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Capsule Description

This module introduces the Vienna Development
Method (VDM) approach to software development.
The method is oriented toward a formal model view
of the software to be developed. The emphasis of
the module is on formal specification and systematic
development of programsusing VDM. A major part
of the module deals with the particular specification
language (and abstraction mechanisms) used in
VDM.

Philosophy

During the past 10 to 15 years, a number of software
development methods have emerged that stress the
importance of using formal descriptions of the sys-
tems to be developed. VDM (the Vienna Develop-
ment Method) is one such method, with many ap-
plicationsin industry [Bjerner87b, Bloomfield88].

VDM is a formal, mathematically oriented method
for the specification and development of software.
VDM is amodel-based method. Its main ideais that
of giving descriptions of software systems as
models. Models are specified as objects and opera
tions on (or functions between) objects, where the
objects represent input, output, and internal state of
the software system. Classes of objects are ex-
plicitly defined as so-called “domains,” which cor-
respond to types in a programming language.

VDM encourages layered, top-down devel opment of
software, based on use of abstraction at the upper-
most levels of system description.

At the highest level, a specification is typically given
as a rather abstract model. The objects do not cap-
ture details of representation; they are restricted to
capturing only properties necessary for expressing
the essential concepts of the operation of the in-
tended software system.
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More concrete descriptions (designs) are then de-
rived by transforming (or refining) abstract objects
and operations into more detailed, concrete ones.

Even though these formal descriptions could be used
as a basis for proofs (proving properties of a given
specification or proving that one specification ac-
tualy “implements’ another more abstract specifica-
tion), such proofs are not generaly carried out when
using VDM. The reason is that the proofs would be
lengthy, and generally not justifiable, for systems
that solve redlistic problems. Moreover, carrying
out such proofs requires a deeper knowledge of the
underlying mathematics than that required of a nor-
mal user of VDM.

This module deals with the software devel opment
phases normally referred to as specification and de-
sign; it does not address the preceding process of re-
quirements analysis and the later process of mainte-
nance. However, both these processes can benefit
from the existence of forma documents. In addi-
tion, implementation is facilitated by the availability
of afinal, low-level formal specification.

Objectives

The following is alist of possible educational objec-
tives based upon the material in this module. Objec-
tives for any particular unit of instruction may be
drawn from these or related objectives, as may be
appropriate to audience and circumstances.

Knowledge

o Define the basic terminology of formal
software development, model-oriented
specification methods, and stepwise-
devel opment approaches.

Comprehension

e Explain the underlying ideas and con-
cepts of formal software development
(such as abstraction and correctness).
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o Describe a number of specific formal
models for well-known software con-
cepts (like data models for database
systems).

Application

¢ Use the specification language of VDM
for writing formal specifications within
an application area where domain-
specific approaches exist.

e Use the principles of stepwise refinement
within the framework of VDM.

Analysis

e Establish proof obligations for the formal
steps in a stepwise development and
prove such steps correct.

Synthesis
e Apply VDM to new application domains.

¢ Produce guidelines for applying VDM
within new application domains.

Evaluation

e Evaluate new guidelines for applying
stepwise development principles within
VDM.

Prerequisite Knowledge

Students must be familiar with at least one high-
level programming language (such as Pascal) and
must have some programming experience using such
a language. They must at least be able to utilize

structured types and recursive subprograms.

Some knowledge of discrete mathematics (sets, rela-
tions, and functions) corresponding to [Stanat77] is
needed. Also, one hopes that students' previous ex-
perience will have led to an appreciation of the value

of mathematical abstraction.

SEI-CM-16-1.1
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Module Content

Outline

Annotated Outline
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|. Introduction to VDM

1. Formal Software Development

VDM (the Vienna Development Method) is a meth-
od for formally developing software. A number of
methods call themselves “formal,” but they do not
al use the word in the same way. A minimal cri-
terion that a software development process must
meet in order to be called formal is that it must lead
to a set of interrelated forma documents. A formal
document is one that is written using a formal lan-
guage, and a formal language is one with a math-
ematically defined syntax and semantics. This mini-
mal criterion is satisfied by a number of methods,
including algebraic approaches like Clear [Burstall-
81] and OBJ-2 [Futatsugi85]. Additional formality
can be introduced by the rigor applied in the devel-
opment of the formal documents. For example, a
formal document being developed could be proven
correct with respect to some prior formal document.

2. Origin and Uses of VDM

A formal method must include a formal language—
often referred to as a specification language. In the
case of VDM, the specification language is called
Meta-1V [Bjgrner78]. The name came from the first
application of VDM. Meta-1V (and VDM) was first
applied in the early seventies at the IBM Vienna
Research Lab to give a formal semantics definition
of alarge PL/I subset [Bekic74]. A language that is
used in defining the semantics of another languageis
often referred to as a metalanguage. The “IV” in
Meta-lV has no real meaning—Meta-1V does not
have three predecessors; instead, its name is a play
on the word “ metaphor.”

VDM has since been used in the definition of the
formal semantics of a number of programming lan-
guages including CHILL [Haff80], Modula-2
[Andrews88], and Ada [Bjgrner80c, Botta87,
Astesiano87]. Some of those definitions have been
used in the systematic development of compilersfol-
lowing the VDM approach [Bjerner80a, Oest86].
Outside the areas of programming language seman-
tics and compiler construction, VDM has been
employed in a number of areas, such as:

¢ database models [Bjgrner82a, Bjgrner82c]
o office system models [Bundgaard81]

e tools for VDM itself [Crispin87, Han-
sen85]

e electronic mail systems [Crispin87]
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e communication systems [Crispin87, Let-
schert87]

e communication protocols [Pedersen88]
o test-case selection [Scullard88]
o graphical kernel systems[Ruggles88]

3. Overview of VDM

a. The Specification Language Meta-1V

Meta-lV can be caled a “wide-spectrum” lan-
guage, in that it allows one to write specifications
at different levels of abstraction. This means that
it can be used as the (single) specification lan-
guage throughout a number of steps in the devel-
opment process. For a discussion of wide-
spectrum languages see [Bauer82] and [CIP85].

