

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

 Handbook

CMU/SEI-97-HB-001
January 1997

C4 Software Technology
Reference Guide

—A Prototype

Michael Bray, Lockheed Martin Maj David Luginbuhl, USAF, Air Force Office of Scientific Research

Kimberly Brune, SEI William Mills, Lockheed Martin

David A. Fisher, SEI Robert Rosenstein, SEI

John Foreman, SEI Darleen Sadoski, GTE

Capt Mark Gerken, USAF, Rome Laboratory James Shimp, E-System

Jon Gross, SEI Edmond Van Doren, Kaman Sciences

Capt Gary Haines, USAF, AFMC SSSG Cory Vondrak, TRW

Elizabeth Kean, Rome Laboratory

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright

©

 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Foreword to the First Edition iii

1 Introduction 1
1.1 Background 1

1.1.1 Scope 1
1.1.2 Vision 1
1.1.3 Goal 2
1.1.4 Limitations/Caveats 2
1.1.5 Target Audiences 4

1.2 Using the Document 5

2 Taxonomies 7
2.1 Overview and Purpose 7

2.1.1 General Taxonomy Structure 7
2.1.2 Using the Taxonomies 8

2.2 Application Taxonomy 9
2.2.1 Introduction 9
2.2.2 Graphical Representation 10
2.2.3 Textual Representation 16
2.2.4 Taxonomy-Based Directory to Technology Descriptions 19

2.3 Quality Measures Taxonomy 29
2.3.1 Introduction 29
2.3.2 Graphical Representation 30
2.3.3 Textual Representation 34
2.3.4 Taxonomy-Based Directory to Technology Descriptions 36

3 Technology Descriptions 43
3.1 Defining Software Technology 43
3.2 Technology Categories 44
3.3 Template for Technology Descriptions 45
3.4 The Technology Adoption Challenge 51
3.5 Alphabetical List of Technology Descriptions 59

References 391

Glossary 393

Appendix A Submitting Information for Subsequent Editions 407

Appendix B User Feedback 409

Appendix C Scenarios of Use 411

Keyword Index 417
CMU/SEI-97-HB-001 i

ii CMU/SEI-97-HB-001

Foreword to the First Edition

This inaugural edition of the C4 Software Technology Reference Guide1 marks the completion
of an 11-month project undertaken by the Software Engineering Institute (SEI) and industry
participants for the United States Air Force acquisition community. It includes the latest avail-
able information on approximately 60 software technologies. Even though this initial version
tends to have a narrow customer focus, our hope is that this guide, with future editions, will
become a common knowledge base and a valuable reference for the software engineering
community. To our knowledge, no other document exists that provides this type of software
technology information in one place.

Because software is a constantly-changing field, we are seeking sponsors, partners, and com-
munity participation to expand this document and publish descriptions of software technology
on at least an annual basis. The long-term goal is a continuously growing and evolving Web-
based reference guide of software technologies. This goal can only be reached with active
participation and direct support from the broad software community. Please refer to Appendi-
ces A and B for details on how to contribute.

The document was developed as a cooperative effort among the SEI, six defense contractors,
and three Air Force organizations. Project members were physically co-located during various
intervals of the project, and also worked from geographically dispersed locations. Defense
contractors and Air Force personnel authored technology descriptions and main-
tained/evolved the taxonomies and taxonomy-based directories. The SEI members estab-
lished overall project direction, wrote various technology descriptions and sections, and
integrated and edited the document extensively. We functioned as a cooperative team of in-
dividual contributors with a goal of technical accuracy and credibility. Team members were:

SEI

Kimberly Brune

David Fisher

John Foreman

Jon Gross

Robert Rosenstein

Defense Contractors

Michael Bray, Lockheed Martin

William Mills, Loral (Lockheed Martin)

Darleen Sadoski, GTE

James Shimp, E-Systems

Edmond Van Doren, Kaman Sciences

1. We have used other names for the document during earlier phases of the project. These include the Software
Technology Roadmap and the Structured Survey of Software Technology (SSST).
CMU/SEI-97-HB-001 iii

Cory Vondrak, TRW

Air Force

Capt Mark Gerken, Rome Laboratory

Capt Gary Haines, AFMC SSSG

Elizabeth Kean, Rome Laboratory

Maj David Luginbuhl, Air Force Office of Scientific Research

In addition, other individuals contributed to the document by writing and/or reviewing technol-
ogy descriptions. These contributions are acknowledged in the specific technology descrip-
tions.

Development
The project entailed an intense data collection and writing effort by the authors. Because of
the tight project schedule, the project team initially took an “opportunistic” approach to soft-
ware technology topic coverage: The authors focused on software technologies in their areas
of expertise, in areas where technical experts were accessible, and in areas where abundant
supporting material existed. Topics selected were of significant interest to our targeted user
community and/or were emerging technologies getting a lot of attention in the software com-
munity. Data collection approaches included the following:

• literature search and the World Wide Web

• previous studies, surveys, technical assessments, forecasts

• program briefings from DARPA, NSF, ATP, NIST, and many others

• interviews with researchers and technology developers in industry,
government, and academia

• broad-based solicitation of written input

Each software technology description went through a rigorous review process which often in-
cluded outside area experts. For the structure of the document, the Physician’s Desk Refer-
ence (PDR), published by Medical Economics, provided us with a valuable model for overall
organization. We referenced it often in the early days of the project. To ensure the develop-
ment of a quality product, we also organized two formal outside reviews of the entire docu-
ment. The first review team primarily focused on the technical validity and content of the
document, while the second review team provided an executive management perspective on
the utility of the document. Recommendations from these reviews were taken into consider-
ation as we fine-tuned the document for this prototype publication.

We greatly appreciate the time and valuable input of the following review team members. Their
insightful critique and recommendations significantly improved the quality of this initial publi-
cation.
iv CMU/SEI-97-HB-001

Review Team #1 Participants

Dr. William L. Scherlis, Review Team Chair, Carnegie Mellon University
Ms. Christine Anderson, PL/VTQ
Dr. David J. Carney, Software Engineering Institute
Dr. John B. Goodenough, Software Engineering Institute
Lt. Col. Mike Goyden, SSSG/SMW
Col. Richard R. Gross, PhD, USAF, Defense Information Systems Agency
Lt. Col. J. Greg Hanson, PhD, HQ USAF/SCTS
Dr. Larry G. Jones, Software Engineering Institute
Mr. Mark H. Klein, Software Engineering Institute
Maj.George Newberry, SAF/AQRE
Ms. Linda M. Northrop, Software Engineering Institute
Lt. Col. Chris Ruminski, ESC/SRG
Dr. Howard E. Shrobe, Defense Advanced Research Projects Agency (DARPA)
Mr. John Willison, CECOM, Center for Software Engineering

Review Team #2 Participants

Dr. Harold W. Sorenson, Review Team Chair, The MITRE Corporation
Mr. Don Andres, TRW, Inc.
Mr. Archie Andrews, Software Engineering Institute
Mr. Thomas E. Bozek, Office of the Deputy Assistant Secretary of Defense (C3)
Mr. Thomas C. Brandt, Software Engineering Institute
Col. John Case, SSSG/SM
Mr. Clyde Chittister, Software Engineering Institute
Dr. Don Daniel, HQ AFMC/ST
Mr. Samuel A. DiNitto, Jr., Rome Laboratory
Dr. Larry E. Druffel, South Carolina Research Authority
Mr. John Gilligan, AF PEO/BA
Col. Richard R. Gross, PhD, USAF, Defense Information Systems Agency
Col. Robert A. Hobbs, USSPACECOM/J6N
Dr. Charles J. Holland, AFOSR/NM
Mr. John Kerschen, Lockheed Martin Command & Control Systems
Mr. Robert Knickerbocker, Lockheed Martin Command & Control Systems
Col. Robert Latiff, PhD, ESC/SR
Mr. Verlon Olson, Kaman Sciences Corporation
Mr. D. Michael Phillips, Software Engineering Institute
Mr. Randy Sablich, GTE Government Systems Corporation
Dr. William L. Scherlis, Carnegie Mellon University
Mr. Rick Sedlacek, E-Systems
Mr. Dennis Turner, US Army CECOM, Center for Software Engineering

It is our pleasure to acknowledge the following individuals who provided informative briefings
and pragmatic reviews and insights:
CMU/SEI-97-HB-001 v

Deane Bergstrom, Rome Laboratory
Dr. Jack Callahan, West Virginia University and NASA
Lt Col Thomas Croak, AFMC SSSG/SMX
Dr. Barbara B. Cuthill, NIST/ATP
Helen Gill, National Science Foundation
Dr. Richard Kieburtz, National Science Foundation
LTC(P) Mark Kindl, Army Research Labs
Jim Kirby, Naval Research Labs
Chuck Mertz, NASA
Dave Quinn, NSA
Dr. Howie Shrobe, DARPA
Bets Wald, Office of Naval Research

In addition, we would like to give special thanks to Karola Yourison, Sheila Rosenthal, and Ter-
ry Ireland of the SEI library and to Bernadette Chorle and Tamar Copeland for their support
services. We would also like to thank the SEI Computing Facilities, Events, and Physical Fa-
cilities groups for their ongoing support of the project.
vi CMU/SEI-97-HB-001

1 Introduction

1.1 Background
The Air Force acquisition community tasked the Software Engineering Institute (SEI) to create
a reference document that would provide the Air Force with a better understanding of software
technologies. This knowledge will allow the Air Force to systematically plan the research and
development (R&D) and technology insertion required to meet current and future Air Force
needs, from the upgrade and evolution of current systems to the development of new systems.

