterweil87

Osterweil, L. ‘‘Software Processes are Software Abstract: We have reviewed the growth and
Too.’’ Proc. 9th. Intern. Conf. Software propagation of a variety of software technologies in
Engineering. IEEE COmputer Society, April 1987, an attempt to discover natural characteristics of the
2-13. process as well as principles and techniques useful

in transitioning modern software technology intoDescribes an innovative approach to developing op-
widespread use. What we have looked at is theerational programs that characterize how software technology maturation process, the process by

development activities should occur and how tools which a piece of technology is first conceived, then
can be used to support these activities. shaped into something usable, and finally

"marketed" to the point that it is found in the reper-
Polak86 toire of a majority of professionals.
Polak, W. ‘‘Framework for a Knowledge-Based Pro- A major interest is the time required for technology
gramming Environment.’’ Workshop on Advanced maturation — and our conclusion is that technol-
Programming Environments. Springer-Verlag, ogy maturation generally takes much longer than
1986. popularly thought, especially for major technology

areas. But our prime interest is in determiningDescribes another segment of the knowledge-based
what actions, if any can accelerate the maturationapproach to automating software production of technology, in particular that part of maturation

originally presented in Balzer83b. This segment that has to do with transitioning the technology into
focuses attention to a specification language and en- widespread use. Our observations concerning mat-

SEI-CM-10-1.0 Draft For SEI Internal Use Only 23
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

uration facilitators and inhibitors are the major requires people who can organize the process for
subject of this paper. developing and evolving software products with lo-

cally available resources. Managing software engi-
neering projects is as much a job of social inter-Royce70
action as it is one of technical direction. This paperRoyce, W. W. ‘‘Managing the Development of examines the social arrangements that a software

Large Software Systems.’’ Proc. 9th. Intern. Conf. manager must deal with in developing and using
Software Engineering. IEEE Computer Society, new computing systems, evaluating the appropriate-
1987, 328-338. Originally published in Proc. WES- ness of software engineering tools or techniques,
CON, 1970. directing the evolution of a system through its life

cycle, organizing and staffing software engineering
Often cited as the first article to explicate the soft- projects, and assessing the distributed costs and
ware life cycle through use of the classic waterfall benefits of local software engineering practices.
chart. However, it wasn’t until Boehm76 that the The purpose is to underscore the role of social
central focus of software engineering was explicitly analysis of software engineering practices as a cor-
linked to the tools and techniques required to ade- nerstone in understanding what it takes to produc-
quately support software life cycle engineering. tively manage software projects.

Sathi85 Scacchi86a
Sathi, A., M. S. Fox, and M. Greenberg. Scacchi, W. ‘‘Shaping Software Behemoths.’’ UNIX
‘‘Representation of Activity Knowledge for Project Review 4, 10 (Oct. 1986), 46-55.
Management.’’ IEEE Trans. Patt. Anal. and Mach.

Describes in an accessible manner how to supportIntell. PAMI-7, 5 (1985), 531-552.
the life cycle engineering of large software systems

Describes a schematic language for representing through the use of tools available in the Unix
knowledge about complex production processes. operating system environment.
Use of such a knowledge representation language
and its associates intelligent system (shell) environ- Scacchi86bment provides an advanced basis for developing

Scacchi, W. and J. Babcock. Understanding Soft-knowledge-based models of software products, pro-
ware Technology Transfer. Internal report, Softwareduction processes and their interactions.
Technology Program, Microelectronics and Comput-
er Technology Corp., Austin, Texas. (Submitted forSathi86
publication).Sathi, A., T. Morton, and S. Roth. ‘‘Callisto: An

Intelligent Project Management System.’’ AI This report surveys empirical studies of software
technology transfer and transitions experiences andMagazine 7, 5 (1986), 34-52.
proposes a framework for understanding how differ-

The follow-on report to Sathi85 which describes the ent software technologies should be developed and
continuing development of a knowledge-based ap- packages to facilitate their transfer to other settings.
proach to representing and processing complex de-
velopment projects, with emphasis on emerging is-