Meta-1V has a model-oriented view of the world.
A model-oriented specification explicitly defines
the mathematical objects and operations used to
describe the software system. The models are
defined using a number of type definitions (for
the objects) and function definitions (for the
operations). This is different from the algebraic
approach to specification, where the models
(algebras) are implicitly defined by the properties
captured in the axioms of the algebraic specifi-
cations. Expressing specifications in terms of ex-
plicit models seems to be easier for many soft-
ware engineers than using algebraic specifications
with axioms, especialy for large systems that
would require many axioms.

Meta-lV is aimed at supporting abstraction in
writing specifications. Abstraction is obtained
through mathematical concepts, such as sets and
functions, rather than through the mechanisms of -
fered by any particular implementation language.
The abstraction provided by MetalV is not
oriented toward any particular application area,
but rather offers a set of mathematically based
primitives that alow the construction of
application-specific models.

A detailed presentation of Meta-lV is given in
[Bjarner78].

. Development Guidelines

Abstraction plays a central role in VDM. The
principle of abstraction is applied both to the defi-
nition of aobjects (data structures) and operations
(functions applicable to data structures).

Following a requirements anaysis, the first ab-
stract formal specification is developed. This
specification describes the objects and the opera-
tions of the system. The guidelines of VDM
identify general components of such specifica-
tions (see section 11.1.d) as well as domain-
specific standard modeling techniques (as de-
scribed in sections [1.2 and 111.4).

Based on a high-level description of objects and
operations, more concrete descriptions (designs)
are developed in a stepwise fashion, till using
Meta-1V as the specification language. The con-
structs used in the models are refined so as ulti-
mately to resemble those found in the final imple-
mentation language. In this process, aspects such
as efficient implementation of data structures and
avoidance of recursion (if required) are taken into
account.

The guidelines described in [Jones80] and
[Jones86] cover the development of the first ab-
stract specification and subsequent increasingly
detailed designs. They do not apply to require-
ments analysis, testing, or maintenance. The
stepwi se devel opment approach used in VDM can
be seen as a specia case of a waterfall life cycle
model.

The only kinds of systems for which a VDM de-
velopment is not appropriate are those that can be
created by (proven) generators. Examples are
programming language parsers (generated by par-
ser generators) and systems developed using
fourth-generation languages (high-level declara-
tive descriptions). VDM is inappropriate simply
because one should not develop systems “by
hand” if efficient and correct implementations can
be automatically generated from adequate high-
level descriptions. Currently, however, this meth-
od of development is only possible within limited
application areas.

c. Tool Support

Tools supporting the use of VDM have been de-
veloped only recently. Most of the tools are re-
lated to Meta-1V and the handling of formal spec-
ifications only, and do not provide direct support
of the development process [Hansen85]. They in-
clude:

e editors for writing Meta-IV specifica-
tions

e syntax analyzers

e context condition checkers (type-
checkers, etc.)

o databases for formal specifications
e output tools for screen and paper
A genera discussion of environments supporting
VDM can be found in [Jones87].
I1. Formal Specification of Software Using VDM
1. Meta-1V and the Construction of Abstract
Models

This section introduces the specification principles
that are applied when using VDM and the specifi-
cation language constructs used when writing speci-

SEI-CM-16-1.1
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fications. The composite data types of Meta-lV
(sets, lists, mappings, and trees) are defined, and
their proper use is illustrated by examples. The dif-
ference between severa levels of abstraction is dis-
cussed by contrasting applicative and imperative
models. Material covering these topics can be found
in [Bjgrner78], [Bjgrner82b], [Cohen86], and
[Jones80].

a MetalV Type Constructors and Their Use

Meta-1V contains a number of primitive types,
such as Booleans and integers, and type construc-
tors for defining composite types. The classes of
composite types include sets, tuples (sequences),
and functions; these classes correspond to the tra-
ditional mathematical objects. Moreover, map-
and tree-types are constructible, as described be-
low.

Maps are one of the most extensively used data
types of Meta-IV. They can be viewed as specia
functions that have one parameter and whose
domain is finite. Maps are typicaly used to de-
scribe sets of uniquely identifiable objects, e.g.,
the records of afilein adirect-accessfile system.

Cartesian products, or trees as they are normally
caled in Meta-1V (since the composite value can
be viewed as the root and the components as the
branches of atree), are similar to records or struc-
tures in programming languages, i.e., they have a
fixed structure with a number of components of
(possibly) different types. They are used to de-
fine both structured input to a system (such as
commands with several parameters) and the inter-
nal structure of the system.

b. Abstract Syntax

An abstract syntax is a set of so-called domain
equations that define classes (domains) of objects.
It can be seen as a collection of mutually depend-
ent type definitions. Abstract syntaxes provide
the means for combining the composite types
mentioned earlier.

C. Representational and Operational Abstraction

Abstract definitions of data objects and the opera-
tions on such objects are central to VDM.

¢ Representational abstraction is the ab-
straction applied in defining the types of
data objects. Representational abstrac-
tion focuses on information content and
ignores the physical layout (representa-
tion) of data.

e Operational abstraction is the abstrac-
tion applied in defining the operations
(or functions) needed to manipulate data
objects. Operational abstraction focuses
on the effect of the operation and ig-
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nores the algorithmic details of how the
effect is obtained.

d. The Components of Abstract Models

When using VDM, an abstract model traditionally
contains three components:

¢ Semantic domains (defining the state of
the system) and invariant predicates
(defining conditions that must be satis-
fied for each object belonging to a
semantic domain).

e Syntactic domains (defining the infor-
mation contents in the commands, etc.,
of the system) and well-formedness
predicates (defining the conditions un-
der which a given object belonging to a
syntactic domain can be given a mean-
ing by the semantic functions).

e Semantic functions (defining the mean-
ing of objects from the syntactic
domains using objects from the seman-
tic domains).

e. Imperative Programming

An imperative (specification) language is a lan-
guage based on the concepts of state and state
changes. The state is constituted by the current
values of all variables. The language offers as-
signable variables for designating parts of the
state and statements for changing the state. Since
Meta-1V isintended as a wide-spectrum language,
it needs to have not only high-level applicative
constructs, but also lower-level imperative con-
structs such as declared variables and assignment
statements.  Including such imperative features
ensures that, when a series of forma specifica-
tions is produced in order to finaly arrive at a
program, the last step of writing the actual pro-
gram is not too far, conceptually, from the last
formal specification.

f. Applicative vs. Imperative Models

Functional or applicative specification is basically
specification without an underlying state, and
hence without variables whose value can change.
This leads to a particular style of specification,
where functions (which may be recursive) and
parameters are the fundamental means of express-
ing the behavior of the system. In VDM, this
style is encouraged in the higher-level models.
To avoid having common parameters carrying
state information for every function in a specifi-
cation, however, it is often convenient to use im-
perative mechanisms. And since the expressive
powers of the applicative and imperative models
are the same, it is largely stylistic concerns that
determine the choice between them.



