Software Specifications:
A Framework

SEIl Curriculum Module SEI-CM-11-2.1
January 1990

H. Dieter Rombach
University of Maryland

Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the modul e author.

H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park, MD 20742

Copyright © 1990 by Car negie Mellon University

Thistechnical report was prepared for the
SEI Joint Program Office

ESD/AVS

Hanscom AFB, MA 01731

Theideas and findings in this report should not be construed as an official DoD position.
Itis published in the interest of scientific and technical information exchange.

Review and Approval
This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

112111090

Software Specifications:

A Framework

Acknowledgements

Contents

I would like to thank Norm Gibbs, Director of the SEI
Education Program, who made sure | had the resources
and encouragement to complete this work. Special thanks
go to John Brackett, the author of the curriculum module
Software Requirements, who reviewed earlier versions of
this module and provided valuable feedback. | would also
like to thank all the members of the Education Program,
especidly Gary Ford and Lionel Deimel for their helpful
comments, Polly Bech for doing the graphical work, and
Linda Pesante of Information Management for her
editorial work.

SEI-CM-11-2.1

Capsule Description

Philosophy

Objectives

Prerequisite Knowledge

Module Content
Outline
Annotated Outline
Glossary

Figures

Teaching Considerations
Uses of thisMaterial
Suggested Introductory Literature
Suggested Cour se Schedule
Exercises

Bibliography

A A D OWWEPR

17
19
27
27
27
27
28
29

Software Specifications: A Framework

Module Revision History

Version 2.1 (January 1990) Minor revisions and corrections
Version 2.0 (December 1989) Magjor revision

Approved for publication
Version 1.0 (October 1987) Draft for public review

SEI-CM-11-2.1

Software Specifications:
A Framework

Capsule Description

This curriculum module presents a framework for
understanding software product and process specifi-
cations. An unusual approach has been chosen in
order to address all aspects related to “ specification”
without confusing the many existing uses of the
term. In this module, the term specification refers to
any plan (or standard) according to which products
of some type are constructed or processes of some
type are performed, not to the products or processes
themselves. In this sense, a specification is itself a
product that describes how products of some type
should look or how processes of some type should
be performed. The framework includes:

o A reference software life-cycle model
and terminology

e A characterization scheme for software
product and process specifications

o Guidelines for using the characterization
scheme to identify clearly certain life-
cycle phases

e Guidelines for using the characterization
scheme to select and evaluate specifica-
tion techniques

Philosophy

Most SEI curriculum modules provide a structure for
organizing a well-defined subject area (sometimes
related to a life-cycle phase) and a guide for under-
standing the related literature. They are addressed to
an educator audience, but contain material intended
for presentation to students. This module has all
these characteristics, but is atypical in the following
ways:
e |t is an overview module covering a

SEI-CM-11-2.1

broad subject area about which there is
little consensus.

e It is intended to provide background for
understanding other curriculum modules
and is therefore addressed more to tea-
chers than to students.

e |t contains a good deal of original mate-
rial, embodying an unusua approach to
its subject matter.

The term “specification” is overloaded. It is used
both informally and in the literature in a great
variety of senses, and it is difficult to achieve a
coherent understanding of the term that accounts
adequately for this diversity. The resulting con-
fusion may either be viewed as a simple terminology
problem (i.e.: Which life-cycle products or processes
should be referred to as “specifications’?) or as a
more fundamental philosophical problem regarding
the role of “specification” in the context of software
development (i.e.: Can the notion of “specification”
be restricted to certain life-cycle product and process
types? Should only life-cycle products and proc-
esses, only their plans, or both objects and plans
properly be called “ specifications’?).

The Terminology Problem. According to
[IEEE83], the term “software specification” refers ei-
ther to a document or product that describes various
characteristics of a software system or to the process
of developing such a document or product. This
genera definition applies to alarge variety of prod-
uct and process typest.

UIn the study of software engineering, individual products or
processes are of little interest. The term “type” is used here to
denote the class of similar products or processes of which a
particular one is an instantiation. Thus, for example, al Ada
programs may be viewed as products of the same type (i.e., Ada
code products); all coding processes based on stepwise refine-
ment that result in Ada programs may be viewed as processes of
the same type (i.e., stepwise-refinement—oriented Ada coding
processes).

Software Specifications: A Framework

Many software development organizations have
adapted this definition to their own technological
and organizational characteristics and needs. The
resulting terminologies are context-dependent and
inconsistent regarding the use of the term
“specification.” Examples of inconsistencies be-
tween existing life-cycle terminologies include the
following (see Figure 1, p. 20, middle column):

e The same term is used for product and
process types (e.g., “requirements defini-
tion,” “system specification™).
e The same term is used for different types
of products (e.g., “requirements specifi-
cation,” “functional specification”).
o Different terms are used for the same
type of product (e.g., “requirements spe-
cification,” “functional specification”) or
the same type of process (e.g., “require-
ments analysis,” “system specification”).
Sometimes the same product may be referred to as
“specification” or “implementation,” depending on
whether an executable specification language or a
high-level implementation language is being used.
Further, the same software characteristic may be ad-
dressed in one or more products, depending on the
underlying life-cycle and project organization
model. And processes may or may not be modeled
explicitly, depending upon the perceived importance
by the organization of “process.”

The Philosophical Problem. Software develop-
ment projects should be explicitly planned, executed,
and evaluated. The project model depicted in Figure
2, p. 21, reflects these principles [Basili88]. It is
definitely justifiable, based on the IEEE definition
[IEEE83]—it is probably not an intended interpreta-
tion—to view both a number of life-cycle products
and processes, as well as their plans resulting from
the planning activity, as “specifications.”

The purpose of planning is the production of “plans”
—whether explicit or not—of what life-cycle prod-
ucts should look like and how life-cycle processes
should be performed. Examples of such plansare, in
the case of products, the ANSI/IEEE 830 standard
on “software requirements specification” [IEEE84]
and, in the case of processes, the DoD 2167A stan-
dard on “software development” [DoD88a] and the
DoD 2168 standard on the “software quality as-
surance process’ [DoD88b]. The purpose of execu-
tion is to perform processes and construct products
according to their plans. The purpose of evaluation
is to assess whether the plans were satisfactory and
whether the life-cycle products and processes were
constructed and performed in accordance with their
plans.

2

A project model like the one depicted in Figure 2
enables us to address the sound selection and evalu-
ation of software specification techniques, i.e.,
models, languages, methods, and tools used to create
life-cycle products or perform life-cycle processes
according to their specifications. In practice, many
major software development failures can be traced to
the use of inappropriate (as well as inappropriate use
of) techniques for describing software products and
processes.

The Approach Taken Here. This module addresses
the above problems by using a reference life-cycle
terminology that avoids the term “specification” for
any life-cycle product or process type. Instead, this
module refers only to “plans’ of product and process
types as “ specifications.” Doing so eschews existing
life-cycle terminologies in favor of one that facili-
tates consistency in the present exposition and al-
lows the reader to reinterpret this module in terms of
some other nomenclature he or she prefers, if neces-
sary. In this module, then, a software specification
is a product resulting from the planning process that
prescribes how a product of some type should look
or how a process of some type should be performed.
This approach may seem unusual, but the author is
convinced of its benefits.

Module Content. This curriculum module intro-
duces the reference life-cycle model and terminol-
ogy discussed above, builds a scheme for charac-
terizing product and process specifications, uses this
scheme to describe the process and product types re-
lated to certain life-cycle phases of the reference
life-cycle model, and shows how such characteriza-
tions may be used to select and evaluate specifica-
tion techniques.

Introduction of the reference life-cycle model and
terminology depicted in Figure 1 (left and right
columns, respectively) represents an attempt to over-
come the confusion of terminology in the field.
None of the product or process type names of the
reference terminology uses the term “specification.”
However, cross references to some of the existing
life-cycle terminologies are provided (Figure 1, mid-
dle column).

The scheme for characterizing product and process
specifications is based on the following four dimen-
sions:

1. Purpose and context (i.e., what is the ex-
pected role of the specified product or
process type?)

2. Content (i.e., what aspects of the product
or process type need to be described, and
with what attributes?)

SEI-CM-11-2.1

Software Specifications: A Framework

3. Representation format (i.e., what models
and languages should be used to repre-
sent the above content?)

4, Support (i.e.,, what methods and tools
should be used to support the creation of
life-cycle products and processes accord-
ing to the above representation format?)

The first two dimensions of the characterization
scheme are used to identify three important phasesin
the context of the reference life-cycle model:

1. C-requirements (customer/user-oriented
requirements)

2. D-requirements (developer-oriented re-
quirements)
3. Design
These reference phases are discussed, using the
framework, not because the author believes that they
are more important than other phases, but because

they are likely to correspond most closdly to the
reader’ s intuitive notion of “specification.”

All four dimensions of the characterization scheme
are used to select and evaluate specification tech-
niques. Requirements for any specification tech-
nigue are formulated in terms of the latter three
dimensions of the characterization scheme,
motivated by its project-specific purpose and con-
text. Selection implies finding a specification tech-
nique that matches the stated requirements; evalua-
tion implies comparing the actual effects of the cho-
sen technique to the expected ones, as stated in the
reguirements.

Relation to Other Modules. It is helpful if the
reader of this curriculum moduleis familiar with SEI
curriculum modules Models of Software Evolution:
Life Cycle and Process [Scacchi87] and Technical
Writing for Software Engineers [Levine89].

Early life-cycle phases are often given less attention
in the classroom than are later phases, such as de-
sign, coding, and testing, even though their impor-
tance is widely recognized. It is hoped that the in-
sights into software specifications provided here will
increase the understanding of teachers and alow
these activities to be more widely taught.

This module provides material needed to understand
software specifications and to apply that understand-
ing to the characterization of specifications and to
the selection and evaluation of specification tech-
niques. No attempt is made to deal with system
specifications or to provide detailed guidance about
the production of particular life-cycle products. In-
stead, this module provides background for more

SEI-CM-11-2.1

narrowly focused curriculum modules, which utilize
its terminology. @ Among these are Software
Requirements [Brackett90], addressing C- and D-
requirements, and Introduction to Software Design
[Budgen89], dealing with design. Additional mod-
ules using the framework set forth here will follow.
This module should be studied before reading any of
these life-cycle-oriented curriculum modules.

Objectives

A person having studied the material covered in this
curriculum module is expected to be able to do the
following:

e Explain the nature of the confusion
caused by the common uses of the term
“gpecification.”

o Apply the reference life-cycle model and
relate its terminology to that of any of
the commonly used models.

e Discuss C-requirements, D-requirements,
and design within the framework
presented in this module.

o Apply the characterization scheme to de-
scribe any process or product specifica
tion.

o Apply the characterization scheme to the
selection of specification techniques.

o Apply the characterization scheme to the
evaluation of specification techniques.

Prerequisite Knowledge

In order to understand this material, the student must
understand the fundamental s of software engineering
at the level of an introductory course and must have
had practical software development experience as a
member of ateam.

Software Specifications: A Framework

Module Content

This module uses the terminology in [IEEE83] where 1. Selection of Proper Specification Techniques
possible. A glossary of significant terms follows the a. Define specification requirements

annotated outline. b. Chose specification techniques

2. Evaluation of Specification Techniques

V1. Assessment of Current Maturity and Future
Outline Directions

|. Overview
1. Conflicting Meanings of “ Specification”

2. Definition Used Here Annotated Outline

3. A Framework for Understanding Specifications | Overview
Il. A Reference Software Life-Cycle Model and 1. Conflicting Meanings of “Specification”
Terminology

[11. A Characterization Scheme for Software
Specifications
1. Purpose and Context
a. Product perspective
b. Process perspective
C. Use perspective
d. People perspective
2. Content
a. Aspects
b. Attributes
3. Representation
a Models
b. Languages
4. Support
a. Methods
b. Tools
IV. A Characterization of Life-Cycle Phases
1. C-Requirements
a. Purpose and context
b. Content
2. D-Requirements
a. Purpose and context
b. Content
3. Design
a. Purpose and context
b. Content
4. Other Object Types

V. Guidelines for Selecting and Evaluating
Specification Techniques
4

The term “software specification” is used inconsis-
tently by the software community. Most of the time,
it refers either to products created during the early
phases of a software project, to the processes leading
to those products, or to descriptions/characteriza-
tions of those types of products or processes.

