
Software Development Using VDM

SEI Curriculum Module SEI-CM-16-1.1

December 1989

Jan Storbank Pedersen
Computer Resources International A/S

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module author.

Jan Storbank Pedersen
Computer Resources International A/S
Bregnerødvej 144
DK-3460 Birkerød
Denmark

Copyright © 1989 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

161111690

Software Development Using VDM

Acknowledgements Contents

This module is based on two courses that have been of- Capsule Description 1
fered several times by Prof. Dines Bjørner as part of a Philosophy 1
Masters of Science curriculum at the Technical University

Objectives 1of Denmark.

Prerequisite Knowledge 2I want to thank Lionel Deimel, Linda Pesante, and Bob
Module Content 3Glass for several suggestions that helped improve both the

content and the form of this module. Outline 3

Annotated Outline 3

Teaching Considerations 11

Suggested Schedules 11

Worked Examples 11

Exercises 12

Suggested Reading Lists 13

Bibliography 14

SEI-CM-16-1.1 iii

Software Development Using VDM

Module Revision History

Version 1.1 (December 1989) Minor changes and updates
Approved for publication

Version 1.0 (April 1988) Draft for public review

iv SEI-CM-16-1.1

Software Development Using VDM

More concrete descriptions (designs) are then de-Capsule Description
rived by transforming (or refining) abstract objects
and operations into more detailed, concrete ones.This module introduces the Vienna Development

Method (VDM) approach to software development. Even though these formal descriptions could be used
The method is oriented toward a formal model view as a basis for proofs (proving properties of a given
of the software to be developed. The emphasis of specification or proving that one specification ac-
the module is on formal specification and systematic tually “implements” another more abstract specifica-
development of programs using VDM. A major part tion), such proofs are not generally carried out when
of the module deals with the particular specification using VDM. The reason is that the proofs would be
language (and abstraction mechanisms) used in lengthy, and generally not justifiable, for systems
VDM. that solve realistic problems. Moreover, carrying

out such proofs requires a deeper knowledge of the
underlying mathematics than that required of a nor-
mal user of VDM.

Philosophy This module deals with the software development
phases normally referred to as specification and de-

During the past 10 to 15 years, a number of software sign; it does not address the preceding process of re-
development methods have emerged that stress the quirements analysis and the later process of mainte-
importance of using formal descriptions of the sys- nance. However, both these processes can benefit
tems to be developed. VDM (the Vienna Develop- from the existence of formal documents. In addi-
ment Method) is one such method, with many ap- tion, implementation is facilitated by the availability
plications in industry [Bjørner87b, Bloomfield88]. of a final, low-level formal specification.

VDM is a formal, mathematically oriented method
for the specification and development of software.
VDM is a model-based method. Its main idea is that
of giving descriptions of software systems as Objectives
models. Models are specified as objects and opera-
tions on (or functions between) objects, where the The following is a list of possible educational objec-
objects represent input, output, and internal state of tives based upon the material in this module. Objec-
the software system. Classes of objects are ex- tives for any particular unit of instruction may be
plicitly defined as so-called “domains,” which cor- drawn from these or related objectives, as may be
respond to types in a programming language. appropriate to audience and circumstances.

VDM encourages layered, top-down development of Knowledge
software, based on use of abstraction at the upper- • Define the basic terminology of formal
most levels of system description. software development, model-oriented

specification methods, and stepwise-At the highest level, a specification is typically given
development approaches.as a rather abstract model. The objects do not cap-

ture details of representation; they are restricted to Comprehension
capturing only properties necessary for expressing

• Explain the underlying ideas and con-the essential concepts of the operation of the in-
cepts of formal software developmenttended software system.
(such as abstraction and correctness).

SEI-CM-16-1.1 1

Software Development Using VDM

• Describe a number of specific formal
models for well-known software con-
cepts (like data models for database
systems).

Application
• Use the specification language of VDM

for writing formal specifications within
an application area where domain-
specific approaches exist.

• Use the principles of stepwise refinement
within the framework of VDM.

Analysis
• Establish proof obligations for the formal

steps in a stepwise development and
prove such steps correct.

Synthesis
• Apply VDM to new application domains.

• Produce guidelines for applying VDM
within new application domains.

Evaluation
• Evaluate new guidelines for applying

stepwise development principles within
VDM.

Prerequisite Knowledge

Students must be familiar with at least one high-
level programming language (such as Pascal) and
must have some programming experience using such
a language. They must at least be able to utilize
structured types and recursive subprograms.

Some knowledge of discrete mathematics (sets, rela-
tions, and functions) corresponding to [Stanat77] is
needed. Also, one hopes that students’ previous ex-
perience will have led to an appreciation of the value
of mathematical abstraction.

2 SEI-CM-16-1.1

Software Development Using VDM

Module Content

Outline Annotated Outline

I. Introduction to VDM I. Introduction to VDM
1. Formal Software Development 1. Formal Software Development

2. Origin and Uses of VDM VDM (the Vienna Development Method) is a meth-
od for formally developing software. A number of3. Overview of VDM
methods call themselves “formal,” but they do nota. The Specification Language Meta-IV all use the word in the same way. A minimal cri-

b. Development Guidelines terion that a software development process must
meet in order to be called formal is that it must leadc. Tool Support
to a set of interrelated formal documents. A formal

II. Formal Specification of Software Using VDM document is one that is written using a formal lan-
guage, and a formal language is one with a math-1. Meta-IV and the Construction of Abstract
ematically defined syntax and semantics. This mini-Models
mal criterion is satisfied by a number of methods,a. Meta-IV Type Constructors and Their Use
including algebraic approaches like Clear [Burstall-

b. Abstract Syntax 81] and OBJ-2 [Futatsugi85]. Additional formality
can be introduced by the rigor applied in the devel-c. Representational and Operational Abstraction
opment of the formal documents. For example, a

d. The Components of Abstract Models formal document being developed could be proven
correct with respect to some prior formal document.e. Imperative Programming

f. Applicative vs. Imperative Models 2. Origin and Uses of VDM
g. Denotational vs. Mechanical Semantics

A formal method must include a formal language—
2. Modeling of Programming Language Concepts often referred to as a specification language. In the

case of VDM, the specification language is calleda. Types and Values
Meta-IV [Bjørner78]. The name came from the first

b. Variables, Storage, and Locations application of VDM. Meta-IV (and VDM) was first
applied in the early seventies at the IBM Viennac. Blocks
Research Lab to give a formal semantics definitiond. Subprograms and Macros
of a large PL/I subset [Bekic74]. A language that is

e. Flow of Control used in defining the semantics of another language is
often referred to as a metalanguage. The “IV” inIII. Software Design Using VDM
Meta-IV has no real meaning—Meta-IV does not1. Systematic Program Development have three predecessors; instead, its name is a play

a. Stepwise Development on the word “metaphor.”

b. Object Transformations VDM has since been used in the definition of the
c. Operation Transformations formal semantics of a number of programming lan-

guages including CHILL [Haff80], Modula-22. Formal Development of Programs
[Andrews88], and Ada [Bjørner80c, Botta87,

a. Proofs and Proof Systems Astesiano87]. Some of those definitions have been
used in the systematic development of compilers fol-b. Relations between Specification and Design
lowing the VDM approach [Bjørner80a, Oest86].3. Interpreters and Compilers Outside the areas of programming language seman-

4. Data Models and Database Management tics and compiler construction, VDM has been
employed in a number of areas, such as:Systems

• database models [Bjørner82a, Bjørner82c]a. Relational Data Models
• office system models [Bundgaard81]b. Hierarchical Data Models
• tools for VDM itself [Crispin87, Han-c. Network Data Models

sen85]
IV. Future Directions of VDM

• electronic mail systems [Crispin87]

SEI-CM-16-1.1 3

Software Development Using VDM

Based on a high-level description of objects and• communication systems [Crispin87, Let-
operations, more concrete descriptions (designs)schert87]
are developed in a stepwise fashion, still using• communication protocols [Pedersen88]
Meta-IV as the specification language. The con-

• test-case selection [Scullard88] structs used in the models are refined so as ulti-
mately to resemble those found in the final imple-• graphical kernel systems [Ruggles88]
mentation language. In this process, aspects such

3. Overview of VDM as efficient implementation of data structures and
avoidance of recursion (if required) are taken intoa. The Specification Language Meta-IV
account.