1.1.1 Scope
The initial release of the Software Technology Reference Guide is a prototype to provide initial
capability, show the feasibility, and examine the usability of such a document. This prototype
generally emphasizes software technology1 of importance to the C4I (command, control, com-
munications, computers, and intelligence) domain. This emphasis on C4I neither narrowed
nor broadened the scope of the document; it did, however, provide guidance in seeking out
requirements and technologies. It served as a reminder that this work is concerned with com-
plex, large-scale, distributed, real-time, software-intensive, embedded systems in which reli-
ability, availability, safety, security, performance, maintainability, and cost are major concerns.

We note, however, that these characteristics are not only applicable to military command and
control systems, they apply as well to commercial systems, such as financial systems for elec-
tronic commerce. Also, for a variety of reasons, commercial software will play an increasingly
important role in defense systems. Thus, it is important to understand trends and opportunities
in software technology— including commercial software practice and commercially-available
software components— that may affect C4I systems.

1.1.2 Vision
Our long-term goal is to create a continuously-updated, community “owned,” widely-available
reference document that will be used as a shared knowledge base. This shared knowledge
base will assist in the tradeoff and selection of appropriate technologies to meet system goals,
plan technology insertions, and possibly establish research agendas. While we use the term
“document,” we anticipate that this product will take many shapes, including a Web-based, pa-
per-based, or CD-ROM based reference.

With the release of this document we are seeking comment and feedback from the software
community. We will use this feedback as we plan an ongoing effort to expand and evolve this
document to include additional software technology descriptions. Appendices A and B provide
two vehicles by which readers can contribute to the further development of this effort.

1. This spectrum of technologies includes past, present, under-used, and emerging technologies.
CMU/SEI-97-HB-001 1

1.1.3 Goal
The document is intended to be a guide to specific software technologies of interest to those
building or maintaining systems, especially those in command, control, and/or communica-
tions applications. The document has many goals:

• to provide common ground by which contractors, commercial companies,
researchers, government program offices, and software maintenance
organizations may assess technologies

• to serve as Cliff’s Notes for specific software technologies; to encapsulate a
large amount of information so that the reader can rapidly read the basics
and make a preliminary decision on whether further research is warranted

• to achieve objectivity, balance,1 and a quantitative focus, bringing out both
shortcomings as well as advantages, and provide insight into areas such as
costs, risks, quality, ease of use, security, and alternatives

• to layer information so that readers can find subordinate technology
descriptions (where they exist) to learn more about the topic(s) of specific
interest, and to provide references to sources of more detailed technical
information, to include usage and experience

1.1.4 Limitations/Caveats
While the document provides balanced coverage of a wide scope of technologies, there are
certain constraints on the content of the document:

• Coverage, accuracy and evolution. Given the number of software
technologies and the time available for this first release, this document
covers a relatively small set of technologies. As such, there are many topics
that have not been addressed; we plan to address these in subsequent
versions. This document is, by nature, a snapshot that is based on what is
known at the time of release. We have diligently worked to make the
document as accurate as possible. A rating scheme describing the
completeness of each technology description begins on pg. 49. Subsequent
versions will include corrections and updates based on community feedback.

• Not prescriptive. This document is not prescriptive; it does not make
recommendations, establish priorities, or dictate a specific path/approach.2
The reader must make decisions about whether a technology is appropriate

1. As an example of balanced coverage, let’s briefly look at information hiding of object-oriented inheritance,
which reduces the amount of information a software developer must understand. Substantial evidence exists
that such object-oriented technologies significantly increase productivity in the early stages of software devel-
opment; however, there is also growing recognition that these same technologies may also encourage larger
and less efficient implementations, extend development schedules beyond the “90% complete” point, under-
mine maintainability, and preclude error free implementations.

2. Similar to a roadmap for highways, the guide prescribes neither the destination nor the most appropriate route.
Instead, it identifies a variety of alternative routes that are available, gives an indication of their condition, and
describes where they may lead. Specific DoD applications must chart their own route through the technological
advances.
2 CMU/SEI-97-HB-001

for a specific engineering and programmatic context depending on the
planned intended use, its maturity, other technologies that will be used, the
specific time frame envisioned, and funding constraints.

For example, a specific technology may not be applicable to a particular
program because the need is current and evaluations indicate that the
technology is immature under certain circumstances. However, given a
program that initiates in 3-5 years, the same technology may be an
appropriate choice assuming that the areas of immaturity will be corrected by
then (and, if necessary, directed action to ensure the maturation or to remedy
deficiencies).

• Not a product reference. This document is not a survey or catalog of
products. There are many reasons for this, including the rapid proliferation of
products, the need to continually assess product capabilities, questions of
perceived endorsement, and the fact that products are almost always a
collection of technologies. It is up to the reader to decide which products are
appropriate for their context. DataPro and Auerbach would likely be better
sources of product-specific information.

• Not an endorsement. Inclusion or exclusion of a topic in this document does
not constitute an endorsement of any type, or selection as any sort of “best
technical practice.” Judgements such as these must be made by the readers
based on their contexts; our goal is to provide the balanced information to
enable those judgements.

• Not a market forecasting tool. While the technology descriptions may project
the effect of a technology and discuss trends, more complete technology
market analysis and forecast reports are produced by organizations such as
The Yankee Group, Gartner Group, and IDC.

• Not a focused analysis of specific technical areas. Various sources such as
Ovum, Ltd. and The Standish Group offer reports on a subscription or one-
time basis on topics such as workflow, open systems, and software project
failure analyses, and may also produce specialized analyses and reporting
on a consulting basis.
CMU/SEI-97-HB-001 3

1.1.5 Target Audiences
We envisioned that this document would be relevant to many audiences. The audiences and
a description of how each audience can use this document are shown in the table below.

User Job Roles/Tasks Document Capabilities/Value

PEO/Executive

Pentagon Action
Officer

Acquisition oversight, funding advo-
cacy

Motivate introduction of new/com-
mercial technologies

Policy issues

Overview/introductory info

Baseline reference document

“Cliff Notes” approach— provides high-
level, 4-6 page quick study

Tradeoff information

System Program Man-
ager (SPM) and Tech-
nical Staff

(Includes FFRDCs
(MITRE, etc.) and may
include government
laboratories)

Writes Request for Proposal (RFP)
or some form of solicitation based
on user requirements

Reviews proposals and selects
developers

Manages development and/or main-
tenance work

All of previous category, plus:

Taxonomies to aid in identifying alterna-
tives

Back pointers to high-level, related
technologies

Criteria and guidance for decision-mak-
ing

Tech transfer/insertion guidelines

Selected high-value references to
more technical information, to include
usage and experience data

Generally the sort of analysis and sur-
vey information that would not be
accomplished under normal project cir-
cumstances

Developer (to include
research and develop-
ment (R&D) activity)

Performs advanced development,
prototyping, and technology investi-
gation focused on risk reduction and
securing competitive advantage

Concerned about transition and
insertion issues

Writes a proposal in response to
solicitations

Performs engineering development
and provides initial operational sys-
tem

Same as previous category.

Maintainer Maintains operational system until
the end of the life cycle

Responds to user requirements for
corrections or enhancements

Concerned about inserting new
technologies and migrating to differ-
ent approaches

Same as previous category.

User Communicates operational needs

End customer for operational system

Communicates alternatives and risks,
and provides perspective of what tech-
nology can (reasonably) provide
4 CMU/SEI-97-HB-001

1.2 Using the Document
While some readers may elect to read the document from cover to cover, the document pro-
vides several methods by which readers can locate technology descriptions in a more direct
manner. These methods include the following:

Alphabetical listing. On page 59, the technology descriptions are listed in alphabetical order
by title. If the reader has a specific software technology in mind, this method may be useful
because the reader only has to perform an alphabetical search. In addition, readers may want
to pay close attention to descriptions that have “An Overview” in their title. These descriptions
provide an excellent starting point and set the context for a particular group of technologies.

Taxonomies and taxonomy-based directories. The taxonomies and taxonomy-based di-
rectories provide two valuable benefits for the reader:

1. The taxonomy-based directories group technology descriptions according to
the taxonomy categories into which they have been categorized.

2. The taxonomies identify the relationships between taxonomy categories; this
provides the reader with suggestions for other categories to search.

Details on how to use these features can be found in Section 2.

Keyword index. The Keyword Index is generally structured as in any typical document; a few
nuances of our index are explained below:

• If the keyword happens to be the name of a technology, the index will guide
the reader directly to the description for that technology by identifying the
page number in bold type. For example, the index entry for “middleware” is

middleware 79, 247, 251, 291, 325, 373

The technology description on middleware can be found on page 251.

• If the keyword is a category in one of the taxonomies, the index will direct the
reader to the taxonomies in Chapter 2 by following the keyword entry with a
taxonomy index label in italics. For example, the keyword entries for
“reengineering” and “reliability” would show: reengineering (AP.1.9.5) and
reliability (QM.2.1.2).

Cross-references. Cross-references are page references within a technology description to
other technology descriptions.

Scenarios. Appendix C contains questions that typical C4 organizations might ask. Scenarios
demonstrate how to use the document to answer or address a particular question.
CMU/SEI-97-HB-001 5

6 CMU/SEI-97-HB-001

2 Taxonomies

2.1 Overview and Purpose
Some readers may not desire to read the guide from cover to cover or may not have a specific
technology in mind when they open the document. Instead a reader might be concerned about
or interested in a particular software quality measure, a phase of the development process, or
an operational function.