Scacchi86csues in knowledge representation.
Scacchi, W., and C. M. K. Kintala. Understanding
Software Productivity. Internal report, AdvancedScacchi84
Software Concepts Dept., AT&T Bell Laboratories,Scacchi, W. ‘‘Managing Software Engineering Proj-
Murray Hill, N. J. (Submitted for publication).ects: A Social Analysis.’’ IEEE Trans. Software

Eng. SE-10, 1 (Jan. 1984), 49-59. This report surveys empirical studies of software
productivity measurement. It reports that there are

Abstract: Managing software engineering projects still no adequate quantitative measures or devices
requires an ability to comprehend and balance the that can reliably and accurately measure software
technological, economic, and social bases through productivity. As an alternative, a radical approachwhich large software systems are developed. It re-

to understanding what affects software productivityquires people who can formulate strategies for de-
is proposed that utilizes a knowledge-based ap-veloping systems in the presence of ill-defined re-
proach to modeling and simulating software prod-quirements, new computing technologies, and
ucts, production processes, and production settingsrecurring dilemmas with existing computing ar-
as well as their interactions.rangements. This necessarily assumes skill in ac-

quiring adequate computing resources, controlling
projects, coordinating development schedules, and
employing and directing competent staff. It also

24 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

system development process, and presents a numberScacchi87
of models both of systems and of system devel-Scacchi, W. ‘‘The System Factory Approach to Soft-
opment. It also presents one of the few descriptionsware Engineering Education.’’ In Educational Is-
of the incremental release model of software devel-sues in Software Engineering, R. Fairley and
opment practiced by many large system develop-P. Freeman, eds. New York: Springer-Verlag, 1987. ment organizations.

(To appear).

This chapter describes an approach to engineering vandenBosch82
large software systems in a graduate-level software van den Bosch, F., J. Ellis, P. Freeman, L. Johnson,
engineering project course. The report describes C, McClure D. Robinson, W. Scacchi, B. Scheft,
some of the software engineering tools, techniques, A. van Staa, and L. Tripp. ‘‘Evaluating the Imple-
and project management strategies that have been mentation of Software Development Life Cycledeveloped over the history of the SF project, as well

Methodologies.’’ ACM Software Engineering Notesas some experiences in transferring these technol-
7, 1 (Jan. 1982), 45-61.ogies to other organizational settings.

Abstract: The cost of developing, maintaining and
enhancing software is a major cost factor in manySEN82
projects. The inability to understand, on a quanti-Special Issue on Rapid Prototyping. ACM Software
tative basis, what factors affect this process severelyEngineering Notes 7, 5 (Dec. 1982).
limits the ability of an organization to make

Presents the first collection of full papers on the changes that will have a predictable affect on im-
subject of rapid prototyping of software systems proving quality and productivity of software prod-
originally appearing at a small workshop on the ucts.
same topic. Most of the techniques for rapid In the past decade most software organizationsprototyping that have appeared in subsequent litera- have developed a life cycle approach for their or-
ture and research investigations further explore ganization. The approaches which describe the ac-
work appearing in this collection. tions and decisions of the life cycle phases have

been formalized as a methodology. Little has been
Thayer81 done, however, to define a basis for comparison of

these methodologies or even portions of these meth-Thayer, R., A. Pyster, and R. Wood. ‘‘Major Issues
odologies. Therefore, there is little data to guidein Software Engineering Project Management.’’
management to direct its organization on whatIEEE Trans. Software Eng. SE-7, 4 (July 1981).
methodologies should be used in the life cycle

Abstract: Software engineering project manage- phases in order to enhance performance in terms of
ment (SEPM) has been the focus of much recent cost, schedule, and technical quality.
attention because of the enormous penalties in-