Meta-IV can be called a “wide-spectrum” lan-
guage, in that it allows one to write specifications The guidelines described in [Jones80] and
at different levels of abstraction. This means that [Jones86] cover the development of the first ab-
it can be used as the (single) specification lan- stract specification and subsequent increasingly
guage throughout a number of steps in the devel- detailed designs. They do not apply to require-
opment process. For a discussion of wide- ments analysis, testing, or maintenance. The
spectrum languages see [Bauer82] and [CIP85]. stepwise development approach used in VDM can

be seen as a special case of a waterfall life cycle
Meta-IV has a model-oriented view of the world. model.
A model-oriented specification explicitly defines
the mathematical objects and operations used to The only kinds of systems for which a VDM de-
describe the software system. The models are velopment is not appropriate are those that can be
defined using a number of type definitions (for created by (proven) generators. Examples are
the objects) and function definitions (for the programming language parsers (generated by par-
operations). This is different from the algebraic ser generators) and systems developed using
approach to specification, where the models fourth-generation languages (high-level declara-
(algebras) are implicitly defined by the properties tive descriptions). VDM is inappropriate simply
captured in the axioms of the algebraic specifi- because one should not develop systems “by
cations. Expressing specifications in terms of ex- hand” if efficient and correct implementations can
plicit models seems to be easier for many soft- be automatically generated from adequate high-
ware engineers than using algebraic specifications level descriptions. Currently, however, this meth-
with axioms, especially for large systems that od of development is only possible within limited
would require many axioms. application areas.

Meta-IV is aimed at supporting abstraction in c. Tool Support
writing specifications. Abstraction is obtained

Tools supporting the use of VDM have been de-through mathematical concepts, such as sets and
veloped only recently. Most of the tools are re-functions, rather than through the mechanisms of-
lated to Meta-IV and the handling of formal spec-fered by any particular implementation language.
ifications only, and do not provide direct supportThe abstraction provided by Meta-IV is not
of the development process [Hansen85]. They in-oriented toward any particular application area,
clude:but rather offers a set of mathematically based

• editors for writing Meta-IV specifica-primitives that allow the construction of
tionsapplication-specific models.

• syntax analyzersA detailed presentation of Meta-IV is given in
• context condition checkers (type-[Bjørner78].

checkers, etc.)
b. Development Guidelines • databases for formal specifications

Abstraction plays a central role in VDM. The • output tools for screen and paper
principle of abstraction is applied both to the defi-

A general discussion of environments supportingnition of objects (data structures) and operations
VDM can be found in [Jones87].(functions applicable to data structures).

II. Formal Specification of Software Using VDMFollowing a requirements analysis, the first ab-
stract formal specification is developed. This 1. Meta-IV and the Construction of Abstract
specification describes the objects and the opera- Models
tions of the system. The guidelines of VDM

This section introduces the specification principlesidentify general components of such specifica-
that are applied when using VDM and the specifi-tions (see section II.1.d) as well as domain-
cation language constructs used when writing speci-specific standard modeling techniques (as de-

scribed in sections II.2 and III.4).

4 SEI-CM-16-1.1

Software Development Using VDM

fications. The composite data types of Meta-IV nores the algorithmic details of how the
(sets, lists, mappings, and trees) are defined, and effect is obtained.
their proper use is illustrated by examples. The dif-

d. The Components of Abstract Modelsference between several levels of abstraction is dis-
cussed by contrasting applicative and imperative When using VDM, an abstract model traditionally
models. Material covering these topics can be found contains three components:
in [Bjørner78], [Bjørner82b], [Cohen86], and

• Semantic domains (defining the state of[Jones80].
the system) and invariant predicates
(defining conditions that must be satis-a. Meta-IV Type Constructors and Their Use
fied for each object belonging to a

Meta-IV contains a number of primitive types, semantic domain).
such as Booleans and integers, and type construc-

• Syntactic domains (defining the infor-tors for defining composite types. The classes of
mation contents in the commands, etc.,composite types include sets, tuples (sequences),
of the system) and well-formednessand functions; these classes correspond to the tra-
predicates (defining the conditions un-ditional mathematical objects. Moreover, map-
der which a given object belonging to aand tree-types are constructible, as described be-
syntactic domain can be given a mean-low.
ing by the semantic functions).

Maps are one of the most extensively used data • Semantic functions (defining the mean-
types of Meta-IV. They can be viewed as special ing of objects from the syntactic
functions that have one parameter and whose domains using objects from the seman-
domain is finite. Maps are typically used to de- tic domains).
scribe sets of uniquely identifiable objects, e.g.,

e. Imperative Programmingthe records of a file in a direct-access file system.

An imperative (specification) language is a lan-Cartesian products, or trees as they are normally
guage based on the concepts of state and statecalled in Meta-IV (since the composite value can
changes. The state is constituted by the currentbe viewed as the root and the components as the
values of all variables. The language offers as-branches of a tree), are similar to records or struc-
signable variables for designating parts of thetures in programming languages, i.e., they have a
state and statements for changing the state. Sincefixed structure with a number of components of
Meta-IV is intended as a wide-spectrum language,(possibly) different types. They are used to de-
it needs to have not only high-level applicativefine both structured input to a system (such as
constructs, but also lower-level imperative con-commands with several parameters) and the inter-
structs such as declared variables and assignmentnal structure of the system.
statements. Including such imperative features

b. Abstract Syntax ensures that, when a series of formal specifica-
tions is produced in order to finally arrive at aAn abstract syntax is a set of so-called domain
program, the last step of writing the actual pro-equations that define classes (domains) of objects.
gram is not too far, conceptually, from the lastIt can be seen as a collection of mutually depend-
formal specification.ent type definitions. Abstract syntaxes provide

the means for combining the composite types f. Applicative vs. Imperative Models
mentioned earlier.

Functional or applicative specification is basically
c. Representational and Operational Abstraction specification without an underlying state, and

hence without variables whose value can change.Abstract definitions of data objects and the opera-
This leads to a particular style of specification,tions on such objects are central to VDM.
where functions (which may be recursive) and

• Representational abstraction is the ab- parameters are the fundamental means of express-
straction applied in defining the types of ing the behavior of the system. In VDM, this
data objects. Representational abstrac- style is encouraged in the higher-level models.
tion focuses on information content and To avoid having common parameters carrying
ignores the physical layout (representa- state information for every function in a specifi-
tion) of data. cation, however, it is often convenient to use im-

perative mechanisms. And since the expressive• Operational abstraction is the abstrac-
powers of the applicative and imperative modelstion applied in defining the operations
are the same, it is largely stylistic concerns that(or functions) needed to manipulate data
determine the choice between them.objects. Operational abstraction focuses

on the effect of the operation and ig-

SEI-CM-16-1.1 5

Software Development Using VDM

tions that are applicable to the identified valuesg. Denotational vs. Mechanical Semantics
(arithmetic operations for integers, file operations

The principles of denotational semantics have like “open” and “read” for files, etc.). Hence,
traditionally been applied primarily in the formal expressions involving operators must respect the
definition of programming languages [Stoy77]. limitations on the applicability of the operations.
The denotational approach, in that case, gives Expressing those constraints is often referred to as
each identifier that occurs in the program an asso- “type checking.” In VDM this is expressed by
ciated denotation (meaning), usually a function; the following:
and the semantics of a composite construct is ex-

• Syntactic domains defining the classespressed as a function of the semantics of its con-
of syntactically correct expressions andstituent parts. This approach, however, can also
type definitions.be applied to systems in general, e.g., database