With this in mind, we created two taxonomies that serve as directories into the technology de-
scriptions. This method is an effective way to lead readers to a set of possible technologies
that address their software problem area. Each software technology description has been cat-
egorized into the following two taxonomies:

• Application. This taxonomy categorizes technologies by how they might be
used in operational systems. A technology can fall into one of two major
categories. It can be used to support an operational system or it can be used
in an operational system.

• Quality Measures. This taxonomy categorizes technologies by the software
quality characteristics or attributes that they influence, such as
maintainability, expendability, reliability, trustworthiness, robustness, and
cost of ownership.

The taxonomies serve other purposes as well. A taxonomy implies a hierarchical relationship
of terms which are used for classifying items in a particular domain. It is this hierarchical rela-
tionship that we wanted to capture for the reader with the hope that each taxonomy would pro-
vide stand-alone utility. Additionally, this relationship of terms gives the reader an idea of
alternative categories in which to look for technology descriptions.

Each taxonomy section contains the following:

• a graphical representation of the taxonomy

• a textual representation of the taxonomy

• a taxonomy-based directory with all technology descriptions appropriately
categorized

Definitions for most of the taxonomy categories can be found in the Glossary, pg. 393.

2.1.1 General Taxonomy Structure
Both taxonomies are structured in a similar manner. Each term or category in a taxonomy has
an index number. For the Application taxonomy, the index numbers begin with AP; for the
Quality Measures taxonomy, the index numbers begin with QM. As mentioned before, a tax-
onomy is a hierarchical relationship. A category can be broken down into one or more subcat-
egories with the subcategories beginning a new level in the hierarchy. Subcategories are
indexed starting with the number 1. For example, index numbers that are subcategories to the
CMU/SEI-97-HB-001 7

first, or root level (AP or QM) would look like AP.2, QM.1, or QM.3. Subcategories to AP.2,
QM.1, or QM.3 would have index numbers like AP.2.4, QM.1.1, or QM.3.2, respectively; sub-
categories to these would have index numbers like AP.2.4.3, QM.1.1.2, or QM.3.2.1, respec-
tively, and so on.

Some categories have hyphenated subcategories. These subcategories are terms that we
feel are worth noting and help further define what type of technology descriptions the reader
may find under the parent category. However, they are not sufficiently different from their par-
ent category or in some cases from each other to warrant an index number.

Technology descriptions can be classified into more than one category, and these categories
are usually three to four levels deep in the taxonomy.

The graphical and textual representations of each taxonomy do not have technology descrip-
tions categorized into them. These representations are an aid to readers so that they can eas-
ily see the relationships between the different taxonomy terms. The index numbers do appear
in these representations.

2.1.2 Using the Taxonomies
The taxonomies will most likely be referenced after the reader has first visited the Keyword
Index. The Keyword Index will identify the index number for a term if it is a category within one
of the taxonomies. This index number will help the reader find technology descriptions using
the taxonomy-based directory. For example, if a reader is concerned about testing, the reader
would first go to the Keyword Index. In the Keyword Index under “testing”, the reader will find
an index number of “AP.1.5.3”. This tells the reader that testing is a category in the Application
taxonomy and that the index number for testing is AP.1.5.3. In addition, the reader will also
notice that under the “testing” entry are types of testing such as “interface,” “operational,” and
“unit.” These testing types also have index numbers: AP.1.5.3.3, AP.1.4.3.4, and AP.1.8.2.1,
respectively. Now, the reader must to make a decision. The reader decides that unit testing is
really the problem. The reader then turns to the Application taxonomy-based directory and
looks for AP.1.4.3.4. Once found, the reader will see a list of technology descriptions that re-
late to unit testing.

When readers find a term within one of the taxonomies that leads them to a list of technology
descriptions, they may want to examine the graphical or textual representations of the taxon-
omies as well. By examining these, readers can identify other possible categories to look un-
der that are related to their original term. For example, if a reader is concerned about reliability,
the reader would look at one of the Quality Measures representations and notice that “correct-
ness” and “completeness” are closely related to reliability. The reader could then look for tech-
nology descriptions under those categories. This method may give the reader a more
complete solution set for their particular problem context.
8 CMU/SEI-97-HB-001

2.2 Application Taxonomy

2.2.1 Introduction
Readers will use the application taxonomy if they are looking for software technologies that
address a particular use, such as design or testing. The technology descriptions have been
classified into this taxonomy according to how they are used in systems. Specifically, the ap-
plication taxonomy divides software technologies into two major categories:

1. Used to support operational systems

2. Used in operational systems

Under the category “Used to Support Operational Systems” (AP.1), by referencing ANSI/IEEE
Std 1002-1987 [IEEE 1002], we provide the standard life cycle phases plus two major activities
that cross all of the phases. IEEE Std 1074-1991 [IEEE 1074] helped provide a breakdown of
the activities that occur in each life cycle phase. Support in this context means any technology
used to develop and maintain an operational system within the life-cycle framework.

The category “Used in Operational Systems” (AP.2) simply provides a breakdown of catego-
ries of technologies that are used and operate in operational systems.

Note: Within the technology descriptions, some software technologies that are mentioned or
referenced do not yet have corresponding descriptions. However, we still indexed these into
the Application Taxonomy. When these descriptions are written and more information is gath-
ered, the categories into which these technologies are indexed may change. Thus technolo-
gies may appear in this taxonomy without corresponding page references.
CMU/SEI-97-HB-001 9

2.2.2 Graphical Representation
The following explains how to approach the graphical representations:

• There is always a two-level deep view from the root figure.

• Due to the structure of this taxonomy, it may take more than one figure to
provide a complete two-level deep view.

• If further expansion of the taxonomy is needed (i.e., there is more detail at
subordinate levels), the first level is marked with a number in a shaded box
located in the lower, right-hand corner. That level is then further expanded
(and rotated 90 degrees) in Figure X where X corresponds to the number that
the level is marked with.

Root Figure: Application

Requirements
Phase

Implementation
Phase

Qualification
Phase

Used to Support
Operational Systems

Used in Operational
Systems

Application

2

Installation and
Checkout Phase

1

Concept Phase

Design Phase

Test Phase

Manufacturing
Phase

Operations and
Maintenance

Phase
Retirement

Phase

Communication
Software

Information
Security

Databases

Agents

Software
Architecture

Human Computer
Interaction

Target Operating
System

Application
Program

Interfaces (APIs)

Data Recording/
Reduction

Restart/
Recovery

Error
HandlingDocumentationConfiguration

Management
10 CMU/SEI-97-HB-001

Figure 1a: Used to Support Operational Systems

Figure 1b: Used to Support Operational Systems

Identify Ideas
or Needs (1.1.1)

Formulate Potential
Approaches (1.1.2)

Conduct Feasibility
Studies (1.1.3)

Plan System
Transition (1.1.4)

Concept
Phase (1.1)

System
Allocation (1.2.1)

Requirements
Engineering (1.2.2)

Requirements
Mgt. (1.2.3)

Requirements
Phase (1.2)

Implementation
Phase (1.4)

Test
Phase (1.5)

Used to Support
Operational Systems (AP.1)

3 4 5

Domain
Engineering (1.2.4)

Design
Phase (1.3)

Refine and Finalize
Idea or Need

(1.1.5)

Architectural
Design (1.3.1)

Select or Develop
Algorithms (1.3.4)

Database
Design (1.3.2)

Interfaces
Design (1.3.3)

Detailed Design
 (1.3.5)

Development Op.
System (1.4.1)

Test
(1.4.3)

Code
(1.4.2)

Plan and Perform
Integration (1.4.4)

Test Drivers
 (1.5.1)

Test Tools
 (1.5.2)

Testing
(1.5.3)

Cost Estimation
 (1.3.7)

System Analysis &
 Optimization (1.3.6)

Qualification
Testing (1.6.1)

Plan
Installation (1.6.2)

Qualification
Phase (1.6)

Operations and
Maint. Phase

(1.9)

Documentation
(1.12)

Used to Support
Operational Systems (AP.1)

Installation and
Checkout Phase

(1.8)

Install
Software (1.8.1)

Accept
Software (1.8.2)

76

Database
Admin. (1.9.1)

Reverse
Engineering (1.9.4)

Trouble Report
Analysis (1.9.2)

Reapply Software
Life Cycle (1.9.3)

Reengineering
 (1.9.5)

Package
Software (1.7.1)

Distribute
Software (1.7.2)

Manufacturing
Phase (1.7)

Retirement
Phase (1.10)

Notify User
 (1.10.1)

Conduct Parallel
 Ops (1.10.2)

Retire System
(1.10.3)

Configuration
Management (1.11)
CMU/SEI-97-HB-001 11

Figure 2a: Used in Operational Systems

Figure 2b: Used in Operational Systems

S/W Architecture
(2.1)

Client/Server
Comm. (2.2.1)

Network
Mgt. (2.2.2)

Protocols
(2.2.3)

Communication
Software (2.2)

Information
Security (2.4)

Target Operating
System (2.5)

Used in Operational
Systems (AP.2)

Human Computer
Interaction (2.3)

User Interfaces
(2.3.1)

Graphics
(2.3.2)

Trusted Op
Systems (2.4.1)

Data Mgt.
Security (2.4.2)

System Security
(2.4.3)

Models
(2.1.1)

Distributed
Computing (2.1.2)

Parallel
Computing (2.1.3)

8

Databases
(2.6)

Application Program
Interfaces (2.7)

Data Recording/
Reduction (2.9)

Error Handling
(2.11)

Used in Operational
Systems (AP.2)

Agents
(2.8)

Data Management
(2.6.1)

Restart/Recovery
(2.10)
12 CMU/SEI-97-HB-001

Figure 3: Requirements Phase

Figure 4: Implementation Phase

System
Allocation (1.2.1)

Requirements
Engineering (1.2.2)

Requirements
Tracing (1.2.3)

Domain
Engineering (1.2.4)

Requirements Phase
(AP.1.2)

Requirements-to-
Code (1.2.3.1)

Requirements-to-
Doc. (1.2.3.2)

Decompose System
Req. (1.2.1.3)

Analyze Functions
(1.2.1.1)

Develop System
Arch. (1.2.1.2)

Prioritize and
Integrate Req.

