
Software Specifications:
A Framework

SEI Curriculum Module SEI-CM-11-2.1

January 1990

H. Dieter Rombach
University of Maryland

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module author.

H. Dieter Rombach
Department of Computer Science
University of Maryland
College Park, MD 20742

Copyright © 1990 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

112111090

Software Specifications:

A Framework

Acknowledgements Contents

I would like to thank Norm Gibbs, Director of the SEI Capsule Description 1
Education Program, who made sure I had the resources Philosophy 1
and encouragement to complete this work. Special thanks

Objectives 3go to John Brackett, the author of the curriculum module
Software Requirements, who reviewed earlier versions of Prerequisite Knowledge 3
this module and provided valuable feedback. I would also Module Content 4
like to thank all the members of the Education Program,

Outline 4especially Gary Ford and Lionel Deimel for their helpful
comments, Polly Bech for doing the graphical work, and Annotated Outline 4
Linda Pesante of Information Management for her Glossary 17
editorial work.

Figures 19

Teaching Considerations 27

Uses of this Material 27

Suggested Introductory Literature 27

Suggested Course Schedule 27

Exercises 28

Bibliography 29

SEI-CM-11-2.1 iii

Software Specifications: A Framework

Module Revision History

Version 2.1 (January 1990) Minor revisions and corrections
Version 2.0 (December 1989) Major revision

Approved for publication
Version 1.0 (October 1987) Draft for public review

iv SEI-CM-11-2.1

Software Specifications:
A Framework

broad subject area about which there isCapsule Description
little consensus.

• It is intended to provide background forThis curriculum module presents a framework for
understanding other curriculum modulesunderstanding software product and process specifi-
and is therefore addressed more to tea-cations. An unusual approach has been chosen in
chers than to students.order to address all aspects related to “specification”

without confusing the many existing uses of the • It contains a good deal of original mate-
term. In this module, the term specification refers to rial, embodying an unusual approach to
any plan (or standard) according to which products its subject matter.
of some type are constructed or processes of some

The term “specification” is overloaded. It is usedtype are performed, not to the products or processes
both informally and in the literature in a greatthemselves. In this sense, a specification is itself a
variety of senses, and it is difficult to achieve aproduct that describes how products of some type
coherent understanding of the term that accountsshould look or how processes of some type should
adequately for this diversity. The resulting con-be performed. The framework includes:
fusion may either be viewed as a simple terminology• A reference software life-cycle model problem (i.e.: Which life-cycle products or processes

and terminology should be referred to as “specifications”?) or as a
• A characterization scheme for software more fundamental philosophical problem regarding

product and process specifications the role of “specification” in the context of software
development (i.e.: Can the notion of “specification”• Guidelines for using the characterization
be restricted to certain life-cycle product and processscheme to identify clearly certain life-
types? Should only life-cycle products and proc-cycle phases
esses, only their plans, or both objects and plans• Guidelines for using the characterization
properly be called “specifications”?).scheme to select and evaluate specifica-

tion techniques The Terminology Problem. According to
[IEEE83], the term “software specification” refers ei-
ther to a document or product that describes various
characteristics of a software system or to the process
of developing such a document or product. ThisPhilosophy
general definition applies to a large variety of prod-

1uct and process types .Most SEI curriculum modules provide a structure for
organizing a well-defined subject area (sometimes

1related to a life-cycle phase) and a guide for under- In the study of software engineering, individual products or
processes are of little interest. The term “type” is used here tostanding the related literature. They are addressed to
denote the class of similar products or processes of which aan educator audience, but contain material intended
particular one is an instantiation. Thus, for example, all Adafor presentation to students. This module has all
programs may be viewed as products of the same type (i.e., Ada

these characteristics, but is atypical in the following code products); all coding processes based on stepwise refine-
ways: ment that result in Ada programs may be viewed as processes of

the same type (i.e., stepwise-refinement–oriented Ada coding• It is an overview module covering a
processes).

SEI-CM-11-2.1 1

Software Specifications: A Framework

Many software development organizations have A project model like the one depicted in Figure 2
adapted this definition to their own technological enables us to address the sound selection and evalu-
and organizational characteristics and needs. The ation of software specification techniques, i.e.,
resulting terminologies are context-dependent and models, languages, methods, and tools used to create
inconsistent regarding the use of the term life-cycle products or perform life-cycle processes
“specification.” Examples of inconsistencies be- according to their specifications. In practice, many
tween existing life-cycle terminologies include the major software development failures can be traced to
following (see Figure 1, p. 20, middle column): the use of inappropriate (as well as inappropriate use

of) techniques for describing software products and• The same term is used for product and
processes.process types (e.g., “requirements defini-

tion,” “system specification”). The Approach Taken Here. This module addresses
the above problems by using a reference life-cycle• The same term is used for different types
terminology that avoids the term “specification” forof products (e.g., “requirements specifi-
any life-cycle product or process type. Instead, thiscation,” “functional specification”).
module refers only to “plans” of product and process• Different terms are used for the same
types as “specifications.” Doing so eschews existingtype of product (e.g., “requirements spe-
life-cycle terminologies in favor of one that facili-cification,” “functional specification”) or
tates consistency in the present exposition and al-the same type of process (e.g., “require-
lows the reader to reinterpret this module in terms ofments analysis,” “system specification”).
some other nomenclature he or she prefers, if neces-

Sometimes the same product may be referred to as sary. In this module, then, a software specification
“specification” or “implementation,” depending on is a product resulting from the planning process that
whether an executable specification language or a prescribes how a product of some type should look
high-level implementation language is being used. or how a process of some type should be performed.
Further, the same software characteristic may be ad- This approach may seem unusual, but the author is
dressed in one or more products, depending on the convinced of its benefits.
underlying life-cycle and project organization
model. And processes may or may not be modeled Module Content. This curriculum module intro-
explicitly, depending upon the perceived importance duces the reference life-cycle model and terminol-
by the organization of “process.” ogy discussed above, builds a scheme for charac-

terizing product and process specifications, uses this
The Philosophical Problem. Software develop- scheme to describe the process and product types re-
ment projects should be explicitly planned, executed, lated to certain life-cycle phases of the reference
and evaluated. The project model depicted in Figure life-cycle model, and shows how such characteriza-
2, p. 21, reflects these principles [Basili88]. It is tions may be used to select and evaluate specifica-
definitely justifiable, based on the IEEE definition tion techniques.
[IEEE83]—it is probably not an intended interpreta-

Introduction of the reference life-cycle model andtion—to view both a number of life-cycle products
terminology depicted in Figure 1 (left and rightand processes, as well as their plans resulting from
columns, respectively) represents an attempt to over-the planning activity, as “specifications.”
come the confusion of terminology in the field.

The purpose of planning is the production of “plans” None of the product or process type names of the
—whether explicit or not—of what life-cycle prod- reference terminology uses the term “specification.”
ucts should look like and how life-cycle processes However, cross references to some of the existing
should be performed. Examples of such plans are, in life-cycle terminologies are provided (Figure 1, mid-
the case of products, the ANSI/IEEE 830 standard dle column).
on “software requirements specification” [IEEE84]

The scheme for characterizing product and processand, in the case of processes, the DoD 2167A stan-
specifications is based on the following four dimen-dard on “software development” [DoD88a] and the
sions:DoD 2168 standard on the “software quality as-

surance process” [DoD88b]. The purpose of execu- 1. Purpose and context (i.e., what is the ex-
tion is to perform processes and construct products pected role of the specified product or
according to their plans. The purpose of evaluation process type?)
is to assess whether the plans were satisfactory and 2. Content (i.e., what aspects of the product
whether the life-cycle products and processes were or process type need to be described, and
constructed and performed in accordance with their with what attributes?)
plans.

2 SEI-CM-11-2.1

Software Specifications: A Framework

3. Representation format (i.e., what models narrowly focused curriculum modules, which utilize
and languages should be used to repre- its terminology. Among these are Software
sent the above content?) Requirements [Brackett90], addressing C- and D-

requirements, and Introduction to Software Design4. Support (i.e., what methods and tools
[Budgen89], dealing with design. Additional mod-should be used to support the creation of
ules using the framework set forth here will follow.life-cycle products and processes accord-
This module should be studied before reading any ofing to the above representation format?)
these life-cycle–oriented curriculum modules.

The first two dimensions of the characterization
scheme are used to identify three important phases in
the context of the reference life-cycle model:

1. C-requirements (customer/user-oriented Objectives
requirements)

2. D-requirements (developer-oriented re- A person having studied the material covered in this
quirements) curriculum module is expected to be able to do the

following:3. Design
• Explain the nature of the confusionThese reference phases are discussed, using the

caused by the common uses of the termframework, not because the author believes that they
“specification.”are more important than other phases, but because

they are likely to correspond most closely to the • Apply the reference life-cycle model and
reader’s intuitive notion of “specification.” relate its terminology to that of any of

the commonly used models.All four dimensions of the characterization scheme
are used to select and evaluate specification tech- • Discuss C-requirements, D-requirements,
niques. Requirements for any specification tech- and design within the framework
nique are formulated in terms of the latter three presented in this module.
dimensions of the characterization scheme, • Apply the characterization scheme to de-
motivated by its project-specific purpose and con- scribe any process or product specifica-
text. Selection implies finding a specification tech- tion.
nique that matches the stated requirements; evalua-

• Apply the characterization scheme to thetion implies comparing the actual effects of the cho-
selection of specification techniques.sen technique to the expected ones, as stated in the

• Apply the characterization scheme to therequirements.
evaluation of specification techniques.

Relation to Other Modules. It is helpful if the
reader of this curriculum module is familiar with SEI
curriculum modules Models of Software Evolution:
Life Cycle and Process [Scacchi87] and Technical

Prerequisite KnowledgeWriting for Software Engineers [Levine89].

Early life-cycle phases are often given less attention In order to understand this material, the student must
in the classroom than are later phases, such as de- understand the fundamentals of software engineering
sign, coding, and testing, even though their impor- at the level of an introductory course and must have
tance is widely recognized. It is hoped that the in- had practical software development experience as a
sights into software specifications provided here will member of a team.
increase the understanding of teachers and allow
these activities to be more widely taught.

This module provides material needed to understand
software specifications and to apply that understand-
ing to the characterization of specifications and to
the selection and evaluation of specification tech-
niques. No attempt is made to deal with system
specifications or to provide detailed guidance about
the production of particular life-cycle products. In-
stead, this module provides background for more

SEI-CM-11-2.1 3

Software Specifications: A Framework

Module Content

This module uses the terminology in [IEEE83] where 1. Selection of Proper Specification Techniques
possible. A glossary of significant terms follows the a. Define specification requirements
annotated outline.

b. Chose specification techniques

2. Evaluation of Specification Techniques

VI. Assessment of Current Maturity and Future
DirectionsOutline

I. Overview
1. Conflicting Meanings of “Specification”

Annotated Outline
2. Definition Used Here

3. A Framework for Understanding Specifications I. Overview
II. A Reference Software Life-Cycle Model and 1. Conflicting Meanings of “Specification”

Terminology
The term “software specification” is used inconsis-

III. A Characterization Scheme for Software tently by the software community. Most of the time,
Specifications it refers either to products created during the early

phases of a software project, to the processes leading1. Purpose and Context
to those products, or to descriptions/characteriza-a. Product perspective
tions of those types of products or processes.

b. Process perspective
2. Definition Used Herec. Use perspective

Although an argument can be made for referring tod. People perspective
diverse types of products and processes by the term

2. Content “specification,” a compelling argument can also be
a. Aspects made for restricting the term in order to avoid con-

fusion. In this module, we will avoid completelyb. Attributes
use of the term for any of the usual life-cycle prod-

3. Representation uct or process types. Instead, we will define
software specification as a plan or standard that pro-a. Models
vides a description/characterization of a softwareb. Languages product or process type. This definition allows us to

4. Support emphasize “good” software engineering, in that we
focus on planning before execution.a. Methods

b. Tools A software specification, then, becomes a product
resulting from the planning process. Execution ofIV. A Characterization of Life-Cycle Phases
the “plan” results in the instantiation of a particular

1. C-Requirements product or process. (See Figure 2, p. 21.) A
a. Purpose and context product specification describes how products of

some type should look; a process specification de-b. Content
scribes how processes of some type should be per-

2. D-Requirements formed. In cases where planning is informal, im-
plicit, or haphazard, specifications are not explicitlya. Purpose and context
constructed.b. Content
Consider software design as an example. This might3. Design
involve:a. Purpose and context

• The specification of the input product type
b. Content (requirements product), including a formal

syntax and semantics description for the4. Other Object Types
requirements document, or a standard,V. Guidelines for Selecting and Evaluating

Specification Techniques
4 SEI-CM-11-2.1

Software Specifications: A Framework

such as ANSI/IEEE-Std-830 on “software Within the framework, we characterize any product
requirements specification” [IEEE84]. or process specification by

• The specification of the output product • the purpose and context of the specified
type (design product), including a formal product or process type,
syntax and semantics description for the • the content of the type of product or proc-
design document. ess of interest,

• The specification of the process type • the representation format used to capture
(design process), including a guideline for the content, and
the use of specific design techniques, such

• available support for the creation of theas Structured Design or object-oriented de-
life-cycle products or execution of proc-sign.
esses of the type of interest.

