Educational Materials
CMU/SEI-93-EM-9
April 1993

Lecture Notes on
Engineering Measurement
for Software Engineers

Gary Ford

Academic Education Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office

HQ ESC/ENS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This work was funded by the U.S. Department of Defense.

Copyright © 1993 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn. FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Preface

Information for Instructors

Objectives

Where in the Curriculum to Use the Materials
Pedagogical Considerations

Suggestions for Class Exercises and Projects

o & w0 np R

Suggested Answers to Discussion Questions

5.1. Questions from “Introduction to Engineering Measurement”
5.2. Questions from “Measurement Theory for Software Engineers”
5.3. Questions from “Software Engineering Measures”

6. Further Reading

g o0 W N N P

12
13

16

Lecture Notes
Introduction to Engineering Measurement
Measurement Theory for Software Engineers

Software Engineering Measures

Classroom Materials
Transparency Masters

Software Measure Forms for Duplication

CMU/SEI-93-EM-9

CMU/SEI-93-EM-9

Lecture Notes on Engineering Measurement
for Software Engineers

Abstract: Measurement is a fundamental skill for engineers. To facilitate
teaching software engineering measurement, materials are provided to support
three lectures: introduction to engineering measurement, measurement theory,
and software engineering measures. These materials include lecture notes suit-
able for class handouts and additional information for instructors—educational
objectives, pedagogical considerations, suggestions for class projects, an anno-
tated bibliography, and transparency masters for use in the delivery of the
lectures.

Preface

Measurement is a fundamental skill for engineers, including software engineers.
Computer science programs, however, frequently do not teach either engineering mea-
surement in general or software engineering measurement in particular. This omission
can be attributed, at least in part, to three problems: the absence of the material from
most undergraduate computer science textbooks, the lack of familiarity with the mate-
rial on the part of instructors, and the newness of much of the knowledge about software
engineering measurement.

This package provides material for three 60-minute introductory lectures on aspects of
engineering measurement. These lectures can be used together or separately, and they
can be used at almost any level in a curriculum. They provide a foundation for subse-
guent, more detailed study of software engineering measurement.

The package has been designed to address the three problems identified in the first
paragraph. To augment existing textbooks and to help instructors become familiar with
software engineering measurement, the package includes three short expository docu-
ments, or “lecture notes™:

= Introduction to Engineering Measurement
= Measurement Theory for Software Engineers
= Software Engineering Measures

The third of these documents, in particular, includes material that first appeared in the
literature in 1992, and therefore has not yet been widely disseminated.

The package begins with information for instructors. It includes educational objectives
for the lectures, recommendations for using the materials, pedagogical considerations,

CMU/SEI-93-EM-9 v

suggestions for class exercises and projects, answers to selected discussion questions
from the lecture notes, and an annotated reading list.

The second portion of the package contains the three lecture notes documents. Each is a
stand-alone document intended to be photocopied and distributed to the students.
Throughout the lecture notes are several discussion questions, research questions, and
ideas for individual or class projects. We hope that these will help instructors engage
the students in learning the material.

The next portion of the package contains masters for making overhead transparencies.
These include many of the figures from the lecture notes, along with some of the discus-
sion questions and other material we thought might be useful in delivering the lectures.

Finally, there are the detailed forms discussed in the software engineering measures
lecture. Although these could be used as transparency masters, the very detailed
nature of the forms suggests that they should be photocopied and given to the students.
Some of the discussion questions and one of the suggested class projects require the
students to use the forms.

Vi CMU/SEI-93-EM-9

Information for Instructors

1. Objectives

The overall objective of the materials in this package is to give students a basic level of
knowledge and understanding of measurement and its application to software engineer-

ing.

The objectives of the lecture “Introduction to Engineering Measurement” are to enable
students to:
= understand and use the vocabulary of measurement, including the terms measure,
measurement, accuracy, and precision;
= recognize everyday examples of measurement in the physical world, and relate those
measurements to engineering;
= explain in general terms what engineers measure, why they measure, and how they
measure;
= explain the distinctions between product measures and process measures, between
static measures and dynamic measures, and between direct measures and derived
measures.

The objectives of the lecture “Measurement Theory for Software Engineers” are to
enable students to:
= understand the difference between a measure and a metric, and to use both terms
correctly;
= understand the measurement theory concepts of relational system, scale, admissible
transformation, and meaningful;
= explain how measurement can be used to reason about objects and relationships in
the physical world when direct reasoning fails;
< understand the nominal, ordinal, interval, ratio, and absolute classes of measure-
ment scales, and explain the limitations imposed by each on the kinds of meaningful
statements that can be made about measures in each class.

The objectives of the lecture “Software Engineering Measures” are to enable students to:

= understand the similarities and differences between software engineering measure-
ment and measurement in the traditional engineering disciplines;

= explain what can be measured and what should be measured by software engineers,
and why the two are not necessarily the same things;

= describe in general terms the measures of software size, effort, schedule, quality,
performance, reliability, and complexity;

CMU/SEI-93-EM-9 1

= describe important software attributes that we do not yet know how to measure;

= explain and use the SEI checklists for defining precise measurement of software
size, effort, and defect counts;

< explain the importance of, and give examples of, quantitative measurable software
requirements.

2. Where in the Curriculum to Use the Materials

These materials may be used in an undergraduate computer science curriculum at any
level. The introduction to engineering measurement can be used in conjunction with
any course that has a laboratory component, because a lab is an ideal environment in
which to learn to perform measurement. See [Northrop93] for more on measurement in
laboratories. The material on software engineering measures is appropriate in any
course in which the students are doing large programming projects, especially team
projects. The suggested class exercises fit well with such projects.

The lecture on measurement theory requires that the students be able to read mathe-
matical notation, so it probably should be used after they have had a good calculus or
discrete mathematics course.

Although the three lectures are closely related, they can be delivered individually. The
instructor may need to provide some additional material or vocabulary from the other
lectures, but there is not a strong dependency of any lecture on any other. However, if
the introduction to engineering measurement is not followed relatively closely by the
software engineering measures lecture, the instructor should develop some additional
examples of measurement that are relevant to the current course.