(1.2.2.3)

Define and Develop
Req. (1.2.2.1)

Define Interface
Req. (1.2.2.2)

Development Op.
System (1.4.1)

Code
(1.4.2)

Test
(1.4.3)

Plan and Perform
Integration (1.4.4)

Implementation Phase
(AP.1.4)

Programming
Language (1.4.2.1)

Database Utilities
(1.4.2.2)

Compiler
(1.4.2.3)

Debugger
(1.4.2.4)

Create Test Data
(1.4.3.1)

Unit Testing
(1.4.3.4)

Test Drivers
(1.4.3.2)

Test Tools
(1.4.3.3)

Component Testing
 (1.4.3.5)
CMU/SEI-97-HB-001 13

Figure 5: Test Phase

Figure 6: Installation and Checkout Phase

Test Drivers
(1.5.1)

Testing
(1.5.3)

Test Phase
(AP.1.5)

Test Tools
(1.5.2)

System Testing
(1.5.3.1)

Integration Testing
(1.5.3.2)

Interface Testing
(1.5.3.3)

Regression Testing
(1.5.3.4)

Performance
Testing (1.5.3.5)

Install Software
(1.8.1)

Accept Software
(1.8.2)

Installation and Checkout
Phase (AP.1.8)

Operational
 Testing (1.8.2.1)

Acceptance
Testing (1.8.2.2)
14 CMU/SEI-97-HB-001

Figure 7: Operations and Maintenance Phase

Figure 8: Software Architecture Phase

Operations and Maint.
Phase (AP.1.9)

Corrective Maint.
(1.9.3.1)

Software Migration
& Evolution / Adaptive

Maint. (1.9.3.2)

Software Upgrade
& Technology

Insertion / Perfective
Maint. (1.9.3.3)

Database
Admin. (1.9.1)

Trouble Report
Analysis (1.9.2)

Reverse
Engineering (1.9.4)

Reengineering
(1.9.5)

Reapply Software
Life Cycle (1.9.3)

Models
(2.1.1)

Parallel
Computing (2.1.3)

Software
Architecture (AP.2.1)

Distributed
Computing (2.1.2)

Client/Server
(2.1.2.1)
CMU/SEI-97-HB-001 15

2.2.3 Textual Representation
AP. Application
1. Used to Support Operational Systems

1. Concept Phase
 1. Identify Ideas or Needs

2. Formulate Potential Approaches
3. Conduct Feasibility Studies
4. Plan System Transition
5. Refine and Finalize Idea or Need

 - Collect Pertinent Documentation,Regulations, Procedures,
and Policies

2. Requirements Phase
1. System Allocation

1. Analyze Functions
2. Develop System Architecture
3. Decompose System Requirements

2. Requirements Engineering
1. Define and Develop Requirements

- Elicitation Techniques
- Specification Techniques
- Modeling
- Prototyping

2. Define Interface Requirements
3. Prioritize and Integrate Requirements

3. Requirements Tracing
1. Requirements-to-code
2. Requirements-to-documentation

4. Domain Engineering
3. Design Phase

1. Architectural Design
- Hardware-Software Co-Design

2. Database Design
- Conceptual
- Logical
- Physical

3. Interfaces Design
4. Select or Develop Algorithms
5. Detailed Design

 - Design Notations
- Design Techniques

6. System Analysis and Optimization
7. Cost Estimation

4. Implementation Phase
1. Development Operating System
2. Code

1. Programming Language
16 CMU/SEI-97-HB-001

2. Database Utilities
3. Compiler
4. Debugger

3. Test
1. Create Test Data
2. Test Drivers
3. Test Tools
4. Unit Testing

- Code analyzers
- Data analyzers
- Black-box/Functional Testing
- White-box/Structural Testing

5. Component Testing
4. Plan and Perform Integration

5. Test Phase
1. Test Drivers
2. Test Tools
3. Testing

1. System Testing
2. Integration Testing
3. Interface Testing
4. Regression Testing
5. Performance Testing

 - Statistical Testing
6. Qualification Phase

1. Qualification Testing
2. Plan Installation

7. Manufacturing Phase
 1. Package Software

2. Distribute Software
8. Installation and Checkout Phase

1. Install Software
 2. Accept Software

1. Operational Testing
2. Acceptance Testing

9. Operations and Maintenance Phase
1. Database Administration
2. Trouble Report Analysis
3. Reapply Software Life Cycle

1. Corrective Maintenance
2. Software Migration and Evolution / Adaptive Maintenance
3. Software Upgrade and Technology Insertion / Perfective

Maintenance
4. Reverse Engineering
5. Reengineering

10. Retirement Phase
CMU/SEI-97-HB-001 17

1. Notify User
2. Conduct Parallel Operations
3. Retire System

11. Configuration Management
12. Documentation

2. Used in Operational Systems
1. Software Architecture

1. Models
2. Distributed Computing

 1. Client/Server
3. Parallel Computing

2. Communication Software
1. Client/Server Communication
2. Network Management
3. Protocols

3. Human Computer Interaction
1. User Interfaces
2. Graphics

4. Information Security
1. Trusted Operating Systems
2. Data Management Security
3. System Security

5. Target Operating Systems
6. Databases

1. Data Management
 7. Application Program Interfaces (APIs)

8. Agents
9. Data Recording/Reduction
10. Restart/Recovery
11. Error Handling
18 CMU/SEI-97-HB-001

2.2.4 Taxonomy-Based Directory to Technology Descriptions
AP. Application

AP.1 Used to Support Operational Systems

AP.1.1 Concept Phase

AP.1.1.1 Identify Ideas or Needs

AP.1.1.2 Formulate Potential Approaches

AP.1.1.3 Conduct Feasibility Studies

AP.1.1.4 Plan System Transition

AP.1.1.5 Refine and Finalize Idea or Need (Collect Pertinent Documentation,
Regulations, Procedures, and Policies)

AP.1.2 Requirements Phase

AP.1.2.1 System Allocation
Component-Based Software Development/ COTS Integration . 119

AP.1.2.1.1 Analyze Functions
Essential Systems Analysis
Functional Decomposition
Object-Oriented Analysis . 275
Structured Analysis and Design

AP.1.2.1.2 Develop System Architecture

AP.1.2.1.3 Decompose System Requirements

AP.1.2.2 Requirements Engineering

AP.1.2.2.1 Define and Develop Requirements (Elicitation Techniques, Specification
Techniques, Modeling, Prototyping)

Algebraic Specification Techniques
Box Structure Method
Entity-Relationship Modeling
Essential Systems Analysis
Formal Specification
Functional Decomposition
Model Checking
Object-Oriented Analysis . 275
Specification Construction Techniques
Structured Analysis and Design

AP.1.2.2.2 Define Interface Requirements

AP.1.2.2.3 Prioritize and Integrate Requirements

AP.1.2.3 Requirements Tracing
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Feature-Based Design Rationale Capture Method for Requirements Tracing. 181
Maintenance of Operational Systems— an Overview . 237
Representation and Maintenance of Process Knowledge Method
Requirements Tracing . 327

AP.1.2.3.1 Requirements-to-code

AP.1.2.3.2 Requirements-to-documentation
CMU/SEI-97-HB-001 19

AP.1.2.4 Domain Engineering
Adaptable Architecture/Implementation Development Techniques
Comparative/Taxonomic Modeling
Domain Engineering and Domain Analysis . 173
Feature-Based Design Rationale Capture Method for Requirements Tracing 181
Feature-Oriented Domain Analysis. 185
Organization Domain Modeling . 297
Visual Programming Techniques

AP.1.3 Design Phase

AP.1.3.1 Architectural Design (Hardware-Software Co-Design)
Adaptable Architecture/Implementation Development Techniques
Architecture Description Languages. 83
Module Interconnection Languages . 255

AP.1.3.2 Database Design (Conceptual, Logical, Physical)
Graphic Tools for Legacy Database Migration . 201
Object-Oriented Database . 279
Relational DBMS
SQL

AP.1.3.3 Interfaces Design
COTS and Open Systems . 135
Graphical User Interface Builders. 205
Interface Definition Language

AP.1.3.4 Select or Develop Algorithms
Algebraic Specification Techniques
Algorithm Formalization . 73
Component-Based Software Development/ COTS Integration . 119
Resolution-Based Theorem Proving
Software Generation Systems

AP.1.3.5 Detailed Design (Design Notations, Design Techniques)
Box Structure Method
Cleanroom Software Engineering. 95
Dynamic Simulation
Finite State Automata
Hybrid Automata . 215
Object-Oriented Design . 283
Peer Reviews
Personal Software Process for Module-Level Development . 303
Probabilistic Automata
Rate Monotonic Analysis . 313
Software Inspections . 351
Software Walkthroughs
Stochastic Methods
Structured Analysis and Design
20 CMU/SEI-97-HB-001