. Definition Used Here

Although an argument can be made for referring to
diverse types of products and processes by the term
“specification,” a compelling argument can also be
made for restricting the term in order to avoid con-
fusion. In this module, we will avoid completely
use of the term for any of the usual life-cycle prod-
uct or process types. Instead, we will define
software specification as a plan or standard that pro-
vides a description/characterization of a software
product or process type. This definition allows us to
emphasize “good” software engineering, in that we
focus on planning before execution.

A software specification, then, becomes a product
resulting from the planning process. Execution of
the “plan” results in the instantiation of a particular
product or process. (See Figure 2, p. 21) A
product specification describes how products of
some type should look; a process specification de-
scribes how processes of some type should be per-
formed. In cases where planning is informal, im-
plicit, or haphazard, specifications are not explicitly
constructed.

Consider software design as an example. This might
involve:

e The specification of the input product type
(requirements product), including a formal
syntax and semantics description for the
requirements document, or a standard,

SEI-CM-11-2.1

Software Specifications: A Framework

such as ANSI/IEEE-Std-830 on “software
reguirements specification” [IEEE84].

e The specification of the output product
type (design product), including a formal
syntax and semantics description for the
design document.

e The specification of the process type
(design process), including a guideline for
the use of specific design techniques, such
as Structured Design or object-oriented de-
sign.

As another example, consider software compilation,
which might involve:

e The specification of the input product type
(source code product), including the
source language definition, a coding style
handbook, and a language-oriented editor.

e The specification of the output product
type (object code product), the object code
definition.

e The specification of the process type
(compilation process), the compiler toal it-
self.

Other examples of process specifications are the
DoD 2167A standard on “software development”
[DoD88a] and the DoD 2168 standard on “software
quality assurance process’ [DoD88b].

As a general rule, existing specification techniques
—models, languages, methods, and tools used to in-
stantiate specifications into life-cycle products or
processes—are better suited (e.g., are more formal)
to the specification of (1) software product types,
rather than process types, and (2) types used in later,
rather than earlier, life-cycle phases.

3. A Framework for Understanding Specifications

This module presents a comprehensive framework
for understanding software specifications and related
issues. The framework includes:

o areference life-cycle model and terminol-
ogy,

e a characterization scheme for software
product and process specifications,

e guidelines for using the characterization
scheme to identify clearly certain life-
cycle phases, and

e guidelines for using the characterization
scheme to select and evaluate specification
techniques.

The framework provides atool for understanding the
literature and provides background and context for
other specification-related curriculum modules (e.g.,
[Brackett90] and [Budgen89]).

SEI-CM-11-2.1

Within the framework, we characterize any product
or process specification by
¢ the purpose and context of the specified
product or process type,

» the content of the type of product or proc-
ess of interest,

o the representation format used to capture
the content, and

e available support for the creation of the
life-cycle products or execution of proc-
esses of the type of interest.

The characterization scheme can be used to

e Characterize the specification needs of a
project.

e Characterize candidate specification tech-
nigues.

e Select the appropriate specification tech-
niques by comparing the project specifi-
cation needs with the characteristics of
candidate specification techniques to find
the best match.

¢ Evaluate specification techniques used by
comparing observed characteristics to ex-
pected ones and, if necessary, suggest
changes for future projects.

In this module, we will use the reference life-cycle
model and characterization scheme to identify
clearly several important life-cycle phases and to an-
alyze these phases within our framework.

I1. A Reference Software Life-Cycle Model and

Terminology

Many different software life-cycle models exist (e.g.,
waterfall [Royce70], iterative enhancement [Basili75],
spiral [Boehm86], and prototyping [Boehm84]). They
have in common certain types of products (e.g., re-
quirements, design, code). They differ substantially,
however, in the types of processes used to build those
products. From this observation, we may construct a
reference life-cycle model that posits the existence of
certain product types filling specific roles within a soft-
ware development context but that makes no particular
assumptions about the mechanisms by which products
are actually built.

Such a reference life-cycle model is shown in the
leftmost column of Figure 1, p. 20, where we assume
the existence of the following product types (we do not
distinguish between deliverable products and
documents):

o Software needs, which are predominantly
concerned with the questions: What de-
mands exist? What needs should a proposed
software product attempt to fulfill?

o Customer/user-oriented software require-

Software Specifications: A Framework

ments (C-requirements), which are predomi-
nantly concerned with the question: What
functional and non-functional characteristics,
from a customer’s or user's point of view,
must a product exhibit to meet those needs?

¢ Developer-oriented software requirements
(D-requirements), which are predominantly
concerned with the question: What function-
a and non-functional characteristics, from a
software developer’s point of view, must a
product exhibit to meet those needs?

o Software design, which is predominantly
concerned with the question: How can a
product be built to behave as described by the
D-requirements?

e Code, which is predominantly concerned
with the question: How is the product ac-
tually implemented on some machine using a
particular technology?

The reference life-cycle terminology used in this cur-
riculum module is depicted in the rightmost column of
Figure 1. Whenever possible, we refer to processes
and the resulting products of some type under the same
name (e.g., “design process’ and “design product”).
More detailed characterizations of the product and
process types related to C-requirements, D-
reguirements, and design are contained in section 1V.

Inconsistent terminologies are used in different indus-
trial software development organizations and in the
literature. Examples of commonly used terms are
shown in the middle column of Figure 1. The reader
may map his or her preferred or local terminology (and
associated practice) to the reference terminology as re-
quired. Possible inconsistencies between the reader’s
terminology and the reference life-cycle terminology,
along with resolutions enabling the application of our
discussion to the reader’s circumstances, include the
following:

e The reader uses a different name than the ref-
erence model to refer to the same product or
process type. Resolution is straightforward
here, of course, as the reader can simply sub-
stitute one name for another. For example,
the reader may prefer using the term
“requirements definition” to refer to what we
call “C-requirements product.” The entire
discussion of “C-requirements products’ in
this module applies to “requirements
definitions,” according to the reader’s termi-
nology.

The reader identifies several types that col-
lectively encompass one or more product or
process types of the reference model, or vice
versa, and a 1-1 mapping is not possible. In
this situation, a more complex mapping is
needed. For example, in the reader’s termi-
nology two product types, “behavioral

specification” and “functional specification,”
may play the same role as our “D-
regquirements product.” The entire discussion
related to “D-requirements products’ in this
module applies to both “behavioral
specifications” and “functional specifica-
tions.”

Due to the structuradl model chosen for the
deliverable product, the reader deals with
several instances of a product or process type
of the reference model. In this case, multiple
types may be distinguished with appropriate
qualifiers and treated as instances of types
described in this module. For example, if the
product is structured into system, subsystems,
and modules, the reader may identify a cor-
responding number of instances of types de-
sign product and design process.

[11. A Characterization Scheme for Software

Specifications

This section incorporates ideas from [Abbott86],
[Sommerville89], [Firth87], and elsewhere. The scheme
presented enables the characterization of any software
product or process specification in terms of the purpose
and context of the specified product or process type,
the content of the specified type, the representation
used, and the support for product creation or process
execution.

1. Purpose and Context

Specifications describe al important characteristics
of a particular software product or process type in
some format. The desirable characteristics, as well
as the appropriate format for representing them, are
determined by the purpose and context of the type
within the software development project. We have
chosen to characterize purpose and context (in no
particular order) from product, process, use, and
peopl e perspectives.

a. Product perspective

Product and process specifications are ultimately
aimed at creating life-cycle products (i.e., project
deliverables) to satisfy the customer. Therefore,
it is assumed that the choice of product and proc-
ess gpecifications depends on the type of
deliverables to be developed. We characterize
product types by application and quality require-
ments.

(i) Application

The type of application has a deep impact on
what product or process aspects (see section
111.2.8) need to be specified. There are a num-
ber of possible classification schemes for soft-
ware applications, for example:

e schemes based on control-flow char-

SEI-CM-11-2.1

Software Specifications: A Framework

acteristics of the software system
(sequential, concurrent, real-time)

e schemes based on the application
(commercial, system, process con-
trol, scientific, embedded)

(i) Quality requirements

The need to satisfy particular software quality
requirements impacts both the aspects that
need to be specified and their attributes (see
sections I11.2.a-b). For example, the need for
maintainability may justify the explicit specifi-
cation of the design rationale in a traceable
form, so maintainers can trace changed require-
ments to affected design components.

An incomplete list of possible quality require-
ments includes:

e reliability
e correctness
o fault-tolerance
e maintainability
o portability
o user-friendliness
e availahility
b. Process perspective

Specifications serve different purposes in differ-
ent development process contexts. We charac-
terize the process perspective in terms of the
overal life-cycle model and its individual life-
cycle phases.

(i) Life-cycle models

Different life-cycle models, reflecting different
philosophies for creating software products, in-
corporate different product and process types
[Scacchi87].

(1) Waterfall model

The waterfall model [Royce70] is based on
the idea of producing product types at differ-
ent levels of abstraction (requirements, sys-
tem design, module designs, code) sequen-
tially, followed by the integration of code in
reverse order. Following this model in a
project means transforming, in alinear fash-
ion, the entire set of requirements into more
and more concrete solutions. Attempting to
feed lessons learned back into earlier stages
results in (acceptable) deviations from the
waterfall model. It must be remembered
that the waterfall model is just a model,
which is intended to stress the top-down
principle for software development. In prac-
tice, there exist many exceptions to this se-

SEI-CM-11-2.1

quential paradigm, reflecting the fact that er-
rors are committed in the application of this
principle.

(2) Iterative enhancement model

The iterative enhancement model [Basili75]
is based on the idea of producing the same
product types as for the waterfall model for
only some of the requirements at atime. The
idea is to alow for more effective learning-
based feedback from each of these “mini-
development” projects or to allow feasibility
analysis of some critical requirements (by
actually implementing them) before commit-
ting to the entire project. The product types
used according to the iterative enhancement
model might be the same used according to
the waterfall model. However, the process
types (or at least the instantiation patterns)
are very different.

(3) Prototyping model

The prototyping model [Boehm84] is based
on first concentrating on producing an oper-
ational software version for a limited set of
the overall requirements. This limited set of
reguirements excludes part of the functional
or non-functional overall requirements.
Very often, crucia man-machine interface
requirements or highly demanding perfor-
mance requirements are the reason for
prototyping. Prototyping is intended to help
in the process of developing an acceptable
C- or D-requirements product or to explore
the technical feasibility of requirements and
the associated risk. Prototyping is a way of
learning “fast” about crucial project issues.
The expectation is that this up-front invest-
ment pays off either by detecting early on
that it is infeasible to continue the project or
by creating an acceptable C- or D-
reguirements product that allows predictable
and controllable software evolution. The
goal is only to reuse the experience gained
during the prototyping process and feed it
back into creating better requirements, not
necessarily to reuse any products created as
part of the prototyping process. After ac-
ceptable requirements have been created, the
regular software evolution process can fol-
low any other lifecycle modd (eg.,
waterfall).

(4) Spira model

The spiral model [Boehm86] is based on a
risk-driven approach to software evolution.
Iterative development cycles are organized
in a spiral manner, with inner cycles
representing early analysis and prototyping,

7

Software Specifications: A Framework

and outer cycles representing the classic sys-
tem life cycle. This technique is combined
with risk analysis during each cycle. The
model is intended to identify situations that
might cause a development effort to fail or
go over budget or schedule. The spiral tech-
nigue incorporates ideas derived from the it-
erative enhancement model and the
prototyping model.

(i) Life-cycle products and processes

Product and process specifications are created
for, used in, affected by, and modified during
particular phases. These phases include, ac-
cording to our life-cycle reference model:

e software needs
o C-requirements
e D-requirements
o software design
e code

Additional project phases may include:

o verification and validation [Collo-
fello88]

e integration
e maintenance
e teaching and training

c. Use perspective

There exist a variety of different uses for specifi-
cations. We distinguish between uses for com-
munication, creation, modification, verification
and validation, and software quality assurance.

(i) Communication among people

Software projects include people. Specifica
tions are aimed at supporting their communi-
cations regarding the important product and
process characteristics and guidelines accord-
ing to which products are created and modi-
fied, and processes are executed and changed.
Specifications are a useful mechanism for
teaching and training people what products
should look like and how processes should be
executed. Also, the existence of specifications
alows project members to achieve reliable
consensus about their roles by making explicit
the project’ s purpose, context, and procedures.