• Semantic domains defining the classessystems. Denotational models are normally used
of descriptors for expressions and typesin the early stages of systems development, since
(atomic as well as composite).the denotations are based on functions and func-

tional composition. • Functions defining the descriptors cor-
responding to a given expression or typeMechanical semantics, also called computational
definition.or operational semantics, describes how to obtain

• Functions defining denotationally (by athe semantics (values) of a language construct
Boolean result) whether a given expres-[Plotkin81]. Generally, a mechanical semantics
sion or type definition (object belongingdescribes a sequence of abstract system states,
to a syntactic domain) is correct, usingthereby being more algorithmic than a denota-
the descriptors defined by the semantictional semantics. Often, due to the explicit use of
domains.intermediate states, a mechanical semantics will

use an imperative style, allowing the use of the
These four parts are always used in the formalmetalanguage state to capture the system state.
description of programming languages havingModels using mechanical semantics are usually
types. For any specific language, the definition ofapplied in the later stages of systems develop-
the syntactic domains is almost trivial (similar toment.
a BNF grammar); the major decision is how to
define the descriptors (semantic domains). VDM2. Modeling of Programming Language Concepts
has a number of standard ways of defining

In VDM, modeling techniques similar to those used descriptors, depending on the type equivalence
when describing high-level programming language rules of a language (name equivalence, structural
concepts have been found applicable to a wide class equivalence, etc.).
of problems outside the field of formal programming

Most systems have a concept of types and enforcelanguage semantics. One reason for this is that most
rules related to types. This means that the abovesystems employ some kind of language (if not a
approach is applicable not only when describing“real” programming language) by which the user
the (static) semantics of programming languages,communicates with the system. Such languages of-
but for other systems as well.ten embody concepts found in traditional program-

ming languages, like types and the requirement that
b. Variables, Storage, and Locationscertain expressions denote values belonging to par-

ticular types. The purpose of the following sections Imperative programming languages like COBOL,
is to discuss the modeling of individual program- FORTRAN, Pascal, and Ada have, as one of their
ming language concepts and the general ap- basic concepts, assignable variables, along with
plicability of the techniques. (See [Jones82] for a the related notion of changing the values of these
detailed description of the VDM approach to model- variables. Having variables naturally leads to the
ing programming language concepts.) It is impor- idea of a storage (for the current values) and
tant to keep in mind that the programming language locations (for holding the values in storage).
concepts are not seen as a means of implementing a When using VDM, the storage is always de-
VDM model (in the final development step) but as scribed as a mapping from locations to values,
concepts similar to those found in the system to be and choosing an appropriate storage model is a
developed. matter of determining the different forms of loca-

tions and values, depending on the characteristicsa. Types and Values
of the programming language. More specifically,
the presence or absence of programming languageA type identifies a set of values, and introducing
constructs for manipulating subcomponents ofthe concept of types into a system leads to a par-
structured objects determines whether locationstitioning of all values into subsets (integers, files,
and the stored values should be described asetc.). A type is also characterized by the opera-

6 SEI-CM-16-1.1

Software Development Using VDM

atomic or composite. Decisions are made in a scribed by functions from actual parameters and a
way that makes the storage operations of storage to an optional value (absent in the case of
allocation, assignment or update, getting the “pure” procedures) and to a potentially changed
contents of a location, and freeing locations as storage (due to side effects).
simple as possible. These operations are often

Macros, due to their name-binding rules, are de-found in other state-based systems, thereby allow-
scribed as functions from actual parameters, aning for a wider use of the approach.
environment (name bindings), and a storage to an

c. Blocks optional value and a potentially changed storage
(due to side effects).

Blocks in programming languages allow the local
introduction of new entities and names for these e. Flow of Control
entities. This locality means that the entities (as

This section deals with GOTOs and other pro-well as their names) are only to be used within the
gramming language constructs requiring an ab-block. From a formal semantics point of view,
normal (nonsequential) flow of control duringthe important thing to capture is the visibility of
program execution.the declared names, including their binding to the

declared entities. In VDM, the binding is de- There are traditionally two ways of abstractly de-
scribed using mappings. The effect of nesting scribing such program constructs [Jones78,
blocks is described by passing the mappings as Bjørner80b]. One is the direct semantics style, or
parameters from one Meta-IV function “down” to the exit style, and the other is the continuation
the subfunctions dealing with the nested blocks. style. In VDM, both approaches are applicable,
This scheme utilizes the normal parameter- but the exit style is preferred, since it matches the
passing techniques for functional languages, since intuition of most software engineers.
they apply to Meta-IV functions. In imperative
languages, a block often has an effect on the III. Software Design Using VDM
global state—the values of global variables may

The previous section discussed the VDM approach tohave changed as a result of executing the block.
formally specifying a system. This section addressesIn order to describe this while still allowing local
the process of moving from abstract specifications tovariable declarations to hide global ones (new
more implementation-oriented ones. Such implemen-bindings), a general scheme involving two map-
tation-oriented specifications are what we call designs.pings is used. The first one, the environment,
The process typically involves defining a series of de-binds variable names to locations; the second one,
signs that progressively approach the implementation.the storage, binds locations to values. This

scheme not only handles blocks and their nesting, A key issue in VDM is the relation between two formal
but it is capable of describing essential parts of specifications, where one is supposedly “implemen-
parameter passing for subprograms and the use of ting” the other. The degree to which this implemen-
alternative names for entities (renaming or tation relation should be demonstrated is not prescribed
aliases). by VDM. Instead, each project should adopt an appro-

priate level of formality in establishing this relation-d. Subprograms and Macros
ship.

Subprograms, whether applicative or imperative,
The following sections describe the different degrees ofall share the property that nonlocal names
formality that can be applied in the design process.referenced within them are bound at the point of
They discuss the application of the VDM principles tothe definition of the subprogram. This is in con-
interpreters and compilers, as well as to database sys-trast to macros, for which such names are bound
tems.at each point of call.

1. Systematic Program DevelopmentCalling an applicative subprogram must generate
a value (since no side effects are possible). Since When starting with the initial high-level Meta-IV
all global names are bound at the point of sub- specification of a system, one has a specification
program definition, a natural “meaning” of such a that expresses the system’s functionality, but pays
subprogram in VDM is: a function that, given little or no attention to the nonfunctional require-
any actual parameters (values), returns a value. ments. Moreover, a number of specification lan-
This is the kind of denotation that one associates guage constructs used (such as sets, mappings, and
in VDM with the name of such a subprogram in implicit construction of values) are most likely not
the environment. supported by the particular implementation language

to be used. By providing examples as inImperative subprograms are also described as
[Bjørner82b] and [Jones80], VDM offers guidelinesfunctions, but they need the value of global vari-
for selecting parts of an abstract specification andables at the point of call. Hence, they are de-

SEI-CM-16-1.1 7

Software Development Using VDM

for creating a new formal specification in which ing recursion have been adopted by VDM (such
those parts have been made more concrete. as [Darlington76] and [Burstall77]).

a. Stepwise Development 2. Formal Development of Programs
a. Proofs and Proof SystemsDesigning a system based on a specification cor-

responds to making a number of commitments on Since testing cannot, in general, guarantee the
behalf of the implementation. The idea behind a correctness of a program (or of a formal
stepwise development process is that all commit- specification), a proof is the only means of
ments should not be made at one time, but should guaranteeing correctness. Proofs can be either
be made sequentially. formal or informal. A formal proof is an argu-

ment constructed by symbol manipulations ac-In the VDM framework, most commitments take
cording to a set of inference rules. An informalthe form of an object transformation (selecting
proof contains the major steps of the argumentnew data representations) or an operation trans-
but avoids the more tedious details of symbol ma-formation (choosing more algorithmic defini-
nipulation. An informal proof can be made for-tions). Object transformations often necessitate
mal by filling in all the details. Most proofs car-certain operation transformations, since the orig-
ried out in VDM are informal proofs, and theyinal operations used the characteristics of the cor-
follow the inference rules of the predicate cal-responding data type. Also, because most VDM
culus [Jones86].specifications aim at being compositional (i.e.,

isolating properties of components of a model), b. Relations between Specification and Design
parts of a specification can be developed in isola-