AP.1.3.6 System Analysis and Optimization
Model Checking
Rate Monotonic Analysis . 313
Software Reliability Modeling and Analysis

AP.1.3.7 Cost Estimation
COCOMO Method
Function Point Analysis . 195
Maintenance of Operational Systems— an Overview . 237

AP.1.4 Implementation Phase

AP.1.4.1 Operating System Used in Development

AP.1.4.2 Code
Graphical User Interface Builders . 205
Halstead Complexity Measures . 209
Peer Reviews
Personal Software Process for Module-Level Development . 303
Rate Monotonic Analysis . 313
Nonrepudiation in Network Communications . 269
Software Walkthroughs

AP.1.4.2.1 Programming Language
Ada 83 . 61
Ada 95 . 67
Assembly
Basic
C
C++
COBOL
Common LISP Object System (CLOS)
Eiffel
FORTRAN
HTML
Java . 221
LISP
Motif User Interface Language (UIL)
Object-Oriented Programming Languages . 287
Object Pascal
Objective C
Pascal
PERL
Simula
Smalltalk
TCL

AP.1.4.2.2 Database Utilities
SQL
CMU/SEI-97-HB-001 21

AP.1.4.2.3 Compiler
Ada 83 . 61
Ada 95 . 67
Architecture Description Languages. 83
Assembly
Basic
C
C++
COBOL
FORTRAN
Java . 221
Module Interconnection Languages . 255
Object Pascal
Objective C
Pascal

AP.1.4.2.4 Debugger
Halstead Complexity Measures . 209
Maintainability Index Technique for Measuring Program Maintainability 231

AP.1.4.3 Test
Bowles Metrics
Cyclomatic Complexity . 145
Halstead Complexity Measures . 209
Henry and Kafura Metrics
Ligier Metrics
Maintainability Index Technique for Measuring Program Maintainability 231
Maintenance of Operational Systems— an Overview . 237
Troy and Zweben Metric

AP.1.4.3.1 Create Test Data
Test Data Generation by Chaining

AP.1.4.3.2 Test Drivers

AP.1.4.3.3 Test Tools
Automatic Test Case Generation
Redundant Test Case Elimination
Statistical Test Plan Generation and Coverage Analysis Techniques
Test and Analysis Tool Generation

AP.1.4.3.4 Unit Testing (Code analyzers, Data analyzers, Black-box/Functional Testing,
White-box/Structural Testing)

Halstead Complexity Measures . 209
Maintainability Index Technique for Measuring Program Maintainability 231
Peer Reviews
Personal Software Process for Module-Level Development . 303
Nonrepudiation in Network Communications . 269
Software Walkthroughs
22 CMU/SEI-97-HB-001

AP.1.4.3.5 Component Testing
Cleanroom Software Engineering . 95
Halstead Complexity Measures . 209
Maintainability Index Technique for Measuring Program Maintainability 231
Personal Software Process for Module-Level Development . 303
Simplex Architecture . 345

AP.1.4.4 Plan and Perform Integration
Architecture Description Languages . 83
Component-Based Software Development/ COTS Integration . 119
Module Interconnection Languages . 255

AP.1.5 Test Phase

AP.1.5.1 Test Drivers

AP.1.5.2 Test Tools

AP.1.5.3 Testing

AP.1.5.3.1 System Testing
Cleanroom Software Engineering . 95
Maintenance of Operational Systems— an Overview . 237

AP.1.5.3.2 Integration Testing

AP.1.5.3.3 Interface Testing

AP.1.5.3.4 Regression Testing
Maintenance of Operational Systems— an Overview . 237
Regression Testing Techniques

AP.1.5.3.5 Performance Testing (Statistical Testing)
Cleanroom Software Engineering . 95
Rate Monotonic Analysis . 313

AP.1.6 Qualification Phase

AP.1.6.1 Qualification Testing

AP.1.6.2 Plan Installation

AP.1.7 Manufacturing Phase

AP.1.7.1 Package Software

AP.1.7.2 Distribute Software

AP.1.8 Installation and Checkout Phase

AP.1.8.1 Install Software

AP.1.8.2 Accept Software

AP.1.8.2.1 Operational Testing

AP.1.8.2.2 Acceptance Testing

AP.1.9 Operations and Maintenance Phase
CMU/SEI-97-HB-001 23

AP.1.9.1 Database Administration
Data Mining
Data Warehousing
Object-Oriented Database . 279
Relational DBMS
Trusted DBMS

AP.1.9.2 Trouble Report Analysis

AP.1.9.3 Reapply Software Life Cycle
Bowles Metrics
Cyclomatic Complexity . 145
Data Complexity
Design Complexity
Essential Complexity
Graphical User Interface Builders. 205
Halstead Complexity Measures . 209
Henry and Kafura Metrics
Ligier Metrics
Maintainability Index Technique for Measuring Program Maintainability 231
Maintenance of Operational Systems— an Overview . 237
Personal Software Process for Module-Level Development . 303
Rate Monotonic Analysis . 313
Simplex Architecture. 345
Troy and Zweben Metrics

AP.1.9.3.1 Corrective Maintenance

AP.1.9.3.2 Software Migration and Evolution / Adaptive Maintenance

AP.1.9.3.3 Software Upgrade and Technology Insertion / Perfective Maintenance

AP.1.9.4 Reverse Engineering
Cyclomatic Complexity . 145
Data Mining
Data Warehousing
Maintenance of Operational Systems— an Overview . 237

AP.1.9.5 Reengineering
Bowles Metrics
Cleanroom Software Engineering. 95
Component-Based Software Development/ COTS Integration . 119
Cyclomatic Complexity . 145
Data Complexity
Design Complexity
Essential Complexity
Graphic Tools for Legacy Database Migration . 201
Graphical User Interface Builders. 205
Halstead Complexity Measures . 209
Henry and Kafura Metrics
Ligier Metrics
Maintainability Index Technique for Measuring Program Maintainability 231
24 CMU/SEI-97-HB-001

Maintenance of Operational Systems— an Overview . 237
Object-Oriented Analysis . 275
Object-Oriented Design . 283
Personal Software Process for Module-Level Development . 303
Rate Monotonic Analysis . 313
Simplex Architecture . 345
Troy and Zweben Metrics

AP.1.10 Retirement Phase

AP.1.10.1 Notify User

AP.1.10.2 Conduct Parallel Operations

AP.1.10.3 Retire System

AP.1.11 Configuration Management

AP.1.12 Documentation

AP.2 Used in Operational Systems

AP.2.1 Software Architecture
COTS and Open Systems . 135
Fault Tolerant Computing
File Server Software Architecture
Real-Time Computing
Reference Models, Architectures, Implementations— An Overview 319
Simplex Architecture . 345
Trusted Computing Base

AP.2.1.1 Models
Client/Server Software Architectures . 101
Defense Information Infrastructure Common Operating Environment 155
ECMA
Joint Technical Architecture
Object Linking and Embedding/Component Object Model . 271
Project Support Environment Reference Model (PSERM)
Reference Models, Architectures, Implementations— An Overview 319
TAFIM Reference Model . 361
Tri-Service Working Group Open Systems Reference Model

AP.2.1.2 Distributed Computing
Distributed Computing Environment . 167
Java . 221
TAFIM Reference Model . 361
CMU/SEI-97-HB-001 25

AP.2.1.2.1 Client/Server
Common Object Request Broker Architecture . 107
Database Two Phase Commit . 151
Distributed/Collaborative Enterprise Architectures . 163
Mainframe Server Software Architectures . 227
Message-Oriented Middleware Technology . 247
Middleware . 251
Object Linking and Embedding/Component Object Model . 271
Object Request Broker . 291
Remote Data Access (RDA)
Remote Procedure Call . 323
Session-Based Technology
Three Tier Software Architectures . 367
Transaction Processing Monitor Technology . 373
Two Tier Software Architectures. 381

AP.2.1.3 Parallel Computing
Parallel Processing Software Architecture

AP.2.2 Communication Software

AP.2.2.1 Client/Server Communication
Common Object Request Broker Architecture . 107
Message-Oriented Middleware Technology . 247
Middleware . 251
Object Linking and Embedding/Component Object Model . 271
Object Request Broker . 291
Remote Data Access
Remote Procedure Call . 323
Session-Based Technology
Transaction Processing Monitor Technology . 373

AP.2.2.2 Network Management
Simple Network Management Protocol . 337

AP.2.2.3 Protocols
ATM
OSI
Simple Network Management Protocol . 337
TCP/IP
X.25

AP.2.3 Human Computer Interaction

AP.2.3.1 User Interfaces
Window Managers

AP.2.3.2 Graphics
26 CMU/SEI-97-HB-001

AP.2.4 Information Security
Computer System Security— an Overview . 129
Electronic Encryption Key Distribution
End-to-End Encryption
Trusted Computing Base
Virus Detection. 387

AP.2.4.1 Trusted Operating Systems
Trusted Operating Systems . 377

AP.2.4.2 Data Management Security
Multi-Level Secure Database Management Schemes . 261
Trusted DBMS

AP.2.4.3 System Security
Covert Channel Analysis in MLS Systems
Firewalls and Proxies . 191
Intrusion Detection . 217
Message Digest
Multi-Level Secure One Way Guard with Random Acknowledgment 267
Network Auditing Techniques
Network Security Guards
Nonrepudiation in Network Communications . 269
Public Key Cryptography
Public Key Digital Signatures . 309
Rule-Based Intrusion Detection . 331
Statistical-Based Intrusion Detection . 357

AP.2.5 Target Operating Systems
POSIX
Real-Time Operating Systems

AP.2.6 Databases
Object-Oriented Database . 279
Relational DBMS
Trusted DBMS

AP.2.6.1 Data Management
Database Two Phase Commit . 151

AP.2.7 Application Program Interfaces (APIs)
Application Programming Interface . 79
Java . 221

AP.2.8 Agents
Mediating

AP.2.9 Data Recording/Reduction

AP.2.10 Restart/Recovery
Simplex Architecture . 345

AP.2.11 Error Handling
CMU/SEI-97-HB-001 27

28 CMU/SEI-97-HB-001

2.3 Quality Measures Taxonomy

2.3.1 Introduction
Readers will use the quality measures taxonomy if they are looking for software technologies
that affect particular quality measures or attributes of a software component or system. The
technology descriptions have been categorized into this taxonomy by the particular quality
measure(s) that they directly influence. Software quality can be defined as the degree to which
software possesses a desired combination of attributes (e.g., reliability, interoperability) [IEEE
90]. Software technologies are typically developed to affect certain quality measures.