(it) Creation of products

Many software project tasks are aimed at creat-
ing, in a traceable way, instances of one prod-

ess, in this case) help guide and control the
task. If al three specifications are completely
formal (see [Berztiss87]), the desired product
can be created automatically. In the best cur-
rent practice, most product types are explicitly
specified, whereas most process types are not.
Further, downstream product types tend to be
defined with greater formality that early-phase
ones. The degree of formality and specificity
in a process specification (or the lack thereof)
isindicative of the possible degree of guidance
and control. Process specifications can be used
by people (e.g., a designer uses a set of infor-
mal design guidelines) or by automated tools
(e.g., acompiler uses a formally specified pro-
cedure for transforming source code into object
code).

(iii) Modification of products and processes

Software projects require the ability to react to
changes. Changing product requirements dur-
ing development or enhancement requests dur-
ing maintenance typically requires modifica-
tions to existing products, with or without
changing the underlying product specification.
Changing project or environment characteris-
tics (e.g., addition of new personnel or intro-
duction of new technology) may require
modifications to existing processes and pos-
sibly to their underlying specifications. The
existence of explicit product and process speci-
fications permits the incorporation of changes
in a systematic way.

(iv) Verification and validation products

The purpose of verification and validation
(V&V) is to show that a life-cycle product of
some type (e.g., source code) is consistent with
a life-cycle product of a different type (e.g.,
design product) [Collofello88]. This kind of
cross-checking between products is facilitated
by the existence of explicit specifications.

(v) Assuring adherence to plans

Software quality assurance (SQA) is concerned
with assuring that software development is car-
ried out according to plan [Brown87]. Much of
the concern of SQA, then, is with comparing
software products and processes to their speci-
fications. Examples are checking whether a
design product is consistent with its specifica-
tion or whether a review process was con-
ducted according to established review guide-
lines.

uct type from instances of another (e.g., a de-
sign product from a D-requirements product).
Explicit specifications for both product types
and for the creating process (the design proc-

d. People perspective

Specifications are created or used by audiences
playing different project roles. Although some
specifications are intended for consumption by

SEI-CM-11-2.1

Software Specifications: A Framework

machines, people have to understand them in one
way or another. Examples of different project
audiences are listed below. (Some of the descrip-
tions are adopted from [Firth87].)

(i) Customers

The audience that contracts for the software
project and, in part, determines the C-
reguirements for the system.

(i) End-users

The audience that will install, operate, use, and
maintain the system after it is delivered, and
that, in part, determines the C-requirements for
the system.

(iii) Sub-contractors

The audience that performs development or
maintenance activities contracted out by the
primary development organization.

(iv) Requirements analysts

The audience that develops the C-requirements
product in conjunction with the customers and
end-users. Requirements analysts find a repre-
sentation format appropriate to customer and
end-user needs.

(v) Specification engineers

The audience that evolves the C-requirements
product into the D-requirements product. The
main objectives of specification engineers are
to resolve ambiguities, remove inconsistencies,
and represent the D-requirements in a format
suitable for the development audiences. This
often implies use of more forma represen-
tations for D-requirements than C-
requirements.

(vi) Designers

The audience that describes how the software
system is to be constructed to satisfy the cor-
responding D-requirements product. This in-
volves making optimization decisions about
the best way to proceed, given the constraints
imposed in the D-requirements product. Ex-
amples of such constraints are performance re-
quirements, resources available, and fault-
tolerance capabilities. These constraints often
influence the design as much as the required
behavior of the system.

There are basically two types of design proc-
esses: (1) designing a system that consists of a
set of communicating components and deter-
mining the functionality of the components,
and (2) designing the agorithms and data
structures encapsulated in those components.

SEI-CM-11-2.1

(vii) Implementors

The audience that takes the component design
products and develops the corresponding im-
plementation products (code).

(viii) V&V personnel

The audience that checks whether life-cycle
products are consistent with earlier life-cycle
products.

(ix) SQA personnel

The audience that checks whether life-cycle
products are created and life-cycle processes
performed according to their specifications.

(x) Configuration management personnel

The audience that assures the integrity of soft-
ware during and after development by initiat-
ing, evaluating, and controlling changes to the
product [Tomayko87].

(xi) Maintenance personnel

The audience that keeps the software system
operational and useful. Maintenance personnel
perform corrective, perfective, and adaptive
mai ntenance activities.

(xii) Managers

The audience concerned with filling leadership
roles, controlling the budgets and schedules re-
lated to the project, ensuring that problems are
recognized and resolved early, and dealing
with personnel assignments and problems.

2. Content

We characterize a specification also by its content,
that is, by the product or process aspects it addresses
and by attributes to be possessed by the represen-
tation of those aspects.

According to this view, the roles of product and
process specifications are not completely parallel.
To begin with, mechanisms for specifying process
types are much less developed than those for speci-
fying product types. (More on this below.) More
fundamentally, however, instantiation of a process
specification produces action, whereas that of a
product specification produces a static artifact, albeit
one either capable of animation (i.e., execution) or
descriptive of another artifact with such a capability.
Degpite this difference, we will treat products and
processes in paralel; examples will clarify the dif-
ferences wherever applicable.

a. Aspects

Four important aspects that may be addressed in a
specification are behavior, interface, flow, and

Software Specifications: A Framework

10

structure of the objects (products or processes)
specified. To discuss these, we first introduce
several definitions.

Dynamic characteristics of an object of any type
relate to its use. Dynamic characteristics of a
process can be captured during its execution (e.g.,
the set of all design decisions made by a designer
or historical data on the amount of time required
for design on past projects). Dynamic character-
istics of a product can be captured during its oper-
ational use by the customer/user or during its test-
ing phase.

Satic characteristics of an object of any type re-
late to its representation. Static characteristics of
a process should be described in its specification
(e.g., the stepsin a design process). Static aspects
of a product are described in the product itself and
in its specification (e.g., data structures or al-
gorithmic control structure of an Ada source code
product).

Functional characteristics of an object of any type
relate to its functional requirements. These can
be identified by analyzing what services are pro-
vided by the object (e.g., functions such as “store”
and “retrieve” provided by a product; generation
of aproduct of type “design” by a process).

Non-functional characteristics of an object of any
type relate to its non-functional requirements.
These can be identified by analyzing how services
are provided by the object (e.g., each of the above
product functions must be provided in time less
than t; the product of type “design” must be pro-
duced by the above process within a certain
period of time and within a certain budget).

External characteristics of an object of any type
relate to the black-box view of that object. Exter-
nal characteristics of an object can be identified
without knowledge of its actual implementation
(e.g., a product provides certain interface func-
tions or reacts to certain input stimuli in particular
ways; a process consumes certain inputs and pro-
duces certain output products).

Internal characteristics of an object of any type
relate to the white-box view of that object. Inter-
nal characteristics of an object are identified
based on knowledge of its actual implementation
(e.g., a product contains a number of modules
with certain bindings among them; a process con-
sists of a number of subprocesses).

We now use these definitions to characterize, ex-
plain, and distinguish aspects of products and
processes we may wish to address in specifica-
tions.

(i) Behavior (external, dynamic)

The externally observable response of a prod-
uct or process to stimuli in actua use. Be-
havior may include externally observable
states, outputs, or boundary conditions on the
validity of inputs and states. We distinguish
between functional and non-functiona be-
havioral aspects.

(1) Functional behavior

This may include the response of a product
to specific inputs or the requirement that a
certain pre-condition of a process results
(after execution) in a certain post-condition.

(2) Non-functiona behavior

This may include response time of a product
or the time alowed for completion of a
process.

(i) Interface (external, static)

The structure of the boundary between product
or process and its environment. We distinguish
between functiona and non-functional inter-
face aspects.

(1) Functional interface

This may include the set of functions pro-
vided by a product or the role a process
playsin software devel opment.

(2) Non-functional interface

This may include response-time constraints
on a product or a description of the required
synchronization points of a process with
other processes.

(iii) Flow (internal, dynamic)

The internal dynamics of a product or process
in actual use. This may include the flows of
control, data, and information between struc-
tural units of the product or process. (The dif-
ference between control flow, data flow, and
information flow is nicely explained in
[Henry81].) In the case of parallel processes,
we must aso consider such aspects as
synchronization. We distinguish among the
following:

(1) Control flow between sub-products or
sub-processes

(2) Dataflow between sub-products or
sub-processes

(3) Information flow between sub-products
or sub-processes

(4) Synchronization between executing
sub-products or sub-processes

SEI-CM-11-2.1

Software Specifications: A Framework

(iv) Structure (internal, static)

The organization of a product or process into
interacting parts. Thisincludes the decomposi-
tion of the whole into components or the com-
position of the whole from basic units. Ar-
chitectural, algorithmic, and data structures, as
well as the internal interfaces between sub-
structures, may be of interest. We distinguish
among:

(1) Architectural structure of a product or
process in terms of sub-products or
sub-processes

(2) Interfaces between sub-products or
sub-processes

(3) Algorithmic structure of a product or
process

(4) Data structures used in a product or
process

(5) Information structure across
sub-products or sub-processes

b. Attributes

In general, each of the aspects in (a) can be
represented in a variety of different forms. Pur-
pose and context of the product or process type of
interest require a suitable form of representation
to exhibit certain attributes.

For example, if the aspect “data flow” of a design
product needs to be validated, we may specify
that its representation needs to exhibit the attri-
butes “complete,” “consistent,” and “executable.”
If the “control flow” of a design process needs to
be validated, we may specify that its represen-
tation needs to exhibit the attribute “executable.”

(i) Correctness
Requirements are satisfied.
(ii) Completeness
All relevant information is captured.
(iii) Consistency
There are no internal or external contradictions.
(iv) Feasibility
Requirements are satisfied within the con-

straints imposed by the software evolution con-
text.

(v) Non-ambiguity
Alternative interpretations are not possible.
(vi) Clarity

The meaning of the representation is easily un-
derstood and communicated.

SEI-CM-11-2.1

(vii) Preciseness
The meaning is exact.
(viii) Formality

Formal syntax and semantics are used.
Various degrees of formality are possible.
Mathematical formalism is the subject of

[Berztiss87], [Bjarner82], [IWSSD82],
[IWSSD84], [IwSSD85], and [IWSSD87].
(ix) Abstractness

The description is at a particular level of ab-
straction. D-requirements are more abstract
(removed from the details of the eventual
implementation) than code.

(X) Structuredness (or modularity)

The description shows systematic structure.
Lessons learned regarding the production of
readable code by applying the concepts of
modularization and minimizing interfaces be-
tween modules should be applied to specifi-
cations of all types of products and processes.

(xi) Traceability

One is able to relate information items of cor-
responding product or process types. For ex-
ample, a C-requirements product is much more
helpful in the context of maintenance if it is
possible to trace changes made to the D-
requirements to certain components described
in the architectural design product.

(xii) Modifiability
Changes can be made easily whenever neces-
sary (e.g., during maintenance).

(xiii) Executability

The attribute of being automatically executable
on some machine. This characteristic alows
for validating the dynamic and behavioral char-
acteristics; the executability of more abstract
products (e.g., D-requirements) underlies the
quick-feedback idea of prototyping.

(xiv) Verifiability

Techniques (possibly formal) can be used to
check for consistency with requirements.

3. Representation

Certain software aspects (see 111.2.a) need to be
represented so they exhibit desired attributes (see
I11.2.b). The representation format chosen is based
on models and languages. Models alow the for-
mulation of aspects of interest. Languages allow the
well-defined reflection of those models in a form
that exhibits the desired attributes. We make the

11

Software Specifications: A Framework

12

distinction between models and languages to express
the different formal representational capabilities. In
practice, however, it is not always easy to distin-
guish between models and languages.

Our discussion may seem to be biased toward prod-
ucts, rather than processes. In fact, despite the rec-
ognized need for representing “process,” most
people use traditional product languages for the pur-
pose. Itiscurrently aburning research issue to iden-
tify appropriate mechanisms for process represen-
tations. (E.g., see the annua proceedings of the In-
ternational Software Process Workshop, which are
usualy published as specid issues of ACM
SIGSOFT’ s Software Engineering Notes.)

a Models

Specification models allow the formulation of and
reasoning about certain aspects of interest.