In this section we see a design as a formal modeltion.
implementing what is defined by a specification.

b. Object Transformations The relation between objects in the design and
corresponding objects in the specification is for-The most abstract formal specifications exten-
malized in VDM by a number of retrievesively use data types such as sets and maps,
functions that, for each object in the design, yieldswhich are not present in most implementation lan-
the corresponding object in the specificationguages. Even in cases where these types are al-
[Jones86]. They are called retrieve functions be-most directly implementable, the direct imple-
cause they regain the abstraction from the imple-mentation might not be efficient enough for the
mentation. In general, the relation between ob-system to be developed. Hence, for each high-
jects in the specification and those in the design islevel data type, a more “implementable” one must
a one-to-many relation, in that several design ob-be chosen, depending on the characteristics of the
jects all represent the same abstract object. It is,implementation language and the nonfunctional
however, still important to show the adequacy of(e.g., space or time) requirements of the system.
a design with respect to its specification. A de-(For a mapping, a table or an ordered binary tree
sign is adequate if there is at least one represen-might be chosen.) Of course, knowledge of exist-
tation of every abstract value in the specification.ing efficient algorithms available for different

data structures, as presented in [Horowitz76], Once a design has been shown to be adequate,
[Horowitz78], and elsewhere, plays a major role in one can start proving it correct. First, the proof
determining the data structures. Meta-IV, how- obligations are established. They express that
ever, allows one to define such data structures at operations in the design must behave analogously
an abstract level without getting into the details of to those of the specification, thus preserving the
their implementation. (For example, ordered bi- properties of the specification. Second, the proof
nary trees can be defined using recursive data itself is carried out using the definition of the
types without thinking about the use of retrieve functions. In practical examples, one of-
“pointers,” etc., for dynamic allocation.) ten only establishes the proof obligations, without

carrying out the actual proofs, since such proofsc. Operation Transformations
are cumbersome, and most design errors are

In addition to the operation transformations in- revealed by establishing the proof obligations
curred by the object transformations, one might alone.
want to define an operation in a more efficient or

3. Interpreters and Compilersimplementable way, considering implementation
language capabilities. One of the areas in which VDM has been used most

extensively is the development of compilers for pro-If, for example, an iterative operation structure is
gramming languages [Bjørner77, Bjørner80a,preferred over a recursive one, this will lead to an
Bjørner82e, Oest86]. Interpreters and compilers areimperative formal specification (see II.1.f-g). A
similar, in that they they both implement the seman-number of existing standard schemes for remov-

8 SEI-CM-16-1.1

Software Development Using VDM

tics of the programming language, the first by ciates a sequence of abstract instructions with each
“direct” execution and second by a translation into a language (AS2) construct. The abstract instructions
target language. Both require a deep understanding reflect the physical instructions of the target com-
of the semantics of the programming language. puter. A formal description of the target system is
Hence, the first step in a VDM development of a made using these abstract instructions and an ab-
compiler is the formal definition of the program- straction of its state. The compiling algorithm is
ming language semantics. Such a semantics consists usually defined by a set of mutually recursive Meta-
of the following components [Pedersen87]: IV functions using a “dictionary” to hold the neces-

sary context information.• an abstract syntax called AS1

• a static semantics (well-formedness) defi- Depending on the language in which the compiler is
nition based on AS1 to be implemented, a series of formal specifications

for the compiler itself are developed. Often an attri-• an abstract syntax AS2
bute semantics definition [Bjørner82e] of the compil-• an AS1 to AS2 transformation ing algorithm is given. Looking at synthesized and

• a dynamic semantics based on AS2 inherited attributes assists in the analysis of different
multi-pass or single-pass compiler designs.

The abstract syntax AS1 describes a grammar of the
programming language using Meta-IV type defini- Recently, the guidelines for developing compilers
tions. The static semantics defines the context con- using VDM have been further formalized. For an
ditions, i.e., nonsyntactic language rules whose vio- example of such a formalization for the development
lation leads to illegal programs that are to be of an Ada compiler, see [Oest86].
rejected by a compiler (or interpreter). The abstract

4. Data Models and Database Managementsyntax AS2 describes the syntax of statically correct
Systemsprograms. It resembles AS1, but certain changes are

introduced to facilitate the definition of the dynamic
A data model defines data objects and operationssemantics. The AS1 to AS2 transformation formal-
applicable to the data objects. A database manage-izes the relation between AS1 and AS2. The
ment system supports the storing of data objects anddynamic semantics describes the runtime behavior
the execution of the operations. The functions of aof statically correct programs.
database are divided into meta-functions that operate
on descriptions of data (such as database schemaFrom a compiler construction point of view, AS1
operations) and functions that operate on the dataand AS2 correspond to internal representations of a
objects themselves (such as queries and general dataprogram during compilation. The static semantics
manipulation).corresponds to the front end (semantic analyzer) of a

compiler, and the dynamic semantics corresponds to
In the following sections, VDM formalizations ofa combination of the back end (code generator) and
different known data models are introduced. Furtherthe runtime system.
information can be found in [Bjørner82c].

The most abstract formal semantics of a program- a. Relational Data Modelsming language is expressed in VDM using a denota-
tional semantics style. In the case of languages with In VDM, a relational data model is seen as a col-
parallelism, a similar but more elaborate scheme is lection of named relations. These relations are
used [Haff80, Bjørner80c, Astesiano87]. described using maps. A relation is seen as a set

of rows, and a row as a tuple of values or a map-
Based on this initial formal definition of the pro- ping from row names to values. Based on this
gramming language semantics, a series of more con- model, it is easy to define the traditional relational
crete definitions is often developed, depending on database operations of select, project, join, and
the complexity of the programming language and divide. General predicate calculus query lan-
the capabilities of the implementation language of guages, such as SQL, are easily described also
the interpreter or the target language for the com-

[Bjørner82c].
piler [Bjørner82e]:

b. Hierarchical Data Models• a first-order applicative semantics (no
functions as semantic domains) Basic concepts in a hierarchical data model are

• an abstract state machine semantics (using those of records (of particular record types),
high-level Meta-IV types) which are arranged in tree structures. The hier-

archy among record types is part of the schema of• a concrete state machine semantics (using
the data model. This is described in VDM as amore implementable types)
hierarchy-diagram type that is recursively defined

The next step in the case of compiler development is as a mapping from record type identifiers to
to define a so-called compiling algorithm that asso- hierarchy-diagram types (the sub-hierarchies of

SEI-CM-16-1.1 9

Software Development Using VDM

the record type); the mapping is empty for the
bottom elements of the hierarchy. All one has to
add to this are the descriptors of the actual fields
in the record types (at each level) in order to get
the complete schema information. Generally,
throughout the formal description of the hierar-
chical data model, recursively defined mappings
are used to capture hierarchical tree structures,
rather than using Meta-IV trees, which would
lead to a fixed number of sub-hierarchies for each
record type.

c. Network Data Models

The basis for a VDM description of network data
models is the formalization of Bachman’s concept
of data structure diagrams [Bachman69]. Such a
diagram consists of boxes and arrows. A box
denotes a set of records, and it is described as
such in VDM. An arrow denotes a relation
among records and is described as a mapping
from records to sets of records (a one-to-many
relation). The syntactic form of any particular
data structure diagram can be seen as a set of
unique box names and a set of uniquely named
arrows (a mapping from arrow names to pairs of
“from” and “to” box names). One gets a model of
data structure diagrams by combining this syntac-
tic view with the above semantic view (of what
boxes and arrows denote) and adding the neces-
sary invariants. The model allows one to describe
easily the concept of “navigating” through the
database.