This is a proposal for a project to develop a basiscurred during software development and mainte-
for a standard quantitative and qualitative analysisnance resulting from poor management. To date
of a software life cycle methodology. The goals ofthere has been no comprehensive study performed
this project are to define a process by which anto determine the most significant problems of
organization can monitor its life cycle and developSEPM, their relative importance, or the research
this process to produce better quality softwaredirections necessary to solve them. We conducted a
product at a cheaper and more competitive price.major survey of individuals from all areas of the
In addition, this project will provide a means bycomputer field to determine the general consensus
which methodologies can be compared across or-on SEPM problems. Twenty hypothesized problems
ganizations or phases of the software developmentwere submitted to several hundred individuals for
life cycle. This would be invaluable to large corpo-their opinions. The 294 respondents validated most
rations that have many different software develop-of these propositions. None of the propositions was
ment organizations and large agencies who haverejected by the respondents as unimportant. A num-
their own internal software development agenciesber of research directions were indicated by the
as well as funding other organizations for largerespondents which, if followed, the respondents be-
software development projects. This project wouldlieved would lead to solutions for these problems.
provide data that would enable these corporations
to specify methodologies to the suborganizations in

Tully84 order to have a positive control on the quality and
Tully, C. ‘‘Software Development Models.’’ Proc. price of the software product produced.
Software Process Workshop. IEEE Computer Soci- This project consists of two phases. Both phases
ety, 1984, 37-44. will be discussed by this proposal but the actual

funding request will only cover the pilot phase. TheThis paper discusses information systems, and the

SEI-CM-10-1.0 Draft For SEI Internal Use Only 25
10/16/87 14:56

Models of Software Evolution: Life Cycle and Process

pilot phase is a one-year $100,000 project to vali- ment as the basis for studying and improving large-
date the case study approach to this problem and to scale industrial software development practices.
redefine the type of questions and methods by which
to conduct the interviews and the case study anal- Zave84
ysis. This pilot project will be followed by a three Zave, P. ‘‘The Operational Versus the Conventionalyear project that will begin by studying approxi-

Approach to Software Development.’’ Comm. ACMmately seven projects and will be the start of estab-
27 (Feb. 1984), 104-118.lishing the data base to compare methodologies

across organizations and phases of a software life Abstract: The conventional approach to software
cycle. development is being challenged by new ideas,

many of which can be organized into an alternative
Wileden86 decision structure called the "operational" ap-

proach. The operational approach is explained andIntern. Workshop on Software Process and Software
compared to the conventional one.Environments. J. Wileden and M. Dowson, eds.

ACM Software Engineering Notes 11, 4 (1986).

Proceedings of the second workshop on software
process modeling. Includes short papers that con-
tinue debates over the appropriateness of alternative
models of software evolution started in the first
software process workshop.

Wirth71
Wirth, N. ‘‘Program Development by Stepwise
Refinement.’’ Comm. ACM 14, 4 (April 1971),
221-227.

Abstract: The creative activity of programming —
to be distinguished from coding — is usually taught
by examples serving to exhibit certain techniques.
It is here considered as a sequence of design deci-
sions concerning the decomposition of tasks into
subtasks and of data into data structures. The proc-
ess of successive refinement of specifications is il-
lustrated by a short but nontrivial example, from
which a number of conclusions are drawn regard-
ing the art and the instruction of programming.

Wiseman85
Wiseman, C. Strategy and Computers: Information
Systems as Competitive Weapons. New York: Dow
Jones Irwin, 1985.

An elaboration of some of the ideas presented in
Ives84 that focus attention to viewing the devel-
opment and evolution of software systems as corpo-
rate resources whose capabilities create or inhibit
competitive opportunities in the marketplace.

Yacobellis84
Yacobellis, R. H. ‘‘Software and Development Proc-
ess Quality Metrics.’’ Proc. COMPSAC 84. IEEE
Computer Society, 1984, 262-269.

Describes some early experiments at AT&T Bell
Laboratories to monitor and measure software pro-
duction processes and products. Together with the
studies at IBM (cf. Humphrey85), this suggests the
growing importance of software process measure-

26 Draft For SEI Internal Use Only SEI-CM-10-1.0
10/16/87 14:56

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