As another example, consider software compilation,
The characterization scheme can be used towhich might involve:

• Characterize the specification needs of a• The specification of the input product type
project.(source code product), including the

• Characterize candidate specification tech-source language definition, a coding style
niques.handbook, and a language-oriented editor.

• Select the appropriate specification tech-• The specification of the output product
niques by comparing the project specifi-type (object code product), the object code
cation needs with the characteristics ofdefinition.
candidate specification techniques to find• The specification of the process type
the best match.(compilation process), the compiler tool it-

• Evaluate specification techniques used byself.
comparing observed characteristics to ex-

Other examples of process specifications are the pected ones and, if necessary, suggest
DoD 2167A standard on “software development” changes for future projects.
[DoD88a] and the DoD 2168 standard on “software

In this module, we will use the reference life-cyclequality assurance process” [DoD88b].
model and characterization scheme to identify

As a general rule, existing specification techniques clearly several important life-cycle phases and to an-
—models, languages, methods, and tools used to in- alyze these phases within our framework.
stantiate specifications into life-cycle products or

II. A Reference Software Life-Cycle Model andprocesses—are better suited (e.g., are more formal)
Terminologyto the specification of (1) software product types,

rather than process types, and (2) types used in later,
Many different software life-cycle models exist (e.g.,rather than earlier, life-cycle phases.
waterfall [Royce70], iterative enhancement [Basili75],
spiral [Boehm86], and prototyping [Boehm84]). They3. A Framework for Understanding Specifications
have in common certain types of products (e.g., re-

This module presents a comprehensive framework quirements, design, code). They differ substantially,
for understanding software specifications and related however, in the types of processes used to build those
issues. The framework includes: products. From this observation, we may construct a

reference life-cycle model that posits the existence of• a reference life-cycle model and terminol-
certain product types filling specific roles within a soft-ogy,
ware development context but that makes no particular• a characterization scheme for software
assumptions about the mechanisms by which productsproduct and process specifications,
are actually built.

• guidelines for using the characterization
scheme to identify clearly certain life- Such a reference life-cycle model is shown in the
cycle phases, and leftmost column of Figure 1, p. 20, where we assume

the existence of the following product types (we do not• guidelines for using the characterization
distinguish between deliverable products andscheme to select and evaluate specification
documents):techniques.

• Software needs, which are predominantly
The framework provides a tool for understanding the concerned with the questions: What de-
literature and provides background and context for mands exist? What needs should a proposed
other specification-related curriculum modules (e.g., software product attempt to fulfill?
[Brackett90] and [Budgen89]).

• Customer/user-oriented software require-

SEI-CM-11-2.1 5

Software Specifications: A Framework

ments (C-requirements), which are predomi- specification” and “functional specification,”
nantly concerned with the question: What may play the same role as our “D-
functional and non-functional characteristics, requirements product.” The entire discussion
from a customer’s or user’s point of view, related to “D-requirements products” in this
must a product exhibit to meet those needs? module applies to both “behavioral

specifications” and “functional specifica-• Developer-oriented software requirements
tions.”(D-requirements), which are predominantly

concerned with the question: What function- • Due to the structural model chosen for the
al and non-functional characteristics, from a deliverable product, the reader deals with
software developer’s point of view, must a several instances of a product or process type
product exhibit to meet those needs? of the reference model. In this case, multiple

types may be distinguished with appropriate• Software design, which is predominantly
qualifiers and treated as instances of typesconcerned with the question: How can a
described in this module. For example, if theproduct be built to behave as described by the
product is structured into system, subsystems,D-requirements?
and modules, the reader may identify a cor-

• Code, which is predominantly concerned responding number of instances of types de-
with the question: How is the product ac- sign product and design process.
tually implemented on some machine using a
particular technology? III. A Characterization Scheme for Software

Specifications
The reference life-cycle terminology used in this cur-
riculum module is depicted in the rightmost column of This section incorporates ideas from [Abbott86],
Figure 1. Whenever possible, we refer to processes [Sommerville89], [Firth87], and elsewhere. The scheme
and the resulting products of some type under the same presented enables the characterization of any software
name (e.g., “design process” and “design product”). product or process specification in terms of the purpose
More detailed characterizations of the product and and context of the specified product or process type,
process types related to C-requirements, D- the content of the specified type, the representation
requirements, and design are contained in section IV. used, and the support for product creation or process

execution.
Inconsistent terminologies are used in different indus-
trial software development organizations and in the 1. Purpose and Context
literature. Examples of commonly used terms are

Specifications describe all important characteristicsshown in the middle column of Figure 1. The reader
of a particular software product or process type inmay map his or her preferred or local terminology (and
some format. The desirable characteristics, as wellassociated practice) to the reference terminology as re-
as the appropriate format for representing them, arequired. Possible inconsistencies between the reader’s
determined by the purpose and context of the typeterminology and the reference life-cycle terminology,
within the software development project. We havealong with resolutions enabling the application of our
chosen to characterize purpose and context (in nodiscussion to the reader’s circumstances, include the
particular order) from product, process, use, andfollowing:
people perspectives.

• The reader uses a different name than the ref-
erence model to refer to the same product or a. Product perspective
process type. Resolution is straightforward

Product and process specifications are ultimatelyhere, of course, as the reader can simply sub-
aimed at creating life-cycle products (i.e., projectstitute one name for another. For example,
deliverables) to satisfy the customer. Therefore,the reader may prefer using the term
it is assumed that the choice of product and proc-“requirements definition” to refer to what we
ess specifications depends on the type ofcall “C-requirements product.” The entire
deliverables to be developed. We characterizediscussion of “C-requirements products” in
product types by application and quality require-this module applies to “requirements
ments.definitions,” according to the reader’s termi-

nology. (i) Application
• The reader identifies several types that col-

The type of application has a deep impact onlectively encompass one or more product or
what product or process aspects (see sectionprocess types of the reference model, or vice
III.2.a) need to be specified. There are a num-versa, and a 1-1 mapping is not possible. In
ber of possible classification schemes for soft-this situation, a more complex mapping is
ware applications, for example:needed. For example, in the reader’s termi-

• schemes based on control-flow char-nology two product types, “behavioral

6 SEI-CM-11-2.1

Software Specifications: A Framework

acteristics of the software system quential paradigm, reflecting the fact that er-
(sequential, concurrent, real-time) rors are committed in the application of this

principle.• schemes based on the application
(commercial, system, process con- (2) Iterative enhancement model
trol, scientific, embedded)

The iterative enhancement model [Basili75]
(ii) Quality requirements is based on the idea of producing the same

product types as for the waterfall model forThe need to satisfy particular software quality
only some of the requirements at a time. Therequirements impacts both the aspects that
idea is to allow for more effective learning-need to be specified and their attributes (see
based feedback from each of these “mini-sections III.2.a-b). For example, the need for
development” projects or to allow feasibilitymaintainability may justify the explicit specifi-
analysis of some critical requirements (bycation of the design rationale in a traceable
actually implementing them) before commit-form, so maintainers can trace changed require-
ting to the entire project. The product typesments to affected design components.
used according to the iterative enhancement
model might be the same used according toAn incomplete list of possible quality require-
the waterfall model. However, the processments includes:
types (or at least the instantiation patterns)• reliability
are very different.

• correctness
(3) Prototyping model• fault-tolerance

• maintainability The prototyping model [Boehm84] is based
on first concentrating on producing an oper-• portability
ational software version for a limited set of• user-friendliness the overall requirements. This limited set of

• availability requirements excludes part of the functional
or non-functional overall requirements.b. Process perspective Very often, crucial man-machine interface
requirements or highly demanding perfor-Specifications serve different purposes in differ-
mance requirements are the reason forent development process contexts. We charac-
prototyping. Prototyping is intended to helpterize the process perspective in terms of the
in the process of developing an acceptableoverall life-cycle model and its individual life-
C- or D-requirements product or to explorecycle phases.
the technical feasibility of requirements and

(i) Life-cycle models the associated risk. Prototyping is a way of
learning “fast” about crucial project issues.Different life-cycle models, reflecting different
The expectation is that this up-front invest-philosophies for creating software products, in-
ment pays off either by detecting early oncorporate different product and process types
that it is infeasible to continue the project or[Scacchi87].
by creating an acceptable C- or D-
requirements product that allows predictable(1) Waterfall model
and controllable software evolution. The

The waterfall model [Royce70] is based on goal is only to reuse the experience gained
the idea of producing product types at differ- during the prototyping process and feed it
ent levels of abstraction (requirements, sys- back into creating better requirements, not
tem design, module designs, code) sequen- necessarily to reuse any products created as
tially, followed by the integration of code in part of the prototyping process. After ac-
reverse order. Following this model in a ceptable requirements have been created, the
project means transforming, in a linear fash- regular software evolution process can fol-
ion, the entire set of requirements into more low any other life-cycle model (e.g.,
and more concrete solutions. Attempting to waterfall).
feed lessons learned back into earlier stages

(4) Spiral modelresults in (acceptable) deviations from the
waterfall model. It must be remembered

The spiral model [Boehm86] is based on athat the waterfall model is just a model,
risk-driven approach to software evolution.which is intended to stress the top-down
Iterative development cycles are organizedprinciple for software development. In prac-
in a spiral manner, with inner cyclestice, there exist many exceptions to this se-
representing early analysis and prototyping,

SEI-CM-11-2.1 7

Software Specifications: A Framework

and outer cycles representing the classic sys- ess, in this case) help guide and control the
tem life cycle. This technique is combined task. If all three specifications are completely
with risk analysis during each cycle. The formal (see [Berztiss87]), the desired product
model is intended to identify situations that can be created automatically. In the best cur-
might cause a development effort to fail or rent practice, most product types are explicitly
go over budget or schedule. The spiral tech- specified, whereas most process types are not.
nique incorporates ideas derived from the it- Further, downstream product types tend to be
erative enhancement model and the defined with greater formality that early-phase
prototyping model. ones. The degree of formality and specificity

in a process specification (or the lack thereof)
(ii) Life-cycle products and processes is indicative of the possible degree of guidance

and control. Process specifications can be usedProduct and process specifications are created
by people (e.g., a designer uses a set of infor-for, used in, affected by, and modified during
mal design guidelines) or by automated toolsparticular phases. These phases include, ac-
(e.g., a compiler uses a formally specified pro-cording to our life-cycle reference model:
cedure for transforming source code into object

• software needs code).
• C-requirements

(iii) Modification of products and processes• D-requirements
Software projects require the ability to react to• software design
changes. Changing product requirements dur-• code ing development or enhancement requests dur-
ing maintenance typically requires modifica-Additional project phases may include:
tions to existing products, with or without• verification and validation [Collo- changing the underlying product specification.

fello88] Changing project or environment characteris-
• integration tics (e.g., addition of new personnel or intro-

duction of new technology) may require• maintenance
modifications to existing processes and pos-• teaching and training
sibly to their underlying specifications. The
existence of explicit product and process speci-c. Use perspective
fications permits the incorporation of changes

There exist a variety of different uses for specifi- in a systematic way.
cations. We distinguish between uses for com-

(iv) Verification and validation productsmunication, creation, modification, verification
and validation, and software quality assurance.