3. Pedagogical Considerations

Engineering education should prepare students to be inquisitive and inventive—to be
able to discover and construct new knowledge when it is needed. This requires the
instructor to rely less on pure lecture and more on guided discussion and experiment.

The materials in this package include more than 20 discussion and research questions
for the students. These will help the instructor engage the students in the learning
process. We recommend that instructors use as many questions as possible, either in
class, in labs, or as homework assignments. Ideally, the instructor can use them to help
the students relate the measurement concepts to their everyday lives, and to see paral-
lels between the engineering of software and the engineering of everyday products.
Seeing these relationships helps the students remember and understand the concepts.

Suggested answers to most of the discussion questions are included in Section 6 of this
document. However, for most questions, there is no one right answer. The instructor
can use the suggested answers as a starting point, but should guide the students in
exploring a range of answers.

2 CMU/SEI-93-EM-9

The research questions are distinguished from the discussion questions in that they
probably will require the students to go to the library to look up answers. These ques-
tions are usually tangential to the main ideas of the lecture, so they can be omitted. If
an instructor uses them, it is appropriate to ask several students each to answer a part
of the question (see, for example, research question 6 in “Introduction to Engineering
Measurement”). Answers from each student can be distributed to all other students,
either on paper or through electronic mail or a class electronic bulletin board, if
available.

There is another aspect of engineering education that is sometimes overlooked:
students of engineering should gain an understanding of the role of engineering in soci-
ety. Unlike science, which can be done somewhat in isolation, engineering builds
products for people. Students’ understanding can be enhanced in many ways. One is to
choose examples of engineering that are very familiar to the students as people and not
just as engineers. A second is to reduce the compartmentalization of the subject matter
of courses—engineering instructors should feel comfortable talking about the humani-
ties, arts, or social sciences where appropriate in engineering courses; humanities
instructors should feel comfortable talking about math or science where appropriate in
their courses. Toward this end, these materials include some mention of history and
etymology.

4. Suggestions for Class Exercises and Projects

The nature of engineering requires people to work in teams, so class exercises and
projects are an important part of engineering education. The material in the lecture on
software engineering measures fits well in a project-oriented course, and it also suggests
some useful software projects.

Two class exercises are included in the lecture notes (and reproduced below). These are
short exercises that require the whole class to participate and, thus, can be given as
homework assignments.

The objective of the first exercise is to convince the students that counting lines of code
is not as easy as it sounds. It is likely that the counts of physical lines of code will be
more consistent than those of logical lines of code. The instructor can ask first for a
count of the number of “lines of code” without specifying physical or logical, in order to
increase the variance in student answers and thus increase the impact of the exercise.

This exercise can be conducted in class. The instructor may wish to bring blank trans-
parencies and markers to class so that the histograms can be created immediately after
the students give their counts.

Class Exercise

A fragment of a Pascal implementation of a binary tree search algorithm is shown below. Count
the number of physical lines of code and the number of logical lines of code. Collect these counts
from all class members and then plot the results as two histograms (as in Figure 2, page 3 of
“Software Engineering Measures”).

CMU/SEI-93-EM-9 3

repeat
if tree = nil
then
finished := true
else
with tree” do
if key < data
then
tree = left
else if key > data
then
tree :=right
else
finished = true
until finished;

The second exercise addresses the common concern that software size measured in logi-
cal lines of code is somehow better than physical lines of code, by showing that the two
measures are related. Prior to discussing this exercise, instructors may want to read
Section 3.2.1 in [Carleton92], which presents the rationale for the SEI recommendation
to use physical rather than logical lines of code as a size measure.

Class Exercise

We have seen that it is easier to measure physical lines of code than logical lines of code in a
program. If there is a strong mathematical relationship between the two measures, then we can
make the easy measurement and use it to get a fairly good estimate of the other measure.

To test this hypothesis, first use the size definition checklists to define physical lines of code and
logical lines of code. Then each member of the class should make the measurements for a few of
his or her own programs. Plot the relationship between the two measures. Is it linear? If you
are familiar with curve-fitting techniques, use them to establish a mathematical relationship
between the two measures.

This exercise works only if all students are using the same size definition checklists.
The instructor can develop an appropriate checklist in class, based on recommendations
from the students. Then the students can apply the checklist to their programs as a
homework assignment. Either the instructor or a designated student can collect the
data from all students and look for the mathematical relationship.

Instructors should note that doing these exercises in class will take a significant amount
of time, so it would be wise to allocate more than 60 minutes to covering the material on
software engineering measures.

The following class project is included in the lecture notes. It might be described as a
measurement-related “add-on” to a large programming project that is already part of
the course. It is intended to give the students a taste of the professional software engi-
neering environment.

4 CMU/SEI-93-EM-9

Class Project

Use the checklist to define precisely the effort measures to be made and reported for a large class
programming project. Choose one class member to be the project administrator, who is
responsible for organizing and reporting the measures. Design a schedule and a reporting
system through which each class member makes and reports his or her own personal effort
measures.

At the end of the project, determine project costs associated with major development phases such
as requirements analysis and specification, design, coding, and testing. Use a typical figure of
$50 per hour to determine the total value of your product to your customer.

There are also programming projects that build software tools to support measurement.
An obvious example is a tool that can measure lines of code. The items on the SEI defi-
nition checklist are parameters that can be varied. A design goal should be that the tool
be easily modifiable to work on different programming languages; thus, language-
specific code should be minimized and encapsulated in a module.

Another programming project is a database that holds size data in the categories on the
SEI definition checklist. The program should be able to produce the kinds of reports
defined by various data array specifications.

5. Suggested Answers to Discussion Questions

The discussion questions in the lecture notes are reproduced here for the benefit of
instructors. We have included a suggested answer or partial answer for each. In gen-
eral, there is no single, complete, correct answer. We hope the answers given will help
instructors conduct a classroom discussion; this is an important and effective way of
teaching much of the measurement material.