Software Development Using VDM

g. Denotational vs. Mechanical Semantics

The principles of denotational semantics have
traditionally been applied primarily in the formal
definition of programming languages [Stoy77].
The denotational approach, in that case, gives
each identifier that occurs in the program an asso-
ciated denotation (meaning), usually a function;
and the semantics of a composite construct is ex-
pressed as a function of the semantics of its con-
stituent parts. This approach, however, can aso
be applied to systems in genera, e.g., database
systems. Denotational models are normally used
in the early stages of systems development, since
the denotations are based on functions and func-
tional composition.

Mechanical semantics, also called computational
or operational semantics, describes how to obtain
the semantics (values) of a language construct
[Plotkin81]. Generally, a mechanical semantics
describes a sequence of abstract system states,
thereby being more algorithmic than a denota-
tional semantics. Often, due to the explicit use of
intermediate states, a mechanical semantics will
use an imperative style, alowing the use of the
metalanguage state to capture the system state.
Models using mechanical semantics are usually
applied in the later stages of systems develop-
ment.

2. Modeling of Programming Language Concepts

In VDM, modeling techniques similar to those used
when describing high-level programming language
concepts have been found applicable to a wide class
of problems outside the field of formal programming
language semantics. One reason for thisis that most
systems employ some kind of language (if not a
“real” programming language) by which the user
communicates with the system. Such languages of-
ten embody concepts found in traditional program-
ming languages, like types and the regquirement that
certain expressions denote values belonging to par-
ticular types. The purpose of the following sections
is to discuss the modeling of individual program-
ming language concepts and the general ap-
plicability of the techniques. (See [Jones82] for a
detailed description of the VDM approach to model-
ing programming language concepts.) It is impor-
tant to keep in mind that the programming language
concepts are not seen as a means of implementing a
VDM modéd (in the final development step) but as
concepts similar to those found in the system to be
developed.

a Typesand Vaues

A type identifies a set of values, and introducing
the concept of types into a system leads to a par-
titioning of all values into subsets (integers, files,
etc.). A typeis aso characterized by the opera-

tions that are applicable to the identified values
(arithmetic operations for integers, file operations
like “open” and “read” for files, etc.). Hence,
expressions involving operators must respect the
limitations on the applicability of the operations.
Expressing those constraints is often referred to as
“type checking.” In VDM this is expressed by
the following:

e Syntactic domains defining the classes
of syntactically correct expressions and
type definitions.

e Semantic domains defining the classes
of descriptors for expressions and types
(atomic as well as composite).

¢ Functions defining the descriptors cor-
responding to a given expression or type
definition.

¢ Functions defining denotationally (by a
Boolean result) whether a given expres-
sion or type definition (object belonging
to a syntactic domain) is correct, using
the descriptors defined by the semantic
domains.

These four parts are aways used in the formal
description of programming languages having
types. For any specific language, the definition of
the syntactic domains is almost trivial (similar to
a BNF grammar); the major decision is how to
define the descriptors (semantic domains). VDM
has a number of standard ways of defining
descriptors, depending on the type equivalence
rules of a language (name equivalence, structural
equivalence, etc.).

Most systems have a concept of types and enforce
rules related to types. This means that the above
approach is applicable not only when describing
the (static) semantics of programming languages,
but for other systems as well.

b. Variables, Storage, and L ocations

Imperative programming languages like COBOL,
FORTRAN, Pascal, and Ada have, as one of their
basic concepts, assignable variables, along with
the related notion of changing the values of these
variables. Having variables naturally leads to the
idea of a storage (for the current values) and
locations (for holding the values in storage).
When using VDM, the storage is aways de-
scribed as a mapping from locations to values,
and choosing an appropriate storage model is a
matter of determining the different forms of loca-
tions and values, depending on the characteristics
of the programming language. More specifically,
the presence or absence of programming language
constructs for manipulating subcomponents of
structured objects determines whether locations
and the stored values should be described as

SEI-CM-16-1.1



Software Development Using VDM

atomic or composite. Decisions are made in a
way that makes the storage operations of
allocation, assignment or update, getting the
contents of a location, and freeing locations as
simple as possible. These operations are often
found in other state-based systems, thereby allow-
ing for awider use of the approach.

. Blocks

Blocks in programming languages alow the local
introduction of new entities and names for these
entities. This locality means that the entities (as
well as their names) are only to be used within the
block. From a forma semantics point of view,
the important thing to capture is the visibility of
the declared names, including their binding to the
declared entities. In VDM, the binding is de-
scribed using mappings. The effect of nesting
blocks is described by passing the mappings as
parameters from one Meta-1V function “down” to
the subfunctions dealing with the nested blocks.
This scheme utilizes the norma parameter-
passing techniques for functional languages, since
they apply to Meta-IV functions. In imperative
languages, a block often has an effect on the
global state—the values of global variables may
have changed as a result of executing the block.
In order to describe this while still allowing local
variable declarations to hide global ones (new
bindings), a general scheme involving two map-
pings is used. The first one, the environment,
binds variable names to locations; the second one,
the storage, binds locations to values. This
scheme not only handles blocks and their nesting,
but it is capable of describing essential parts of
parameter passing for subprograms and the use of
alternative names for entities (renaming or
aliases).

. Subprograms and Macros

Subprograms, whether applicative or imperative,
al share the property that nonlocal names
referenced within them are bound at the point of
the definition of the subprogram. Thisisin con-
trast to macros, for which such names are bound
at each point of call.