The purpose of verification and validation
(V&V) is to show that a life-cycle product of(i) Communication among people
some type (e.g., source code) is consistent with

Software projects include people. Specifica- a life-cycle product of a different type (e.g.,
tions are aimed at supporting their communi- design product) [Collofello88]. This kind of
cations regarding the important product and cross-checking between products is facilitated
process characteristics and guidelines accord- by the existence of explicit specifications.
ing to which products are created and modi-

(v) Assuring adherence to plansfied, and processes are executed and changed.
Specifications are a useful mechanism for

Software quality assurance (SQA) is concernedteaching and training people what products
with assuring that software development is car-should look like and how processes should be
ried out according to plan [Brown87]. Much ofexecuted. Also, the existence of specifications
the concern of SQA, then, is with comparingallows project members to achieve reliable
software products and processes to their speci-consensus about their roles by making explicit
fications. Examples are checking whether athe project’s purpose, context, and procedures.
design product is consistent with its specifica-
tion or whether a review process was con-(ii) Creation of products
ducted according to established review guide-

Many software project tasks are aimed at creat- lines.
ing, in a traceable way, instances of one prod-

d. People perspectiveuct type from instances of another (e.g., a de-
sign product from a D-requirements product).

Specifications are created or used by audiencesExplicit specifications for both product types
playing different project roles. Although someand for the creating process (the design proc-
specifications are intended for consumption by

8 SEI-CM-11-2.1

Software Specifications: A Framework

machines, people have to understand them in one (vii) Implementors
way or another. Examples of different project

The audience that takes the component designaudiences are listed below. (Some of the descrip-
products and develops the corresponding im-tions are adopted from [Firth87].)
plementation products (code).

(i) Customers
(viii) V&V personnel

The audience that contracts for the software
The audience that checks whether life-cycleproject and, in part, determines the C-
products are consistent with earlier life-cyclerequirements for the system.
products.

(ii) End-users
(ix) SQA personnel

The audience that will install, operate, use, and
The audience that checks whether life-cyclemaintain the system after it is delivered, and
products are created and life-cycle processesthat, in part, determines the C-requirements for
performed according to their specifications.the system.

(x) Configuration management personnel(iii) Sub-contractors
The audience that assures the integrity of soft-The audience that performs development or
ware during and after development by initiat-maintenance activities contracted out by the
ing, evaluating, and controlling changes to theprimary development organization.
product [Tomayko87].

(iv) Requirements analysts
(xi) Maintenance personnel

The audience that develops the C-requirements
The audience that keeps the software systemproduct in conjunction with the customers and
operational and useful. Maintenance personnelend-users. Requirements analysts find a repre-
perform corrective, perfective, and adaptivesentation format appropriate to customer and
maintenance activities.end-user needs.

(xii) Managers(v) Specification engineers
The audience concerned with filling leadershipThe audience that evolves the C-requirements
roles, controlling the budgets and schedules re-product into the D-requirements product. The
lated to the project, ensuring that problems aremain objectives of specification engineers are
recognized and resolved early, and dealingto resolve ambiguities, remove inconsistencies,
with personnel assignments and problems.and represent the D-requirements in a format

suitable for the development audiences. This 2. Content
often implies use of more formal represen-

We characterize a specification also by its content,tations for D-requirements than C-
that is, by the product or process aspects it addressesrequirements.
and by attributes to be possessed by the represen-

(vi) Designers tation of those aspects.

The audience that describes how the software According to this view, the roles of product and
system is to be constructed to satisfy the cor- process specifications are not completely parallel.
responding D-requirements product. This in- To begin with, mechanisms for specifying process
volves making optimization decisions about types are much less developed than those for speci-
the best way to proceed, given the constraints fying product types. (More on this below.) More
imposed in the D-requirements product. Ex- fundamentally, however, instantiation of a process
amples of such constraints are performance re- specification produces action, whereas that of a
quirements, resources available, and fault- product specification produces a static artifact, albeit
tolerance capabilities. These constraints often one either capable of animation (i.e., execution) or
influence the design as much as the required descriptive of another artifact with such a capability.
behavior of the system. Despite this difference, we will treat products and

processes in parallel; examples will clarify the dif-There are basically two types of design proc-
ferences wherever applicable.esses: (1) designing a system that consists of a

set of communicating components and deter- a. Aspects
mining the functionality of the components,

Four important aspects that may be addressed in aand (2) designing the algorithms and data
specification are behavior, interface, flow, andstructures encapsulated in those components.

SEI-CM-11-2.1 9

Software Specifications: A Framework

structure of the objects (products or processes) (i) Behavior (external, dynamic)
specified. To discuss these, we first introduce

The externally observable response of a prod-several definitions.
uct or process to stimuli in actual use. Be-
havior may include externally observableDynamic characteristics of an object of any type
states, outputs, or boundary conditions on therelate to its use. Dynamic characteristics of a
validity of inputs and states. We distinguishprocess can be captured during its execution (e.g.,
between functional and non-functional be-the set of all design decisions made by a designer
havioral aspects.or historical data on the amount of time required

for design on past projects). Dynamic character-
(1) Functional behavioristics of a product can be captured during its oper-

ational use by the customer/user or during its test- This may include the response of a product
ing phase. to specific inputs or the requirement that a

certain pre-condition of a process resultsStatic characteristics of an object of any type re-
(after execution) in a certain post-condition.late to its representation. Static characteristics of

a process should be described in its specification (2) Non-functional behavior
(e.g., the steps in a design process). Static aspects

This may include response time of a productof a product are described in the product itself and
or the time allowed for completion of ain its specification (e.g., data structures or al-
process.gorithmic control structure of an Ada source code

product).
(ii) Interface (external, static)

Functional characteristics of an object of any type The structure of the boundary between product
relate to its functional requirements. These can or process and its environment. We distinguish
be identified by analyzing what services are pro- between functional and non-functional inter-
vided by the object (e.g., functions such as “store” face aspects.
and “retrieve” provided by a product; generation
of a product of type “design” by a process). (1) Functional interface

Non-functional characteristics of an object of any This may include the set of functions pro-
type relate to its non-functional requirements. vided by a product or the role a process
These can be identified by analyzing how services plays in software development.
are provided by the object (e.g., each of the above

(2) Non-functional interfaceproduct functions must be provided in time less
than t; the product of type “design” must be pro- This may include response-time constraints
duced by the above process within a certain on a product or a description of the required
period of time and within a certain budget). synchronization points of a process with

other processes.External characteristics of an object of any type
relate to the black-box view of that object. Exter- (iii) Flow (internal, dynamic)
nal characteristics of an object can be identified
without knowledge of its actual implementation The internal dynamics of a product or process
(e.g., a product provides certain interface func- in actual use. This may include the flows of
tions or reacts to certain input stimuli in particular control, data, and information between struc-
ways; a process consumes certain inputs and pro- tural units of the product or process. (The dif-
duces certain output products). ference between control flow, data flow, and

information flow is nicely explained in
Internal characteristics of an object of any type [Henry81].) In the case of parallel processes,
relate to the white-box view of that object. Inter- we must also consider such aspects as
nal characteristics of an object are identified synchronization. We distinguish among the
based on knowledge of its actual implementation following:
(e.g., a product contains a number of modules

(1) Control flow between sub-products orwith certain bindings among them; a process con-
sists of a number of subprocesses). sub-processes

(2) Data flow between sub-products orWe now use these definitions to characterize, ex-
sub-processesplain, and distinguish aspects of products and

processes we may wish to address in specifica- (3) Information flow between sub-products
tions. or sub-processes

(4) Synchronization between executing
sub-products or sub-processes

10 SEI-CM-11-2.1

Software Specifications: A Framework

(iv) Structure (internal, static) (vii) Preciseness

The organization of a product or process into The meaning is exact.
interacting parts. This includes the decomposi-

(viii) Formalitytion of the whole into components or the com-
position of the whole from basic units. Ar- Formal syntax and semantics are used.
chitectural, algorithmic, and data structures, as Various degrees of formality are possible.
well as the internal interfaces between sub- Mathematical formalism is the subject of
structures, may be of interest. We distinguish [Berztiss87], [Bjørner82], [IWSSD82],
among: [IWSSD84], [IWSSD85], and [IWSSD87].

(1) Architectural structure of a product or (ix) Abstractness
process in terms of sub-products or

The description is at a particular level of ab-sub-processes
straction. D-requirements are more abstract

(2) Interfaces between sub-products or (removed from the details of the eventual
sub-processes implementation) than code.

(3) Algorithmic structure of a product or (x) Structuredness (or modularity)process
The description shows systematic structure.(4) Data structures used in a product or
Lessons learned regarding the production ofprocess
readable code by applying the concepts of

(5) Information structure across modularization and minimizing interfaces be-
sub-products or sub-processes tween modules should be applied to specifi-

cations of all types of products and processes.b. Attributes
(xi) TraceabilityIn general, each of the aspects in (a) can be

represented in a variety of different forms. Pur- One is able to relate information items of cor-
pose and context of the product or process type of responding product or process types. For ex-
interest require a suitable form of representation ample, a C-requirements product is much more
to exhibit certain attributes. helpful in the context of maintenance if it is

possible to trace changes made to the D-For example, if the aspect “data flow” of a design
requirements to certain components describedproduct needs to be validated, we may specify
in the architectural design product.that its representation needs to exhibit the attri-

butes “complete,” “consistent,” and “executable.” (xii) Modifiability
If the “control flow” of a design process needs to

Changes can be made easily whenever neces-be validated, we may specify that its represen-
sary (e.g., during maintenance).tation needs to exhibit the attribute “executable.”

(xiii) Executability(i) Correctness

The attribute of being automatically executableRequirements are satisfied.
on some machine. This characteristic allows

(ii) Completeness for validating the dynamic and behavioral char-
acteristics; the executability of more abstractAll relevant information is captured.
products (e.g., D-requirements) underlies the
quick-feedback idea of prototyping.(iii) Consistency

There are no internal or external contradictions. (xiv) Verifiability

Techniques (possibly formal) can be used to(iv) Feasibility
check for consistency with requirements.

Requirements are satisfied within the con-
straints imposed by the software evolution con- 3. Representation
text.

Certain software aspects (see III.2.a) need to be
represented so they exhibit desired attributes (see(v) Non-ambiguity
III.2.b). The representation format chosen is based

Alternative interpretations are not possible. on models and languages. Models allow the for-
mulation of aspects of interest. Languages allow the(vi) Clarity
well-defined reflection of those models in a form

The meaning of the representation is easily un- that exhibits the desired attributes. We make the
derstood and communicated.

SEI-CM-11-2.1 11

Software Specifications: A Framework

distinction between models and languages to express mal, whether they are textual or graphical, and the
the different formal representational capabilities. In language paradigm on which they are based.
practice, however, it is not always easy to distin-

We distinguish between formal, semi-formal, andguish between models and languages.
informal languages:

Our discussion may seem to be biased toward prod- • Formal languages are based on formal
ucts, rather than processes. In fact, despite the rec- syntax and semantics [Berztiss87].
ognized need for representing “process,” most

• Semi-formal languages are based onpeople use traditional product languages for the pur-
some formal syntax and are usuallypose. It is currently a burning research issue to iden-
graphically oriented.tify appropriate mechanisms for process represen-

• Informal languages are usually based ontations. (E.g., see the annual proceedings of the In-
natural language.ternational Software Process Workshop, which are

usually published as special issues of ACM Most of the product (and process) specification
SIGSOFT’s Software Engineering Notes.) languages used in practice are semi-formal lan-

guages, combining formal and informal elements.
a. Models Most are based on a conceptual specification

model, a specific representation, or a develop-Specification models allow the formulation of and
ment approach.reasoning about certain aspects of interest.