Anincomplete list of examples includes:
o functional models
* input-output models [Ross77]
* algebraic models [Guttag78]
* axiomatic models [Hoare69]
o finite state models [Parnas72]
o statecharts [Harel88a]
o stimulus-response models [Alford77]

o Petri net models [Peterson77, Bruno86,
Peterson81]

e control flow models
e constraint models

e module interconnection models [De-
Remer76]

o data structure models

e information flow models

e information structure models

e requirements net models [Alford77]
o data flow models [Babb85]

o entity-relationship models

o relational models [Teichrow77]

b. Languages

Specification languages allow the presentation of
specifications in a well-defined fashion [Bal-
zer81]. It isimpossible to give a complete list of
such languages; there are just too many. Most of
them alow the representation of more than one
aspect of the thing specified. For example, an
implementation language such as Ada alows rep-
resentation based on control flow, data flow, and
data structure models. Instead, we provide a
characterization of existing languages based on
whether they are formal or semi-formal or infor-

mal, whether they are textual or graphical, and the
language paradigm on which they are based.

We distinguish between formal, semi-formal, and
informal languages:

e Formal languages are based on formal
syntax and semantics [Berztiss87].

e Semi-formal languages are based on
some forma syntax and are usualy
graphically oriented.

o Informal languages are usually based on
natural language.

Most of the product (and process) specification
languages used in practice are semi-formal lan-
guages, combining formal and informal elements.
Most are based on a conceptua specification
model, a specific representation, or a develop-
ment approach.

We distinguish between
o tabular,
o textual, and
e graphical
representation languages.
We dso distinguish between different language
paradigms. Some important examples are:
e imperative
o declarative
e constraint oriented
o data-flow oriented

The reader interested in different language
paradigms is referred to any classical program-
ming language book.

4, Support

In practice, it is necessary to have effective support
for creating specifications, as well as for using them
during project execution. Most existing support ac-
tually addresses the instantiation of products accord-
ing to product specifications. We distinguish be-
tween methods that provide operational guidelines
based on some models and/or languages, and the
automation of those guidelines using computers.
There exists a mto-n relationship between methods
and tools. One method can be supported by an inte-
grated set of tools, a single tool, or severa tools
aternatively. Correspondingly, a tool may support
part of a method, an entire method, or several inte-
grated methods.

a. Methods

Popular examplesinclude:
e SREM [Alford77]

e Jackson Methodology [Cameron89,
Sutcliffe88, Cohen86]

SEI-CM-11-2.1

Software Specifications: A Framework

o SADT [Ross77]
o PSL [Teichrow77]
e Structured Analysis [DeMarco79, Your-

a. Purpose and context

The purpose and context of products of type C-
reguirements can be characterized as follows:

don89]

o Real-time specification methods [Rzep-
ka85, Hatley87]

These methods are discussed in detail in relevant
SEI curriculum modules (e.g., SA, SADT, and
SREM in [Brackett90]).

b. Tools

Popular examplesinclude:
o PSA [Teichrow77]
e REV S [Alford77]

e compilers and runtime environments for
all kinds of languages [Goldsack85]

o Statemate [Harel88b]

These tools will be discussed in detail in the ap-
propriate curriculum modules.

IV. A Characterization of Life-Cycle Phases

In this section, the characterization scheme of section
Il is used to define some of the phases within the
reference life-cycle model of section Il. We will pro-
vide definitions of C-requirements, D-requirements,
and design based on the purpose/context dimension
(section 111.1) and the content dimension (section
I11.2.8) of the characterization scheme. Figures 3a and
3b alow for the graphical representation of such
definitions. First, we characterize the purpose/context
of a specification within some software evolution proc-
ess (vertical axisin Figure 33). Second, we derive the
aspects that need to be described based on
purpose/context (horizontal axis in Figure 3a). Third,
we define desirable attributes for each aspect (vertical
axis in Figure 3b), considering also purpose/context.
Marked matrix elements in Figures 3a and 3b provide a
graphical representation of the scope of the correspond-
ing life-cycle phases of interest.

These definitions help us define particular software de-
velopment activities and serve to delineate the bounds
of related curriculum modules, such as those on re-
quirements analysis [Brackett90] and design
[Budgen89].

1. C-Requirements

C-requirements are predominantly concerned with
answering the question what functional and non-
functional characteristics, from a customer’s/user’s
point of view, must a software product exhibit? This
section characterizes products of type C-
requirements, using the characterization scheme in-
troduced in section |11 (partly reflected in figure 4).
Processes of type C-requirements are is treated in
[Brackett90].

SEI-CM-11-2.1

e Product Perspective: For our purposes
here, we generalize across all possible
application domains and quality require-
ments.

Process Per spective: For our purposes
here, we generalize across all possible
life-cycle models. We are interested in
product and process types related to
overall system requirements and their
validation.

o Use Perspective: C-requirements serve
as a basis for communication with the
customer and end-user. They define, in
a contractual sense, what functions a
software system must fulfill. In addi-
tion, they serve as input product for the
subsequent creation of the D-
reguirements, as reference document for
acceptance testing (V&V), and as the
potential starting point for maintenance
activities (especially in the case of per-
fective maintenance). The C-
requirements product is derived from
software needs; created during the C-
requirements process; used during de-
sign, verification and validation, and
maintenance activities; and modified
throughout the entire lifetime of the cor-
responding software system.

People Perspective: C-reguirements
are used by customers and end-users,
requirements analysts, specification en-
gineers, verification and validation
people, quality assurance personnel,
maintenance personnel, and managers.

b. Content

The content of C-requirements can be charac-
terized asfollows:

o Agpects. C-requirements address the
aspects behavior and interface, insofar
as they are important to establish a con-
tractual relationship with the customer
and user. Sometimes even structural as-
pects (i.e., design constraints) have to
be addressed if they are essential to
product creation (e.g., in the case of a
specific technical process that needs to
be controlled).

C-requirements can suffer from over-
specification, as well as under-
specification. Of course, it is desirable
to describe al aspects that are of inter-
est to the customer and user as com-

13

Software Specifications: A Framework

14

pletely as possible. On the other hand,
unnecessarily included items can restrict
the subsequent development choices
needlessly.

Abbott [Abbott86] provides a non-
exhaustive list of C-requirements is-
sues:

» why the user wants the system

* how the user intends to use the sys-
tem

» what other systems and procedures
will interface with the planned sys-
tem

» what expertise the people have who
will actually operate the system

*what information the system must
be able to handle

» whether there are any legal con-
straints (e.g., record retention re-
quirements)

» whether the system must enforce
any integrity constraints (e.g., access
limitations)

»what data processing functions the
system should perform for the user.

Optional issuesinclude:

» on what hardware must the planned
system operate

* in what programming language must
the system be written

* on what operating system must the
system beinstalled

» what expected load must the system
be able to handle (eg., in trans
actions per hour)

» what response time is needed from
the system

*what enhancements must be ex-
pected for the system after initial use

*what design qualities are expected
of the system

*what auditing processes must be
performed

*what physical constraints exist for
the system (e.g., need for air con-
ditioning because of location)

*what peripheral devices must be
used

e Attributes: The desirable attributes of

C-requirements cannot be characterized
easily without knowing the life-cycle
context and the application context.
Each of the attributes in section I11.2.b
might be of importance under certain

circumstances. However, the most de-
sirable attributes of C-requirements are
completeness (at least from the
customer’s perspective), consistency,
and clarity. In addition, depending on
the need for changes, it may be desir-
able for the product to be structured,
traceable, and formal.

2. D-Requirements

The purpose of D-requirements is to answer the
question what functions, from a developer’s point of
view, must a software system fulfill? This section
characterizes products of type D-requirements, using
the characterization scheme introduced in section |11
(partly reflected in Figure 5). Processes of type D-
reguirements are treated in [Brackett90].

a. Purpose and context

The purpose and context of products of type D-
reguirements can be characterized as follows:

e Product Perspective: For our purposes
here, we generalize across all possible
application domains and quality require-
ments.

Process Per spective: For our purposes
here, we generalize across all possible
life-cycle models. We are interested in
product and process types related to
overall system requirements and their
validation.

e Use Pergpective: D-requirements de-
fine, for the software developer, the
functional and non-functional character-
istics the product under development
must fulfill. Therefore, D-requirements
serve as a basis for communication with
the developer. In addition, they serve as
input product for the subsequent crea-
tion of the software design, as reference
document for the integration and system
testing (V&V), and as the potential
starting point for maintenance activities
(especially in the case of adaptive
maintenance). The D-requirements
product is evolved from the C-
requirements; created during the D-
requirements process; used during de-
sign, verification and validation, inte-
gration, and maintenance activities; and
updated throughout the entire lifetime
of the corresponding software product.
People Perspective: D-requirements
are used by sub-contractors, specifica-
tion engineers, designers, verification
and validation people, quality assurance
personnel, maintenance personnel, and
managers.

SEI-CM-11-2.1

Software Specifications: A Framework

b. Content

The content of D-requirements can be charac-
terized asfollows:

e Aspects: D-requirements address the
aspects behavior, interface, and
structure, insofar as they are important
to the developers. Due to the difference
in audience, D-requirements typicaly
are specified in a different format from
that used for C-requirements. Often
more formal languages are used (e.g.,
state-machine languages) than for C-
requirements (e.g., SADT).

D-requirements, too, can suffer from
over-specification, as well as under-
specification. Subseguent development
choices should not needlessly be
restricted.

Attributes: The desirable attributes of
D-reguirements cannot be characterized
easily without knowing the life-cycle
and the application contexts. Each of
the attributes in section 111.2.b might be
of importance wunder certain cir-
cumstances. However, the most desir-
able attributes of D-requirements are
completeness (at least from the
developer's perspective), consistency,
formality, traceability (from the C-
reguirements, to the design), and struc-
turedness. Traceability from the C-
reguirements specification can be easily
achieved if the D-requirements specifi-
cation evolves from the C-requirements
specification, rather than being a com-
pletely new product.

3. Design

The purpose of a design is to answer the question
how can a system be built to behave as described in
its related D-requirements? This section charac-
terizes the design phase, using the characterization
scheme introduced in section Il (partly reflected in
Figure 6). Processes of type design are treated in
[Budgen89].

a. Purpose and context

The purpose and context of products of type de-
sign can be characterized as follows:

e Product Perspective: For our purposes
here, we generalize across all possible
application domains and quality require-
ments.

o Process Per spective: For our purposes
here, we generalize across all possible
life-cycle models. We are interested in
product and process types related to

SEI-CM-11-2.1

overall system requirements and their
validation.

Use Perspective: Design products
serve as a basis for communication with
the subsystem or module designer or
implementor. In addition, they serve as
input product for the subsequent crea
tion of the subsystem or module design
or implementation, as reference docu-
ment for the module or subsystem inte-
gration testing (V& V), and as the poten-
tial starting point for local maintenance
activities. A design product is derived
from its related D-requirements product;
created as the result of a design process,
used during design, implementation,
verification and validation, integration,
and maintenance activities; and modi-
fied throughout the entire lifetime of the
corresponding software system.

People Perspective: Designs are used
by designers, implementors, verification
and validation people, quality assurance
personnel, maintenance personnel, and
managers. They define the overdl
structure of the software system to be
built. They define subsystems or mod-
ules, their functional requirements, and
interfaces between them. The function-
a requirements serve as the input for
the subsystem/module design activities,
as do the D-requirements for the overall
system design phase.

b. Content

The content of a design product can be charac-
terized asfollows:

Aspects: Designs address the aspects
flow and structure, insofar as they are
important for further development.
Which specific software aspects need to
be specified predominantly depends on
the project and application type. In the
case of information systems, the data
structure might be dominant; for em-
bedded systems, control flow, inter-
faces, and synchronization might be
dominant. Practical constraints during
design may include (1) the considera-
tion of ties between the software system
under development and its anticipated
target environment and (2) the aware-
ness of compatibility with the chosen
implementation language and hardware.

e Attributes. The desirable attributes of

designs cannot be characterized easily
without knowing the life-cycle and ap-
plication context. Each of the attributes

15

Software Specifications: A Framework

V.

16

in section 111.2.b may be of importance
under certain circumstances. However,
the most desirable attributes of designs
are completeness (at least from the
implementor’s perspective), consisten-
cy, formality, traceability (from the D-
requirements, to lower-level designs or
code), clarity, and structuredness.

4. Other Object Types

There are many other software objects for which
sound specifications are needed. Examples are:

* management processes (e.g., monitoring
schedule adherence)

e management products (e.g., schedules)
o other life-cycle processes (e.g., testing)
e analysis processes (e.g., measurement)

It is important to understand all aspects of the soft-
ware life-cycle. The first step to better understand-
ing is the ability to specify all aspects. The more
formally a process or product type can be specified,
the better it can be communicated, taught, executed,
and improved. Broadening our view of life-cycle
objects that need to be specified from just the con-
ventional products (including documents) to al
types of products and processes involved in software
evolution is the objective of this section.