Calling an applicative subprogram must generate
avalue (since no side effects are possible). Since
al global names are bound at the point of sub-
program definition, a natural “meaning” of such a
subprogram in VDM is. a function that, given
any actual parameters (values), returns a value.
This is the kind of denotation that one associates
in VDM with the name of such a subprogram in
the environment.

Imperative subprograms are also described as
functions, but they need the value of globa vari-
ables at the point of call. Hence, they are de-
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scribed by functions from actual parameters and a
storage to an optional value (absent in the case of
“pure” procedures) and to a potentially changed
storage (due to side effects).

Macros, due to their name-binding rules, are de-
scribed as functions from actual parameters, an
environment (name bindings), and a storage to an
optional value and a potentially changed storage
(due to side effects).

e. Flow of Control

This section deals with GOTOs and other pro-
gramming language constructs requiring an ab-
norma (nonsequential) flow of control during
program execution.

There are traditionally two ways of abstractly de-
scribing such program constructs [Jones78,
Bjerner80b]. One is the direct semantics style, or
the exit style, and the other is the continuation
style. In VDM, both approaches are applicable,
but the exit style is preferred, since it matches the
intuition of most software engineers.

I11. Software Design Using VDM

The previous section discussed the VDM approach to
formally specifying a system. This section addresses
the process of moving from abstract specifications to
more implementation-oriented ones. Such implemen-
tation-oriented specifications are what we call designs.
The process typicaly involves defining a series of de-
signs that progressively approach the implementation.

A key issuein VDM isthe relation between two formal
specifications, where one is supposedly “implemen-
ting” the other. The degree to which this implemen-
tation relation should be demonstrated is not prescribed
by VDM. Instead, each project should adopt an appro-
priate level of formality in establishing this relation-
ship.

The following sections describe the different degrees of
formality that can be applied in the design process.
They discuss the application of the VDM principles to
interpreters and compilers, as well as to database sys-
tems.

1. Systematic Program Devel opment

When starting with the initial high-level Meta-IV
specification of a system, one has a specification
that expresses the system’s functionality, but pays
little or no attention to the nonfunctional require-
ments. Moreover, a number of specification lan-
guage constructs used (such as sets, mappings, and
implicit construction of values) are most likely not
supported by the particular implementation language
to be used. By providing examples as in
[Bjerner82b] and [Jones80], VDM offers guidelines
for selecting parts of an abstract specification and
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for creating a new formal specification in which ing recursion have been adopted by VDM (such
those parts have been made more concrete. as [Darlington76] and [Burstall77]).
a. Stepwise Development 2. Formal Development of Programs

Designing a system based on a specification cor-
responds to making a number of commitments on
behalf of the implementation. The idea behind a
stepwise development process is that all commit-
ments should not be made at one time, but should
be made sequentially.

In the VDM framework, most commitments take
the form of an object transformation (selecting
new data representations) or an operation trans-
formation (choosing more agorithmic defini-
tions). Object transformations often necessitate
certain operation transformations, since the orig-
inal operations used the characteristics of the cor-
responding data type. Also, because most VDM
specifications aim at being compositiona (i.e.,
isolating properties of components of a model),
parts of a specification can be developed in isola-
tion.

. Object Transformations

The most abstract formal specifications exten-
sively use data types such as sets and maps,
which are not present in most implementation lan-
guages. Even in cases where these types are al-
most directly implementable, the direct imple-
mentation might not be efficient enough for the
system to be developed. Hence, for each high-
level data type, a more “implementable” one must
be chosen, depending on the characteristics of the
implementation language and the nonfunctional
(e.g., space or time) requirements of the system.
(For a mapping, a table or an ordered binary tree
might be chosen.) Of course, knowledge of exist-
ing efficient algorithms available for different
data structures, as presented in [Horowitz76],
[Horowitz78], and elsewhere, plays amajor rolein
determining the data structures. Meta-IV, how-
ever, alows one to define such data structures at
an abstract level without getting into the details of
their implementation. (For example, ordered bi-
nary trees can be defined using recursive data
types without thinking about the use of
“pointers,” etc., for dynamic allocation.)

. Operation Transformations

In addition to the operation transformations in-
curred by the object transformations, one might
want to define an operation in a more efficient or
implementable way, considering implementation
language capabilities.

If, for example, an iterative operation structure is
preferred over arecursive one, this will lead to an
imperative forma specification (see I1.1.f-g). A
number of existing standard schemes for remov-

a. Proofs and Proof Systems

Since testing cannot, in general, guarantee the
correctness of a program (or of a formal
specification), a proof is the only means of
guaranteeing correctness. Proofs can be either
formal or informal. A formal proof is an argu-
ment constructed by symbol manipulations ac-
cording to a set of inference rules. An informal
proof contains the major steps of the argument
but avoids the more tedious details of symbol ma-
nipulation. An informa proof can be made for-
mal by filling in al the details. Most proofs car-
ried out in VDM are informal proofs, and they
follow the inference rules of the predicate cal-
culus [Jones88].

b. Relations between Specification and Design

In this section we see a design as a forma model
implementing what is defined by a specification.
The relation between objects in the design and
corresponding objects in the specification is for-
malized in VDM by a number of retrieve
functions that, for each object in the design, yields
the corresponding object in the specification
[Jones86]. They are called retrieve functions be-
cause they regain the abstraction from the imple-
mentation. In general, the relation between ob-
jects in the specification and those in the design is
a one-to-many relation, in that several design ob-
jects all represent the same abstract object. It is,
however, till important to show the adequacy of
a design with respect to its specification. A de-
sign is adequate if there is at least one represen-
tation of every abstract value in the specification.

Once a design has been shown to be adequate,
one can start proving it correct. First, the proof
obligations are established. They express that
operations in the design must behave anal ogously
to those of the specification, thus preserving the
properties of the specification. Second, the proof
itself is carried out using the definition of the
retrieve functions. In practical examples, one of-
ten only establishes the proof obligations, without
carrying out the actual proofs, since such proofs
are cumbersome, and most design errors are
revealed by establishing the proof obligations
alone.