We distinguish betweenAn incomplete list of examples includes:
• tabular,• functional models

• • textual, andinput-output models [Ross77]
• • graphicalalgebraic models [Guttag78]

representation languages.• axiomatic models [Hoare69]

• finite state models [Parnas72] We also distinguish between different language
paradigms. Some important examples are:• statecharts [Harel88a]

• imperative• stimulus-response models [Alford77]

• declarative• Petri net models [Peterson77, Bruno86,
Peterson81] • constraint oriented

• control flow models • data-flow oriented
• constraint models The reader interested in different language

paradigms is referred to any classical program-• module interconnection models [De-
ming language book.Remer76]

• data structure models 4. Support
• information flow models

In practice, it is necessary to have effective support
• information structure models for creating specifications, as well as for using them

during project execution. Most existing support ac-• requirements net models [Alford77]
tually addresses the instantiation of products accord-• data flow models [Babb85]
ing to product specifications. We distinguish be-

• entity-relationship models tween methods that provide operational guidelines
• relational models [Teichrow77] based on some models and/or languages, and the

automation of those guidelines using computers.
b. Languages There exists a m-to-n relationship between methods

and tools. One method can be supported by an inte-Specification languages allow the presentation of
grated set of tools, a single tool, or several toolsspecifications in a well-defined fashion [Bal-
alternatively. Correspondingly, a tool may supportzer81]. It is impossible to give a complete list of
part of a method, an entire method, or several inte-such languages; there are just too many. Most of
grated methods.them allow the representation of more than one

aspect of the thing specified. For example, an a. Methods
implementation language such as Ada allows rep-
resentation based on control flow, data flow, and Popular examples include:
data structure models. Instead, we provide a • SREM [Alford77]
characterization of existing languages based on

• Jackson Methodology [Cameron89,whether they are formal or semi-formal or infor-
Sutcliffe88, Cohen86]

12 SEI-CM-11-2.1

Software Specifications: A Framework

a. Purpose and context• SADT [Ross77]

• PSL [Teichrow77] The purpose and context of products of type C-
requirements can be characterized as follows:• Structured Analysis [DeMarco79, Your-

don89] • Product Perspective: For our purposes
here, we generalize across all possible• Real-time specification methods [Rzep-
application domains and quality require-ka85, Hatley87]
ments.

These methods are discussed in detail in relevant
• Process Perspective: For our purposesSEI curriculum modules (e.g., SA, SADT, and

here, we generalize across all possibleSREM in [Brackett90]).
life-cycle models. We are interested in
product and process types related tob. Tools
overall system requirements and their

Popular examples include: validation.
• PSA [Teichrow77] • Use Perspective: C-requirements serve

as a basis for communication with the• REVS [Alford77]
customer and end-user. They define, in• compilers and runtime environments for
a contractual sense, what functions aall kinds of languages [Goldsack85]
software system must fulfill. In addi-

• Statemate [Harel88b] tion, they serve as input product for the
These tools will be discussed in detail in the ap- subsequent creation of the D-
propriate curriculum modules. requirements, as reference document for

acceptance testing (V&V), and as theIV. A Characterization of Life-Cycle Phases potential starting point for maintenance
activities (especially in the case of per-In this section, the characterization scheme of section
fective maintenance). The C-III is used to define some of the phases within the
requirements product is derived fromreference life-cycle model of section II. We will pro-
software needs; created during the C-vide definitions of C-requirements, D-requirements,
requirements process; used during de-and design based on the purpose/context dimension
sign, verification and validation, and(section III.1) and the content dimension (section
maintenance activities; and modifiedIII.2.a) of the characterization scheme. Figures 3a and
throughout the entire lifetime of the cor-3b allow for the graphical representation of such
responding software system.definitions. First, we characterize the purpose/context

of a specification within some software evolution proc- • People Perspective: C-requirements
ess (vertical axis in Figure 3a). Second, we derive the are used by customers and end-users,
aspects that need to be described based on requirements analysts, specification en-
purpose/context (horizontal axis in Figure 3a). Third, gineers, verification and validation
we define desirable attributes for each aspect (vertical people, quality assurance personnel,
axis in Figure 3b), considering also purpose/context. maintenance personnel, and managers.
Marked matrix elements in Figures 3a and 3b provide a

b. Contentgraphical representation of the scope of the correspond-
ing life-cycle phases of interest. The content of C-requirements can be charac-

terized as follows:These definitions help us define particular software de-
velopment activities and serve to delineate the bounds • Aspects: C-requirements address the
of related curriculum modules, such as those on re- aspects behavior and interface, insofar
quirements analysis [Brackett90] and design as they are important to establish a con-
[Budgen89]. tractual relationship with the customer

and user. Sometimes even structural as-
1. C-Requirements pects (i.e., design constraints) have to

be addressed if they are essential toC-requirements are predominantly concerned with
product creation (e.g., in the case of aanswering the question what functional and non-
specific technical process that needs tofunctional characteristics, from a customer’s/user’s
be controlled).point of view, must a software product exhibit? This

section characterizes products of type C- C-requirements can suffer from over-
requirements, using the characterization scheme in- specification, as well as under-
troduced in section III (partly reflected in figure 4). specification. Of course, it is desirable
Processes of type C-requirements are is treated in to describe all aspects that are of inter-
[Brackett90]. est to the customer and user as com-

SEI-CM-11-2.1 13

Software Specifications: A Framework

pletely as possible. On the other hand, circumstances. However, the most de-
unnecessarily included items can restrict sirable attributes of C-requirements are
the subsequent development choices completeness (at least from the
needlessly. customer’s perspective), consistency,

and clarity. In addition, depending onAbbott [Abbott86] provides a non-
the need for changes, it may be desir-exhaustive list of C-requirements is-
able for the product to be structured,sues:
traceable, and formal.• why the user wants the system

2. D-Requirements• how the user intends to use the sys-
tem The purpose of D-requirements is to answer the

• what other systems and procedures question what functions, from a developer’s point of
will interface with the planned sys- view, must a software system fulfill? This section
tem characterizes products of type D-requirements, using

• the characterization scheme introduced in section IIIwhat expertise the people have who
(partly reflected in Figure 5). Processes of type D-will actually operate the system
requirements are treated in [Brackett90].• what information the system must

be able to handle a. Purpose and context
• whether there are any legal con-

The purpose and context of products of type D-straints (e.g., record retention re-
requirements can be characterized as follows:quirements)

• Product Perspective: For our purposes• whether the system must enforce
here, we generalize across all possibleany integrity constraints (e.g., access
application domains and quality require-limitations)
ments.

• what data processing functions the • Process Perspective: For our purposessystem should perform for the user.
here, we generalize across all possible

Optional issues include: life-cycle models. We are interested in
• on what hardware must the planned product and process types related to

system operate overall system requirements and their
validation.• in what programming language must

the system be written • Use Perspective: D-requirements de-
fine, for the software developer, the• on what operating system must the
functional and non-functional character-system be installed
istics the product under development• what expected load must the system must fulfill. Therefore, D-requirements

be able to handle (e.g., in trans- serve as a basis for communication with
actions per hour) the developer. In addition, they serve as

• what response time is needed from input product for the subsequent crea-
the system tion of the software design, as reference

document for the integration and system• what enhancements must be ex-
testing (V&V), and as the potentialpected for the system after initial use
starting point for maintenance activities• what design qualities are expected
(especially in the case of adaptiveof the system
maintenance). The D-requirements

• what auditing processes must be product is evolved from the C-
performed requirements; created during the D-

• requirements process; used during de-what physical constraints exist for
sign, verification and validation, inte-the system (e.g., need for air con-
gration, and maintenance activities; andditioning because of location)
updated throughout the entire lifetime• what peripheral devices must be
of the corresponding software product.used

• People Perspective: D-requirements• Attributes: The desirable attributes of
are used by sub-contractors, specifica-C-requirements cannot be characterized
tion engineers, designers, verificationeasily without knowing the life-cycle
and validation people, quality assurancecontext and the application context.
personnel, maintenance personnel, andEach of the attributes in section III.2.b
managers.might be of importance under certain

14 SEI-CM-11-2.1

Software Specifications: A Framework

overall system requirements and theirb. Content
validation.

The content of D-requirements can be charac-
• Use Perspective: Design productsterized as follows:

serve as a basis for communication with
• Aspects: D-requirements address the the subsystem or module designer or

aspects behavior, interface, and implementor. In addition, they serve as
structure, insofar as they are important input product for the subsequent crea-
to the developers. Due to the difference tion of the subsystem or module design
in audience, D-requirements typically or implementation, as reference docu-
are specified in a different format from ment for the module or subsystem inte-
that used for C-requirements. Often gration testing (V&V), and as the poten-
more formal languages are used (e.g., tial starting point for local maintenance
state-machine languages) than for C- activities. A design product is derived
requirements (e.g., SADT). from its related D-requirements product;

• D-requirements, too, can suffer from created as the result of a design process;
over-specification, as well as under- used during design, implementation,
specification. Subsequent development verification and validation, integration,
choices should not needlessly be and maintenance activities; and modi-
restricted. fied throughout the entire lifetime of the

corresponding software system.• Attributes: The desirable attributes of
D-requirements cannot be characterized • People Perspective: Designs are used
easily without knowing the life-cycle by designers, implementors, verification
and the application contexts. Each of and validation people, quality assurance
the attributes in section III.2.b might be personnel, maintenance personnel, and
of importance under certain cir- managers. They define the overall
cumstances. However, the most desir- structure of the software system to be
able attributes of D-requirements are built. They define subsystems or mod-
completeness (at least from the ules, their functional requirements, and
developer’s perspective), consistency, interfaces between them. The function-
formality, traceability (from the C- al requirements serve as the input for
requirements, to the design), and struc- the subsystem/module design activities,
turedness. Traceability from the C- as do the D-requirements for the overall
requirements specification can be easily system design phase.
achieved if the D-requirements specifi-

b. Contentcation evolves from the C-requirements
specification, rather than being a com- The content of a design product can be charac-
pletely new product. terized as follows:

• Aspects: Designs address the aspects3. Design
flow and structure, insofar as they are

The purpose of a design is to answer the question important for further development.
how can a system be built to behave as described in Which specific software aspects need to
its related D-requirements? This section charac- be specified predominantly depends on
terizes the design phase, using the characterization the project and application type. In the
scheme introduced in section III (partly reflected in case of information systems, the data
Figure 6). Processes of type design are treated in structure might be dominant; for em-
[Budgen89]. bedded systems, control flow, inter-

faces, and synchronization might bea. Purpose and context
dominant. Practical constraints during

The purpose and context of products of type de- design may include (1) the considera-
sign can be characterized as follows: tion of ties between the software system

under development and its anticipated• Product Perspective: For our purposes
target environment and (2) the aware-here, we generalize across all possible
ness of compatibility with the chosenapplication domains and quality require-
implementation language and hardware.ments.

• Attributes: The desirable attributes of• Process Perspective: For our purposes
designs cannot be characterized easilyhere, we generalize across all possible
without knowing the life-cycle and ap-life-cycle models. We are interested in
plication context. Each of the attributesproduct and process types related to

SEI-CM-11-2.1 15

Software Specifications: A Framework

in section III.2.b may be of importance depicted in Figure 3a. The selection of
under certain circumstances. However, methods and tools only makes sense in
the most desirable attributes of designs the context of a specific project or proj-
are completeness (at least from the ect type.
implementor’s perspective), consisten- • Derive, for each specification aspect of
cy, formality, traceability (from the D- interest, the appropriate attributes
requirements, to lower-level designs or (II.2.b), using the matrix depicted in
code), clarity, and structuredness. Figure 3b.

4. Other Object Types b. Chose specification techniques
There are many other software objects for which • Select models and languages (III.3) that
sound specifications are needed. Examples are: best match the derived aspect-attribute

• management processes (e.g., monitoring matrix. Obviously, this selection would
schedule adherence) be most efficient if we had definitions

of a number of candidate models and• management products (e.g., schedules)
languages in the form of the matrix in• other life-cycle processes (e.g., testing) Figure 3b.