5.1. Questions from “Introduction to Engineering Measurement”

Discussion Question 1

Measurement of length almost certainly predates historical records. The earliest measures were
probably in terms of the human body, and some of those measures survive to this day. The most
obvious example is the foot. What are some other such measures? (This question may be easier
if you have had occasion to measure horses or whiskey.) What is a cubit?

Answer

Horses are measured in hands and a glass of whiskey is sometimes measured in fingers. A cubit
is the distance from the elbow to the end of the outstretched middle finger, typically about 18
inches.

Discussion Question 2

What are some common units of measure that use the prefixes in Figure 1 (page 3 of
“Introduction to Engineering Measurement”)? What is another term for one one-millionth of a
meter, and why is a machinist likely to prefer it to micrometer? Why is the term decibel, a unit of
loudness, much more common than the whole unit, the bel?

CMU/SEI-93-EM-9 5

Answer

Some common units of measure are kilobyte, kilometer, and kilogram; megabyte; decibel;
centimeter; millisecond, millimeter, and milligram; and microsecond. One one-millionth of a
meter is commonly called a micron. A machinist uses a tool called a micrometer caliper, or more
commonly, a micrometer. The term decibel may be more common because the loudness of sounds
we hear in everyday life is in the range of about 50 to 100 decibels, and we may be more
comfortable dealing with these whole numbers than with measures like 6.2 and 7.3 bels.

Research Question 3

What reasoning might have been used to choose the names of the prefixes in the metric system?
Do the words mean anything? Hint: What are the Greek words for ten, hundred, and thousand?
What are the Latin words? What are the Danish or Norwegian words for fifteen and eighteen?
What is an Italian word for small? What are Greek words for small, large, giant, dwarf, and
monster?

Answers

Latin: decem (ten), centum (hundred), mille (thousand). This also suggests the origin of the
English word mile, which originally meant the length of 1000 double steps by a Roman soldier.

Greek: deka (ten), hekaton (hundred), chilioi (thousand), mikros (small), megas (large), gigas
(giant), nanos (dwarf), teras (monster).

Danish and Norwegian: femten (fifteen), atten (eighteen).

Italian: piccolo (small).

Research Question 4

What do the terms megaflops and gigalips denote? Hint: These do not refer to Hollywood movies
that lose millions of dollars or to a medical condition. Another hint: They do refer to computer
performance.

ANnswers

The term megaflops means “million floating point operations per second” and is commonly used
as a unit of measure for computers that perform scientific calculations. The term gigalips means
“pillion logical inferences per second” and is not so commonly used as a unit of measure for
computers designed for artificial intelligence applications.

Discussion Question 5

What are some real-world entities that are measured in units using some of the more extreme
prefixes? For example, is a typical human life span closer to a megasecond, gigasecond, or
terasecond? How far does light travel in a microsecond, a nanosecond, or a picosecond? What
two places are about a megameter apart? A terameter apart? Which is larger, a zettameter or
the diameter of the Milky Way galaxy? Is the mass of an electron more or less than a yoctogram?

Answer

A human life span of 75 years is 236,675,520 seconds, or about one-quarter gigasecond. Light
travels about 983 feet in a microsecond, 11.8 inches in a nanosecond, and about the thickness of
three sheets of paper in a picosecond. The distance from New York to Charlotte, North Carolina,
is about a megameter. The distance from the sun to Saturn is about 1.4 terameters. The diame-
ter of the Milky Way galaxy is about one zettameter. The mass of an electron is about 0.001
yoctogram.

6 CMU/SEI-93-EM-9

Research Question 6

The last four centuries have produced many scientists who made important contributions to our
understanding of the physical world, and several of these scientists have been honored by having
units of measure named for them. Identify the following scientists, the unit (or scale) of
measure named for them, the kind of measure it is, and its definition in terms of the
fundamental measures.

Answer

See the table on the next two pages.

Discussion Question 7

What measures of the current state of your world do you make periodically? What trends are you
trying to identify?

Answer

You may want to suggest to the students such measures as weight (especially for dieters), bank
balance, and grade point average. Athletes in training track their performance. We may notice
an odometer reading periodically on a trip in order to determine average speed and predict our
arrival time. We may notice our car’'s fuel gauge or a home heating oil measurement to predict
when we will need to buy more fuel. We may watch the price of stocks to know when to buy or
sell.

Discussion Question 8

How can we as software engineers rephrase these requirements in quantifiable—and therefore
potentially measurable—terms?

Answer

Performance measurements vary widely with the application. We might say that a compiler
must compile 2000 lines per minute, or a word processor must open a document in 2 seconds or
scroll a whole page in one-half second. We might require that the object code for the controller in
a VCR fit within 4 kilobytes of storage.

This question is discussed in more detail in the lecture notes document “Software Engineering
Measures.”

Discussion Question 9

Have you had to write a term paper or a major computer program and discovered the night
before it was due that you still had 50% or 80% of the work ahead of you? Assuming that the
problem was not just procrastination, how might you have been helped by a realistic schedule
backed up by quantitative progress measurements?

Answer

There is no single answer to this question. Good estimates of the amount of work needed on a
project may help you choose a project that can be completed in the allotted time. Early detection
of slippages in schedules may permit adjustments in the schedule or different approaches to the
work that will result in timely completion of the project.