IV. Future Directions of VDM

Even though VDM has proven successful in a number
of applications and is one of the more mature formal
system development methods, there is still room for
improvement. In particular, lessons learned from other
formal description techniques, such as the algebraically
based ones (e.g., regarding structuring and parameteriz-
ing specifications) suggest ideas for extensions to the
specification language [Bear88]. Moreover, a way of
describing parallel systems should be introduced as an
integral part of the specification language. The for-
malization of software development projects in the
form of software development graphs, as described in
[Bjørner86], is expected to become an essential part of
VDM. A project graph identifies the formal documents
to be developed as part of a project and describes their
relationship. Each project has its own project graph,
but projects within a particular problem domain, such
as compiler development, have graphs that exhibit
similar structures. Finally, a more extensive tool sup-
port is needed to ensure a wider industrial use of for-
mal methods. One project that currently aims at solv-
ing those problems is the RAISE (Rigorous Approach
to Industrial Software Engineering) project [Nielsen88].
It can be seen as the next generation of VDM-like de-
velopment methods. [Prehn87] discusses general im-
provements to VDM in the context of RAISE.

10 SEI-CM-16-1.1

Software Development Using VDM

Teaching Considerations

The instructor should be familiar with formal meth- Worked Examples
ods in general; SEI curriculum module Formal Spec-
ification of Software [Berztiss87] provides an over- Examples of VDM applications play an important
view of the appropriate information. role in teaching the proper use of VDM. The fol-

lowing are references to literature containing ex-
amples appropriate for classroom presentations.

There are a number of useful examples inSuggested Schedules
[Bjørner78]: small examples of the use of individual
Meta-IV language constructs; a formal specification

The material covered by this module can be taught at of Algol 60; and an example of a formal specifica-
various depths. At the Technical University of Den- tion of an operating system command language.
mark, the material has been presented in two full

[Bjørner79] includes an example of object refine-courses: one covers essentially Part II, “Formal
ments applied to the specification of a file system.Specification of Software Using VDM,” and some of

the mathematical prerequisites; the other covers Part [Bjørner82b] contains examples of VDM applica-
III, “Software Design Using VDM,” including a tions within these areas:
thorough treatment of examples of applying VDM to

• programming language semanticslarge systems. Below is a sample schedule for a
• compiler developmentone-semester course (34 lecture hours):

• stepwise development in general, il-I. Introduction to VDM (1 hour)
lustrated by a file system example

II. Formal Specification of Software Using VDM • data models and database systems
1. Meta-IV and the Construction of Ab-

[Jones80] has examples of stepwise development ofstract Models (9 hours)
a parser for a small language and a telegram analysis2. Modeling of Programming Concepts
program.(7 hours)

III. Software Design Using VDM
1. Systematic Program Development

(6 hours)

2. Formal Development of Programs
(4 hours)

3. Interpreters and Compilers (3 hours)

4. Data Models and Database Management
Systems (3 hours)

IV. Future Directions (1 hour)

For a short 1- to 2-hour overview of VDM to be
presented as part of a course in software specifica-
tion and development, [Bjørner79] presents a concise
introduction to VDM, including examples suitable
for illustrating the central ideas of abstract specifi-
cation and stepwise refinement in VDM.

SEI-CM-16-1.1 11

Software Development Using VDM

Exercises

[Jones80] and [Jones86] provide exercises in the use of VDM for constructing formal specifications, as well as
exercises in the systematic development of programs including proofs of correctness.

The following exercises can be used to demonstrate the proper use of Meta-IV, corresponding to [Bjørner78]:

1. Define, using Meta-IV, bounded stacks with the traditional operations (Empty, Push, Pop, Top,
Is-Empty, Is-Full). In addition to type definitions and operations (functions), define invariants and
preconditions, or justify not using them.

2. Define an abstract syntax for arithmetic integer expressions, including (at least) unary minus, dyadic
minus, plus, and multiplication. The abstract syntax must cover all possible expressions even those
that in a concrete (BNF-like) syntax make use of parentheses, for example, −(5+7)⋅(8−3). Define a
function that evaluates such expressions.

3. Define a system for keeping information about students in a school. For each student, the system
should keep track of the exams passed by that student. The system does not have to account for
exams not passed. Define operations corresponding to:

1. A student’s passing an exam

2. Determining whether a given student has passed a particular exam

3. Getting all the exams that a given student has passed

4. Getting all the students that have passed a particular exam

4. This exercise illustrates the process of stepwise refinement. The step consists of creating a more
implementable specification (using a set of pairs) from an abstract specification (using a map). It
shows two different levels of abstraction (that of a mapping and that of a set of pairs) and the formal
relation between them (see section III.1).

Assume that we want to “represent” a function (or mapping) from integers to integers as a set of
pairs:

SET-FUNC = PAIR-set
PAIR :: s-argument: INTG s-result: INTG

1. Define an invariant (function) expressing that a value of type SET-FUNC actually represents a
function and not a general relation.

2. Define a (retrieve-) function that, given a SET-FUNC object, yields the corresponding map
object.

3. Define operations on such function representations corresponding to the Meta-IV “map” opera-
tions of: application, domain, range, override (+), and restriction (\). These operations should
be defined without using the retrieve operation mentioned in (2).

5. This exercise also illustrates stepwise refinement. Here a binary tree is chosen as the “more
implementable” specification.

We want to “represent” a function (or mapping) from integers to integers as an ordered binary tree.

The operations to be defined on the binary tree should be defined using operations pertaining to that
data type. The operations mentioned in (4) and (5) should be defined without using the retrieve
operation mentioned in (3).

1. Define an appropriate type (TREE-FUNC).

12 SEI-CM-16-1.1

Software Development Using VDM

2. Define an invariant (function) expressing the fact that a given binary tree is indeed ordered and
represents a function.

3. Define a (retrieve-) function that, given a TREE-FUNC object, yields the corresponding map
object.

4. Define operations corresponding to: application, domain, and overriding with one new integer-
to-integer association (type: simple-override: TREE-FUNC INTG INTG → TREE-FUNC).

5. Define operations corresponding to general overriding (type: override: TREE-FUNC TREE-
FUNC → TREE-FUNC) and restriction (type: restrict: TREE-FUNC INTG-set → TREE-
FUNC).

Suggested Reading Lists

The following table categorizes items in the bibliography by applicability. References enclosed in parentheses
refer to parts of other references (see the bibliography for further details). VDM Textbooks provide material
from which a course can be taught. The Recommended readings consist of a number short papers on VDM and
related material. Detailed readings discuss technical details of VDM or are examples of major applications of
VDM. The Background readings cover general non-VDM material that is useful, but not essential, to under-
standing and applying VDM.

VDM Textbooks Recommended Detailed Background

Bjørner78 (Andrews88) Astesiano87 Bachman69
Bjørner82b Berztiss87 (Bear88) Bauer82
(Bjørner82c) Bjørner77 Bekic74 Burstall81
(Bjørner82d) Bjørner79 Bjørner80c CIP85
(Bjørner82e) Bjørner80b (Bjørner80a) Futatsugi85
Cohen86 Bjørner82a Bjørner87b Horowitz76
Jones80 Bjørner86 Bloomfield88 Horowitz78
(Jones82) Bjørner87a Botta87 Plotkin81
Jones86 Burstall77 Bundgaard81 Stanat77

(Crispin87) Haff80 Stoy77
Darlington76 Hansen85
Oest86 (Jones78)
(Prehn87) (Jones87)
(Scullard88) (Letschert87)

(Pedersen87)
Pedersen88
(Ruggles88)

SEI-CM-16-1.1 13

Software Development Using VDM

Bibliography

puter Science, vol. 328. Berlin: Springer-Verlag,Andrews88
1988, 2-25.Andrews, D. J., et al. “The Formal Definition of