We developed a reasonably exhaustive and non-overlapping set of measures by which the
quality of software is judged. With the help of work done by Boehm, Barbacci, Deutsch and
Willis, and Evans and Marciniak, we established a hierarchical relationship among our list of
quality measures to create the taxonomy [Boehm 78, Barbacci 95, Deutsch 88, Evans 87]. The
following table explains the categories of quality measures and the areas they address:

Categories 1 - 4 are all considered to be direct measures, i.e., quality attributes that can be
directly impacted by software technologies. The measures listed in category 5 are measures
that generally can not be affected directly by software technologies, but have an indirect rela-
tionship. Many factors influence these measures, such as management, politics, bureaucracy,
employee skill-level, and work environment. For example, software alone can not improve pro-
ductivity. A software technology that improves a direct measure such as understandability may
indirectly improve productivity. Therefore, most technology descriptions will not be catego-
rized into category 5. An example of a technology the reader may find in this category is a tech-
nology that was specifically developed to measure or estimate costs of productivity associated
with software.

Quality Measure Area Addressed

Need Satisfaction (QM.1) How well does the system meet the user’s needs and requirements?

Performance (QM.2) How well does the system function?

Maintenance (QM.3) How easily can the system be repaired or changed?

Adaptive (QM.4) How easily can the system evolve or migrate?

Organizational (QM.5) none specifically, usually indirect
CMU/SEI-97-HB-001 29

2.3.2 Graphical Representation
The following explains how to approach the graphical representations:

• There is always a two-level deep view from the root figure.

• If further expansion of the taxonomy is needed (i.e., there is more detail at
subordinate levels), the first level is marked with a number in a shaded box
located in the lower, right-hand corner. That level is then further expanded
(and rotated 90 degrees) in Figure X where X corresponds to the number that
the level is marked with.

Root Figure: Quality Measures

Figure 1: Needs Satisfaction Measures

Effectiveness

Responsiveness

Correctness

Verifiability

Need Satisfaction
Measures

Dependability

Efficiency/
Resource Util.

Usability

Performance
Measures

Interoperability

Portability

Scalabiity

Reusability

Adaptive
Measures

Cost of
ownership

Productivity

Organizational
Measures

Quality Measures

1 2 4 5

Fidelity

Maintenance
Measures 3

Maintainability

Understandability

Effectiveness
(1.1)

Responsiveness
(1.2)

Correctness
(1.3)

Testability
(1.4.1)

Verifiability
(1.4)

Need Satisfaction
Measures (QM.1)

Necessity of
Characteristics

(1.1.1)

Sufficiency of
Characteristics

(1.1.2)

Traceability
(1.3.3)

Completeness/
Incompleteness

(1.3.1)

Consistency
(1.3.2)

Provably Correct
(1.3.4)
30 CMU/SEI-97-HB-001

Figure 2: Performance Measures

Figure 3: Maintenance Measures

Performance
Measures (QM.2)

Dependability
(2.1)

Efficiency/
Resource Util. (2.2)

Usability
(2.3)

Fidelity
(2.4)

Availability/
Robustness

(2.1.1)

Reliability
(2.1.2)

Error Proneness
(2.3.1)

Operability
(2.3.2)

6

Capacity
(2.2.1)

Real-Time
Responsiveness/
Latency (2.2.2)

Throughput
(2.2.3)

Safety
(2.1.3)

Trustworthiness
(2.1.4)

Security
(2.1.5)

see also 2.1.4

Maintainability
(3.1)

Understandability
(3.2)

Maintenance
Measures (QM.3)

Complexity
 (3.2.1)

Simplicity
(3.2.2)

Structuredness
(3.2.3)

Readability
(3.2.4)
CMU/SEI-97-HB-001 31

Figure 4: Adaptive Measures

Figure 5: Organizational Measures

Figure 6: Dependability

Interoperability
(4.1)

Portability
(4.2)

Scalability
(4.3)

Reusability
(4.4)

Adaptive
Measures (QM.4)

Compatibility
(4.1.1)

Openness
(4.1.2)

Functional Scope
(4.4.1)

Retrieveability
(4.4.2)

Cost of Ownership
(5.1)

Productivity
(5.2)

Organizational
Measures (QM.5)

Cost of Operation
 (5.1.1)

Cost of
Maintenance

(5.1.2)

Lifetime of
Operational

Capability (5.1.3)

7

Availability/
Robustness (2.1.1)

Accuracy
(2.1.2.1)

Reliability
(2.1.2)

Vulnerability
(2.1.4.1)

Accountability
(2.1.4.2)

Trustworthiness
(2.1.4)

Security (2.1.5)
see also 2.1.4

Dependability
(QM.2.1)

8

Safety
(2.1.3)
32 CMU/SEI-97-HB-001

Figure 7: Cost of Ownership

Figure 8: Trustworthiness

Cost of Operation
(5.1.1)

Lifetime of
Operational

Capability (5.1.3)

Cost of Ownership
(QM.5.1)

Acquisition Cycle
 Time (5.1.3.1)

Software Change
Cycle Time

(5.1.3.2)

Operations
 Personnel (5.1.1.1)

Training
(5.1.1.2)

Operations
System (5.1.1.3)

Cost of
Maintenance (5.1.2)

Maintenance
 Personnel (5.1.2.1)

Training
(5.1.2.2)

Maintenance
Control (5.1.2.3)

HW Maintenance
(5.1.2.4)

SW Maintenance
(5.1.2.5)

Requirements
Growth (5.1.2.6)

Vulnerability
(2.1.4.1)

Accountability
(2.1.4.2)

Trustworthiness
(QM.2.1.4)

Integrity
 (2.1.4.1.1)

Confidentiality
(2.1.4.1.2)

Denial of Service
(2.1.4.1.3)

Survivability
(2.1.4.1.4)

Auditable
(2.1.4.2.1)
CMU/SEI-97-HB-001 33

2.3.3 Textual Representation
QM. Quality Measures
1. Need Satisfaction Measures

1. Effectiveness
1. Necessity of Characteristics
2. Sufficiency of Characteristics

2. Responsiveness
3. Correctness

1. Completeness/Incompleteness
2. Consistency
3. Traceability
4. Provably Correct

4. Verifiability
1. Testability

2. Performance Measures
1. Dependability

1. Availability/Robustness
- Error Tolerance
- Fault Tolerance
- Fail Safe
- Fail Soft

2. Reliability
1. Accuracy

3. Safety
4. Trustworthiness

1. Vulnerability
1. Integrity
2. Confidentiality

- Anonymity
3. Denial of Service

- Accessibility
4. Survivability

2. Accountability
1. Auditable

5. Security (see also QM.2.1.4)
2. Efficiency/Resource Utilization

- Speed
- Compactness
1. Capacity
2. Real-time Responsiveness/Latency
3. Throughput

3. Usability
1. Error Proneness
2. Operability

4. Fidelity
3. Maintenance Measures
34 CMU/SEI-97-HB-001

1. Maintainability
- Modifiability
- Flexibility/Adaptability
- Evolvability/Upgradeability
- Extendability/Expandability

2. Understandability
1. Complexity

 - Apparent
- Inherent

2. Simplicity
3. Structuredness
4. Readability

- Self-Descriptiveness
- Conciseness

4. Adaptive Measures
1. Interoperability

1. Compatibility
2. Openness

- Commonality
2. Portability
3. Scalability
4. Reusability

1. Functional Scope
- Generality
- Abstractness
- Accessibility

2. Retrievability
5. Organizational Measures

1. Cost of Ownership
1. Cost of Operation

1. Operations Personnel
2. Training
3. Operations system

2. Cost of maintenance
1. Maintenance Personnel
2. Training
3. Maintenance Control
4. Hardware Maintenance
5. Software Maintenance
6. Requirements Growth

3. Lifetime of Operational Capability
1. Acquisition Cycle Time
2. Software Change Cycle Time

2. Productivity
CMU/SEI-97-HB-001 35

2.3.4 Taxonomy-Based Directory to Technology Descriptions
QM. Quality Measures

QM.1 Need Satisfaction Measures

QM.1.1 Effectiveness
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Feature-Based Design Rationale Capture Method for Requirements Tracing 181
Requirements Tracing . 327