CMU/SEI-93-EM-9 7

Name

Identification

Unit or Scale

Definition

André-Marie Ampére

French physicist

ampere: electric

one coulomb per second, or

1775-1836 current current produced by one volt
across one ohm
Anders J. Angstrém Swedish physicist| angstrom: length | 10-10 meter
1814-1874
Amedeo Avogadro Italian chemist, | Avogadro’s number:| 6.023 x 1023
physicist number of atoms or
1776-1856 molecules in a mole
Alexander Graham American inven- | bel: ratio of electric| log p1/p2

Bell

tor 1847-1922

or acoustical signal
power

Anders Celsius

Swedish astrono-
mer 1701-1744

Celsius:
temperature scale

Charles A. de French physicist | coulomb: electric guantity of charge transferred
Coulomb 1736-1806 charge by one ampere in one second
Marie Curie and French chemists | curie: radioactivity | 3.7 x 1010 disintegrations per
Pierre Curie 1867-1934, second

1859-1906
Gabriel D. Fahrenheit | German physicist | Fahrenheit:

1686-1736 temperature scale

Michael Faraday

English chemist
and physicist
1791-1867

faraday: quantity
of electricity

guantity transferred in
electrolysis per equivalent
weight of an element (approx.
96,500 coulombs)

farad: capacitance

capacitance of a capacitor with
one volt potential when
charged by one coulomb

Enrico Fermi Italian/American | fermi: length 10715 meter
physicist
1901-1954

Karl Friedrich Gauss | German mathe- | gauss: magnetic 1074 tesla

matician, astro-
nomer 1777-1855

flux density

Joseph Henry

American physi-
cist 1797-1878

henry: inductance

inductance of a circuit in which
the variation of one ampere per
second results in an induced
electromotive force of one volt

Heinrich R. Hertz

German physicist

hertz: frequency

one cycle per second; or

1857-1894 second1
James P. Joule English physicist | joule: work or 107 ergs
1818-1889 energy

William Thomson,
Lord Kelvin

English mathe-
matician, physi-
cist 1824-1907

Kelvin: tempera-
ture scale; kelvin:
thermodynamic
temperature

Suggested Answers to Research Question 6

CMU/SEI-93-EM-9

Name

Identification

Unit or Scale

Definition

James Clerk Maxwell

Scottish physicist

maxwell: magnetic

flux per square centimeter of

1831-1879 flux normal cross section in a
region where the magnetic
induction is one gauss

Friedrich Mohs German Mohs scale:
mineralogist mineral hardness

?-1839 scale

Isaac Newton

English mathe-
matician, physi-
cist 1642-1727

newton: force

1 kilogram per second per
second

Georg Simon Ohm

German physicist
1787-1854

ohm: resistance

resistance of a circuit in which
a potential difference of one
volt produces a current of one
ampere

mho: conductivity

ohm

Hans Christian
@rsted

Danish physicist,
chemist
1777-1851

oersted: magnetic
intensity

intensity of a magnetic field in
a vacuum in which a unit
magnetic pole experiences a
mechanical force of one dyne in
the direction of the field

Blaise Pascal

French mathe-
matician, philo-
sopher 1623-1662

pascal: pressure

1 newton per square meter

Charles R. Richter American Richter scale:
seismologist earthquake
1900-1985 intensity scale

Wilhelm Réntgen German physicist | roentgen: x- amount of radiation that pro-
1845-1923 radiation or duces, in one cubic centimeter

gamma radiation

of dry air at 0°C and standard
atmospheric pressure, ioniza-

tion of either sign equal to one
electrostatic unit of charge

Nikola Tesla

American physi-
cist 1856-1943

tesla: magnetic
flux density

1 weber per square meter

Allesandro Volta

Italian physicist
1745-1827

volt: electromotive
force; electrical
potential difference

potential across one ohm when
one ampere of current is
flowing

James Watt

Scottish inventor

watt: power

one joule per second; one volt

1736-1819 times one ampere
Wilhelm E. Weber German physicist | weber: magnetic 108 maxwells
1804-1891 flux

Suggested Answers to Research Question 6 (continued)

CMU/SEI-93-EM-9

Discussion Question 10

The classic tradeoff in programming is time vs. space. What does this mean? What are some
examples? Can you describe a situation from your own experience in which you consciously
made a time/space tradeoff?

Answer

Often there are several algorithms that will accomplish a particular task. Some of them may be
faster but require more space. For example, some sorting algorithms may be fast but require an
amount of temporary storage proportional to the size of the data being sorted; others are slower
but need only a constant amount of temporary storage. Some algorithms require repeated
calculation of particular intermediate values. If sufficient storage is available, we can compute
the values once and save them; otherwise, we must recalculate them each time they are needed.
When designing animation software, if sufficient memory is available, we may be able to create
several different images beforehand, store them, and move them to the screen display memory
rapidly when needed. Otherwise, the images may have to be recreated whenever needed,
resulting in slower animation.

Discussion Question 11

What are some common instruments that you use to measure the following quantities? Estimate
the accuracy and precision of the instruments. What kinds of errors are common in these
measurements?

Answer

Your height: a tape measure or yardstick; accuracy and precision depend on the user, but are
probably +1/8 inch. Parallax errors are common.

Your weight: a bathroom scale; accuracy perhaps +5 pounds; precision perhaps £1 pound. Null-
point errors are common; parallax and hysteresis errors may occur. You may want to ask the
students to describe an experiment to look for hysteresis errors; one such experiment would
be to compare readings from getting on the scale yourself and from getting on with another
person, who then steps off.

The distance you drive your car on a trip: odometer; accuracy is probably +5%, precision may be
+1%. Calibration errors are likely to be the most significant source of error.

The pressure in your car’s tires: pressure gauge; accuracy is perhaps +3 psi, precision may be +1
psi. Random errors may be the most common because of the difficulty of using most pressure
gauges in a consistent manner.

A spark plug gap: a feeler gauge; accuracy and precision are perhaps +0.002 inch. Random
errors are common.

The time it takes an athlete to run 100 meters: stopwatch; if used consistently, accuracy and
precision are probably within 0.2 second. Random errors are probably the most common
because of the variability of the user’s reaction time.

The temperature of a beef roast: a meat thermometer; accuracy and precision are maybe +10°F.
Calibration errors are probably most common.

The frequency of the middle C note on a piano: a tuning fork; accuracy and precision are maybe
15 Hz. Calibration and random errors are common.

The thickness of a piece of paper: micrometer calipers; accuracy and precision are perhaps
+0.001 inch. Calibration errors are possible. The thickness of a single sheet of paper may be
near the limit of sensitivity of the instrument. The students might also suggest measuring a

10 CMU/SEI-93-EM-9

known number of sheets of paper, such as a ream, with a ruler and then computing the
thickness of a single sheet; this can be quite accurate also.