Modula-2 and Its Associated Interpreter.” In VDM Abstract: This paper describes a stucturing scheme
’88: VDM—The Way Ahead, R. Bloomfield, et al., for the VDM Specification Language. A VDM
eds. Lecture Notes in Computer Science, vol. 328. document may be split into a number of modules
Berlin: Springer-Verlag, 1988, 167-177. which may be parameterised. Modules may import

and export constructs. A parameterised moduleAbstract: A three year research project is currently may be instantiated by another module. We definebeing undertaken at Leicester Universtiy, The Na- an abstract syntax and give a compositional denota-tional Physical Laboratory (NPL) and The British tional semantics. Context Conditions are discussedStandards Institute (BSI). The project aims to pro- informally, but are not set out in any detail.duce a formal definition of the syntax and semantics
of the programming language Modula-2, written in

Bekic74VDM Meta IV, together with a rigorously verified
interpreter derived directly from the definition. In Bekic, H., et al. A Formal Specification of a PL/I
the process of producing a good quality document Subset. TR 25.139, IBM Vienna Laboratory,
of the formal definition of Modula-2, two by- Vienna, 1974.
products will also be developed and applied. They

The first major application of VDM to the descrip-are a VDM structure editor and an enviornment to
tion of programming language semantics. It is theAgenerate LT X files from the VDM structure editor.E
application for which Meta-IV was invented.

Astesiano87
Berztiss87Astesiano, E., et al. The Draft Formal Definition of
Berztiss, A. Formal Specification of Software. Cur-Ada: The Dynamic Semantics Definition. Dansk
riculum Module SEI-CM-8-1.0, Software Engineer-Datamatik Center/CRAI/IEI/University of Genoa,
ing Institute, Carnegie Mellon University, Pitts-Lyngby, Denmark, January 1987.
burgh, Pa., October 1987.

This is a five-volume description of the dynamic
Capsule Description: This module introduces(runtime) behavior of Ada programs. It is part of
methods for the formal specification of programsthe results of a project sponsored by the Commis-
and large software systems, and reviews thesion of the European Communities (CEC) Multi-
domains of application of these methods. Its em-Annual Programme: “The Draft Formal Definition
phasis is on the functional properties of software. Itof Ada.”
does not deal with the specification of programming
languages, the specification of user-computer inter-Bachman69 faces, or the verification of programs. Neither does

Bachman, C. W. “Data Structure Diagrams.” Data it attempt to cover the specification of distributed
Base 1, 2 (Summer 1969), 4-10. systems.

This is the original paper on data structure diagrams
Bjørner77and their application to data models and databases.
Bjørner, D. “Programming Languages: Formal De-
velopment of Interpreters and Compilers.” 5th Intl.Bauer82
Comp. Symp. Amsterdam: North-Holland, AprilBauer, F. L., and H. Woessner. Algorithmic Lan-
1977, 1-21.guage and Program Development. Berlin:

Springer-Verlag, 1982. This paper demonstrates seven stages of systematic
VDM development, and specifies and transforms aThis includes a discussion of the use of wide-
formal definition of a simple, applicative languagespectrum languages in program development.
with recursion into an attribute grammar specifica-
tion for a compiling algorithm.Bear88

Bear, S. “Structuring for the VDM Specification
Bjørner78Language.” In VDM ’88: VDM—The Way Ahead,
Bjørner, D., and C. B. Jones, eds. The Vienna De-R. Bloomfield, et al., eds. Lecture Notes in Com-
velopment Method: The Meta-Language. Lecture

14 SEI-CM-16-1.1

Software Development Using VDM

Notes in Computer Science, vol. 61. Berlin: ture Notes in Computer Science, vol. 86. Berlin:
Springer-Verlag, 1978. Springer-Verlag, 1980, 216-247.

This book includes a tutorial on Meta-IV, a refer- The paper illustrates a spectrum of so-called exit
ence manual for Meta-IV, and a formal definition of and continuation semantics definitions, including
Algol 60. combinations of both.

Bjørner79 Bjørner80c
Bjørner, D. “The Vienna Development Method Bjørner, D., and O. N. Oest, eds. Towards a Formal
(VDM): Software Specification & Program Description of Ada. Lecture Notes in Computer Sci-
Synthesis.” In Mathematical Studies of Information ence, vol. 98. Berlin: Springer-Verlag, 1980.
Processing, E. K. Blum, M. Paul, and S. Takasu,

This book contains the following:eds. Lecture Notes in Computer Science, vol. 75.
• a description of the DDC Ada compilerBerlin: Springer-Verlag, 1979, 326-359.

project (see [Bjørner80a])
Abstract: A capsule view is given of the VDM spec- • a denotational definition of the static
ification language and the associated specification semantics (context conditions) of Ada
techniques for defining software, respectively the

• a formal description of the dynamicsystematic derivation techniques for synthesizing
semantics (runtime behavior) of the se-and proving correct program realizations from such
quential (non-parallel) parts of Adaabstract software architectures.

• a formal definition of parallelism in AdaThe paper exhibits examples illustrating abstract
• a definition of an abstract machine for ex-syntax specifications of both abstract and derived

ecuting Ada programsconcrete syntactic and semantic domains, and
denotational and derived operational elaboration
function definitions mapping syntactic domain ob- Bjørner82a
jects into their semantic domain object denotations,

Bjørner, D., and H. H. Løvengreen. “Formalrespectively into operations on these. In deriving
Semantics of Data Bases.” 8th Intl. Conf. on Verythe concrete programs from abstract definitions,
Large Data Bases. New York: ACM, Septemberand in proving correctness, extensive use is made of
1982.invariant (-preserving) static and dynamic well-

formedness predicates and retrieval (or: abstrac-
The paper advocates the use of formal specificationtion) functions bringing concrete, realization-
in the design of new data models and in the record-oriented objects “back” into their defining abstract
ing of old ones. It contains an extensive model ofobjects. Such uses are likewise illustrated. Ex-
the IMS database management system.amples of proofs based on the idea of commuting

diagrams follow. These make use of a number of
data structure lemmas: properties of the abstract Bjørner82b
and concrete objects chosen to represent, respec- Bjørner, D., and C. B. Jones. Formal Specification
tively realize, the specified software concepts. We and Software Development. Englewood Cliffs,
finally exemplify the beginnings of such a catalogue N. J.: Prentice/Hall International, 1982.
of auxiliary lemmas.

This book contains a number of papers covering:

Bjørner80a • the meta-language of VDM
Bjørner, D., and O. N. Oest. “The DDC Ada Com- • application of VDM to programming lan-

guage semantics (see [Jones82])piler Project.” In Towards a Formal Description of
Ada, D. Bjørner and O. N. Oest, eds. Lecture Notes • application of VDM to compiler develop-
in Computer Science, vol. 98. Berlin: Springer- ment (see [Bjørner82e])
Verlag, 1980, 1-20. • stepwise development using VDM

The paper describes how VDM was expected to be • formalization of database models (see
applied in the development of the DDC Ada com- [Bjørner82c])
piler (see also [Oest86]). • development of database management sys-

tems (see [Bjørner82d])
Bjørner80b
Bjørner, D. “Experiments in Block-Structured Bjørner82c
GOTO-Modelling: Exits vs. Continuations.” In Ab- Bjørner, D., and H. H. Løvengreen. “Formalization
stract Software Specifications, D. Bjørner, ed. Lec- of Data Models.” In Formal Specification and Soft-

SEI-CM-16-1.1 15

Software Development Using VDM

between serving some technical ideas and postulat-ware Development, D. Bjørner and C. B. Jones, eds.
ing some “philosophical” frame of reference forEnglewood Cliffs, N. J.: Prentice/Hall International,
that larger concept: Software Development.1982, 379-442.

This paper includes VDM formalizations of the Bjørner87a
relational data model, the hierarchical data model,

Bjørner, D., and A. Rasmussen. An Annotated VDMand the network data model.
Bibliography. Dansk Datamatik Center and Depart-
ment of Computer Science, Technical University ofBjørner82d Denmark, Lyngby, Denmark, 1987.