Individual software development organizations es-
tablish their own specification standards. Most of
these standards are not well documented. The two
major sources of standards are the Department of
Defense and ANSI/IEEE. Examples of standards
from those sources are:

eDoD Std 2167A on “Software
Development” [DoD88a]

eDoD Std 2168 on “Software Quality
Assurance” [DoD88b]

e ANSI/IEEE Std 830 on “Software Re-
quirements Specification” [IEEE84]

Guidelines for Selecting and Evaluating
Specification Techniques

One important application of the characterization
scheme of section Il is its use in selecting and evalu-
ating specification techniques. Although thisis an im-
portant topic, we can deal with it only briefly here.

1. Selection of Proper Specification Techniques

For selecting an appropriate specification technique,
the framework should be applied as follows:

a. Define specification requirements

o Explicitly define purpose/context (111.1)
and aspects (111.2.8) of the specification
type of interest by using the matrix

depicted in Figure 3a. The selection of
methods and tools only makes sense in
the context of a specific project or proj-
ect type.

¢ Derive, for each specification aspect of
interest, the appropriate attributes
(I1.2.b), using the matrix depicted in
Figure 3b.

b. Chose specification techniques

¢ Select models and languages (111.3) that
best match the derived aspect-attribute
matrix. Obviously, this selection would
be most efficient if we had definitions
of a number of candidate models and
languages in the form of the matrix in
Figure 3b.

o Select methods (11.5.a) and tools (11.5.b)
that best support use of the selected
models and languages.

2. Evaluation of Specification Techniques

The evaluation of techniques needs to be done with
respect to some goal [Basili88]. The characterization
of a technique according to our framework has two
advantages in this context: (1) it provides valuable
input as to what evaluation goals might be of interest
(e.g., quality requirements [I11.1.a.ii]), and (2) it pro-
vides a basis for relating negative or unsatisfactory
observations regarding the effects of a technique to
particular characteristics or to actual use of the tech-
nique (e.g., a C-requirement technique may be in-
effective because it is too formal for the customer to
understand).

We can think of two kinds of evaluations: (1) evalu-
ating whether a chosen technique actually possesses
the characteristics promised by its creator or ex-
pected by us or (2) evaluating whether a chosen
technique achieves the expected impact on software
quality or productivity.

The first type of evaluation is relatively easy. The
evauation goal is implicitly defined by the original
characterization of the technique on which its selec-
tion was based (see IV.1). We can develop a second
characterization during the use of the technique in a
real project, reflecting our actual experience. This
actual characterization can then be compared with
the original characterization.

The second type of evaluation requires more plan-
ning. Evaluation goals should identify the perspec-
tive (i.e., the audience for this evaluation), which
can be derived from the people dimension of our
framework, as well as a characterization of the envi-
ronment (the life-cycle model that was used and the
application type), which can be derived from the
process and application context dimensions of our

SEI-CM-11-2.1

Software Specifications: A Framework

framework. Perhaps the hardest part of the evalu-
ation process for specification techniques is for-
mulating recommendations about what should be
improved: train people better, choose better tech-
niques, make sure that techniques are more
thoroughly applied, or apply different life-cycle
models or management structure. Defining expec-
tations for the use of a technique based upon our
framework and selecting it according to the proce-
dure presented in section IV.1. allows comparison of
expectation to reality, thus providing a more objec-
tive basis on which to improve existing techniques
or select better-suited ones than is otherwise avail-
able.

It is important to recognize that evaluation, although
potentially time-consuming and expensive, is neces-
sary to guarantee improvement in the way we select
and use specification techniques.

V1. Assessment of Current Maturity and Future
Directions

Many people have a limited view of what software
life-cycle objects are subject to specification and how
they should be specified. Commonly held beliefs in-
clude:

¢ Only product types, not process types, need
be specified.

¢ Product types in later phases of the life cycle
should be specified more formally.

o Specifications are mostly used for purposes
of communication and validation.

These attitudes provide fertile ground for change. Fu-
ture developments are likely to include:

¢ The broadening of the notion of specification
to al product and process types in the context
of software evolution.

e The development of specific process specifi-
cation languages.

e The introduction of greater formality of spec-
ification.

e The generation of custom-tailored environ-
ment components (e.g., database schemes)
from specifications of the software processes
to be supported.

This prediction is motivated by the many needs of the
software community, all ultimately aimed at improving
productivity and quality of software evolution and its
resulting products:

¢ Better understanding of the software evolu-
tion process itself.

o Better control of process executions.

e Better traceability and predictability of the
impact of decisions made early in the project.

o Better basis for reuse.

SEI-CM-11-2.1

e Better basis for constructing automated envi-
ronments that actually support some
predefined set of processes.

¢ A basis for employing generator technology
for building environment components from
process specifications.

Glossary

The following terminology is used throughout the
module, except in the abstracts found in the bibliog-

raphy.

process

Each activity or action that consumes (or is in-
tended to consume) input products and/or pro-
duces (or is intended to produce) output prod-
ucts, e.g., the overall software life cycle, each
life-cycle activity (such as designing or testing),
or even each action of the compilation process.
Processisused in avery general sense.

process type

A class of processes with common characteris-
tics. For example, al development processes
executed according to some standard X are said
to be of type X.

product

Each document or artifact created during (or for)
aproject is a product, independent of whether or
not it is designated for delivery to the customer
(e.g., design document, code, measurement data,
project plan). This is a broader definition than
that of the IEEE (“[a] software entity designated
for delivery to auser”) [IEEE83].

product type
A class of products with common characteris-
tics. For example, all requirements products cre-
ated according to some standard X are said to be
of type X.

project execution stage

The project activities concerned with performing
the project according to the plans (specifica
tions) produced in the preceding planning stage.
(See software project model.)

project feedback stage

The project activities concerned with monitoring
the effectiveness of the specifications used dur-

17

Software Specifications: A Framework

ing the execution stage, evaluating those results
after execution, and feeding them into the plan-
ning stages of future projects. (See software
project model.)

project planning stage

The project activities preceding the actual ex-
ecution stage of a project. This stage is con-
cerned with creating specifications of al
relevant product and process types. This in-
cludes all products, whether deliverables or not,
and processes for management, construction,
control, and analysis. (See software project
model.)

requirement
Any function, constraint, or other property that
must be provided, met, or satisfied to fill the
needs of the system’'s intended user(s)
[Abbott86].

softwar e development

The process of translating customer/user needs
into a system for operational use [[EEES83].

softwar e evolution

The process of software development and main-
tenance.

softwar e maintenance

The process of modifying a product after
delivery to correct faults (corrective mainte-
nance), to improve performance or other attri-
butes (perfective maintenance), or to adapt the
product to a changed environment (adaptive
maintenance).

softwar e project model

The software project model underlying this cur-
riculum module is based on (1) planning, (2) ex-
ecution, and (3) evaluation-based feedback
stages. Conventional life-cycle models describe
the execution part. Specifications are created
during planning, used to control the performance
of processes and the creation of products during
execution, and evaluated after execution during
the feedback stage.

specification
A plan or sandard that provides a
description/characterization of a software prod-
uct or process type. A specification is itself a
product resulting from the planning process. A
process specification describes how processes of

18

some type should be performed; a product speci-
fication describes how products of some type
should look. Having process and product speci-
fications available allows us to instantiate indi-
vidual processes and products from such specifi-
cations during project execution. It should be
clear that the term specification refers to the de-
scription of a product or process type, not to the
individual product or process.

Among its definitions for specification,
[Webster87] gives:

1. The act or process of specifying.

2. A detaled precise presentation of
something or of a plan or proposal
for something ... a statement of legal
particulars (as of charges or of con-
tract terms).

According to [IEEE83], specification in the con-
text of software engineeringis:

1. A document that prescribes, in a
complete, precise, verifiable manner,
the requirements, design, behavior,
or other characteristics of a system
or system component.

2. The process of developing a specifi-
cation.

SEI-CM-11-2.1

Software Specifications: A Framework

Figure 1.
Figure 2.

Figure 3a.
Figure 3b.

Figure4.
Figureb.
Figure®6.

SEI-CM-11-2.1

Figures

Reference life-cycle model and terminology.
Planning/Execution/Feedback-Based Project Model.
Purpose & Context vs. Content (Aspect).

Content (Attributes) vs. Content (Aspects).
C-Requirements Characterization.

D-Requirements Characterization.

Design Characterization.

19

Software Specifications: A Framework

Figure 1. Reference life-cycle model and terminology.

Reference
Life-cycle
Model

Existing
Life-cycle
Terminologies

Reference Life-cycle
Terminology
(used in this module)

Software
Needs

Customer/User
Oriented Software
Requirements

Developer
Oriented Software
Requirements

Market Analysis
System Analysis
Business Planning
System Engineering

Context Analysis

Market Needs, Business Needs
Demands, System Requirements
Operational Requirements

Needs Product

Requirements Analysis
Requirements Definition
System Specification

C(ustomer/User-oriented)-
Requirements Process

Requirements
Requirements Definition
Requirements Document
Requirements Specification
Functional Specification

C - Requirements
Product

Specification

D(eveloper-oriented)-
Requirements Process

Behavioral Specification
System Specification
Functional Specification
Specification Document
Requirements Specification

D - Requirements
Product

Software
Design

Software
Implementation

Design

Design Process

Design

Design Document
Architectural Design
Algorithmic Design

Design Product

Coding
Implementation

Coding Process

Code
Implementation

Code

20

LEGEND:

Processes

C D

Products

SEI-CM-11-2.1

Software Specifications: A Framework

Figure 2. Planning/Execution/Feedback-Based Project Model.

> /\
/ Product
Specifications
Process
Specifications

PLANNING

Characterization

Project
Characteristics

Scheme

FEEDBACK
EXECUTION

LEGEND:

:Process
Process
O Product

=@ Information Flow

+ "is type description
for"

SEI-CM-11-2.1

Software Specifications: A Framework

22

Figure 3a. Purpose & Context vs. Content (Aspect).

PURPOSE
& CONTEXT

ASPECT:

1. 2. a.

[vy)
)
3
<.
o
=

Interface

Flow

Structure

Functional

Non-Func.

Functional
Non-Func.

Cont.Flow

Data Flow
Inf. Flow

Architect.

Interface

Algor. Str.

Data Str.

Application Type 1:
* Sequential

« Concurrent

* Real-time

Application Type 2:
* Commercial

e Systems

* Process control

« Scientific

* Embedded

Quality Requirements:

« Reliability
 Correctness

« Fault-tolerance
* Maintainability
: Portability

Life-Cycle Models
* Waterfall

* lterative enh.

« Prototyping

* Spiral

Life-Cycle Phases

* Requirements

* Design
V&V

* Integration

* Maintenance

* Teaching

« Communication
« Creation

» Modification
V&V

* Assurance

« Customer

« End-user

« Sub-contractor
* Req. analyst

* Spec. engineer
« Designer

¢ Implementor

*V &V pers.

* QA pers.

« Conf. man. pers.
« Maintenance pers.
* Manager

SEI-CM-11-2.1

Software Specifications: A Framework

Figure 3b. Content (Attributes) vs. Content (Aspects).

CONTENT (ASPECTS) - lll. 2. a.

Behavior | Interface Flow Structure

Functional
Non-Functional
Functional
Non-Functional
Control Flow
Data Flow
Information Flow
Architectural Str.
Interface Str.
Algorithm. Str.
Data Structure
Info. Structure

Correctness

Completeness

Consistency

Feasability

Non-Ambiguity

Clarity

Preciseness

Formality

Abstractness

Structuredness
(Modularity)

c
0
N
T
E
N
T
N
T
T
R
|
B
u
T
E
s
-/

Traceability

Modifiability

Executability

TN =

Verifiability

SEI-CM-11-2.1 23

Software Specifications: A Framework

Figur e 4. C-Requirements Characterization.

PURPOSE
& CONTEXT

ASPECT:

2. a.

Interface

vs)
@
o
QD
<
o
]

Flow

Structure

Functional
Non-Func
Functional
Non-Func.
Cont.Flow

Data Flow

Inf. Flow

Synchr.

Architect.

Interface

Algor. Str.