• analysis processes (e.g., measurement) • Select methods (II.5.a) and tools (II.5.b)
that best support use of the selectedIt is important to understand all aspects of the soft-
models and languages.ware life-cycle. The first step to better understand-

ing is the ability to specify all aspects. The more 2. Evaluation of Specification Techniques
formally a process or product type can be specified,
the better it can be communicated, taught, executed, The evaluation of techniques needs to be done with
and improved. Broadening our view of life-cycle respect to some goal [Basili88]. The characterization
objects that need to be specified from just the con- of a technique according to our framework has two
ventional products (including documents) to all advantages in this context: (1) it provides valuable
types of products and processes involved in software input as to what evaluation goals might be of interest
evolution is the objective of this section. (e.g., quality requirements [III.1.a.ii]), and (2) it pro-

vides a basis for relating negative or unsatisfactory
Individual software development organizations es- observations regarding the effects of a technique to
tablish their own specification standards. Most of particular characteristics or to actual use of the tech-
these standards are not well documented. The two nique (e.g., a C-requirement technique may be in-
major sources of standards are the Department of effective because it is too formal for the customer to
Defense and ANSI/IEEE. Examples of standards understand).
from those sources are:

We can think of two kinds of evaluations: (1) evalu-• DoD Std 2167A on “Software
ating whether a chosen technique actually possessesDevelopment” [DoD88a]
the characteristics promised by its creator or ex-• DoD Std 2168 on “Software Quality pected by us or (2) evaluating whether a chosen

Assurance” [DoD88b] technique achieves the expected impact on software
• ANSI/IEEE Std 830 on “Software Re- quality or productivity.

quirements Specification” [IEEE84]
The first type of evaluation is relatively easy. The

V. Guidelines for Selecting and Evaluating evaluation goal is implicitly defined by the original
Specification Techniques characterization of the technique on which its selec-

tion was based (see IV.1). We can develop a second
One important application of the characterization characterization during the use of the technique in a
scheme of section III is its use in selecting and evalu- real project, reflecting our actual experience. This
ating specification techniques. Although this is an im- actual characterization can then be compared with
portant topic, we can deal with it only briefly here. the original characterization.
1. Selection of Proper Specification Techniques

The second type of evaluation requires more plan-
ning. Evaluation goals should identify the perspec-For selecting an appropriate specification technique,
tive (i.e., the audience for this evaluation), whichthe framework should be applied as follows:
can be derived from the people dimension of our

a. Define specification requirements framework, as well as a characterization of the envi-
ronment (the life-cycle model that was used and the• Explicitly define purpose/context (III.1) application type), which can be derived from the

and aspects (III.2.a) of the specification process and application context dimensions of our
type of interest by using the matrix

16 SEI-CM-11-2.1

Software Specifications: A Framework

framework. Perhaps the hardest part of the evalu- • Better basis for constructing automated envi-
ation process for specification techniques is for- ronments that actually support some
mulating recommendations about what should be predefined set of processes.
improved: train people better, choose better tech- • A basis for employing generator technology
niques, make sure that techniques are more for building environment components from
thoroughly applied, or apply different life-cycle process specifications.
models or management structure. Defining expec-
tations for the use of a technique based upon our
framework and selecting it according to the proce-
dure presented in section IV.1. allows comparison of
expectation to reality, thus providing a more objec- Glossary
tive basis on which to improve existing techniques
or select better-suited ones than is otherwise avail- The following terminology is used throughout the
able. module, except in the abstracts found in the bibliog-

raphy.It is important to recognize that evaluation, although
potentially time-consuming and expensive, is neces-
sary to guarantee improvement in the way we select process
and use specification techniques. Each activity or action that consumes (or is in-

tended to consume) input products and/or pro-VI. Assessment of Current Maturity and Future
duces (or is intended to produce) output prod-Directions
ucts, e.g., the overall software life cycle, each

Many people have a limited view of what software life-cycle activity (such as designing or testing),
life-cycle objects are subject to specification and how or even each action of the compilation process.
they should be specified. Commonly held beliefs in- Process is used in a very general sense.
clude:

• Only product types, not process types, need process type
be specified.

A class of processes with common characteris-
• Product types in later phases of the life cycle tics. For example, all development processes

should be specified more formally. executed according to some standard X are said
• Specifications are mostly used for purposes to be of type X.

of communication and validation.
These attitudes provide fertile ground for change. Fu- product
ture developments are likely to include: Each document or artifact created during (or for)

• The broadening of the notion of specification a project is a product, independent of whether or
to all product and process types in the context not it is designated for delivery to the customer
of software evolution. (e.g., design document, code, measurement data,

• The development of specific process specifi- project plan). This is a broader definition than
cation languages. that of the IEEE (“[a] software entity designated

• The introduction of greater formality of spec- for delivery to a user”) [IEEE83].
ification.

product type• The generation of custom-tailored environ-
ment components (e.g., database schemes) A class of products with common characteris-
from specifications of the software processes tics. For example, all requirements products cre-
to be supported. ated according to some standard X are said to be

of type X.This prediction is motivated by the many needs of the
software community, all ultimately aimed at improving

project execution stageproductivity and quality of software evolution and its
resulting products: The project activities concerned with performing

• Better understanding of the software evolu- the project according to the plans (specifica-
tion process itself. tions) produced in the preceding planning stage.

(See software project model.)• Better control of process executions.

• Better traceability and predictability of the
project feedback stageimpact of decisions made early in the project.

The project activities concerned with monitoring• Better basis for reuse.
the effectiveness of the specifications used dur-

SEI-CM-11-2.1 17

Software Specifications: A Framework

ing the execution stage, evaluating those results some type should be performed; a product speci-
after execution, and feeding them into the plan- fication describes how products of some type
ning stages of future projects. (See software should look. Having process and product speci-
project model.) fications available allows us to instantiate indi-

vidual processes and products from such specifi-
project planning stage cations during project execution. It should be

clear that the term specification refers to the de-The project activities preceding the actual ex-
scription of a product or process type, not to theecution stage of a project. This stage is con-
individual product or process.cerned with creating specifications of all

relevant product and process types. This in-
cludes all products, whether deliverables or not, Among its definitions for specification,
and processes for management, construction, [Webster87] gives:
control, and analysis. (See software project 1. The act or process of specifying.
model.)

2. A detailed precise presentation of
something or of a plan or proposalrequirement
for something ... a statement of legal

Any function, constraint, or other property that particulars (as of charges or of con-
must be provided, met, or satisfied to fill the tract terms).
needs of the system’s intended user(s)
[Abbott86].

According to [IEEE83], specification in the con-
text of software engineering is:software development

1. A document that prescribes, in aThe process of translating customer/user needs
complete, precise, verifiable manner,into a system for operational use [IEEE83].
the requirements, design, behavior,
or other characteristics of a systemsoftware evolution
or system component.The process of software development and main-

tenance. 2. The process of developing a specifi-
cation.

software maintenance
The process of modifying a product after
delivery to correct faults (corrective mainte-
nance), to improve performance or other attri-
butes (perfective maintenance), or to adapt the
product to a changed environment (adaptive
maintenance).

software project model
The software project model underlying this cur-
riculum module is based on (1) planning, (2) ex-
ecution, and (3) evaluation-based feedback
stages. Conventional life-cycle models describe
the execution part. Specifications are created
during planning, used to control the performance
of processes and the creation of products during
execution, and evaluated after execution during
the feedback stage.

specification
A plan or standard that provides a
description/characterization of a software prod-
uct or process type. A specification is itself a
product resulting from the planning process. A
process specification describes how processes of

18 SEI-CM-11-2.1

Software Specifications: A Framework

Figures

Figure 1. Reference life-cycle model and terminology.

Figure 2. Planning/Execution/Feedback-Based Project Model.

Figure 3a. Purpose & Context vs. Content (Aspect).

Figure 3b. Content (Attributes) vs. Content (Aspects).

Figure 4. C-Requirements Characterization.

Figure 5. D-Requirements Characterization.

Figure 6. Design Characterization.

SEI-CM-11-2.1 19

Software Specifications: A Framework

Figure 1. Reference life-cycle model and terminology.

Context Analysis

Needs Product

C(ustomer/User-oriented)-
Requirements Process

C - Requirements
Product

D(eveloper-oriented)-
Requirements Process

D - Requirements
Product

Design Process

Design Product

Coding Process

Code

Reference Life-cycle
Terminology

(used in this module)

Existing
Life-cycle

Terminologies

Reference
Life-cycle

Model

Software
Implementation

Software
Design

Developer
Oriented Software

Requirements

Customer/User
Oriented Software

Requirements

Software
Needs

LEGEND:

Processes

Products

Market Analysis
System Analysis
Business Planning
System Engineering

Market Needs, Business Needs
Demands, System Requirements
Operational Requirements

Requirements Analysis
Requirements Definition
System Specification

Requirements
Requirements Definition
Requirements Document
Requirements Specification
Functional Specification

Specification

Behavioral Specification
System Specification
Functional Specification
Specification Document
Requirements Specification

Design

Design
Design Document
Architectural Design
Algorithmic Design

Coding
Implementation

Code
Implementation

20 SEI-CM-11-2.1

Software Specifications: A Framework

Figure 2. Planning/Execution/Feedback-Based Project Model.

Characterization
Scheme

PLANNING

Product
Specifications

ProductProcess

 Information Flow

 "is type description
 for"

Process

 Product

Project
Characteristics

EXECUTIONLEGEND:

FEEDBACK

Process
Specifications

SEI-CM-11-2.1 21

Software Specifications: A Framework

Figure 3a. Purpose & Context vs. Content (Aspect).

• Customer
• End-user
• Sub-contractor
• Req. analyst
• Spec. engineer
• Designer
• Implementor
• V & V pers.
• QA pers.
• Conf. man. pers.
• Maintenance pers.
• Manager

ASPECT: III. 2. a.

PURPOSE
& CONTEXT

Behavior Interface Flow Structure

F
un

ct
io

na
l

C
on

t.F
lo

w

D
at

a
F

lo
w

In
f.

F
lo

w

In
te

rf
a

ce

A
rc

h
ite

ct
.

A
lg

or
.

S
tr

.

D
at

a
S

tr
.

In
f.

 S
tr

.

N
on

-F
un

c.

F
un

ct
io

na
l

N
on

-F
un

c.

S
yn

ch
r.

Life-Cycle Models
• Waterfall
• Iterative enh.
• Prototyping
• Spiral

P
e
o
p
l
e

• Communication
• Creation
• Modification
• V & V
• Assurance

Application Type 1:
• Sequential
• Concurrent
• Real-time

U
s
e
s

P
r
o
c
e
s
s

P
r
o
d
u
c
t

Quality Requirements:
• Reliability
• Correctness
• Fault-tolerance
• Maintainability
• Portability

Life-Cycle Phases

• Requirements

• Design

• V & V

• Integration

• Maintenance

• Teaching

Application Type 2:
• Commercial
• Systems
• Process control
• Scientific
• Embedded

III.
1.
c .

III.
1.
b.

III.
1.
d.

III.
1.
a.

22 SEI-CM-11-2.1

Software Specifications: A Framework

Figure 3b. Content (Attributes) vs. Content (Aspects).

CONTENT (ASPECTS) - III. 2. a.

Feasability

F
un

ct
io

na
l

F
un

ct
io

na
l

N
on

-F
un

ct
io

na
l

C
on

tr
ol

 F
lo

w

D
at

a
F

lo
w

In
fo

rm
at

io
n

F
lo

w

S
yn

ch
r.

.

In
te

rf
ac

e
S

tr
.

A
rc

hi
te

ct
ur

al
 S

tr
.

A
lg

or
ith

m
.

S
tr

.

D
at

a
S

tr
uc

tu
re

In
fo

.
S

tr
uc

tu
re

Correctness

Completeness

Clarity

Non-Ambiguity

Preciseness

Consistency

Formality

Abstractness

Structuredness
(Modularity)

Traceability

Modifiability

Verifiability

Executability

Behavior Inter face Flow Structure

N
on

-F
un

ct
io

na
l

C
O
N
T
E
N
T

A
T
T
R
I
B
U
T
E
S

- -

III.
2 .
b.

SEI-CM-11-2.1 23

Software Specifications: A Framework

Figure 4. C-Requirements Characterization.

Mandatory

Optional
(address
if possible)

Optional
(avoid if
 possible)

LEGEND:

• Customer
• End-user
• Sub-contractor
• Req. analyst
• Spec. engineer
• Designer
• Implementor
• V & V pers.
• QA pers.
• Conf. man. pers.
• Maintenance pers.
• Manager

ASPECT: III. 2. a.

PURPOSE
& CONTEXT

Behavior Interface Flow Structure

F
un

ct
io

na
l

C
on

t.F
lo

w

D
at

a
F

lo
w

In
f.

F
lo

w

In
te

rf
a

ce

A
rc

h
ite

ct
.

A
lg

or
.

S
tr

.

D
at

a
S

tr
.

In
f.

 S
tr

.

N
on

-F
un

c.

F
un

ct
io

na
l

N
on

-F
un

c.

S
yn

ch
r.

Life-Cycle Models
• Waterfall
• Iterative enh.
• Prototyping
• Spiral

P
e
o
p
l
e

Application Type 1:
• Sequential
• Concurrent
• Real-time

U
s
e
s

P
r
o
c
e
s
s

P
r
o
d
u
c
t

Life-Cycle Phases

• Requirements

• Design

• V & V

• Integration

• Maintenance

• Teaching

Application Type 2:
• Commercial
• Systems
• Process control
• Scientific
• Embedded

III.
1.
c .

III.
1.
b.

III.
1.
d.

III.
1.
a.

Quality Requirements
• Reliability
• Correctness
• Fault-tolerance
• Maintainability
• Portability

• Communication
• Creation
• Modification
• V & V
• Assurance

24 SEI-CM-11-2.1

Software Specifications: A Framework

Figure 5. D-Requirements Characterization.