3. Interpreters and Compilers

One of the areas in which VDM has been used most
extensively is the development of compilers for pro-
gramming languages [Bjgrner77, Bjgrner80a,
Bjerner82e, Oest86]. Interpreters and compilers are
similar, in that they they both implement the seman-
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tics of the programming language, the first by
“direct” execution and second by atrandation into a
target language. Both require a deep understanding
of the semantics of the programming language.
Hence, the first step in a VDM development of a
compiler is the formal definition of the program-
ming language semantics. Such a semantics consists
of the following components [Pedersen87]:

e an abstract syntax called AS1

e a static semantics (well-formedness) defi-
nition based on AS1

e an abstract syntax AS2
e an AS1 to AS2 transformation
¢ adynamic semantics based on AS2

The abstract syntax AS1 describes a grammar of the
programming language using Meta-1V type defini-
tions. The static semantics defines the context con-
ditions, i.e., nonsyntactic language rules whose vio-
lation leads to illegal programs that are to be
rejected by a compiler (or interpreter). The abstract
syntax AS2 describes the syntax of statically correct
programs. It resembles ASL, but certain changes are
introduced to facilitate the definition of the dynamic
semantics. The ASL to AS2 transformation formal-
izes the relation between AS1 and AS2. The
dynamic semantics describes the runtime behavior
of statically correct programs.

From a compiler construction point of view, AS1
and AS2 correspond to internal representations of a
program during compilation. The static semantics
corresponds to the front end (semantic analyzer) of a
compiler, and the dynamic semantics corresponds to
a combination of the back end (code generator) and
the runtime system.

The most abstract formal semantics of a program-
ming language is expressed in VDM using a denota-
tional semantics style. In the case of languages with
paralelism, a similar but more elaborate scheme is
used [Haff80, Bjerner80c, Astesiano87].

Based on this initial formal definition of the pro-
gramming language semantics, a series of more con-
crete definitions is often developed, depending on
the complexity of the programming language and
the capabilities of the implementation language of
the interpreter or the target language for the com-
piler [Bjerner82e]:

e a first-order applicative semantics (no
functions as semantic domains)

e an abstract state machine semantics (using
high-level Meta-1V types)

e a concrete state machine semantics (using
more implementabl e types)

The next step in the case of compiler development is
to define a so-called compiling algorithm that asso-
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ciates a sequence of abstract instructions with each
language (AS2) construct. The abstract instructions
reflect the physical instructions of the target com-
puter. A formal description of the target system is
made using these abstract instructions and an ab-
straction of its state. The compiling algorithm is
usualy defined by a set of mutually recursive Meta-
IV functions using a “dictionary” to hold the neces-
sary context information.

Depending on the language in which the compiler is
to be implemented, a series of formal specifications
for the compiler itself are developed. Often an attri-
bute semantics definition [Bjerner82e] of the compil-
ing agorithm is given. Looking at synthesized and
inherited attributes assists in the analysis of different
multi-pass or single-pass compiler designs.

Recently, the guidelines for developing compilers
using VDM have been further formalized. For an
example of such aformalization for the development
of an Ada compiler, see [Oest86].

. Data Models and Database M anagement

Systems

A data model defines data objects and operations
applicable to the data objects. A database manage-
ment system supports the storing of data objects and
the execution of the operations. The functions of a
database are divided into meta-functions that operate
on descriptions of data (such as database schema
operations) and functions that operate on the data
objects themselves (such as queries and general data
manipul ation).

In the following sections, VDM formalizations of
different known data models are introduced. Further
information can be found in [Bjarner82c].

a Relational DataModels

In VDM, arelational data model is seen as a col-
lection of named relations. These relations are
described using maps. A relation is seen as a set
of rows, and arow as atuple of values or a map-
ping from row names to values. Based on this
model, it is easy to define the traditional relational
database operations of select, project, join, and
divide. General predicate calculus query lan-
guages, such as SQL, are easily described also
[Bjgrner82c].

b. Hierarchical Data Models

Basic concepts in a hierarchical data model are
those of records (of particular record types),
which are arranged in tree structures. The hier-
archy among record typesis part of the schema of
the data model. This is described in VDM as a
hierarchy-diagram type that is recursively defined
as a mapping from record type identifiers to
hierarchy-diagram types (the sub-hierarchies of
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the record type); the mapping is empty for the
bottom elements of the hierarchy. All one has to
add to this are the descriptors of the actual fields
in the record types (at each level) in order to get
the complete schema information. Generally,
throughout the formal description of the hierar-
chical data model, recursively defined mappings
are used to capture hierarchical tree structures,
rather than using Meta-IV trees, which would
lead to afixed number of sub-hierarchies for each
record type.

c. Network Data Models

The basis for a VDM description of network data
modelsis the formalization of Bachman’s concept
of data structure diagrams [Bachman69]. Such a
diagram consists of boxes and arrows. A box
denotes a set of records, and it is described as
such in VDM. An arrow denotes a relation
among records and is described as a mapping
from records to sets of records (a one-to-many
relation). The syntactic form of any particular
data structure diagram can be seen as a set of
unique box names and a set of uniquely named
arrows (a mapping from arrow names to pairs of
“from” and “to” box names). One gets amodel of
data structure diagrams by combining this syntac-
tic view with the above semantic view (of what
boxes and arrows denote) and adding the neces-
sary invariants. The model allows one to describe
easily the concept of “navigating” through the
database.

V. Future Directions of VDM

Even though VDM has proven successful in a number
of applications and is one of the more mature formal
system development methods, there is still room for
improvement. In particular, lessons learned from other
formal description techniques, such as the algebraically
based ones (e.g., regarding structuring and parameteriz-
ing specifications) suggest ideas for extensions to the
specification language [Bear88]. Moreover, a way of
describing parallel systems should be introduced as an
integral part of the specification language. The for-
malization of software development projects in the
form of software development graphs, as described in
[Bjerner86], is expected to become an essential part of
VDM. A project graph identifies the formal documents
to be developed as part of a project and describes their
relationship. Each project has its own project graph,
but projects within a particular problem domain, such
as compiler development, have graphs that exhibit
similar structures. Finally, a more extensive tool sup-
port is needed to ensure a wider industrial use of for-
mal methods. One project that currently aims at solv-
ing those problems is the RAISE (Rigorous Approach
to Industrial Software Engineering) project [Nielsen88].
It can be seen as the next generation of VDM-like de-
velopment methods. [Prehn87] discusses general im-
provementsto VDM in the context of RAISE.
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Teaching Considerations

The instructor should be familiar with formal meth-
odsin general; SEI curriculum module Formal Spec-
ification of Software [Berztiss87] provides an over-
view of the appropriate information.