Data Str.
Inf. Str

Application Type 1:
« Sequential

« Concurrent

* Real-time

Application Type 2:
« Commercial

* Systems

* Process control

« Scientific

* Embedded

~ 0O S OO0 =T
L=

Quality Requirements
« Reliability

« Correctness

« Fault-tolerance

« Maintainability

« Portability

°

Life-Cycle Models
« Waterfall

« |terative enh.

* Prototyping

: Spiral

‘

Life-Cycle Phases

(o

* Requirements

n un ®o o0 =T

« Design
V&V

« Integration

* Maintenance

« Teaching

LEGEND:

- Mandatory

Optional
(address
if possible)

Optional
(avoid if
possible)

« Communication
I11. | » Creation

1. |- Modification

c. Jev&v

* Assurance

n © n C

24

» Customer

» End-user
 Sub-contractor
* Req. analyst

* Spec. engineer
* Designer

« Implementor

*V &YV pers.

* QA pers.

» Conf. man. pers.
* Maintenance pers.
* Manager

ar =

| BHE |

® —T oo T

SEI-CM-11-2.1

Software Specifications: A Framework

Figure 5. D-Requirements Characterization.

ASPECT:
Interface Structure

[ve)
@
5
<.
o
=

PURPOSE
& CONTEXT

Functional
Non-Func
Functional
Non-Func.
Cont.Flow
Data Flow
Architect.
Interface

Algor. Str.
Data Str.

Application Type 1:
« Sequential

e Concurrent
 Real-time

Application Type 2:
* Commercial

* Systems

* Process control
« Scientific

* Embedded

Quality Requirements:
* Reliability

« Correctness

* Fault-tolerance

» Maintainability

: Portability

Life-Cycle Models
« Waterfall

« Iterative enh.
« Prototyping
« Spiral

Life-Cycle Phases

* Requirements

* Design
V&V

* Integration

* Maintenance

* Teaching

« Communication

* Creation
« Modification
. V&V
LEGEND: * Assurance
- Mandatory : CElrL]JZt_?Jr;;r
« Sub-contractor
Optional : zeq. anal;_/st
(address : Dzzic'nee?gmeer
if possible) : |mplgmentor
V&YV pers.
Optional * QA pers.
(avoid if « Conf. man. pers.
i « Maintenance pers.
possible) - Manager

SEI-CM-11-2.1 25

Software Specifications: A Framework

26

Figure 6. Design Characterization.

PURPOSE
& CONTEXT

ASPECT: IIl. 2. a.

[vy)
)
5
<.
o
]

Interface

Flow Structure

Functional

Non-Func.

Functional
Non-Func.

Cont.Flow
Data Flow
Architect.
Interface
Algor. Str.
Data Str.

Application Type 1:
* Sequential

« Concurrent
* Real-time

Application Type 2:
* Commercial

e Systems

* Process control

« Scientific

* Embedded

Quality Requirements:

« Reliability
 Correctness

« Fault-tolerance
» Maintainability
: Portability

Life-Cycle Models
* Waterfall

« lterative enh.

« Prototyping

* Spiral

Life-Cycle Phases
* Requirements

* Design

V&V

* Integration

* Maintenance

* Teaching

« Communication
« Creation

» Modification
V&V

* Assurance

« Customer

« End-user

« Sub-contractor
* Req. analyst

* Spec. engineer
« Designer

¢ Implementor

*V &V pers.

* QA pers.

« Conf. man. pers.

« Maintenance pers.

* Manager

SEI-CM-11-2.1

Software Specifications: A Framework

Teaching Considerations

Uses of this Material

The material presented in this module is intended to
be used in one of three ways:

1. As background material for teachers pre-
paring software engineering courses.

2. As the basis of an introductory unit on
requirements (C- or D-requirements) or
design.

3. As the basis of a stand-alone course on

the selection and assessment of software
engineering methods and tools.

Suggested Introductory Literature

The following nine books and papers are recom-
mended as introductory literature on the topics dealt
with in this module:

Abbott86 Gomaa86 Lamb88
DeMarco79 Hayes87 Rzepka85
Gehani86 Jensen79 Sommerville89

Suggested Course Schedule

The author has taught the material in this module as
a graduate course called “Assessment of Software
Reguirements Methods and Tools’ at the University
of Maryland. This course is a stand-alone course on
selection and assessment, as suggested above. The
planned schedule for this course (14 weeks, 2 hours
per week) is shown below. References to the mod-
ule outline are shown in parentheses.

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Week 13

Week 14

Presentation and discussion of
selection and evaluation criteria
for specifications (V).

Exercise: An informal software
specification is given to four
student teams, who are asked to
develop corresponding D-
requirements documents using
any of the following ap-
proaches. SADT, Petri nets, R
nets, NRL approach, algebraic
approach, or axiomatic ap-
proach. The teams are asked to
justify their choice and to deter-
mine the degree to which the
method used fulfill their expec-
tations.

Presentation and discussion of
C-/D-requirements specification
(1IV.1-2).

Presentation and discussion of

formal approaches to specifying
D-requirements.

Other specification types
(IV.3-4).

Presentation and discussion of
exercise by team 1.

Presentation and discussion of
exercise by team 2.

Presentation and discussion of
exercise by team 3.

Presentation and discussion of
exercise by team 4.

Course wrap-up.

Week 1 Overview of software evolution
(processes, products, etc.).

Week 2 Overview of life-cycle models
and the roles played by specifi-
cationsin these models.

Weeks3-5 Detailed presentation and dis-

SEI-CM-11-2.1

cussion of the characterization
scheme (I11).

The requirements document used in the class ex-
ercise describes a heating control system. It is one
of four informal sets of requirements that have been
used as examples within the specification commu-
nity [IWSSD87].

27

Software Specifications: A Framework

Exercises

Depending on individual course abjectives, the fol-

lowing student exercises may be useful:

28

1. Distribute an informal requirements doc-

ument and ask students to create a more
formal D-requirements document. (See
course description above.) Students can
be required either to use a particular
method or to chose one themselves from
a candidate set of available methods and
tools. Students should then assess the ef-
fectiveness of the method used.

. Provide a concrete project scenario (use

the characterization scheme in [11.1-2)
and ask students to chose and justify
their choice of the most appropriate spec-
ification methods(s) and/or tool(s)
(11.3-4).

. Provide students with corresponding D-

requirements, design, and code products.
Have them perform modification and/or
verification on these products and assess
which of the product characteristics are
helpful and which cause difficulties in
performing the tasks.

SEI-CM-11-2.1

Software Specifications: A Framework

Bibliography

Abbott86
Abbott, R. J. An Integrated Approach to Software
Development. New York: John Wiley, 1986.

This is a general software engineering text, organ-
ized as a collection of annotated outlines for product
types important to the development and mainte-
nance of software.

Alford77

Alford, M. “A Requirements Engineering Method-
ology for Real-Time Processing Requirements.”
IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977),
60-69.

Abstract: This paper describes a methodology for
the generation of software requirements for large,
real-time unmanned weapons systems. |t describes
what needs to be done, how to evaluate the interme-
diate products, and how to use automated aids to
improve the quality of the product. An example is
provided to illustrate the methodology steps and
their products and the benefits. The results of some
experimental applications are summarized.

Babb85
Babb, R. G,, Il. “A Data Flow Approach to Unify-
ing Software Specification, Design, and

Implementation.” 3rd Intl. Workshop on Software
Secification and Design. Washington, D.C.: IEEE
Computer Society Press, 1985, 9-13.

Abstract: Specifying reguirements for software sys-
tems is a complex and frequently frustrating proc-
ess. A major source of difficulty is that require-
ments engineering and system devel opment involves
a wide range of people, including both computer
specialists and non-specialists. This paper de-
scribes a unified approach to software specification
and design that relies on executable data flow
diagrams to serve as a basis for communication
among those involved in system devel opment.

Balzer81

Balzer, R., and N. Goldman. “Principles of Good
Software Specification and Their Implications for
Specification Languages.” AFIPS Conference
Proceedings. Vol. 50, 1981 National Computer
Conference. Arlington, Va.: AFIPS Press, 1981,
393-400.

Abstract: Careful consideration of the primary
uses of software specifications leads directly to
three criteria for judging specifications, which can

SEI-CM-11-2.1

then be used to develop eight design principles for
“good” specifications. These principles, in turn,
result in eighteen implications for specification lan-
guages that strongly constrain the set of adequate
specification languages and identify the need for
several novel capabilities such as historical and fu-
ture references, elimination of variables, and result
specification.

Basili75

Basili, V. R, and A. J. Turner. “Iterative Enhance-
ment: A Practical Technique for Software
Development.” |IEEE Trans. Software Eng. SE-1, 4
(April 1975), 390-396.

Abstract: This paper recommends the “iterative
enhancement” technique as a practical means of
using a top-down, stepwise refinement approach to
software development. This technique begins with a
simple initial implementation of a properly chosen
(skeletal) subproject which is followed by the
gradual enhancement of successive implementations
in order to build the full implementation. The de-
velopment and quantitative analysis of a production
compiler for the language SMPL-T is used to dem-
onstrate that the application of iterative enhance-
ment to software development is practical and effi-
cient, encourages the generation of an easily
modifiable product, and facilitates reliability.

Basili88

Basili, V. R., and H. D. Rombach. “The TAME
Project: Towards Improvement-Oriented Software
Environments.” |EEE Trans. Software Eng. SE-14, 6
(June 1988), 758-773.

Abstract: Experience from a dozen years of analyz-
ing software engineering processes and products is
summarized as a set of software engineering and
measurement principles that argue for software en-
gineering process models that integrate sound plan-
ning and analysis into the construction process.

In the TAME (Tailoring A Measurement Environ-
ment) project at the University of Maryland we have
developed such an improvement-oriented software
engineering process model that uses the goal/
question/metric paradigm to integrate the construc-
tive and analytic aspects of software development.
The model provides a mechanism for formalizing
the characterization and planning tasks, controlling
and improving projects based on quantitative anal-
ysis, learning in a deeper and more systematic way
about the software process and product, and feed-
ing the appropriate experience back into the current
and future projects.

29

Software Specifications: A Framework

The TAME system is an instantiation of the TAME
software engineering process model as an ISEE
(Integrated Software Engineering Environment).
Thefirst in a series of TAME system prototypes has
been developed. An assessment of experience with
this first limited prototype is presented including a
reassessment of its initial architecture. The long-
term goal of this building effort is to develop a bet-
ter understanding of appropriate ISEE architec-
tures that optimally support the improvement-
oriented TAME software engineering process
model.

Berztiss87

Berztiss, A. Formal Specification of Software. Cur-
riculum Module SEI-CM-8-1.0, Software Engineer-
ing Institute, Carnegie Mellon University, Pitts-
burgh, Pa., Oct. 1987.

Capsule Description: This module introduces
methods for the formal specification of programs
and large software systems, and reviews the
domains of application of these methods. Its em-
phasisis on the functional properties of software. It
does not deal with the specification of programming
languages, the specification of user-computer inter-
faces, or the verification of programs. Neither does
it attempt to cover the specification of distributed
systems.

Bjgrner82

Bjarner, D., and C. B. Jones. Formal Specification
and Software Development. Englewood Cliffs, N.J.
Prentice/Hall International, 1982.

Boehm84

Boehm, B. W., T. E. Gray, and T. Seewaldt.
“Prototyping vs. Specifying: A Multi-Project Exper-
iment.” Proc. 7th Intl. Conf. Software Eng. New
York: |[EEE, 1984, 473-484.

Abstract: In this experiment, seven software teams
developed versions of the same small-size (2000-
4000 source instruction) application software prod-
uct. Four teams used the Specifying approach.
Three teams used the Prototyping approach.

The main results of the experiment were:

Prototyping yielded products with roughly
equivalent performance, but with about 40%
less code and 45% less effort.

The prototyped products rated somewhat
lower on functionality and robustness, but
higher on ease of use and ease of learning.
Soecifying produced more coherent designs
and software that was easier to integrate.

The paper presents the experimental data support-
ing these and a number of additional conclusions.

30

Boehm86

Boehm, B. W. “A Spiral Model of Software Devel-
opment and Enhancement.” ACM Software Engi-
neering Notes 11, 4 (Aug. 1986), 14-24.