Discussion Question 12

What measurement instruments do you use that you consciously calibrate from time to time?
Can you think of an everyday measurement where a null-point systematic error might be intro-
duced purposely? Have you ever experienced a parallax error while you (or your passenger) were
reading your car's speedometer or other instrument? Did the speedometer appear to read higher
or lower to the passenger? How does this depend on whether the needle is in front of the
numbered scale or behind it?

Answer

It is common to calibrate a clock or wristwatch from time to time. Some people like to set the
null point on their bathroom scales to something other than zero. The passenger will normally
see a higher than actual speed if the scale is in front of the needle; lower otherwise. Note that
this is based on the assumption that the scale increases from left to right and the car is a left-
hand drive model.

Research Question 13

What is a vernier and how does it work? What is its intended effect on the accuracy or precision
of a measurement?

Answer

A vernier is a short scale that is used in conjunction with a longer scale and is designed so that
its reading is tenths or hundredths of the smallest division of the longer scale. It can increase
the accuracy and precision of measurements considerably.

Discussion Question 14

A little-known fact is that there are 51,500,000 hairs on the average horse. Suggest a sampling
technique that might have been used to discover this fact.

Answer

First, make measurements of the horse so you can compute the surface area. Then count the
hairs in several representative areas in patches of perhaps a square centimeter. Multiply the
average number of hairs per square centimeter by the area of the horse. All this may be facili-
tated by choosing a friendly and patient horse.

Discussion Question 15

Suppose you are the manager of an engineering project with 200 staff members. You want to
measure how much staff time will be spent on meetings, administrative paperwork, library
research, laboratory work, writing reports, and work at the computer over the next year.
Suggest a sampling technique that might provide estimates of these numbers without waiting
the whole year.

Answer

Choose a representative sample of the staff, meaning people at all levels and with all kinds of
responsibilities. Measure how they spend their time one day a week for a few weeks. Then
extrapolate to the whole staff for the whole year.

CMU/SEI-93-EM-9 11

5.2. Questions from “Measurement Theory for Software Engineers”

Discussion Question 1

For each of the following sets of objects, suggest a measure and scale for those objects, and iden-
tify the class in which the scale belongs (nominal, ordinal, interval, ratio, absolute).

Answer

Mass of physical objects: grams (ratio).

Loudness of sounds: decibels (logarithmic scale; see comments below on earthquake intensity).
Brightness of lights: candela (ratio).

Human intelligence: 1Q (ordinal).

Beauty of the paintings in a museum: perhaps with something like a scale from 1 to 10 (ordinal);
many might argue that this is so subjective that a nominal scale might be the best we could
do.

Kelvin scale of temperature: kelvins (ratio); the Kelvin scale is based on energy, so it is not just
an interval scale like the Celsius and Fahrenheit temperature scales.

Size of a software system: physical lines of code (absolute).
Productivity of different assembly line workers: widgets produced per hour (ratio).

Productivity of different software engineers: lines of code produced and delivered per hour
(ratio).

Cost of different models of automobiles: dollars (ratio).

Reliability of different models of automobiles: frequency of repair, measured in number of times
in the shop per year (ordinal); some might argue that this is an interval or ratio scale, which
is probably true in the strict numerical sense but not in the sense of the underlying concept
of reliability.

Desirability of vacationing in each of the 50 states of the US: perhaps with something like a
scale from 1 to 50 (ordinal); very subjective, as with beauty of paintings.

Earthquake intensity: Richter scale (ordinal scale if we just look at the numbers; however, this is
actually a logarithmic ratio scale, so we have to take that into account in statements like “a
level 8 earthquake is twice as strong as a level 4 earthquake” [not true]; “a level 8
earthquake is 10,000 times as strong as a level 4 earthquake” [true]).

Speed of different models of computer: MIPS, meaning “million instructions per second” (ratio).

User-friendliness of word-processing or spreadsheet software: a scale of 1 to 10 (ordinal); very
subjective.

Discussion Question 2

The cost of objects is usually regarded as a measure that has a ratio scale; it is meaningful to
talk about one automobile model being twice as expensive as another. On the other hand,
attributes such as the quality of a car or the complexity of a software system may be measurable
only with ordinal scales (or perhaps interval scales). An engineer is often called upon to make
judgments in terms of value, which we might define as quality per unit of cost. For example,
should you pay twice as much for twice the quality? Should you pay more or less for software
that is more complex? What is “today’s best value in a luxury automobile”™ When you create a
value measure by combining a cost measure on a ratio scale with a quality measure on an ordinal
or interval scale, what kind of a scale do you get?

12 CMU/SEI-93-EM-9

Answer

There is no simple answer to these questions, mostly because quality can be defined and
measured in so many ways. You may want to ask students if the unit prices found in most
supermarkets help customers measure value. A package twice as large at twice the cost may be
the same value. Two packages of a product that are the same size but different brands may be
priced differently. Is the cheaper one of higher value?

Usually the kind of scale created from quality and cost scales depends on the quality scale
involved.

Research Question 3

How does the science of thermodynamics allow us to assert that the Kelvin scale of temperature
is a ratio scale and not just an interval scale (like the Fahrenheit and Celsius scales)?

Answer

The Kelvin scale, which allows us to specify temperature in “kelvins,” not “degrees Kelvin,” is
based on the amount of energy present in the substance being measured. Thus the numbers on
the scale can start at 0 kelvins and are not arbitrarily related to the freezing or boiling of water.

5.3. Questions from “Software Engineering Measures”

Discussion Question 1

As an alternative to the simple process of counting carriage returns, some organizations suggest
the equally simple process of counting semicolons (in languages like Pascal, Ada, and C). Discuss
the adequacy of such a measure, using the Pascal code fragment in the class exercise above (page
4 of “Software Engineering Measures”) as an example.

Answer

The relationship between the number of semicolons and the number of carriage returns varies
according to programming style and somewhat among the three languages. In almost all cases,
however, there is likely to be a linear relationship between the two measures. The biggest
unknown factor is how the programmer writes comments.