Suggested Schedules

The material covered by this module can be taught at
various depths. At the Technical University of Den-
mark, the material has been presented in two full
courses. one covers essentialy Part 1I, “Formal
Specification of Software Using VDM,” and some of
the mathematical prerequisites; the other covers Part
I, “Software Design Using VDM,” including a
thorough treatment of examples of applying VDM to
large systems. Below is a sample schedule for a
one-semester course (34 lecture hours):

I. Introduction to VDM (1 hour)

I1. Formal Specification of Software Using VDM

1. Meta-lV and the Construction of Ab-
stract Models (9 hours)

2. Modeling of Programming Concepts
(7 hours)

[11. Software Design Using VDM

1. Systematic Program Development
(6 hours)

2. Formal Development of Programs
(4 hours)

3. Interpreters and Compilers (3 hours)

4. Data Models and Database Management
Systems (3 hours)

IV. Future Directions (1 hour)

For a short 1- to 2-hour overview of VDM to be
presented as part of a course in software specifica-
tion and development, [Bjarner79] presents a concise
introduction to VDM, including examples suitable
for illustrating the central ideas of abstract specifi-
cation and stepwise refinement in VDM.
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Worked Examples

Examples of VDM applications play an important
role in teaching the proper use of VDM. The fol-
lowing are references to literature containing ex-
amples appropriate for classroom presentations.

There are a number of useful examples in
[Bjgrner78]: small examples of the use of individual
Meta-IV language constructs; a formal specification
of Algol 60; and an example of a formal specifica-
tion of an operating system command |anguage.

[Bjarner79] includes an example of object refine-
ments applied to the specification of afile system.

[Bjgrner82b] contains examples of VDM applica-
tions within these areas:

e programming language semantics
o compiler development

e stepwise development in generd, il-
lustrated by afile system example

o data models and database systems

[Jones80] has examples of stepwise development of
aparser for asmall language and atelegram analysis
program.
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Exercises

[Jones80] and [Jones86] provide exercises in the use of VDM for constructing formal specifications, as well as
exercises in the systematic development of programs including proofs of correctness.

The following exercises can be used to demonstrate the proper use of Meta-IV, corresponding to [Bjarner78]:

1. Define, using Meta-1V, bounded stacks with the traditional operations (Empty, Push, Pop, Top,
Is-Empty, Is-Full). In addition to type definitions and operations (functions), define invariants and
preconditions, or justify not using them.

2. Define an abstract syntax for arithmetic integer expressions, including (at least) unary minus, dyadic
minus, plus, and multiplication. The abstract syntax must cover all possible expressions even those
that in a concrete (BNF-like) syntax make use of parentheses, for example, —(5+7)-(8-3). Define a
function that evaluates such expressions.

3. Define a system for keeping information about students in a school. For each student, the system
should keep track of the exams passed by that student. The system does not have to account for
exams not passed. Define operations corresponding to:

1. A student’s passing an exam

2. Determining whether a given student has passed a particular exam
3. Getting all the exams that a given student has passed

4. Getting all the students that have passed a particular exam

4. This exercise illustrates the process of stepwise refinement. The step consists of creating a more
implementable specification (using a set of pairs) from an abstract specification (using a map). It
shows two different levels of abstraction (that of a mapping and that of a set of pairs) and the formal
relation between them (see section I11.1).

Assume that we want to “represent” a function (or mapping) from integers to integers as a set of
pairs:
SET-FUNC = PAIR-set
PAIR o sargument: INTG sresult: INTG
1. Define an invariant (function) expressing that a value of type SET-FUNC actually represents a
function and not a genera relation.
2. Define a (retrieve-) function that, given a SET-FUNC aobject, yields the corresponding map
object.

3. Define operations on such function representations corresponding to the Meta-lV “map” opera-
tions of: application, domain, range, override (+), and restriction (\). These operations should
be defined without using the retrieve operation mentioned in (2).

5. This exercise aso illustrates stepwise refinement. Here a binary tree is chosen as the “more
implementable” specification.
We want to “represent” afunction (or mapping) from integers to integers as an ordered binary tree.

The operations to be defined on the binary tree should be defined using operations pertaining to that
data type. The operations mentioned in (4) and (5) should be defined without using the retrieve
operation mentioned in (3).

1. Define an appropriate type (TREE-FUNC).
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2. Define an invariant (function) expressing the fact that a given binary tree is indeed ordered and

represents a function.

3. Define a (retrieve-) function that, given a TREE-FUNC object, yields the corresponding map

object.

4. Define operations corresponding to: application, domain, and overriding with one new integer-
to-integer association (type: simple-override: TREE-FUNC INTG INTG — TREE-FUNC).

5. Define operations corresponding to genera overriding (type: override: TREE-FUNC TREE-

FUNC — TREE-FUNC) and restriction (type:

FUNC).

Suggested Reading Lists

restrict: TREE-FUNC INTG-set — TREE-

The following table categorizes items in the bibliography by applicability. References enclosed in parentheses
refer to parts of other references (see the bibliography for further details). VDM Textbooks provide material
from which a course can be taught. The Recommended readings consist of a number short papers on VDM and
related material. Detailed readings discuss technical details of VDM or are examples of major applications of
VDM. The Background readings cover general non-VDM material that is useful, but not essential, to under-

standing and applying VDM.