• Customer
• End-user
• Sub-contractor
• Req. analyst
• Spec. engineer
• Designer
• Implementor
• V & V pers.
• QA pers.
• Conf. man. pers.
• Maintenance pers.
• Manager

ASPECT: III. 2. a.

PURPOSE
& CONTEXT

Behavior Interface Flow Structure

F
un

ct
io

na
l

C
on

t.F
lo

w

D
at

a
F

lo
w

In
f.

F
lo

w

In
te

rf
a

ce

A
rc

h
ite

ct
.

A
lg

or
.

S
tr

.

D
at

a
S

tr
.

In
f.

 S
tr

.

N
on

-F
un

c.

F
un

ct
io

na
l

N
on

-F
un

c.

S
yn

ch
r.

Life-Cycle Models
• Waterfall
• Iterative enh.
• Prototyping
• Spiral

P
e
o
p
l
e

• Communication
• Creation
• Modification
• V & V
• Assurance

Application Type 1:
• Sequential
• Concurrent
• Real-time

U
s
e
s

P
r
o
c
e
s
s

P
r
o
d
u
c
t

Quality Requirements:
• Reliability
• Correctness
• Fault-tolerance
• Maintainability
• Portability

Life-Cycle Phases

• Requirements

• Design

• V & V

• Integration

• Maintenance

• Teaching

Application Type 2:
• Commercial
• Systems
• Process control
• Scientific
• Embedded

III.
1.
c .

III.
1.
b.

III.
1.
d.

III.
1.
a.

Mandatory

Optional
(address
if possible)

Optional
(avoid if
 possible)

LEGEND:

SEI-CM-11-2.1 25

Software Specifications: A Framework

Figure 6. Design Characterization.

• Customer
• End-user
• Sub-contractor
• Req. analyst
• Spec. engineer
• Designer
• Implementor
• V & V pers.
• QA pers.
• Conf. man. pers.
• Maintenance pers.
• Manager

ASPECT: III. 2. a.

PURPOSE
& CONTEXT

Behavior Interface Flow Structure

F
un

ct
io

na
l

C
on

t.F
lo

w

D
at

a
F

lo
w

In
f.

F
lo

w

In
te

rf
a

ce

A
rc

h
ite

ct
.

A
lg

or
.

S
tr

.

D
at

a
S

tr
.

In
f.

 S
tr

.

N
on

-F
un

c.

F
un

ct
io

na
l

N
on

-F
un

c.

S
yn

ch
r.

Life-Cycle Models
• Waterfall
• Iterative enh.
• Prototyping
• Spiral

P
e
o
p
l
e

• Communication
• Creation
• Modification
• V & V
• Assurance

Application Type 1:
• Sequential
• Concurrent
• Real-time

U
s
e
s

P
r
o
c
e
s
s

P
r
o
d
u
c
t

Quality Requirements:
• Reliability
• Correctness
• Fault-tolerance
• Maintainability
• Portability

Life-Cycle Phases

• Requirements

• Design

• V & V

• Integration

• Maintenance

• Teaching

Application Type 2:
• Commercial
• Systems
• Process control
• Scientific
• Embedded

III.
1.
c .

III.
1.
b.

III.
1.
d.

III.
1.
a.

26 SEI-CM-11-2.1

Software Specifications: A Framework

Teaching Considerations

Week 6 Presentation and discussion ofUses of this Material
selection and evaluation criteria
for specifications (V).The material presented in this module is intended to

be used in one of three ways: Exercise: An informal software
specification is given to four1. As background material for teachers pre-
student teams, who are asked toparing software engineering courses.
develop corresponding D-2. As the basis of an introductory unit on
requirements documents usingrequirements (C- or D-requirements) or
any of the following ap-design.
proaches: SADT, Petri nets, R

3. As the basis of a stand-alone course on nets, NRL approach, algebraic
the selection and assessment of software approach, or axiomatic ap-
engineering methods and tools. proach. The teams are asked to

justify their choice and to deter-
mine the degree to which the
method used fulfill their expec-
tations.Suggested Introductory Literature

Week 7 Presentation and discussion of
The following nine books and papers are recom- C-/D-requirements specification
mended as introductory literature on the topics dealt (IV.1-2).
with in this module:

Week 8 Presentation and discussion of
Abbott86 Gomaa86 Lamb88 formal approaches to specifying
DeMarco79 Hayes87 Rzepka85 D-requirements.
Gehani86 Jensen79 Sommerville89

Week 9 Other specification types
(IV.3-4).

Week 10 Presentation and discussion of
exercise by team 1.Suggested Course Schedule

Week 11 Presentation and discussion of
The author has taught the material in this module as exercise by team 2.
a graduate course called “Assessment of Software Week 12 Presentation and discussion ofRequirements Methods and Tools” at the University exercise by team 3.of Maryland. This course is a stand-alone course on

Week 13 Presentation and discussion ofselection and assessment, as suggested above. The
exercise by team 4.planned schedule for this course (14 weeks, 2 hours

per week) is shown below. References to the mod- Week 14 Course wrap-up.
ule outline are shown in parentheses.

The requirements document used in the class ex-
Week 1 Overview of software evolution ercise describes a heating control system. It is one

(processes, products, etc.). of four informal sets of requirements that have been
used as examples within the specification commu-Week 2 Overview of life-cycle models
nity [IWSSD87].and the roles played by specifi-

cations in these models.

Weeks 3-5 Detailed presentation and dis-
cussion of the characterization
scheme (III).

SEI-CM-11-2.1 27

Software Specifications: A Framework

Exercises

Depending on individual course objectives, the fol-
lowing student exercises may be useful:

1. Distribute an informal requirements doc-
ument and ask students to create a more
formal D-requirements document. (See
course description above.) Students can
be required either to use a particular
method or to chose one themselves from
a candidate set of available methods and
tools. Students should then assess the ef-
fectiveness of the method used.

2. Provide a concrete project scenario (use
the characterization scheme in III.1-2)
and ask students to chose and justify
their choice of the most appropriate spec-
ification methods(s) and/or tool(s)
(III.3-4).

3. Provide students with corresponding D-
requirements, design, and code products.
Have them perform modification and/or
verification on these products and assess
which of the product characteristics are
helpful and which cause difficulties in
performing the tasks.

28 SEI-CM-11-2.1

Software Specifications: A Framework

Bibliography

then be used to develop eight design principles forAbbott86
“good” specifications. These principles, in turn,Abbott, R. J. An Integrated Approach to Software
result in eighteen implications for specification lan-Development. New York: John Wiley, 1986.
guages that strongly constrain the set of adequate
specification languages and identify the need forThis is a general software engineering text, organ-
several novel capabilities such as historical and fu-ized as a collection of annotated outlines for product
ture references, elimination of variables, and resulttypes important to the development and mainte-
specification.nance of software.

Basili75Alford77
Basili, V. R., and A. J. Turner. “Iterative Enhance-Alford, M. “A Requirements Engineering Method-
ment: A Practical Technique for Softwareology for Real-Time Processing Requirements.”
Development.” IEEE Trans. Software Eng. SE-1, 4IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977),
(April 1975), 390-396.60-69.

Abstract: This paper recommends the “iterativeAbstract: This paper describes a methodology for
enhancement” technique as a practical means ofthe generation of software requirements for large,
using a top-down, stepwise refinement approach toreal-time unmanned weapons systems. It describes
software development. This technique begins with awhat needs to be done, how to evaluate the interme-
simple initial implementation of a properly chosendiate products, and how to use automated aids to
(skeletal) subproject which is followed by theimprove the quality of the product. An example is
gradual enhancement of successive implementationsprovided to illustrate the methodology steps and
in order to build the full implementation. The de-their products and the benefits. The results of some
velopment and quantitative analysis of a productionexperimental applications are summarized.
compiler for the language SIMPL-T is used to dem-
onstrate that the application of iterative enhance-Babb85
ment to software development is practical and effi-

Babb, R. G., II. “A Data Flow Approach to Unify- cient, encourages the generation of an easily
ing Software Specification, Design, and modifiable product, and facilitates reliability.
Implementation.” 3rd Intl. Workshop on Software
Specification and Design. Washington, D.C.: IEEE Basili88
Computer Society Press, 1985, 9-13. Basili, V. R., and H. D. Rombach. “The TAME

Abstract: Specifying requirements for software sys- Project: Towards Improvement-Oriented Software
tems is a complex and frequently frustrating proc- Environments.” IEEE Trans. Software Eng. SE-14, 6
ess. A major source of difficulty is that require- (June 1988), 758-773.
ments engineering and system development involves

Abstract: Experience from a dozen years of analyz-a wide range of people, including both computer
ing software engineering processes and products isspecialists and non-specialists. This paper de-
summarized as a set of software engineering andscribes a unified approach to software specification
measurement principles that argue for software en-and design that relies on executable data flow
gineering process models that integrate sound plan-diagrams to serve as a basis for communication
ning and analysis into the construction process.among those involved in system development.

In the TAME (Tailoring A Measurement Environ-
ment) project at the University of Maryland we haveBalzer81
developed such an improvement-oriented softwareBalzer, R., and N. Goldman. “Principles of Good
engineering process model that uses the goal/Software Specification and Their Implications for
question/metric paradigm to integrate the construc-Specification Languages.” AFIPS Conference
tive and analytic aspects of software development.Proceedings: Vol. 50, 1981 National Computer
The model provides a mechanism for formalizing

Conference. Arlington, Va.: AFIPS Press, 1981, the characterization and planning tasks, controlling
393-400. and improving projects based on quantitative anal-

ysis, learning in a deeper and more systematic wayAbstract: Careful consideration of the primary
about the software process and product, and feed-uses of software specifications leads directly to
ing the appropriate experience back into the currentthree criteria for judging specifications, which can
and future projects.

SEI-CM-11-2.1 29

Software Specifications: A Framework

The TAME system is an instantiation of the TAME Boehm86
software engineering process model as an ISEE Boehm, B. W. “A Spiral Model of Software Devel-
(Integrated Software Engineering Environment). opment and Enhancement.” ACM Software Engi-
The first in a series of TAME system prototypes has neering Notes 11, 4 (Aug. 1986), 14-24.
been developed. An assessment of experience with
this first limited prototype is presented including a This paper, reprinted from the proceedings of the
reassessment of its initial architecture. The long- March 1985 International Workshop on the Soft-
term goal of this building effort is to develop a bet- ware Process and Software Environments, presents
ter understanding of appropriate ISEE architec- Boehm’s spiral model. The author’s description
tures that optimally support the improvement- from the introduction:
oriented TAME software engineering process The spiral model of software development and en-
model. hancement presented here provides a new

framework for guiding the software process. Its
major distinguishing feature is that it creates a risk-Berztiss87
driven approach to the software process, ratherBerztiss, A. Formal Specification of Software. Cur-
than a strictly specification-driven or prototype-riculum Module SEI-CM-8-1.0, Software Engineer- driven process. It incorporates many of the

ing Institute, Carnegie Mellon University, Pitts- strengths of other models, while resolving many of
burgh, Pa., Oct. 1987. their difficulties.

Capsule Description: This module introduces
Brackett90methods for the formal specification of programs
Brackett, J. W. Software Requirements. Curriculumand large software systems, and reviews the

domains of application of these methods. Its em- Module SEI-CM-19-1.2, Software Engineering Insti-
phasis is on the functional properties of software. It tute, Carnegie Mellon University, Pittsburgh, Pa.,
does not deal with the specification of programming Jan. 1990.
languages, the specification of user-computer inter-

Capsule Description: This curriculum module isfaces, or the verification of programs. Neither does
concerned with the definition of software require-it attempt to cover the specification of distributed
ments—the software engineering process of deter-systems.
mining what is to be produced—and the products
generated in that definition. The process involvesBjørner82 all of the following:

Bjørner, D., and C. B. Jones. Formal Specification • requirements identification
and Software Development. Englewood Cliffs, N.J.:

• requirements analysisPrentice/Hall International, 1982.
• requirements representation

• requirements communicationBoehm84
• development of acceptance criteria andBoehm, B. W., T. E. Gray, and T. Seewaldt.

procedures“Prototyping vs. Specifying: A Multi-Project Exper-
iment.” Proc. 7th Intl. Conf. Software Eng. New The outcome of requirements definition is a precur-

sor of software design.York: IEEE, 1984, 473-484.