Discussion Question 2

Look carefully at the SEI effort reporting checklist. How many of the different activity attributes
and product-level function attributes do you recognize as applicable to your own class program-
ming work? How would you measure your own work in each of the applicable categories?

Answer

On small projects, such as typical programming assignments in undergraduate classes, it may be
quite difficult to distinguish design, coding, and testing because students typically switch from
one activity to another several times per hour. On larger projects, including those most often
undertaken by software engineers, the measurement can be easier. The different phases may
take weeks, so it is usually easy to know which one you worked on today. Keeping track of who
attended which meetings and how long the meetings lasted may be the responsibility of a sup-
port staff person. Some programming support tools can automatically keep track of time spent
editing documents, editing code, compiling, or testing.

CMU/SEI-93-EM-9 13

Discussion Question 3

You have probably used a variety of commercial software packages such as word processors,
spreadsheets, drawing programs, or games. You have also probably encountered a situation
where the behavior of the program was not what you expected. In such situations, how can you
determine whether the problem is a user mistake, an error in the user manual, or an actual error
in the program? How much does the answer to the previous question matter to the user? To the
software engineers who must resolve the problem?

Have you ever heard a programmer say, “That’s not a bug, it's an undocumented feature!”
Answer

When using a software package, we often believe we hit a particular key or issued a particular
command when in fact we did something else. In many such cases, there is no undeniable record
of our action, so we cannot prove that a user mistake did or did not occur.

When the behavior of a software package is not what the user manual says, either the manual or
the software can be wrong. Without seeing the software specification, there is no way to tell
which one is in error. To the user, it will usually seem to be a software error because the user's
expectation was based on what the manual said. For the software engineer, who may have the
software specification, it is easier to determine where the fault lies. If the specification does not
cover the particular situation, it may be tempting to change the manual to match the software
rather than vice versa. However, the cost of printing and distributing revised manuals will have
to be weighed against the cost of creating and distributing revised software.

Discussion Question 4

What are some other everyday examples of performance measures? What kinds of performance
measures might be important to the designers and users of a long-distance telephone system, an
airliner, an automatic banking machine, a washing machine, a water heater, or the food prepara-
tion equipment at a fast-food restaurant? Are these measures of response time, throughput, or
something else?

Answer

The designers and users of a telephone system may want to measure performance in terms of the
time it takes for a call to go through (a response time measure) or the number of calls that can be
completed per minute (a throughput measure). Airplane performance measures include cruising
speed and rate of climb. Banking machine performance might be measured in response time to
verify the user’s identification number and the time to complete a transaction. A washing
machine might be measured in minutes per load or loads per day. A water heater’s performance
is often measured in gallons per hour or in recovery time (time to reheat after all the hot water is
replaced by cold water). Fast-food preparation machines might be measured in start-up time or
units of food prepared per hour.

Discussion Question 5

What kind of measurement technique could be used to demonstrate that a word processor can
check the spelling of 500 words per second? What other response time and throughput measures
might be appropriate for word processors?

Answer

The developers of a word processor could instrument the code to record the time before and after
each use of the spell checker and the number of words checked. The speed could be determined
from these values. A user of the system might use a wristwatch or stopwatch to measure the

14 CMU/SEI-93-EM-9

apparent time used in spell-checking a document. Knowing this time and the number of words
in the document would allow a less accurate and less precise measure of the speed.

Some other common response time measures are the time to perform a particular formatting
operation, the time to scroll up or down a page, and the time to open or close a document.

Discussion Question 6

In retail stores, cash registers have given way to point-of-sale terminals that are connected to one
or more computer systems. Many of these terminals have the capability to read the magnetic
encoding strip on credit cards, contact the credit card company, and get purchase authorization
with just a single keystroke. What kinds of performance requirements might you expect if you
were asked to design the software system that performs purchase authorization? Which are
response time requirements and which are throughput requirements?

Answer

The two most obvious performance measures are the response time for a particular authorization
request from one terminal and the number of authorizations per minute for the overall system.
A response time of 10 to 15 seconds might be acceptable to users of the system. A large system
might have a requirement to be able to process several hundred requests per minute.

Discussion Question 7

Issues of reliability and availability sometimes strike very close to home when the system
involved is our car. Which components on a car seem to have a low MTBF (mean time between
failures)? High MTBF ? Of these, which have high and low MTTR (mean time to repair)? What
parts or components of a car are usually involved in preventive maintenance? Are these the
same as the ones you identified as having a low MTBF?

Answer

If we define failure as degradation of performance below a desirable level, then we might expect
a low MTBF for the oil, air filter, oil filter, spark plugs, and PCV valve. These components are
typically replaced during preventive maintenance, and they have low MTTR. Other components
with MTBF near the low end of the scale might include fuses, coolant, radiator hoses, and tires.
These are also relatively easy to replace. High MTBF items might include the frame and engine
block.

Discussion Question 8

Computer scientists have expended much effort in pursuit of program correctness, which we
define informally as the equivalence (in some mathematical sense) of the requirements specifica-
tion and the code. You may have studied the various methods that have been developed to do
proofs of correctness.

Software engineers might suggest, “Correctness is a red herring; it is unachievable and
unnecessary. Reliability is much more important.”

Consider a software package that you use frequently, such as a word processor or compiler.
Suppose you have experienced 100% reliability of the software under the conditions of your use,
although there are known defects in parts of the software you never use. Technically, the soft-
ware is incorrect, but to you it is perfectly satisfactory. Which is more important? Which costs
more to achieve?

CMU/SEI-93-EM-9 15

Suggest arguments on both sides of this issue. You may want to distinguish correctness at the
module level from correctness at the system level. Consider also the question of whether a
requirements specification can be shown to be correct.

Do you detect a fundamental difference between the philosophies of computer science and soft-
ware engineering?

Answer
There is no easy answer to this question. Lehman discusses some of these issues [Lehman80].

As suggested, quality may be defined as freedom from defects and suitability for use. If the user
never sees a defect, then, in one sense, there is no defect. (How is this different from the old
guestion, “If a tree falls in a forest and no one is there to hear it, is there a sound?” What is the
definition of sound?) How might you define defect to make this argument valid? What about
terms like latent defect or potential defect?