VDM Textbooks

Recommended

Bjarner78
Bjogrner82b
(Bjgrner82c)
(Bjgrner82d)
(Bjgrner82e)
Cohen86
Jones80
(Jones82)
Jones86
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(Andrews88)
Berztiss87
Bjarner77
Bjagrner79
Bjarner80b
Bjorner82a
Bjarner86
Bjogrner87a
Burstall77
(Crispin87)
Darlington76
Oest86
(Prehn87)
(Scullard88)

Detailed

Astesiano87
(Bear88)
Bekic74
Bjorner80c
(Bjgrner80a)
Bjgrner87b
Bloomfield88
Botta87
Bundgaard81
Haff80
Hansen85
(Jones78)
(Jones87)
(Letschert87)
(Pedersen87)
Pedersen88
(Ruggles88)

Background

Bachman69
Bauer82
Burstall81
CIP85
Futatsugi85
Horowitz76
Horowitz78
Plotkin81
Stanat77
Stoy77
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structure. Illustrative examples of program trans-
formations are given, and a tentative implementa-
tion is described. Alternative structures for pro-
grams are shown, and a possible initial phase for
an automatic or semiautomatic program manipu-
lation systemis indicated.

Burstall81

Burstal, R. M., and J. Goguen. “An Informal Intro-
duction to Specifications using Clear.” In The Cor-
rectness Problem in Computer Science, R. Boyer
and J. Moore, eds. London: Academic Press, 1981,
185-213.

This paper describes the algebraic specification lan-
guage Clear.

CIP85

CIP Language Group. The Munich Project CIP, Vol-
ume |: The Wide Spectrum Language CIP-L. Lec-
ture Notes in Computer Science, vol. 183. Berlin:
Springer-Verlag, 1985.

The report describes the specification language used
in the Computer-Aided Intuition-Guided Program-
ming (CIP) project.
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Cohen86

Cohen, B., et al. The Specification of Complex
Systems.  Wokingham, England: Addison-Wesley,
1986.

This book presents different specification methods:
algebraic, VDM, and Milner's CCS (for specifying
concurrent systems). Each method is applied to a
case study to illustrate its application.

Crispin87

Crispin, R. J. “Experience Using VDM in STC.” In
VDM ’'87: VDM—A Formal Method at Work,
D. Bjarner, et al., eds. Lecture Notes in Computer
Science, vol. 252. Berlin:  Springer-Verlag, 1987,
19-32.

Abstract: Introducing any new technology involves
organizational, skill, method and tool changes,
which require a commitment from the industry con-
cerned. The introduction of formal methods into
system and software design is no exception. Before
the widespread use of formal methods can be
achieved, it will be necessary for the IT [informa-
tion technology] industry to convince itself that the
methods are genuinely usable in an industrial con-
text, can be made to fit within the market and tech-
nical environment, and yield significant improve-
ments over conventional methods. This paper de-
scribes some of the ways STC has used VDM to
develop real systems and the benefits which we feel
have been achieved. At the same time, some limita-
tions of the existing methods have been noted,
giving pointers for further development of the tech-
nology.

The paper discusses three specific projects within
STC that have applied VDM, the development of a
toolset for VDM users, of control software for a
monitoring station, and of an electronic mail system
for telex users.

Darlington76

Darlington, J., and R. M. Burstall. “A System which
Automatically Improves Programs.” Acta Infor-
matica 6 (1976), 41-60.

Abstract: Here we give methods of mechanically
converting programs that are easy to understand
into more efficient ones, converting recursion equa-
tions using high level operations into lower level
flowchart programs.

The main transformations involved are (i) recursion
removal (ii) eliminating common subexpressions
and combining loops (iii) replacing procedure calls
by their bodies (iv) introducing assignments which
overwrite list cells no longer in use (compile time
garbage collection).
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Futatsugi85
Futatsugi, K., et al. “Principles of OBJ-2.” Conf.
Record of the Twelfth Ann. ACM Symp. on Prin-
ciples of Prog. Lang. New York: ACM, January
1985, 52-66.

OBJ-2 is a functional programming language with
an underlying formal semantics that is based upon
equational logic, and an operational semantics that
is based on rewrite rules. The paper deals with
issues of modularization and parameterization as
well as implementation techniques.

Haff80

Haff, P., and D. Bjarner, eds. A Formal Definition
of CHILL: A Supplement to the CCITT Recommen-
dation Z.200. Lyngby, Denmark: Dansk Datamatik
Center, 1980.

This report contains a formal definition of the pro-
gramming language CHILL using MetalV and
adopting Hoare's CSP for describing parallelism.

Hansen85

Hansen, |I. @., and N. Bleech. Meta-1V Tool-set,
Functional Specification. DDC165/RPT/2, Dansk
Datamatik Center, Lyngby, Denmark, 1985.

A description of the DDC Meta-1V toolset including
an editor, a syntax analyzer, a type checker, a data-
base for formal specifications, and output tools.

Horowitz76

Horowitz, E., and S. Sahni. Fundamentals of Data
Sructures. Woodland Hills, Calif.. Computer Sci-
ence Press, 1976.

This is not a VDM book, but it provides useful
background information on data structures. This
information can guide the stepwise development of
data structuresin VDM specifications.

Horowitz78

Horowitz, E., and S. Sahni. Fundamentals of Com-
puter Algorithms. Potomac, Md.: Computer Sci-
ence Press, 1978.

Thisis not a VDM book, but it includes algorithms
that are useful in constructing VDM specifications
at lower levels of abstraction.

Jones78

Jones, C. B. “Denotational Semantics of GOTO: An
Exit Formulation and its Relation to Continuations.”
In The Vienna Development Method: The Meta-
Language, D. Bjarner and C. B. Jones, eds. Lecture
Notes in Computer Science, vol. 61. Berlin:
Springer-Verlag, 1978, 278-304.
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A proof of equivalence of two GOTO definitionsis
given. One definition uses the so-called exit style
of definition; the other, the so-called continuation
style.

Jones80

Jones, C. B. Software Development: A Rigorous
Approach. Englewood Cliffs, N. J.: Prentice/Hall
International, 1980.

This textbook on VDM focuses on the use of math-
ematical data types in program development. It
contains a number of exercises.

Jones82

Jones, C. B. “Modelling Concepts of Programming
Languages.” In Formal Specification and Software
Development, D. Bjerner and C. B. Jones, eds.
Englewood Cliffs, N. J.: Prentice/Hall International,
1982, 85-123.