Abstract: In this experiment, seven software teams
Brown87developed versions of the same small-size (2000-
Brown, B. J. Assurance of Software Quality. Curric-4000 source instruction) application software prod-
ulum Module SEI-CM-7-1.1, Software Engineeringuct. Four teams used the Specifying approach.
Institute, Carnegie Mellon University, Pittsburgh,Three teams used the Prototyping approach.
Pa., July 1987.The main results of the experiment were:

Prototyping yielded products with roughly Capsule Description: This module presents the un-
equivalent performance, but with about 40% derlying philosophy and associated principles and
less code and 45% less effort. practices related to the assurance of software qual-

ity. It includes a description of the assurance acti-The prototyped products rated somewhat
vities associated with the phases of the software de-lower on functionality and robustness, but
velopment life-cycle (e.g., requirements, design,higher on ease of use and ease of learning.
test, etc.).

Specifying produced more coherent designs
and software that was easier to integrate.

The paper presents the experimental data support-
ing these and a number of additional conclusions.

30 SEI-CM-11-2.1

Software Specifications: A Framework

Bruno86 Collofello88
Bruno, G., and G. Marchetto. “Process-Translatable Collofello, J. S. Introduction to Software Verifica-
Petri Nets for the Rapid Prototyping of Process Con- tion and Validation. Curriculum Module SEI-
trol Systems.” IEEE Trans. Software Eng. SE-12, 2 CM-13-1.1, Software Engineering Institute, Carne-
(Feb. 1986), 346-357. gie Mellon University, Pittsburgh, Pa., Dec. 1988.

Abstract: This paper presents a methodology for Capsule Description: Software verification and
the rapid prototyping of process control systems, validation techniques are introduced and their ap-
which is based on an original extension to classical plicability discussed. Approaches to integrating
Petri nets. The proposed nets, called PROT nets, these techniques into comprehensive verification
provide a suitable framework to support the follow- and validation plans are also addressed. This cur-
ing activities: building an operational specification riculum module provides an overview needed to un-
model; evaluation, simulation, and validation of the derstand in-depth curriculum modules in the verifi-
model; automatic translation into program struc- cation and validation area.
tures.

DeMarco79In particular, PROT nets are shown to be trans-
latable into Ada® program structures concerning DeMarco, T. Structured Analysis and System
concurrent processes and their synchronizations. Specification. Englewood Cliffs, N.J.: Yourdon
The paper illustrates this translation in detail using, Press, 1979. Also published by Prentice-Hall, 1979.
as a worked example, the problem of tool handling

A very readable book on Structured Analysis andin a flexible manufacturing system.
system specification that covers data flow diagrams,
data dictionaries, and process specification.Budgen89

Budgen, D. Introduction to Software Design. Cur-
DeRemer76riculum Module SEI-CM-2-2.1, Software Engineer-
DeRemer, F., and H. H. Kron. “Programming-in-the-ing Institute, Carnegie Mellon University, Pitts-
Large Versus Programming-in-the-Small.” IEEEburgh, Pa., Jan. 1989.
Trans. Software Eng. SE-2, 6 (June 1976), 80-86.

Capsule Description: This curriculum module pro-
Abstract: We distinguish the activity of writingvides an introduction to the principles and concepts
large programs from that of writing small ones. Byrelevant to the design of large programs and sys-
large programs we mean systems consisting oftems. It examines the role and context of the design
many small programs (modules), usually written byactivity as a form of problem-solving process, de-
different people.scribes how this is supported by current design

methods, and considers the strategies, strengths, We need languages for programming-in-the-small,
limitations, and main domains of application of i.e., languages not unlike the common programming
these methods. languages of today, for writing modules. We also

need a “module interconnection language” for knit-
ting those modules together into an integratedCameron89
whole and for providing an overview that formallyCameron, J. R. JSP and JSD: The Jackson Approach
records the intent of the programmer(s) and thatto Software Development, 2nd Ed. Washington,
can be checked for consistency by a compiler.D.C.: IEEE Computer Society Press, 1989.

A collection of articles and papers describing JSP DoD88a
and JSD and illustrating these methods using a DoD. Military Standard for Defense System Soft-
range of examples of reasonable size and com- ware Development. DOD-STD-2167A, U.S. De-plexity.

partment of Defense, Washington, D.C., 29 February
Good source material for the instructor. Source of 1988.
material for student tutorials.

DoD88b
Cohen86 DoD. Military Standard for Defense System Soft-
Cohen, B., W. T. Harwood, and M. I. Jackson. The ware Quality Program. DOD-STD-2168, U.S. De-
Specification of Complex Systems. Reading, Mass.: partment of Defense, Washington, D.C., 29 April
Addison-Wesley, 1986. 1988.

SEI-CM-11-2.1 31

Software Specifications: A Framework

scribed which can be used both to automate suchFirth87
proofs of correctness and to derive an immediateFirth, R., et al. A Classification Scheme for Software
implementation from the axioms. This implemen-Development Methods. Technical Report CMU/SEI-
tation allows for limited testing of programs at de-87-TR-41, Software Engineering Institute, Carnegie
sign time, before a conventional implementation is

Mellon University, Pittsburgh, Pa., June 1987. accomplished.
Abstract: Software development methods are used
to assist with the process of designing software for Harel88a
real-time systems. Many such methods have come Harel, D. “On Visual Formalisms.” Comm. ACM 31,
into practice over the last decade, and new methods 5 (May 1988), 514-530.
are emerging. These new methods are more power-
ful than the old ones, especially with regard to real- An elegant and clearly-written paper that discusses
time aspects of the software. This report describes a number of important issues about model represen-
a classification scheme for software development tation. While the first part of the paper is concerned
methods, includes descriptions of the major charac- with general issues, the latter part provides an inter-
teristics of such methods, and contains some more esting exposition of statecharts, and includes a de-
words of advice on choosing and applying such tailed example in the form of a description of a
methods. digital watch. The paper will be of particular inter-

est to instructors concerned with the imprecision of
the graphical notations frequently used to describeGehani86
software requirements.Gehani, N., and A. D. McGettrick, eds. Software

Specification Techniques. Reading, Mass.:
Harel88bAddison-Wesley, 1986.
Harel, D., et al. “STATEMATE: A Working Envi-

A collection of papers on formal specification tech- ronment for the Development of Complex Reactive
niques. This book addresses general principles, par- Systems.” Proc. 10th Intl. Conf. Software Eng.ticular specification techniques, case studies of ac-

Washington, D.C.: IEEE Computer Society Press,tual experiences, and systems for automatic gener-
1988, 396-406.ation of prototypes from specifications.

Abstract: This paper provides a brief overview of
the STATEMATE system, constructed over the pastGoldsack85
three years by i-Logix Inc., and Ad Cad Ltd.Goldsack, S. J. Ada for Specification: Possibilities
STATEMATE is a graphical working environment,and Limitations. Cambridge, England: Cambridge
intended for the specification, analysis, design andUniversity Press, 1985.
documentation of large and complex reactive sys-
tems, such as real-time embedded systems, control

Gomaa86 and communication systems, and interactive soft-
Gomaa, H. “Software Development of Real-Time ware. It enables a user to prepare, analyze and

debug diagrammatic, yet precise, descriptions of theSystems.” Comm. ACM 29, 7 (July 1986), 657-668.
system under development from three inter-related

Suitable for use by both instructors and students as points of view, capturing structure, functionality
an easily readable introduction to issues of real-time and behavior. These views are represented by three
products. graphical languages, the most intricate of which is

the language of statecharts used to depict reactive
behavior over time. In addition to the use ofGuttag78
statecharts, the main novelty of STATEMATE is inGuttag, J. V., E. Horowitz, and D. R. Musser.
the fact that it ‘understands’ the entire descriptions“Abstract Data Types and Software Validation.”
perfectly, to the point of being able to analyze themComm. ACM 21, 12 (Dec. 1978), 1048-1064.
for crucial dynamic properties, to carry out rigor-
ous animated executions and simulations of the de-Abstract: A data abstraction can be naturally spec-
scribed system, and to create runing code automat-ified using algebraic axioms. The virtue of these
ically. These features are invaluable when it comesaxioms is that they permit a representation-
to the quality and reliability of the final outcome.independent formal specification of a data type. An

example is given which shows how to employ al-
gebraic axioms at successive levels of implemen- Hatley87
tation. The major thrust of the paper is twofold. Hatley, D. J., and I. A. Pirbhai. Strategies for Real-
First, it is shown how the use of algebraic

Time System Specification. New York: Dorsetaxiomatizations can simplify the process of proving
House, 1987.the correctness of an implementation of an abstract

data type. Second, semi-automatic tools are de-

32 SEI-CM-11-2.1

Software Specifications: A Framework

tions, defines and validates a set of software metricsThis is a well-written text on Real-Time Structured
which are appropriate for evaluating the structureAnalysis. This book should be read in conjunction
of large-scale systems. These metrics are based onwith [Ward89] in order better to understand the ca-
the measurement of information flow between sys-pabilities of the notation. This text and [Ward85]
tem components. Specific metrics are defined forare alternative texts; the choice of a text for teach-
procedure complexity, module complexity, anding Real-Time Structured Analysis may depend
module coupling. The validation, using the sourceupon whether the computer tools to be used support
code for the UNIX operating system, shows that theonly the Hatley notation or only the Ward notation.
complexity measures are strongly correlated with
the occurrence of changes. Further, the metrics forHayes87
procedures and modules can be interpreted to

Hayes, Ian, ed. Specification Case Studies. Engle- reveal various types of structural flaws in the design
wood Cliffs, N.J.: Prentice/Hall International, 1987. and implementation.

A collected set of case studies based on the use of
Hoare69Z, providing a well-structured introduction to the

use of formal methods. The section on specification Hoare, C. A. R. “An Axiomatic Basis for Computer
of the UNIX filing system may involve sufficiently Programming.” Comm. ACM 12, 10 (Oct. 1969),
familiar material to provide a good introduction for 576-580.
many students.

Abstract: In this paper an attempt is made to ex-
Suitable for use by both instructors and students. plore the logical foundation of computer program-

ming by use of techniques which were first applied
Heninger80 in the study of geometry and have later been ex-

tended to other branches of mathematics. This in-Heninger, K. L. “Specifying Software Requirements
volves the elucidation of sets of axioms and rules offor Complex Systems: New Techniques and Their
inference which can be used in proofs of theApplications.” IEEE Trans. Software Eng. SE-6, 1
properties of computer programs. Examples are(January 1980), 2-13.
given of such axioms and rules, and a formal proof
of a simple theorem is displayed. Finally, it isAbstract: This paper concerns new techniques for
argued that important advantages, both theoreticalmaking requirements specifications precise, con-
and practical, may follow from a pursuance of thesecise, unambiguous, and easy to check for complete-
topics.ness and consistency. The techniques are well-

suited for complex real-time software systems; they
were developed to document the requirements of ex- IEEE83
isting flight software for the Navy’s A-7 aircraft. IEEE. IEEE Standard Glossary of Software Engi-
The paper outlines the information that belongs in a

neering Terminology. New York: IEEE, 1983.requirements document and discusses the objectives
ANSI/IEEE Std 729-1983.behind the techniques. Each technique is described

and illustrated with examples from the A-7 docu- Provides definitions for many of the terms used in
ment. The purpose of the paper is to introduce the software engineering.
A-7 document as a model of a disciplined approach
to requirements specification; the document is

IEEE84available to anyone who wishes to see a fully
IEEE. IEEE Guide to Software Requirementsworked out example of the approach.
Specifications. New York: IEEE, 1984. ANSI/
IEEE Std 830-1984.Henry81

Henry, S., and D. Kafura. “Software Structure
IWSSD82Metrics Based on Information Flow.” IEEE Trans.
First Intl. Workshop on Software Specification andSoftware Eng. SE-7, 5 (Sept. 1981), 510-518.
Design. Washington, D.C.: IEEE Computer Soci-

Abstract: Structured design methodologies provide ety Press, 1982.
a disciplined and organized guide to the construc-
tion of software systems. However, while the meth-