When software is intended for direct use by a person, such as a word processor or spreadsheet, it
is impossible to have verifiably correct requirements. Issues of quality must depend on the user’s
perception of freedom from defects and suitability for use, rather than a proof of those attributes.

Software that is embedded in a machine or system may be a different case. Consider, for exam-
ple, the software that controls the operation of a VCR. There is only a small number of kinds and
sequences of inputs, and the response to each input can be rigorously specified. Under those
conditions, we might well expect to be able to prove the software correct.

Computer science sometimes tends toward the abstract, absolute end of the philosophical spec-
trum on issues like these, while software engineering tends toward the real-world, actual-use
end of the spectrum.

Discussion Question 9

Although we cannot measure most of the ilities directly, we may have strong intuition that
certain measurable attributes are closely related to one of them. For example, we may design
software so that all the system-dependent information is encapsulated in a single module. To
port the software to a different computer system might then require recoding of that module
only. We could argue that, intuitively, the number of modules that use system-dependent
information is a measure of portability.

Suggest other measures that you believe intuitively are related to the unmeasurable ilities.
Answer

There are no specific answers to this question. However, students are likely to suggest ideas
related to modularity, information hiding, and parameterization. This provides a basis for an
argument that such programming practices can contribute to overall software quality, even
though we can't measure a direct relationship.

6. Further Reading

Below is a short annotated bibliography of sources from which the three sets of lecture
notes were derived. Instructors teaching this material for the first time may want to
spend some time reviewing these references. Nearly all of them are readily available
and quite readable.

Because the materials can be used in such a wide range of situations, we chose not to
include bibliographies or suggested further readings in the lecture notes documents for

16 CMU/SEI-93-EM-9

the students. Instead we have annotated this bibliography to give some guidance to the
instructor with respect to which items might be appropriate for students at various
levels. We recommend that instructors identify one or two items for each lecture, espe-
cially for the benefit of the better students.

Carleton92 Carleton, A. D.; Park, R. E.; Goethert, W. B.; Florac, W. A.; Bailey, E. K;
& Pfleeger, S. L. Software Measurement for DoD Systems:
Recommendations for Initial Core Measures (Tech. Rep. CMU/SEI-92-TR-
19, ADA 258305). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1992.

Abstract: This report presents our recommendations for a basic set of soft-
ware measures that Department of Defense (DoD) organizations can use to
help plan and manage the acquisition, development, and support of software
systems. These recommendations are based on work that was initiated by
the Software Metrics Definition Working Group and subsequently extended
by the SEI to support the DoD Software Action Plan. The central theme is
the use of checklists to create and record structured measurement descrip-
tions and reporting specifications. These checklists provide a mechanism for
obtaining consistent measures from project to project and for communicating
unambiguous measurement results.

This report presents a summary of the recommended initial core mea-
sures that are detailed in three other SEI technical reports [Park92,
Goethert92, Florac92]. It describes in general terms much of the motiva-
tion and justification for the recommended measures. It is good back-
ground for instructors, but much of it will be lost on students who have
never experienced the industrial software environment.

Dunham83 Dunham, J. R.; & Kruesi, E. “The Measurement Task Area.” Computer
16, 11 (Nov. 1983): 47-54.

This paper provided some of the ideas on why engineers measure for the
lecture on engineering measurement. It is good background reading for
instructors and is probably readable by students at the junior or senior
level.

Florac92 Florac, W. A., et al. Software Quality Measurement: A Framework for
Counting Problems and Defects (Tech. Rep. CMU/SEI-92-TR-22, ADA
258556). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1992.

Abstract: This report presents mechanisms for describing and specifying
two software measures—software problems and defects—used to understand
and predict software product quality and software process efficacy. We
propose a framework that integrates and gives structure to the discovery,
reporting, and measurement of software problems and defects found by the
primary problem and defect finding activities. Based on the framework, we
identify and organize measurable attributes common to these activities. We
show how to use the attributes with checklists and supporting forms to
communicate the definitions and specifications for problem and defect
measurements. We illustrate how the checklist and supporting forms can be
used to reduce the misunderstanding of measurement results and can be
applied to address the information needs of different users.

CMU/SEI-93-EM-9 17

Goethert92

Holman89

IEEES83

Lehman80

This report presents in detail the ideas on software quality measurement
introduced in [Carleton92]. It discusses why it is important to be able to
measure software problems and defects in terms of quality, cost, and
schedule. The report will be most useful to instructors, but is also appro-
priate for students in courses or course segments that address software
project management or quality assurance.

Goethert, W. B., et al. Software Effort Measurement: A Framework for
Counting Staff-Hours (Tech. Rep. CMU/SEI-92-TR-21, ADA 258279).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

Abstract: This report contains guidelines for defining, recording, and
reporting staff-hours. In it we develop a framework for describing staff-hour
definitions, and use that framework to construct operational methods for
reducing misunderstandings in measurement results. We show how to
employ the framework to resolve conflicting user needs, and we apply the
methods to construct specifications for measuring staff-hours. We also
address two different but related aspects of schedule measurement. One
aspect concerns the dates of project milestones and deliverables, and the
second concerns measures of progress. Examples of forms for defining and
reporting staff-hour and schedule measurements are illustrated.

This report presents in detail the ideas on software quality measurement
introduced in [Carleton92]. The report will be most useful to instructors,
but is also appropriate for students in a course on software project
management.

Holman, J. P. Experimental Methods for Engineers, 5th Ed. New York:
McGraw-Hill, 1989.

This book presents many basic definitions related to engineering mea-
surement, information on the design of experiments and the analysis of
experimental data, and a very thorough discussion of instruments and
techniques for measuring physical properties. It is probably most appro-
priate for students of mechanical engineering, but students in other engi-
neering disciplines can benefit from it as well.

IEEE Standard Glossary of Software Engineering Terminology
(ANSI/IEEE Std 729-1983). New York: IEEE, 1983.

The definitions of the ilities in the lecture on software engineering mea-
sures takes its definitions from this document. It is a useful reference for
both instructors and students of software engineering.