Bjørner, D. “Realization of Database Management
The bibliography contains some 230 references toSystems.” In Formal Specification and Software
literature related to VDM. The literature spansDevelopment, D. Bjørner and C. B. Jones, eds.
from monographs and textbooks, via Ph.D. andEnglewood Cliffs, N. J.: Prentice/Hall International,
Master’s theses, papers in refereed scientific jour-1982, 443-458.
nals, articles in semi-refereed conference proceed-
ings, to workshop and symposia contributions, andJust as VDM can be used to justify the design of an
student term project, technical, and scientific re-interpreter or compiler with respect to the definition
ports.of the language, this paper illustrates how a data-

base management system implementation can be re-
lated to the specification of a data model. Imple- Bjørner87b
mentations of both hierarchical and network ar-

Bjørner, D., et al., eds. VDM ’87: VDM—A Formalchitectures are discussed.
Method at Work. Lecture Notes in Computer Sci-
ence, vol. 252. Berlin: Springer-Verlag, 1987.

Bjørner82e
The proceedings from the first VDM-Europe Sym-Bjørner, D. “Rigorous Development of Interpreters
posium include papers on these subjects:and Compilers.” In Formal Specification and Soft-

• experience gained from using VDMware Development, D. Bjørner and C. B. Jones, eds.
Englewood Cliffs, N. J.: Prentice/Hall International, • development methods (how to use VDM)
1982, 271-320. • VDM environments

• theoretical foundation of VDMThis paper shows the development of compilers and
interpreters for a simple, applicative language that • standardization of the specification lan-
includes functions as values. The intermediate steps guage
use imperative constructs of the meta-language • tutorials on VDM(e.g., declarations). The example is used to il-
lustrate the step from language definitions to com-

Bloomfield88piling algorithms.
R. Bloomfield, et al., eds. VDM ’88: VDM—The
Way Ahead. Lecture Notes in Computer Science,Bjørner86
vol. 328. Berlin: Springer-Verlag, 1988.Bjørner, D. “Software Development Graphs—A

Unifying Concept for Software Development?” In The proceedings from the second VDM-Europe
Foundations of Software Technology and Theoreti- Symposium contain papers on a variety of subjects
cal Computer Science, 6th Conf., New Delhi, India, including:
December 18-20, 1986, K. V. Nori, ed. Lecture • hardware test-case selection
Notes in Computer Science, vol. 241. Berlin: • specification of Chinese characters
Springer-Verlag, 1986, 1-19.

• compiler specification and development
Abstract: Software Development, as a concept, is • formal definition of standards
seen as composed from aspects of Theoretical Com-

• using VDM to develop Ada programsputer Science, Programming Methodology, Soft-
ware “Engineering” and Management. We define • VDM tools
all of these concepts. We then define the notion of

The references [Andrews88], [Bear88], [Ruggles88],Software Development Graphs. Syntactically, Soft-
and [Scullard88] can be found here.ware Development Graphs are cycle-free, directed,

finite graphs. Semantically, Software Development
Botta87Graphs can be given four distinct kinds of seman-

tics: one for each of the four major components of Botta, N., and J. Storbank Pedersen. The Draft For-
Software Development. The presentation alternates mal Definition of Ada: The Static Semantics Defi-

16 SEI-CM-16-1.1

Software Development Using VDM

nition. Dansk Datamatik Center, Lyngby, Denmark, Cohen86
January 1987. Cohen, B., et al. The Specification of Complex

Systems. Wokingham, England: Addison-Wesley,This is a five-volume description of the static
1986.semantics (context conditions) of Ada. It is part of

the results of a project sponsored by the CEC This book presents different specification methods:
(Commission of the European Communities) Multi- algebraic, VDM, and Milner’s CCS (for specifying
Annual Programme: “The Draft Formal Definition concurrent systems). Each method is applied to a
of Ada.” case study to illustrate its application.

Bundgaard81 Crispin87
Bundgaard, J., and J. Storbank Pedersen. Kontor- Crispin, R. J. “Experience Using VDM in STC.” In
Automations-Systemer (KAS), En formel model af et VDM ’87: VDM—A Formal Method at Work,
generisk KAS. DDC004/1981-06-24/B, Dansk Data- D. Bjørner, et al., eds. Lecture Notes in Computer
matik Center, Lyngby, Denmark, 1981. Science, vol. 252. Berlin: Springer-Verlag, 1987,

19-32.The report, which is written in Danish, contains a
formal model of a generic office system expressed Abstract: Introducing any new technology involves
using Meta-IV and CSP. organizational, skill, method and tool changes,

which require a commitment from the industry con-
cerned. The introduction of formal methods intoBurstall77
system and software design is no exception. BeforeBurstall, R. M., and J. Darlington. “A Transfor-
the widespread use of formal methods can bemation System for Developing Recursive
achieved, it will be necessary for the IT [informa-Programs.” J. ACM 24, 1 (Jan. 1977), 44-67.
tion technology] industry to convince itself that the
methods are genuinely usable in an industrial con-Abstract: A system of rules for transforming pro-
text, can be made to fit within the market and tech-grams is described, with the programs in the form
nical environment, and yield significant improve-of recursion equations. An initially very simple,
ments over conventional methods. This paper de-lucid, and hopefully correct program is transformed
scribes some of the ways STC has used VDM tointo a more efficient one by altering the recursion
develop real systems and the benefits which we feelstructure. Illustrative examples of program trans-
have been achieved. At the same time, some limita-formations are given, and a tentative implementa-
tions of the existing methods have been noted,tion is described. Alternative structures for pro-
giving pointers for further development of the tech-grams are shown, and a possible initial phase for
nology.an automatic or semiautomatic program manipu-

lation system is indicated.
The paper discusses three specific projects within
STC that have applied VDM, the development of a

Burstall81 toolset for VDM users, of control software for a
Burstall, R. M., and J. Goguen. “An Informal Intro- monitoring station, and of an electronic mail system
duction to Specifications using Clear.” In The Cor- for telex users.
rectness Problem in Computer Science, R. Boyer
and J. Moore, eds. London: Academic Press, 1981, Darlington76
185-213. Darlington, J., and R. M. Burstall. “A System which

Automatically Improves Programs.” Acta Infor-This paper describes the algebraic specification lan-
matica 6 (1976), 41-60.guage Clear.

Abstract: Here we give methods of mechanically
CIP85 converting programs that are easy to understand

into more efficient ones, converting recursion equa-CIP Language Group. The Munich Project CIP, Vol-
tions using high level operations into lower levelume I: The Wide Spectrum Language CIP-L. Lec-
flowchart programs.ture Notes in Computer Science, vol. 183. Berlin:

Springer-Verlag, 1985. The main transformations involved are (i) recursion
removal (ii) eliminating common subexpressionsThe report describes the specification language used
and combining loops (iii) replacing procedure callsin the Computer-Aided Intuition-Guided Program- by their bodies (iv) introducing assignments whichming (CIP) project. overwrite list cells no longer in use (compile time
garbage collection).