This paper, reprinted from the proceedings of the
March 1985 International Workshop on the Soft-
ware Process and Software Environments, presents
Boehm’s spira model. The author’s description
from the introduction:

The spira model of software development and en-
hancement presented here provides a new
framework for guiding the software process. Its
major distinguishing feature isthat it creates arisk-
driven approach to the software process, rather
than a strictly specification-driven or prototype-
driven process. It incorporates many of the
strengths of other models, while resolving many of
their difficulties.

Brackett90

Brackett, J. W. Software Requirements. Curriculum
Module SEI-CM-19-1.2, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, Pa.,
Jan. 1990.

Capsule Description: This curriculum module is
concerned with the definition of software require-
ments—the software engineering process of deter-
mining what is to be produced—and the products
generated in that definition. The process involves
all of the following:

e requirements identification

e requirements analysis

e requirements representation

e requirements communication

o development of acceptance criteria and
procedures

The outcome of requirements definition is a precur-
sor of software design.

Brown87

Brown, B. J. Assurance of Software Quality. Curric-
ulum Module SEI-CM-7-1.1, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh,
Pa., July 1987.

Capsule Description: This module presents the un-
derlying philosophy and associated principles and
practices related to the assurance of software qual-
ity. It includes a description of the assurance acti-
vities associated with the phases of the software de-
velopment life-cycle (e.g., requirements, design,
test, etc.).

SEI-CM-11-2.1

Software Specifications: A Framework

Bruno86

Bruno, G., and G. Marchetto. “Process-Trandlatable
Petri Nets for the Rapid Prototyping of Process Con-
trol Systems.” IEEE Trans. Software Eng. SE-12, 2
(Feb. 1986), 346-357.

Abstract: This paper presents a methodology for
the rapid prototyping of process control systems,
which is based on an original extension to classical
Petri nets. The proposed nets, called PROT nets,
provide a suitable framework to support the foll ow-
ing activities: building an operational specification
model; evaluation, simulation, and validation of the
model; automatic trandlation into program struc-
tures.

In particular, PROT nets are shown to be trans-
latable into Ada® program structures concerning
concurrent processes and their synchronizations.
The paper illustrates this translation in detail using,
as a worked example, the problem of tool handling
in a flexible manufacturing system.

Budgen89

Budgen, D. Introduction to Software Design. Cur-
riculum Module SEI-CM-2-2.1, Software Engineer-
ing Institute, Carnegie Mellon University, Pitts-
burgh, Pa., Jan. 1989.

Capsule Description: This curriculum module pro-
vides an introduction to the principles and concepts
relevant to the design of large programs and sys-
tems. It examines the role and context of the design
activity as a form of problem-solving process, de-
scribes how this is supported by current design
methods, and considers the strategies, strengths,
limitations, and main domains of application of
these methods.

Cameron89

Cameron, J. R. JSP and JSD: The Jackson Approach
to Software Development, 2nd Ed. Washington,
D.C.: |EEE Computer Society Press, 1989.

A collection of articles and papers describing JSP
and JSD and illustrating these methods using a
range of examples of reasonable size and com-
plexity.

Good source material for the instructor. Source of
materia for student tutorials.

Cohen86

Cohen, B., W. T. Harwood, and M. |. Jackson. The
Soecification of Complex Systems. Reading, Mass.:
Addison-Wesley, 1986.

SEI-CM-11-2.1

Collofello88

Collofello, J. S. Introduction to Software Verifica-
tion and Validation. Curriculum Module SEI-
CM-13-1.1, Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, Pa., Dec. 1988.

Capsule Description: Software verification and
validation techniques are introduced and their ap-
plicability discussed. Approaches to integrating
these techniques into comprehensive verification
and validation plans are also addressed. This cur-
riculum module provides an overview needed to un-
derstand in-depth curriculum modules in the verifi-
cation and validation area.

DeMarco79

DeMarco, T. Sructured Analysis and System
Soecification. Englewood Cliffs, N.J.: Yourdon
Press, 1979. Also published by Prentice-Hall, 1979.

A very readable book on Structured Analysis and
system specification that covers data flow diagrams,
data dictionaries, and process specification.

DeRemer76

DeRemer, F., and H. H. Kron. “Programming-in-the-
Large Versus Programming-in-the-Small.” |EEE
Trans. Software Eng. SE-2, 6 (June 1976), 80-86.

Abstract: We distinguish the activity of writing
large programs from that of writing small ones. By
large programs we mean systems consisting of
many small programs (modules), usually written by
different people.

We need languages for programming-in-the-small,
i.e., languages not unlike the common programming
languages of today, for writing modules. We also
need a “ modul e interconnection language” for knit-
ting those modules together into an integrated
whole and for providing an overview that formally
records the intent of the programmer(s) and that
can be checked for consistency by a compiler.

DoD88a

DoD. Military Standard for Defense System Soft-
ware Development. DOD-STD-2167A, U.S. De
partment of Defense, Washington, D.C., 29 February
1988.

DoD88b

DoD. Military Sandard for Defense System Soft-
ware Quality Program. DOD-STD-2168, U.S. De-
partment of Defense, Washington, D.C., 29 April
1988.

31

Software Specifications: A Framework

scribed which can be used both to automate such
proofs of correctness and to derive an immediate
implementation from the axioms. This implemen-
tation allows for limited testing of programs at de-
sign time, before a conventional implementation is
accomplished.

Firth87

Firth, R,, et al. A Classification Scheme for Software
Development Methods. Technical Report CMU/SEI-
87-TR-41, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., June 1987.

Abstract: Software development methods are used
to assist with the process of designing software for
real-time systems. Many such methods have come
into practice over the last decade, and new methods

Harel88a
Harel, D. “On Visua Formalisms.” Comm. ACM 31,
5 (May 1988), 514-530.

are emerging. These new methods are more power-
ful than the old ones, especially with regard to real-
time aspects of the software. This report describes
a classification scheme for software development
methods, includes descriptions of the major charac-
teristics of such methods, and contains some more
words of advice on choosing and applying such
methods.

An elegant and clearly-written paper that discusses
anumber of important issues about model represen-
tation. While thefirst part of the paper is concerned
with general issues, the latter part provides an inter-
esting exposition of statecharts, and includes a de-
tailed example in the form of a description of a
digital watch. The paper will be of particular inter-

est to instructors concerned with the imprecision of

Gehani86 the graphical notations frequently used to describe
Gehani, N., and A. D. McGettrick, eds. Software software requirements.
Secification Techniques. Reading, Mass.:

Harel88b

Harel, D., et al. “STATEMATE: A Working Envi-
ronment for the Development of Complex Reactive
Systems.” Proc. 10th Intl. Conf. Software Eng.
Washington, D.C.: IEEE Computer Society Press,
1988, 396-406.

Abstract: This paper provides a brief overview of
the STATEMATE system, constructed over the past
three years by i-Logix Inc., and Ad Cad Ltd.
STATEMATE is a graphical working environment,
intended for the specification, analysis, design and
documentation of large and complex reactive sys-
tems, such as real-time embedded systems, control
Gomaa86 and communication systems, and interactive soft-
Gomaa, H. “Software Development of Real-Time ware. It enables a user to prepare, analyze and
Systems.” Comm. ACM 29, 7 (July 1986), 657-668. debug diagrammatic, yet precise, descriptions of the

stem under development from three inter-related
Suitable for use by both instructors and students as A . D I

oints of view, turing structure, functionalit
an easily readable introduction to issues of real-time gnd behavior. Thggvi ewg are represented by threz;

Addison-Wesley, 1986.

A collection of papers on formal specification tech-
niques. This book addresses general principles, par-
ticular specification techniques, case studies of ac-
tual experiences, and systems for automatic gener-
ation of prototypes from specifications.

Goldsack85

Goldsack, S. J. Ada for Specification: Possibilities
and Limitations. Cambridge, England: Cambridge
University Press, 1985.

products. graphical languages, the most intricate of which is
the language of statecharts used to depict reactive
Guttag78 behavior over time. In addition to the use of

statecharts, the main novelty of STATEMATE is in
the fact that it ‘understands’ the entire descriptions
perfectly, to the point of being able to analyze them
for crucial dynamic properties, to carry out rigor-

Guttag, J. V., E. Horowitz, and D. R. Musser.
“Abstract Data Types and Software Validation.”
Comm. ACM 21, 12 (Dec. 1978), 1048-1064.

Abstract: A data abstraction can be naturally spec-
ified using algebraic axioms. The virtue of these
axioms is that they permit a representation-
independent formal specification of a data type. An
example is given which shows how to employ al-
gebraic axioms at successive levels of implemen-

ous animated executions and simulations of the de-
scribed system, and to create runing code automat-
ically. These features are invaluable when it comes
to the quality and reliability of the final outcome.

Hatley87

Hatley, D. J., and I. A. Pirbhai. Strategies for Real-
Time System Specification. New York: Dorset
House, 1987.

tation. The major thrust of the paper is twofold.
First, it is shown how the use of algebraic
axiomatizations can simplify the process of proving
the correctness of an implementation of an abstract
data type. Second, semi-automatic tools are de-

32 SEI-CM-11-2.1

Software Specifications: A Framework

This is a well-written text on Real-Time Structured
Analysis. This book should be read in conjunction
with [ward89] in order better to understand the ca-
pabilities of the notation. This text and [Ward85]
are dternative texts; the choice of a text for teach-
ing Real-Time Structured Analysis may depend
upon whether the computer tools to be used support
only the Hatley notation or only the Ward notation.

Hayes87
Hayes, lan, ed. Specification Case Sudies. Engle-
wood Cliffs, N.J.: Prentice/Hall International, 1987.

A collected set of case studies based on the use of
Z, providing a well-structured introduction to the
use of formal methods. The section on specification
of the UNIX filing system may involve sufficiently
familiar material to provide a good introduction for
many students.

Suitable for use by both instructors and students.

Heninger80

Heninger, K. L. “ Specifying Software Requirements
for Complex Systems. New Techniques and Their
Applications.” |IEEE Trans. Software Eng. SE-6, 1
(January 1980), 2-13.

Abstract: This paper concerns new techniques for
making requirements specifications precise, con-
cise, unambiguous, and easy to check for complete-
ness and consistency. The techniques are well-
suited for complex real-time software systems; they
were devel oped to document the requirements of ex-
isting flight software for the Navy's A-7 aircraft.
The paper outlines the information that belongsin a
requirements document and discusses the objectives
behind the techniques. Each technique is described
and illustrated with examples from the A-7 docu-
ment. The purpose of the paper is to introduce the
A-7 document as a model of a disciplined approach
to requirements specification; the document is
available to anyone who wishes to see a fully
worked out example of the approach.

Henry81

Henry, S, and D. Kafura *“Software Structure
Metrics Based on Information Flow.” |[EEE Trans.
Software Eng. SE-7, 5 (Sept. 1981), 510-518.

Abstract: Structured design methodologies provide
a disciplined and organized guide to the construc-
tion of software systems. However, while the meth-
odology structures and documents the points at
which design decisions are made, it does not pro-
vide a specific, quantitative basis for making these
decisions. Typically, the designers’ only guidelines
are qualitative, perhaps even vague, principles such
as “functionality,” “data transparency,” or
“clarity.” This paper, like several recent publica-

SEI-CM-11-2.1

tions, defines and validates a set of software metrics
which are appropriate for evaluating the structure
of large-scale systems. These metrics are based on
the measurement of information flow between sys-
tem components. Specific metrics are defined for
procedure complexity, module complexity, and
module coupling. The validation, using the source
code for the UNIX operating system, shows that the
complexity measures are strongly correlated with
the occurrence of changes. Further, the metrics for
procedures and modules can be interpreted to
reveal various types of structural flawsin the design
and implementation.

Hoare69
Hoare, C. A. R. “An Axiomatic Basis for Computer
Programming.” Comm. ACM 12, 10 (Oct. 1969),
576-580.

Abstract: In this paper an attempt is made to ex-
plore the logical foundation of computer program-
ming by use of techniques which were first applied
in the study of geometry and have later been ex-
tended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of
inference which can be used in proofs of the
properties of computer programs. Examples are
given of such axioms and rules, and a formal proof
of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical
and practical, may follow from a pursuance of these
topics.

IEEE83

IEEE. |IEEE Sandard Glossary of Software Engi-
neering Terminology. New York: |EEE, 1983.
ANSI/IEEE Std 729-1983.

Provides definitions for many of the terms used in
software engineering.

IEEE84

IEEE. |EEE Guide to Software Requirements
Soecifications. New York: |EEE, 1984. ANSI/
|EEE Std 830-1984.