Lehman, M. M. “Programs, Life Cycles, and Laws of Software Evolution.”
Proceedings of the IEEE 68, 9 (Sept. 1980): 1060-1076.

Abstract: By classifying programs according to their relationship to the
environment in which they are executed, the paper identifies the sources of
evolutionary pressure on computer applications and programs and shows
why this results in a process of never ending maintenance activity. The
resultant life cycle processes are then briefly discussed. The paper then
introduces laws of Program Evolution that have been formulated following

18

CMU/SEI-93-EM-9

guantitative studies of the evolution of a number of different systems.
Finally an example is provided of the application of Evolution Dynamics
models to program release planning.

This paper provides the motivation for discussion question 8 in the lecture
on software engineering measures. It also provides some motivation for
measurement and its role in software maintenance.

Lehman91l Lehman, M. M. “Software Engineering, the Software Process and Their
Support.” Software Engineering Journal 6 (Sept. 1991): 243-258.

Abstract: Computers are being applied more and more widely, penetrating
ever deeper into the very fabric of society. Mankind is becoming increasingly
dependent on the availability of software and its continuing validity. To
achieve this consistently and reliably, in an operational domain that is
forever changing, requires disciplined execution of the software development
and evolution process and its effective management. That is the goal of
advanced software engineering. This paper summarises basic concepts of
software engineering and of the software development process. This leads to
a principle of uncertainty, analysis of its implications for the software devel-
opment process, an overview of computer-assisted software engineering
(CASE) and brief comments on the societal relevance of these topics. For
researchers in the field and practitioners familiar with individual concepts,
issues and specific solutions, the paper provides a unifying framework, a
basis for conceptual advance. Those without a significant practical software
engineering background and experienced graduate students will extend
general familiarity with fresh insights, new concepts and additional detail.
Undergraduate and graduate students without significant experience may
treat the paper as an introductory text.

This paper and [Lehman80] both provide a wealth of ideas about what
software engineering is and how measurement can play an important
role. The author makes the point that the major success of measurement
is not in measuring products after they have been built, but in providing
models and mechanisms for analysis and forecasting. Both papers can be
read by advanced undergraduate students; both should be read by
instructors.

Musa87 Musa, J. D.; lannino, A.; & Okumoto, K. Software Reliability:
Measurement, Prediction, Application. New York: McGraw-Hill, 1987.

A graduate course in software reliability is the best place to use this book,
but an instructor of undergraduates might be able to use it for back-
ground as well.

Musa93 Musa, J. D. “Operational Profiles in Software-Reliability Engineering.”
IEEE Software 10, 2 (Mar. 1993): 14-32.

This paper clearly discusses the role of operational profiles in the deter-
mination of software reliability. It is useful background for instructors
and it can be read by advanced undergraduate students.

CMU/SEI-93-EM-9 19

Northrop93

Park92

Parnas90

Smith90

Zuse91l

Northrop, L. M. Experimental Methods for Software Engineers
(Educational Materials CMU/SEI-93-EM-10). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1993 (forthcoming).

The materials in this package can assist instructors in the development of
laboratories for undergraduate courses in both computer science and
software engineering. Northrop suggests ideas for measurement labora-
tories and for teaching the role of measurement in experimentation.

Park, R. E., et al. Software Size Measurement: A Framework for
Counting Source Statements (Tech. Rep. CMU/SEI-92-TR-20, ADA
258304). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1992.

Abstract: This report presents guidelines for defining, recording, and
reporting two frequently used measures of software size—physical source
lines and logical source statements. We propose a general framework for
constructing size definitions and use it to derive operational methods for
reducing misunderstandings in measurement results. We show how the
methods can be applied to address the information needs of different users
while maintaining a common definition of software size.

This report presents in detail the ideas on software size measurement
introduced in [Carleton92].

Parnas, D. L.; vanSchouwen, A. J.; & Kwan, S. P. “Evaluation of Safety-
Critical Software.” Communications of the ACM 33, 6 (June 1990): 636-
648.

Instructors and students with a knowledge of basic probability and
statistics should find this paper readable and useful. It contains a good
introductory discussion of software reliability and reliability measure-
ment. It distinguishes reliability, availability, and trustworthiness of
software systems.

Smith, C. U. Performance Engineering of Software Systems. Reading,
Mass.: Addison-Wesley, 1990.

Although this book contains advanced material suitable for practitioners
and graduate students, it can be useful to instructors who are preparing
lectures for undergraduate courses. Chapter 7 discusses performance
measurement, including many basic concepts.

Zuse, H. Software Complexity: Measures and Methods. Berlin: Walter
de Gruyter, 1991.

This book probably has the most comprehensive presentation of software
complexity measures currently available. It defines, categorizes, and
discusses nearly 100 different measures. It also presents fundamentals of
measurement theory. It can be useful to instructors, but it is too detailed
for undergraduate students.

20

CMU/SEI-93-EM-9

Lecture Notes

Introduction to Engineering Measurement
Measurement Theory for Software Engineers

Software Engineering Measures

Classroom Materials

Transparency Masters

From “Introduction to Engineering Measurement”
Metric System (Figure 1)
Discussion Question (5)
Discussion Question (11)

From “Measurement Theory for Software Engineers”
Definitions (measure and metric)
Metrics (Figure 1)
Overcoming the Intelligence Barrier with Measurement (Figure 2)
Definition (relational system)
Definition (scale)
Definition (admissible transformation)
Definition (meaningful)
Meaningful Statements (Figure 4)
Discussion Question (1)

From “Software Engineering Measures”
Counting Lines of Code (Figures 1 and 2)
Class Exercise: How Many Lines of Code?
Definition Checklist for Source Statement Counts (Figure 3)
Staff-Hour Definition Checklist (Figure 6)
Problem Count Definition Checklist (Figure 8)

Software Measure Forms for Duplication
Definition Checklist for Source Statement Counts (4 pages)
Staff-Hour Definition Checklist (3 pages)
Problem Count Definition Checklist (2 pages)