SEI-CM-16-1.1 17

Software Development Using VDM

A proof of equivalence of two GOTO definitions isFutatsugi85
given. One definition uses the so-called exit styleFutatsugi, K., et al. “Principles of OBJ-2.” Conf.
of definition; the other, the so-called continuationRecord of the Twelfth Ann. ACM Symp. on Prin-
style.ciples of Prog. Lang. New York: ACM, January

1985, 52-66.
Jones80

OBJ-2 is a functional programming language with Jones, C. B. Software Development: A Rigorous
an underlying formal semantics that is based upon Approach. Englewood Cliffs, N. J.: Prentice/Hall
equational logic, and an operational semantics that International, 1980.is based on rewrite rules. The paper deals with
issues of modularization and parameterization as This textbook on VDM focuses on the use of math-
well as implementation techniques. ematical data types in program development. It

contains a number of exercises.
Haff80

Jones82Haff, P., and D. Bjørner, eds. A Formal Definition
Jones, C. B. “Modelling Concepts of Programmingof CHILL: A Supplement to the CCITT Recommen-
Languages.” In Formal Specification and Softwaredation Z.200. Lyngby, Denmark: Dansk Datamatik
Development, D. Bjørner and C. B. Jones, eds.Center, 1980.
Englewood Cliffs, N. J.: Prentice/Hall International,

This report contains a formal definition of the pro- 1982, 85-123.
gramming language CHILL using Meta-IV and
adopting Hoare’s CSP for describing parallelism. This paper describes the VDM approach to the

modeling of central programming language con-
cepts.Hansen85

Hansen, I. Ø., and N. Bleech. Meta-IV Tool-set,
Jones86Functional Specification. DDC165/RPT/2, Dansk
Jones, C. B. Systematic Software DevelopmentDatamatik Center, Lyngby, Denmark, 1985.
Using VDM. Englewood Cliffs, N. J.: Prentice/Hall

A description of the DDC Meta-IV toolset including International, 1986.
an editor, a syntax analyzer, a type checker, a data-

This is the most recent textbook on VDM. It em-base for formal specifications, and output tools.
phasizes proofs and proof techniques in the context
of VDM and includes a number of exercises.Horowitz76

Horowitz, E., and S. Sahni. Fundamentals of Data
Jones87Structures. Woodland Hills, Calif.: Computer Sci-
Jones, K. D. “Support Environments for VDM.” Inence Press, 1976.
VDM ’87: VDM—A Formal Method at Work,

This is not a VDM book, but it provides useful D. Bjørner, et al., eds. Lecture Notes in Computer
background information on data structures. This Science, vol. 252. Berlin: Springer-Verlag, 1987,
information can guide the stepwise development of 110-117.data structures in VDM specifications.

Abstract: This paper discusses the experiences and
issues of building two different levels of system toHorowitz78
support the use of VDM. The MULE system is anHorowitz, E., and S. Sahni. Fundamentals of Com-
example of an environment giving support in theputer Algorithms. Potomac, Md.: Computer Sci-
syntactic generation of formal objects, such as spec-ence Press, 1978. ifications. The IPSE 2.5 system is an attempt to
produce an industrial scale system to support theThis is not a VDM book, but it includes algorithms
use of formal methods over the whole of a softwarethat are useful in constructing VDM specifications
development life cycle.at lower levels of abstraction.

Letschert87Jones78
Letschert, T. “VDM as a Specification Method forJones, C. B. “Denotational Semantics of GOTO: An
Telecommunications Software.” In VDM ’87: VDMExit Formulation and its Relation to Continuations.”
—A Formal Method at Work, D. Bjørner, et al., eds.In The Vienna Development Method: The Meta-
Lecture Notes in Computer Science, vol. 252. Ber-Language, D. Bjørner and C. B. Jones, eds. Lecture
lin: Springer-Verlag, 1987, 106-109.Notes in Computer Science, vol. 61. Berlin:

Springer-Verlag, 1978, 278-304.

18 SEI-CM-16-1.1

Software Development Using VDM

This paper gives a short overview of VDM applica- Pedersen88
tions within Philips Kommunikations Industrie in Pedersen, J. Storbank, and M. H. Klein. Using the
West Germany. Vienna Development Method (VDM) to Formalize a

Communication Protocol. SEI-88-TR-26, Software
Nielsen88 Engineering Institute, Carnegie Mellon University,
Nielsen, M., and S. Lynenskjold. RAISE Project Pittsburgh, Pa., December 1988.
Overview. RAISE/DDC/MN/19/V3, Dansk Datama-

This report contains a formal description in Meta-tik Center, Lyngby, Denmark, 1988.
IV of a communication protocol used by the U.S.
Navy.This report describes the RAISE (Rigorous Ap-

proach to Industrial Software Engineering) method
and specification language, RSL (RAISE Specifi- Plotkin81
cation Language). Also, an overview of the RAISE Plotkin, G. D. A Structural Approach to Operational
tools is given. Semantics. DAIMIFN-19, Aarhus University, Den-

mark, Aarhus, Denmark, September 1981.
Oest86

This book describes Plotkin’s Structural Operation-Oest, O. N. “VDM from Research to Practice.”
al Semantics, often referred to as “SOS.”Information Processing 86: Proc. IFIP 10th World

Comp. Congress. Amsterdam: North-Holland, Sep-
Prehn87tember 1986, 527-533.
Prehn, S. “From VDM to RAISE.” In VDM ’87:

Abstract: The Vienna Development Method (VDM) VDM—A Formal Method at Work, D. Bjørner, et
is one of the few mathematically based methods for al., eds. Lecture Notes in Computer Science, vol.software development which has been successfully

252. Berlin: Springer-Verlag, 1987, 141-150.transferred from the protected world of the research
laboratories into industrial use. Abstract: Although VDM—the Vienna Develop-

ment Method—has probably been the most wide-After a brief description of VDM—its contents and
spread and popular so-called formal method forthe ideas behind it—the paper continues by outlin-
software development in use so far, it is clear thating the history of VDM from its foundation in the
VDM suffers from a number of deficiencies. In thisearly seventies through its evolvement through re-
paper, the transition from VDM to a new “secondsearch and application into its current form. In this
generation” formal method—RAISE—is discussed.period VDM has been changed, extended, and
Problems with VDM are discussed, and their solu-variants have emerged. VDM in all its variants is
tions within RAISE are outlined. The reader is as-now forming the major basis for what is known as
sumed to be familiar with VDM.the ESPRIT RAISE project supported by the CEC

(Commission of the European Communities).
Ruggles88The paper ends by describing the largest applica-
Ruggles, C. “Towards a Formal Definition of GKStion of VDM to date, the design and development of
and Other Graphics Standards.” In VDM ’88: VDMthe DDC Ada Compiler, an effort which took place

at Dansk Datamatik Center, Denmark, from 1981 to —The Way Ahead, R. Bloomfield, et al., eds. Lec-
1984. This development was partly funded by the ture Notes in Computer Science, vol. 328. Berlin:
CEC under its Multi Annual Programme within the Springer-Verlag, 1988, 64-73.
field of Data Processing.

The paper reports on work done at the University of
Leicester on formalizing the ISO Graphical KernelPedersen87
System (GKS) standard using Meta-IV.

Pedersen, J. Storbank. “VDM in Three Generations
of Ada Formal Descriptions.” In VDM ’87: VDM—

Scullard88A Formal Method at Work, D. Bjørner, et al., eds.
Scullard, G. T. “Test Case Selection Using VDM.”Lecture Notes in Computer Science, vol. 252. Ber-
In VDM ’88: VDM—The Way Ahead,lin: Springer-Verlag, 1987, 33-48.
R. Bloomfield, et al., eds. Lecture Notes in Com-

Abstract: Since 1980, three different formal de- puter Science, vol. 328. Berlin: Springer-Verlag,
scriptions of the Ada programming language have 1988, 178-186.
been developed, based on the principles of the

Abstract: This paper describes the design verifi-Vienna Development Method (VDM). This paper
cation process adopted by the VLSI Distributed Ar-characterizes each of the three descriptions and ex-
ray Processor (VDAP) Project. In this projectplains some of the differences.
structured, informal design techniques were used in

SEI-CM-16-1.1 19

Software Development Using VDM

the hardware design process, but the validation
team used some of the tools and methods of VDM as
a means of defining a testing strategy.

Stanat77
Stanat, D. F., and D. F. McAllister. Discrete Mathe-
matics in Computer Science. Englewood Cliffs,
N. J.: Prentice-Hall, 1977.

This book contains the discrete mathematics back-
ground material needed for this module.

Stoy77
Stoy, J. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. Cam-
bridge, Mass.: MIT Press, 1977.

This is a classical textbook on denotational seman-
tics.

20 SEI-CM-16-1.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