IWSSD82

First Intl. Workshop on Software Specification and
Design. Washington, D.C.: |EEE Computer Soci-
ety Press, 1982.

IWSSD84

2nd Intl. Workshop on Software Specification and
Design. Washington, D.C.. |EEE Computer Soci-
ety Press, 1984.

33

Software Specifications: A Framework

IWSSD85

3rd Intl. Workshop on Software Specification and
Design. Washington, D.C.: |IEEE Computer Soci-
ety Press, 1985.

IWSSD87

4th Intl. Workshop on Software Specification and
Design. Washington, D.C.: |EEE Computer Soci-
ety Press, 1987. Also appears as ACM Software En-
gineering Notes 14, 3 (May 1989).

Jensen79

Jensen, R. W.,, and C. C. Tonies. Software
Engineering. Englewood Cliffs, N.J.: Prentice-Hall,
1979.

A collection of primarily management-oriented arti-
cles. Structured program design is covered.

Lamb88

Lamb, David Alex. Software Engineering: Planning
for Change. Englewood Cliffs, N.J.: Prentice-Hall,
1988.

This book introduces basic software engineering
concepts. Among other topics, it contains an
elaborate discussion of “specification and
verification.” Specific emphasis is placed on a-
gebraic specifications, trace specifications, and ab-
stract modeling.

Levine89

Levine, Linda, Linda H. Pesante, and Susan
B. Dunkle. Technical Writing for Software
Engineers. Curriculum Module SEI-CM-23-1.0,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Dec. 1989.

Capsule Description: This module, which is di-
rected specifically to software engineers, discusses
the writing process in the context of software engi-
neering. Its focus is on the basic problem-solving
activities that underlie effective writing, many of
which are similar to those underlying software de-
velopment. The module draws on related work in a
number of disciplines, including rhetorical theory,
discourse analysis, linguistics, and document de-
sign. It suggests techniques for becoming an effec-
tive writer and offers criteria for evaluating writing.

Mills86

Mills, H. D., C. Linger, and A. R. Hevner.
Principles of Information Systems Analysis and
Design. Orlando, Fla.: Academic Press, 1986.

This book describes an approach to requirements
definition for information systems that emphasizes
the use of models showing external system be-

34

havior. Black-box and state-machine models are
used, which are similar in concept to the form of
representation described in [Heninger80].

Parnas72

Parnas, D. L. “On the Criteria to be used in decom-
posing systems into modules.” Comm. ACM 15, 12
(Dec. 1972), 1053-1058.

Abstract: This paper discusses modularization as a
mechanism for improving the flexibility and com-
prehensibility of a system while allowing the shor-
tening of its development time. The effectiveness of
a “modularization” is dependent upon the criteria
used in dividing the system into modules. A system
design problem s presented and both a convention-
al and unconventional decomposition are described.
It is shown that the unconventional decompositions
have distinct advantages for the goals outlined. The
criteria used in arriving at the decompositions are
discussed. The unconventional decomposition, if
implemented with the conventional assumption that
a module consists of one or more subroutines, will
be less efficient in most cases. An alternative ap-
proach to implementation which does not have this
effect is sketched.

A truly “classical” paper, in the sense of being often
cited but probably rarely read. It isavery important
paper that lays down the basic ideas about infor-
mation hiding but in a very concise and compact
form. The discussion is based upon an example of a
problem that may not be very familiar to many
readers.

The teacher must read this paper; the student might
do better to settle for the teacher’ s interpretation.

Peterson77
Peterson, J. “Petri Nets,” ACM Computing Surveys
9, 3 (Sept. 1977), 223-252.

Thisisthe first widely circulated survey and tutorial
on Petri nets. It touches briefly on modeling with
Petri nets, basic definitions, analysis problems and
techniques, Petri net languages, and related models
of computation. A good introduction that should be
readable by any graduate student.

Peterson81

Peterson, J. L. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, N.J.: Prentice-Hall,
1981.

This books makes two important contributions. it
identifies a new class (called Petri net languages) in
the Chomsky hierarchy, and it organizes a set of
models of parallel computation into a lattice in
which the ordering is based on the expressive power
of amodel. Examples are given to show the proper

SEI-CM-11-2.1

Software Specifications: A Framework

inclusion among each adjacent pair of modelsin the
lattice. An excellent bibliography is provided.

Ross77

Ross, D. T., and K. E. Schoman, Jr. “Structured
Analysis for Requirements Definition.” IEEE Trans.
Software Eng. SE-3, 1 (Jan. 1977), 6-15.

Abstract: Requirements definition encompasses all
aspects of system development prior to actual sys-
tem design. We see the lack of an adequate ap-
proach to requirements definition as the source of
major difficulties in current systems work. This
paper examines the needs for requirements defini-
tion, and proposes meeting those objectives with
three interrelated subjects. context analysis, func-
tional specification, and design constraints. Re-
quirements definition replaces the widely used, but
never well-defined, term “ requirements analysis.”

The purpose of this paper is to present, in a con+
prehensive manner, concepts that apply throughout
requirements definition (and, by implication, to all
of system development). The paper discusses the
functional architecture of systems, the characteris-
tics of good requirements documentation, the per-
sonnel involved in the process of analysis, and man-
agement guidelines that are effective even in com-
plex environments.

The paper then outlines a systematic methodol ogy
that incorporates, in both notation and technique,
the concepts previoudly introduced. Reference is
made to actual requirements definition experience
and to practicable automated support tools that
may be used with the methodol ogy.

Royce70

Royce, W. W. “Managing the Development of Large
Software Systems. Concepts and Techniques.”
WESCON Technical Papers Volume 14, Western
Electronic Show and Convention. Los Angeles:
WESCON, 1970, 1-9. Reprinted in Proc. Sth Intl.
Conf. Software Eng., Washington, D.C.: |IEEE
Computer Society Press, 1987, 328-338.

Abstract: Gives the personal views of the author
about managing large software developments. He
has had various assignments during the past nine
years, mostly concerned with the development of
software packages for spacecraft mission planning,
commanding and post-flight analysis. In these as-
signments he has experienced different degrees of
success with respect to arriving at an operational
state, on-time, and within costs. He has become
prejudiced by his experiences and relates some of
these prejudices in the presentation.

SEI-CM-11-2.1

Rzepka85

Secial 1ssue on Requirements Engineering Environ-
ments. W. Rzepka and Y. Ohno, eds. Computer 18,
4 (April 1985).

The papers in this issue cover approaches such as
SADT and SREM, with special emphasis on real-
time applications.

Scacchi87

Scacchi, W. Models of Software Evolution: Life Cy-
cle and Process. Curriculum Module SEI-CM-10-
1.0, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Oct. 1987.

Capsule Description: This module presents an in-
troduction to models of software system evolution
and their role in structuring software development.
It includes a review of traditional software life-
cycle models as well as software process models
that have been recently proposed. It identifies three
kinds of alternative models of software evolution
that focus attention to either the products, produc-
tion processes, or production settings as the major
source of influence. It examines how different soft-
ware engineering tools and techniques can support
life-cycle or process approaches. It also identifies
techniques for evaluating the practical utility of a
given model of software evolution for devel opment
projectsin different kinds of organizational settings.

Sommerville89
Sommerville, |I. Software Engineering, 3rd Ed.
Wokingham, England: Addison-Wesley, 1989.

This book contains an easy-to-read introduction to
software engineering principles and issues. It em-
phasizes the early life-cycle stages, including
“software specification.”

Sutcliffe88
Sutcliffe, A. Jackson System Development. New
York: Prentice-Hall, 1988.

From the introductory chapter:

[Jackson System Development (JSD)] is organized
in three separate stages which guide the anayst
through the systems development process. Each
stage has a set of activities with clear start and end
points (this helps the analyst using the method) and
facilitates project control as deliverables can be
defined for each stage. The three stages can be
outlined briefly as follows.
(a) Modelling stage. A description is made
of the real world problem and the impor-
tant actions within the system are identi-
fied. Thisis followed by analysis of the
major structures within the system, called
entitiesin JSD. . . .

(b) Network stage. The system is devel oped

35

Software Specifications: A Framework

as a series of subsystems. First the major
structures are taken from the modelling
stage and input and outputs are added;
this is followed by the analysis of the
output subsystem which provides infor-
mation, and then of the input subsystem
which handles the user interface and vali-
dation. . . .

(c) Implementation stage. In this stage the
logical system specification, which is
viewed as a network of concurrently
communicating processes, is transformed
into a sequential design by the technique
of scheduling. This is followed by fur-
ther detailed design and coding. . . .

JSD begins by analysing the major system struc-
tures which are important to create a model of the
system problem, the entities. Then these structures
are connected together to create a network model
of the system, while at the same time the design is
elaborated by addition of other processes to create
output, and to handle input messages and user in-
teraction. The essence . . . is to create a system
model of reality first and then to add the function-
ality.
JSD is usually not considered to support require-
ments definition, but Jackson’s emphasis on model-
ing the problem domain makes it a viable alter-
native, for information systems, to functional, top-
down approaches such as Structured Analysis. This
book is unique in showing how JSD relates to more
widely used software requirements and design tech-
niques. [Ward89] also shows how its notation re-
lates to more widely used requirements notations.

Teichrow77

Teichrow, D. “PSL/PSA: A Computer Aided Tech-
nique for Structured Documentation and Analysis of
Information Processing Systems.” |IEEE Trans. Soft-

ware Eng. SE-3, 1 (Jan. 1977), 41-48.

36

Abstract: PSL/PSA is a computer-aided structured
documentation and analysis technique that was de-
veloped for, and is being used for, analysis and doc-
umentation of requirements and preparation of
functional specifications for information processing
systems. The present status of requirements defini-
tion is outlined as the basis for describing the prob-
lem which PSL/PSA is intended to solve. The basic
concepts of the Problem Statement Language are
introduced and the content and use of a number of
standard reports that can be produced by the Prob-
lem Satement Analyzer are briefly described.

The experience to date indicates that computer-
aided methods can be used to aid system develop-
ment during the requirements definition stage and
that the main factors holding back such use are not
so much related to the particular characteristics
and capabilities of PSL/PSA as they are to or-
ganizational considerations involved in any change
in methodol ogy and procedure.

Tomayko87

Tomayko, J. E. Software Configuration Manage-
ment. Curriculum Module SEI-CM-4-1.3, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., July 1987.

Capsule Description: Software configuration man-
agement encompasses the disciplines and tech-
niques of initiating, evaluating, and controlling
change to software products during and after the
development process. It emphasizes the importance
of configuration control in managing software pro-
duction.

Ward85

Ward, P. T., and S. J. Médlor. Structured Devel op-
ment for Real-Time Systems. New York: Yourdon
Press, 1985-1986. The three volumes in this series
are Introduction and Tools, Essential Modeling
Techniques, and Implementation Modeling Tech-
nigues.

This book is an alternative to [Hatley87] for teaching
Real-Time Structured Analysis.

Ward89
Ward, P. T. “Embedded Behavior Pattern Lan-
guages. A Contribution to a Taxonomy of CASE
Languages.” J. Syst. and Software 9, 2 (Feb. 1989),
109-128.

Abstract: With the increasing availability of CASE
tools, graphics-based software modeling languages
have the potential to play a much more central role
in the development process. Although some com-
parisons among these languages have been made,
no systematic classification based on the underlying
abstractions has been attempted. As a contribution
to such a classification, a class of languages desig-
nated Embedded Behavior Pattern (EBP) languages
is described and its members are compared and
contrasted. The EBP languages include the
Ward/Mellor and Boeing/Hatley Sructured Analy-
sis extensions, the Jackson System Development
notation, and Harel’s SateChart-Activity Chart
notation. These notations are relevant to the build-
ing of specification models because they display
clear one-to-one correspondences between elements
of the model and elements of the application
domain. These notations are also amenable to a
style of model partitioning that is related to object-
oriented development.

This paper is a detailed comparison of the notations
described in [Harel88a], [Hatley87], and [Ward85].

Webster87
Webster’'s Ninth New Collegiate Dictionary.
Springfield, Mass.: Merriam-Webster, 1987.

SEI-CM-11-2.1

Software Specifications: A Framework

Yourdon89
Yourdon, E. Modern Structured Analysis. Engle-
wood Cliffs, N.J.: Yourdon Press, 1989.

Probably the most comprehensive and up-to-date
book on the popular Structured Analysis method.

SEI-CM-11-2.1

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