This paper describes the VDM approach to the
modeling of central programming language con-

cepts.

Jones86

Jones, C. B. Systematic Software Development
Using VDM. Englewood Cliffs, N. J.: Prentice/Hall
International, 1986.

This is the most recent textbook on VDM. It em-
phasizes proofs and proof techniques in the context
of VDM and includes a number of exercises.

Jones87
Jones, K. D. “Support Environments for VDM.” In
VDM ’'87: VDM—A Formal Method at Work,
D. Bjarner, et al., eds. Lecture Notes in Computer
Science, vol. 252. Berlin: Springer-Verlag, 1987,
110-117.

Abstract: This paper discusses the experiences and
issues of building two different levels of system to
support the use of VDM. The MULE system is an
example of an environment giving support in the
syntactic generation of formal objects, such as spec-
ifications. The IPSE 2.5 system is an attempt to
produce an industrial scale system to support the
use of formal methods over the whole of a software
development life cycle.

Letschert87

Letschert, T. “VDM as a Specification Method for
Telecommunications Software.” In VDM '87: VDM
—A Formal Method at Work, D. Bjarner, et al., eds.
Lecture Notes in Computer Science, vol. 252. Ber-
lin: Springer-Verlag, 1987, 106-109.
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This paper gives a short overview of VDM applica
tions within Philips Kommunikations Industrie in
West Germany.

Nielsen88

Nielsen, M., and S. Lynenskjold. RAISE Project
Overview. RAISE/DDC/MN/19/V3, Dansk Datama-
tik Center, Lyngby, Denmark, 1988.

This report describes the RAISE (Rigorous Ap-
proach to Industrial Software Engineering) method
and specification language, RSL (RAISE Specifi-
cation Language). Also, an overview of the RAISE
toolsis given.

Oest86

Oest, O. N. “VDM from Research to Practice.”
Information Processing 86: Proc. IFIP 10th World
Comp. Congress. Amsterdam: North-Holland, Sep-
tember 1986, 527-533.

Abstract: The Vienna Development Method (VDM)
is one of the few mathematically based methods for
software development which has been successfully
transferred from the protected world of the research
laboratoriesinto industrial use.

After a brief description of VDM—its contents and
the ideas behind it—the paper continues by outlin-
ing the history of VDM from its foundation in the
early seventies through its evolvement through re-
search and application into its current form. In this
period VDM has been changed, extended, and
variants have emerged. VDM in all its variants is
now forming the major basis for what is known as
the ESPRIT RAISE project supported by the CEC
(Commission of the European Communities).

The paper ends by describing the largest applica-
tion of VDM to date, the design and development of
the DDC Ada Compiler, an effort which took place
at Dansk Datamatik Center, Denmark, from 1981 to
1984. This development was partly funded by the
CEC under its Multi Annual Programme within the
field of Data Processing.

Pedersen87

Pedersen, J. Storbank. “VDM in Three Generations
of Ada Formal Descriptions.” In VDM '87: VDM—
A Formal Method at Work, D. Bjagrner, et al., eds.
Lecture Notes in Computer Science, vol. 252. Ber-
lin: Springer-Verlag, 1987, 33-48.

Abstract: Snce 1980, three different formal de-
scriptions of the Ada programming language have
been developed, based on the principles of the
Vienna Development Method (VDM). This paper
characterizes each of the three descriptions and ex-
plains some of the differences.

SEI-CM-16-1.1

Pedersen88

Pedersen, J. Storbank, and M. H. Klein. Using the
Vienna Development Method (VDM) to Formalize a
Communication Protocol. SEI-88-TR-26, Software
Engineering Ingtitute, Carnegie Mellon University,
Pittsburgh, Pa., December 1988.

This report contains a formal description in Meta-
IV of a communication protocol used by the U.S.

Navy.

Plotkin81

Plotkin, G. D. A Structural Approach to Operational
Semantics. DAIMIFN-19, Aarhus University, Den-
mark, Aarhus, Denmark, September 1981.

This book describes Plotkin's Structural Operation-
al Semantics, often referred to as“ SOS.”

Prehn87

Prehn, S. “From VDM to RAISE.” In VDM ’'87:
VDM—A Formal Method at Work, D. Bjerner, et
al., eds. Lecture Notes in Computer Science, vol.
252. Berlin: Springer-Verlag, 1987, 141-150.

Abstract:  Although VDM—the Vienna Develop-
ment Method—has probably been the most wide-
spread and popular so-called formal method for
software development in use so far, it is clear that
VDM suffers from a number of deficiencies. In this
paper, the transition from VDM to a new “ second
generation” formal method—RAISE—is discussed.
Problems with VDM are discussed, and their solu-
tions within RAISE are outlined. The reader is as-
sumed to be familiar with VDM.

Ruggles88

Ruggles, C. “Towards a Formal Definition of GKS
and Other Graphics Standards.” In VDM ’88: VDM
—The Way Ahead, R. Bloomfield, et al., eds. Lec-
ture Notes in Computer Science, vol. 328. Berlin:
Springer-Verlag, 1988, 64-73.

The paper reports on work done at the University of
Leicester on formalizing the 1SO Graphical Kernel
System (GKS) standard using Meta-1V.

Scullard88

Scullard, G. T. “Test Case Selection Using VDM.”
In VDM '88: VDM—The Way Ahead,
R. Bloomfield, et al., eds. Lecture Notes in Com-
puter Science, vol. 328. Berlin: Springer-Verlag,
1988, 178-186.

Abstract: This paper describes the design verifi-
cation process adopted by the VLS Distributed Ar-
ray Processor (VDAP) Project. In this project
structured, informal design techniques were used in
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the hardware design process, but the validation
team used some of the tools and methods of VDM as
a means of defining a testing strategy.

Stanat77

Stanat, D. F., and D. F. McAllister. Discrete Mathe-
matics in Computer Science. Englewood Cliffs,
N. J.: Prentice-Hall, 1977.

This book contains the discrete mathematics back-
ground material needed for this module.

Stoy77

Stoy, J. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. Cam-
bridge, Mass.: MIT Press, 1977.

This is a classical textbook on denotational seman-
tics.
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