QM.1.1.1 Necessity of Characteristics

QM.1.1.2 Sufficiency of Characteristics

QM.1.2 Responsiveness

QM.1.3 Correctness
Architecture Description Languages. 83
Cleanroom Software Engineering. 95
Hybrid Automata . 215
Module Interconnection Languages . 255
Software Inspections . 351

QM.1.3.1 Completeness/Incompleteness
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Feature-Based Design Rationale Capture Method for Requirements Tracing 181
Hybrid Automata . 215
Requirements Tracing . 327

QM.1.3.2 Consistency
Algorithm Formalization . 73
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Feature-Based Design Rationale Capture Method for Requirements Tracing 181
Requirements Tracing . 327

QM.1.3.3 Traceability
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Feature-Based Design Rationale Capture Method for Requirements Tracing 181
Requirements Tracing . 327

QM.1.3.4 Provably Correct
Algorithm Formalization . 73

QM.1.4 Verifiability

QM.1.4.1 Testability
Cyclomatic Complexity . 145
Graphic Tools for Legacy Database Migration . 201
Halstead Complexity Measures . 209
Maintainability Index Technique for Measuring Program Maintainability 231

QM.2 Performance Measures

QM.2.1 Dependability
36 CMU/SEI-97-HB-001

QM.2.1.1 Availability/Robustness (Error Tolerance, Fault Tolerance, Fail Safe, Fail Soft)
Cleanroom Software Engineering . 95
Personal Software Process for Module-Level Development . 303
Simplex Architecture . 345
Software Inspections . 351

QM.2.1.2 Reliability
Ada 83 . 61
Ada 95 . 67
Cleanroom Software Engineering . 95
Distributed/Collaborative Enterprise Architectures. 163
Hybrid Automata . 215
Personal Software Process for Module-Level Development . 303
Rate Monotonic Analysis . 313
Simplex Architecture . 345
Software Inspections . 351
Three Tier Software Architectures . 367

QM.2.1.2.1 Accuracy
Database Two Phase Commit . 151

QM.2.1.3 Safety
Simplex Architecture . 345

QM.2.1.4 Trustworthiness
Java . 221
Nonrepudiation in Network Communications . 269
Public Key Digital Signatures . 309

QM.2.1.4.1 Vulnerability
Firewalls and Proxies . 191
Multi-Level Secure One Way Guard with Random Acknowledgment 267

QM.2.1.4.1.1 Integrity
Nonrepudiation in Network Communications . 269

QM.2.1.4.1.2 Confidentiality (Anonymity)

QM.2.1.4.1.3 Denial of Service (Accessibility)
Virus Detection. 387

QM.2.1.4.1.4 Survivability

QM.2.1.4.2 Accountability

QM.2.1.4.2.1 Auditable
CMU/SEI-97-HB-001 37

QM.2.1.5 Security (see also QM.2.1.4)
Computer System Security— an Overview . 129
Distributed Computing Environment . 167
Firewalls and Proxies . 191
Intrusion Detection . 217
Multi-Level Secure One Way Guard with Random Acknowledgment. 267
Multi-Level Secure Database Management Schemes . 261
Rule-Based Intrusion Detection . 331
Simple Network Management Protocol . 337
Statistical-Based Intrusion Detection . 357
Trusted Operating Systems . 377
Virus Detection . 387

QM.2.2 Efficiency/Resource Utilization (Speed, Compactness)
Simple Network Management Protocol . 337
Transaction Processing Monitor Technology . 373

QM.2.2.1 Capacity

QM.2.2.2 Real-time Responsiveness/Latency
Rate Monotonic Analysis . 313
Simplex Architecture. 345

QM.2.2.3 Throughput
Algorithm Formalization . 73
Distributed Computing Environment . 167
Graphic Tools for Legacy Database Migration . 201

QM.2.3 Usability
Client/Server Software Architectures . 101
Graphical User Interface Builders. 205
Two Tier Software Architectures. 381

QM.2.3.1 Error Proneness

QM.2.3.2 Operability

QM.2.4 Fidelity
Hybrid Automata . 215

QM.3 Maintenance Measures

QM.3.1 Maintainability (Modifiability, Flexibility/Adaptability, Evolvability/Upgradeability,
Extendability/Expandability)

Ada 83 . 61
Ada 95 . 67
Application Programming Interface. 79
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Cleanroom Software Engineering. 95
Client/Server Software Architectures . 101
Common Object Request Broker Architecture . 107
Component-Based Software Development/ COTS Integration . 119
COTS and Open Systems . 135
Cyclomatic Complexity . 145
Distributed/Collaborative Enterprise Architectures . 163
38 CMU/SEI-97-HB-001

Distributed Computing Environment . 167
Domain Engineering and Domain Analysis . 173
Feature-Based Design Rationale Capture Method for Requirements Tracing. 181
Feature-Oriented Domain Analysis . 185
Graphic Tools for Legacy Database Migration. 201
Graphical User Interface Builders . 205
Halstead Complexity Measures . 209
Java . 221
Mainframe Server Software Architectures . 227
Maintainability Index Technique for Measuring Program Maintainability 231
Maintenance of Operational Systems— an Overview . 237
Message-Oriented Middleware Technology. 247
Object-Oriented Analysis . 275
Object-Oriented Database . 279
Object-Oriented Design . 283
Object-Oriented Programming Languages . 287
Object Request Broker. 291
Organization Domain Modeling . 297
Rate Monotonic Analysis . 313
Reference Models, Architectures, Implementations— An Overview 319
Remote Procedure Call . 323
Requirements Tracing . 327
Simple Network Management Protocol . 337
Simplex Architecture . 345
Software Inspections . 351
TAFIM Reference Model . 361
Three Tier Software Architectures . 367
Transaction Processing Monitor Technology . 373
Two Tier Software Architectures . 381

QM.3.2 Understandability
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Cleanroom Software Engineering . 95
Domain Engineering and Domain Analysis . 173
Feature-Based Design Rationale Capture Method for Requirements Tracing. 181
Feature-Oriented Domain Analysis . 185
Graphic Tools for Legacy Database Migration. 201
Halstead Complexity Measures . 209
Maintainability Index Technique for Measuring Program Maintainability 231
Organization Domain Modeling . 297
Requirements Tracing . 327
CMU/SEI-97-HB-001 39

QM.3.2.1 Complexity (Apparent, Inherent)
Cyclomatic Complexity . 145
Distributed Computing Environment . 167
Halstead Complexity Measures . 209
Java . 221
Remote Procedure Call . 323
Simple Network Management Protocol . 337

QM.3.2.2 Simplicity
Simple Network Management Protocol . 337

QM.3.2.3 Structuredness
Architecture Description Languages. 83
Cyclomatic Complexity . 145
Module Interconnection Languages . 255

QM.3.2.4 Readability (Self-Descriptiveness, Conciseness)

QM.4 Adaptive Measures

QM.4.1 Interoperability
Ada 83 . 61
Ada 95 . 67
Application Programming Interface. 79
Client/Server Software Architectures . 101
Common Object Request Broker Architecture . 107
COTS and Open Systems . 135
Defense Information Infrastructure Common Operating Environment 155
Distributed Computing Environment . 167
Java . 221
Message-Oriented Middleware Technology . 247
Middleware . 251
Object Linking and Embedding/Component Object Model . 271
Object Request Broker . 291
Reference Models, Architectures, Implementations— An Overview 319
Remote Procedure Call . 323
TAFIM Reference Model. 361

QM.4.1.1 Compatibility
Graphic Tools for Legacy Database Migration . 201

QM.4.1.2 Openness (Commonality)
COTS and Open Systems . 135
40 CMU/SEI-97-HB-001

QM.4.2 Portability
Ada 83 . 61
Ada 95 . 67
Common Object Request Broker Architecture . 107
Defense Information Infrastructure Common Operating Environment 155
Distributed Computing Environment . 167
Java . 221
Message-Oriented Middleware Technology. 247
Object Linking and Embedding/Component Object Model . 271
Reference Models, Architectures, Implementations— An Overview 319
Remote Procedure Call . 323

QM.4.3 Scalability
Ada 83 . 61
Ada 95 . 67
Client/Server Software Architectures . 101
Common Object Request Broker Architecture . 107
Distributed/Collaborative Enterprise Architectures. 163
Distributed Computing Environment . 167
Mainframe Server Software Architectures . 227
Simple Network Management Protocol . 337
Three Tier Software Architectures . 367
Two Tier Software Architectures . 381

QM.4.4 Reusability
Ada 83 . 61
Ada 95 . 67
Architecture Description Languages . 83
Argument-Based Design Rationale Capture Methods for Requirements Tracing 91
Common Object Request Broker Architecture . 107
Defense Information Infrastructure Common Operating Environment 155
Domain Engineering and Domain Analysis . 173
Feature-Based Design Rationale Capture Method for Requirements Tracing. 181
Feature-Oriented Domain Analysis . 185
Mainframe Server Software Architectures . 227
Module Interconnection Languages . 255
Object Linking and Embedding/Component Object Model . 271
Object-Oriented Analysis . 275
Object-Oriented Design . 283
Organization Domain Modeling . 297
Requirements Tracing . 327
Three Tier Software Architectures . 367
Transaction Processing Monitor Technology . 373

QM.4.4.1 Functional Scope (Generality, Abstractness, Accessibility)

QM.4.4.2 Retrievability

QM.5 Organizational Measures

QM.5.1 Cost of Ownership
CMU/SEI-97-HB-001 41

QM.5.1.1 Cost of Operation

QM.5.1.1.1 Operations Personnel

QM.5.1.1.2 Training

QM.5.1.1.3 Operations system

QM.5.1.2 Cost of maintenance

QM.5.1.2.1 Maintenance Personnel

QM.5.1.2.2 Training

QM.5.1.2.3 Maintenance Control
Personal Software Process for Module-Level Development . 303

QM.5.1.2.4 Hardware Maintenance

QM.5.1.2.5 Software Maintenance

QM.5.1.2.6 Requirements Growth

QM.5.1.3 Lifetime of Operational Capability

QM.5.1.3.1 Acquisition Cycle Time

QM.5.1.3.2 Software Change Cycle Time

QM.5.2 Productivity
Function Point Analysis . 195
Personal Software Process for Module-Level Development . 303
42 CMU/SEI-97-HB-001

3 Technology Descriptions

3.1 Defining Software Technology
This document addresses software technology in its broadest interpretation. Technology is the
practical application of scientific knowledge in a particular domain or in a particular manner to
accomplish a task. For the purposes of this document, software technology is defined as: the
theory and practice of various sciences (to include computer, cognitive, statistical sciences,
and others) applied to software development, operation, understanding, and maintenance.