IWSSD84odology structures and documents the points at
2nd Intl. Workshop on Software Specification andwhich design decisions are made, it does not pro-

vide a specific, quantitative basis for making these Design. Washington, D.C.: IEEE Computer Soci-
decisions. Typically, the designers’ only guidelines ety Press, 1984.
are qualitative, perhaps even vague, principles such
as “functionality,” “data transparency,” or
“clarity.” This paper, like several recent publica-

SEI-CM-11-2.1 33

Software Specifications: A Framework

havior. Black-box and state-machine models areIWSSD85
used, which are similar in concept to the form of3rd Intl. Workshop on Software Specification and
representation described in [Heninger80].Design. Washington, D.C.: IEEE Computer Soci-

ety Press, 1985.
Parnas72
Parnas, D. L. “On the Criteria to be used in decom-IWSSD87
posing systems into modules.” Comm. ACM 15, 124th Intl. Workshop on Software Specification and
(Dec. 1972), 1053-1058.Design. Washington, D.C.: IEEE Computer Soci-

ety Press, 1987. Also appears as ACM Software En- Abstract: This paper discusses modularization as a
gineering Notes 14, 3 (May 1989). mechanism for improving the flexibility and com-

prehensibility of a system while allowing the shor-
tening of its development time. The effectiveness ofJensen79
a “modularization” is dependent upon the criteriaJensen, R. W., and C. C. Tonies. Software
used in dividing the system into modules. A systemEngineering. Englewood Cliffs, N.J.: Prentice-Hall, design problem is presented and both a convention-

1979. al and unconventional decomposition are described.
It is shown that the unconventional decompositionsA collection of primarily management-oriented arti-
have distinct advantages for the goals outlined. Thecles. Structured program design is covered.
criteria used in arriving at the decompositions are
discussed. The unconventional decomposition, if

Lamb88 implemented with the conventional assumption that
Lamb, David Alex. Software Engineering: Planning a module consists of one or more subroutines, will
for Change. Englewood Cliffs, N.J.: Prentice-Hall, be less efficient in most cases. An alternative ap-
1988. proach to implementation which does not have this

effect is sketched.
This book introduces basic software engineering
concepts. Among other topics, it contains an A truly “classical” paper, in the sense of being often
elaborate discussion of “specification and cited but probably rarely read. It is a very important
verification.” Specific emphasis is placed on al- paper that lays down the basic ideas about infor-
gebraic specifications, trace specifications, and ab- mation hiding but in a very concise and compact
stract modeling. form. The discussion is based upon an example of a

problem that may not be very familiar to many
readers.Levine89

Levine, Linda, Linda H. Pesante, and Susan The teacher must read this paper; the student might
do better to settle for the teacher’s interpretation.B. Dunkle. Technical Writing for Software

Engineers. Curriculum Module SEI-CM-23-1.0,
Software Engineering Institute, Carnegie Mellon Peterson77
University, Pittsburgh, Pa., Dec. 1989. Peterson, J. “Petri Nets.” ACM Computing Surveys

9, 3 (Sept. 1977), 223-252.Capsule Description: This module, which is di-
rected specifically to software engineers, discusses This is the first widely circulated survey and tutorial
the writing process in the context of software engi- on Petri nets. It touches briefly on modeling with
neering. Its focus is on the basic problem-solving Petri nets, basic definitions, analysis problems and
activities that underlie effective writing, many of techniques, Petri net languages, and related models
which are similar to those underlying software de- of computation. A good introduction that should be
velopment. The module draws on related work in a readable by any graduate student.
number of disciplines, including rhetorical theory,
discourse analysis, linguistics, and document de-

Peterson81sign. It suggests techniques for becoming an effec-
Peterson, J. L. Petri Net Theory and the Modeling oftive writer and offers criteria for evaluating writing.
Systems. Englewood Cliffs, N.J.: Prentice-Hall,
1981.Mills86

Mills, H. D., C. Linger, and A. R. Hevner. This books makes two important contributions: it
Principles of Information Systems Analysis and identifies a new class (called Petri net languages) in
Design. Orlando, Fla.: Academic Press, 1986. the Chomsky hierarchy, and it organizes a set of

models of parallel computation into a lattice in
This book describes an approach to requirements which the ordering is based on the expressive power
definition for information systems that emphasizes of a model. Examples are given to show the proper
the use of models showing external system be-

34 SEI-CM-11-2.1

Software Specifications: A Framework

inclusion among each adjacent pair of models in the Rzepka85
lattice. An excellent bibliography is provided. Special Issue on Requirements Engineering Environ-

ments. W. Rzepka and Y. Ohno, eds. Computer 18,
Ross77 4 (April 1985).
Ross, D. T., and K. E. Schoman, Jr. “Structured

The papers in this issue cover approaches such asAnalysis for Requirements Definition.” IEEE Trans. SADT and SREM, with special emphasis on real-
Software Eng. SE-3, 1 (Jan. 1977), 6-15. time applications.

Abstract: Requirements definition encompasses all
aspects of system development prior to actual sys- Scacchi87
tem design. We see the lack of an adequate ap- Scacchi, W. Models of Software Evolution: Life Cy-
proach to requirements definition as the source of cle and Process. Curriculum Module SEI-CM-10-
major difficulties in current systems work. This 1.0, Software Engineering Institute, Carnegie Mellon
paper examines the needs for requirements defini-

University, Pittsburgh, Pa., Oct. 1987.tion, and proposes meeting those objectives with
three interrelated subjects: context analysis, func- Capsule Description: This module presents an in-
tional specification, and design constraints. Re- troduction to models of software system evolution
quirements definition replaces the widely used, but and their role in structuring software development.
never well-defined, term “requirements analysis.” It includes a review of traditional software life-

cycle models as well as software process modelsThe purpose of this paper is to present, in a com-
that have been recently proposed. It identifies threeprehensive manner, concepts that apply throughout
kinds of alternative models of software evolutionrequirements definition (and, by implication, to all
that focus attention to either the products, produc-of system development). The paper discusses the
tion processes, or production settings as the majorfunctional architecture of systems, the characteris-
source of influence. It examines how different soft-tics of good requirements documentation, the per-
ware engineering tools and techniques can supportsonnel involved in the process of analysis, and man-
life-cycle or process approaches. It also identifiesagement guidelines that are effective even in com-
techniques for evaluating the practical utility of aplex environments.
given model of software evolution for development

The paper then outlines a systematic methodology projects in different kinds of organizational settings.
that incorporates, in both notation and technique,
the concepts previously introduced. Reference is Sommerville89made to actual requirements definition experience

Sommerville, I. Software Engineering, 3rd Ed.and to practicable automated support tools that
Wokingham, England: Addison-Wesley, 1989.may be used with the methodology.

This book contains an easy-to-read introduction to
Royce70 software engineering principles and issues. It em-

phasizes the early life-cycle stages, includingRoyce, W. W. “Managing the Development of Large
“software specification.”Software Systems: Concepts and Techniques.”

WESCON Technical Papers Volume 14, Western
Electronic Show and Convention. Los Angeles: Sutcliffe88
WESCON, 1970, 1-9. Reprinted in Proc. 9th Intl. Sutcliffe, A. Jackson System Development. New
Conf. Software Eng., Washington, D.C.: IEEE York: Prentice-Hall, 1988.
Computer Society Press, 1987, 328-338.

From the introductory chapter:
Abstract: Gives the personal views of the author [Jackson System Development (JSD)] is organized
about managing large software developments. He in three separate stages which guide the analyst
has had various assignments during the past nine through the systems development process. Each
years, mostly concerned with the development of stage has a set of activities with clear start and end
software packages for spacecraft mission planning, points (this helps the analyst using the method) and

facilitates project control as deliverables can becommanding and post-flight analysis. In these as-
defined for each stage. The three stages can besignments he has experienced different degrees of
outlined briefly as follows.success with respect to arriving at an operational

(a) Modelling stage. A description is madestate, on-time, and within costs. He has become
of the real world problem and the impor-prejudiced by his experiences and relates some of
tant actions within the system are identi-these prejudices in the presentation.
fied. This is followed by analysis of the
major structures within the system, called
entities in JSD. . . .

(b) Network stage. The system is developed

SEI-CM-11-2.1 35

Software Specifications: A Framework

as a series of subsystems. First the major Tomayko87
structures are taken from the modelling Tomayko, J. E. Software Configuration Manage-
stage and input and outputs are added;

ment. Curriculum Module SEI-CM-4-1.3, Softwarethis is followed by the analysis of the
Engineering Institute, Carnegie Mellon University,output subsystem which provides infor-
Pittsburgh, Pa., July 1987.mation, and then of the input subsystem

which handles the user interface and vali-
Capsule Description: Software configuration man-dation. . . .
agement encompasses the disciplines and tech-

(c) Implementation stage. In this stage the
niques of initiating, evaluating, and controllinglogical system specification, which is
change to software products during and after theviewed as a network of concurrently
development process. It emphasizes the importancecommunicating processes, is transformed
of configuration control in managing software pro-into a sequential design by the technique
duction.of scheduling. This is followed by fur-

ther detailed design and coding. . . .
JSD begins by analysing the major system struc- Ward85
tures which are important to create a model of the Ward, P. T., and S. J. Mellor. Structured Develop-
system problem, the entities. Then these structures

ment for Real-Time Systems. New York: Yourdonare connected together to create a network model
Press, 1985-1986. The three volumes in this seriesof the system, while at the same time the design is
are Introduction and Tools, Essential Modelingelaborated by addition of other processes to create

output, and to handle input messages and user in- Techniques, and Implementation Modeling Tech-
teraction. The essence . . . is to create a system niques.
model of reality first and then to add the function-
ality. This book is an alternative to [Hatley87] for teaching

Real-Time Structured Analysis.JSD is usually not considered to support require-
ments definition, but Jackson’s emphasis on model-
ing the problem domain makes it a viable alter- Ward89
native, for information systems, to functional, top- Ward, P. T. “Embedded Behavior Pattern Lan-
down approaches such as Structured Analysis. This guages: A Contribution to a Taxonomy of CASE
book is unique in showing how JSD relates to more Languages.” J. Syst. and Software 9, 2 (Feb. 1989),
widely used software requirements and design tech- 109-128.niques. [Ward89] also shows how its notation re-
lates to more widely used requirements notations. Abstract: With the increasing availability of CASE

tools, graphics-based software modeling languages
have the potential to play a much more central roleTeichrow77
in the development process. Although some com-Teichrow, D. “PSL/PSA: A Computer Aided Tech-
parisons among these languages have been made,nique for Structured Documentation and Analysis of
no systematic classification based on the underlying

Information Processing Systems.” IEEE Trans. Soft- abstractions has been attempted. As a contribution
ware Eng. SE-3, 1 (Jan. 1977), 41-48. to such a classification, a class of languages desig-

nated Embedded Behavior Pattern (EBP) languagesAbstract: PSL/PSA is a computer-aided structured
is described and its members are compared anddocumentation and analysis technique that was de-
contrasted. The EBP languages include theveloped for, and is being used for, analysis and doc-
Ward/Mellor and Boeing/Hatley Structured Analy-umentation of requirements and preparation of
sis extensions, the Jackson System Developmentfunctional specifications for information processing
notation, and Harel’s StateChart-Activity Chartsystems. The present status of requirements defini-
notation. These notations are relevant to the build-tion is outlined as the basis for describing the prob-
ing of specification models because they displaylem which PSL/PSA is intended to solve. The basic
clear one-to-one correspondences between elementsconcepts of the Problem Statement Language are
of the model and elements of the applicationintroduced and the content and use of a number of
domain. These notations are also amenable to astandard reports that can be produced by the Prob-
style of model partitioning that is related to object-lem Statement Analyzer are briefly described.
oriented development.

The experience to date indicates that computer-
This paper is a detailed comparison of the notationsaided methods can be used to aid system develop-
described in [Harel88a], [Hatley87], and [Ward85].ment during the requirements definition stage and

that the main factors holding back such use are not
so much related to the particular characteristics Webster87
and capabilities of PSL/PSA as they are to or- Webster’s Ninth New Collegiate Dictionary.
ganizational considerations involved in any change Springfield, Mass.: Merriam-Webster, 1987.
in methodology and procedure.

36 SEI-CM-11-2.1

Software Specifications: A Framework

Yourdon89
Yourdon, E. Modern Structured Analysis. Engle-
wood Cliffs, N.J.: Yourdon Press, 1989.

Probably the most comprehensive and up-to-date
book on the popular Structured Analysis method.

SEI-CM-11-2.1 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