More specifically, we view software technology as any concept, process, method, algorithm,
or tool, whose primary purpose is the development, operation, and maintenance of software
or software-intensive systems. Technology is not just the technical artifacts, but the knowl-
edge embedded in those artifacts and the knowledge required for their effective use. Software
technology may include the following:

• Technology directly used in operational systems, for example: two tier/three
tier software architectures, public key digital signatures, remote procedure
calls (RPCs), rule-based intrusion detection.

• Technology used in tools that produce (or help produce) or maintain
operational systems, for example: graphical user interface (GUI) builders,
cyclomatic complexity, Ada 95 programming language, technologies for
design rationale capture.

• Process technologies that make people more effective in producing and
maintaining operational systems and tools by structuring development
approaches or enabling analysis of systems/product lines. Examples
include: Personal Software Process1 (PSP) for Module-Level Development,
Cleanroom Software Engineering, Domain Engineering and Domain
Analysis.

1. Personal Software Process and PSP are service marks of Carnegie Mellon University.
CMU/SEI-97-HB-001 43

3.2 Technology Categories
To indicate just how broad our definition of software technology is, we identify below the var-
ious categories of entries that are found within this document. A technology description will not
explicitly identify the category into which its subject falls, but the reader should be able to infer
the category from the information in the entry.

• Elemental Technology. An elemental technology can (in general) be traced
to a single, identifiable theory or concept related to software development,
understanding, operation, or maintenance.

• Composite Technology. A composite technology is the integration of several
elemental technologies. These component technologies each contribute in
some substantive way to the overall composite. The component
technologies may or may not have separate descriptions— if they do, this is
noted in the description of the composite technology.

• Group of Technologies. The document treats technologies as a group in
three cases, depending on whether or not the technologies within the group
are further distinguished and how the technologies differ from one another:

– The group as a whole has important and distinguishing characteristics
that make it worthy of consideration. But the document doesn’t distinguish
among technologies within the group, because the internal, external, or
usage characteristics that distinguish them are unknown, inaccessible,
proprietary, insignificant, or irrelevant to the purposes of the document.

– Sometimes information is necessary to make a decision about whether or
not to use any technology within the group, based on common
characteristics of the technology group. In such cases, it is prudent to first
consider the technologies in the aggregate before looking at individual
technologies within the group.

– Non-competing technologies that nevertheless contribute to the same
application area are grouped together into a tutorial that describes how
the technologies can be applied in that particular context.

In any case, we define the group and describe common characteristics of the
group. In the case where members within the group are further distinguished
(in separate technology descriptions), we provide cross-references to those
technologies.

• Other Software Technology Topics. There are certain issues of concern that
don't fit into the above categories, yet they are important to software
technology. These include certain high-level concepts, such as COTS,
component based development/integration, and open systems. In
descriptions of these topics, we point to (and explain the relationship to)
related technologies.
44 CMU/SEI-97-HB-001

3.3 Template for Technology Descriptions
The purpose of a technology description is to uniquely identify the technology, to characterize
the technology in terms of the properties of systems and measures of software quality that it
affects, and to point out tradeoffs, benefits, risks and limitations that may arise in various situ-
ations of use. Each technology description also provides reference(s) to literature, indications
of the current state of the technology, and cross references to related technologies.

Technology descriptions are not meant to be comprehensive— each description provides the
reader with enough knowledge to decide whether to investigate the technology further, to find
out where to go for more information, and to know what questions to ask in gathering more
information.

Typically, technology descriptions range in size from four to six pages, depending on the
amount of information available or the maturity of the technology.

Each technology description has a common format; each major section is described below.

Status. Each technology description contains a status indicator in the upper right-hand corner
of its first page. This status indicator provides an assessment of the overall quality and matu-
rity of the technology description. One of four indicators is used: Draft, In Review, Advanced,
or Complete. For a more detailed description of these states, please see Explanation of Status
Indicators on page 49.

Note. This section appears at the beginning of a technology description if prerequisite or fol-
low-on reading is recommended. The prerequisites are usually overviews of the general topic
area that establish a context for the different technologies in the area.

Purpose and Origin. This section provides a general description and brief background of the
technology. It describes what capability or benefit was anticipated for the technology when
originally conceived. It cites quality measures that are significantly influenced by the technol-
ogy (these quality measures are italicized), and it identifies common aliases for the technology
as well as its originator(s) or key developer(s) (if known).

Technical Detail. This section answers— succinctly— the question “what does the technolo-
gy do?” It describes the salient quality measures (see the Quality Measures Taxonomy Tax-
onomy in Section 2.3) that are influenced by the technology in all situations and describes the
tradeoffs that are enabled by the technology. It may also provide some insight into why the
technology works and what advances are expected. Since the document is not a “how-to”
manual, no implementation details are provided.
CMU/SEI-97-HB-001 45

Usage Considerations. This section provides a context for the use of the technology. Issues
that are addressed include

• example applications into which this technology may be incorporated (or
should not be incorporated); for instance, “this technology, because of its
emphasis on synchronized processing, is particularly suited for real-time
applications”

• quality measures that may be influenced by this technology, depending on
the particular context in which the application is employed

Maturity. The purpose of this section is to provide an indication as to how well-developed the
technology is. A technology that was developed a year or two ago and is still in the experimen-
tal stage (or still being developed at the university research level) will likely be more difficult to
adopt than one that has been in use in many systems for a decade. It is not the intent of this
document to provide an absolute measure of maturity, but to provide enough information to
allow the reader to make an informed judgment as to the technology’s maturity for their appli-
cation area. Details that will help in this determination include

• the extent to which the technology has been incorporated into real systems,
tools, or commercial products

• the success that developers have had in adopting and using the technology

• notable failures of the technology (if any)

Other information that might appear in this section includes trend information, such as a pro-
jection of the technology’s long term potential, observations about the rate of maturation, and
implications of rapid maturation.

Costs and Limitations. No technology is right for every situation, and each technology has
associated costs (monetary and otherwise). This section points out these limitations and
costs. Adopting a technology may limit the use of the application (for instance, it might impose
an otherwise unnecessary interface standard). It might require investment in other technolo-
gies (see “Dependencies” below as well). It might require investment of time or money. This
particular technology may directly conflict with security or real-time requirements. These are
just some examples of the kind of limitations that a technology may possess or the costs that
it might impose. Specific items of discussion include

• what is needed to adopt this technology (this could mean training
requirements, skill levels needed, programming languages, or specific
architectures)

• how long it takes to incorporate or implement this technology

• barriers to the use of this technology

• reasons why this technology would not be used

Dependencies. This section identifies other technologies that influence or are influenced by
the technology being described. The only dependencies mentioned are those where signifi-
46 CMU/SEI-97-HB-001

cant influence in either direction is expected. An indication as to why the dependency exists
(usually in terms of quality measure or usage consideration) is also provided. If the dependent
technology appears in the document, a cross-reference is provided. This paragraph is omitted
if no dependencies are known.

Alternatives. An alternative technology is one that could be used for the same purposes as
the technology being described. A technology is an alternative if there is any situation or pur-
pose for which both technologies are viable or likely to be considered candidates. Alternatives
may represent a simple choice among technologies that achieve the same solution to a prob-
lem, or they may represent completely different approaches to the problem being addressed
by the technology.

For each alternative technology, this section provides a concise description of the situations
for which it provides an alternative. Also provided are any special considerations that could
help in selecting among alternatives. If the alternative technology appears in the document, a
cross-reference is provided.

Alternative technologies are distinct from dependent or complementary technologies, which
must be used in combination with the technology being described to achieve the given pur-
pose.

Complementary Technologies. A complementary technology is one that enhances or is en-
hanced by the technology being described, but for which neither is critical to the development
or use of the other (if it were critical, then it would appear in the “Dependencies” section
above). Typically, a complementary technology is one that in combination with this technology
will achieve benefits or capabilities that are not obvious when the technologies are considered
separately. For each complementary technology, this section provides a concise description
of the conditions under which it is complementary and the additional benefits that are provided
by the combination. If the complementary technology appears in the document, a cross-refer-
ence is provided.

Index Categories. This section provides keywords on which this technology may be indexed.
Beside providing the name of the technology, it provides keywords in the following categories:

• Application category. This category refers to how this technology would be
employed, either in support of operational systems (perhaps in a particular
phase of the life cycle) or in actual operation of systems (for example, to
provide system security).

• Quality measures category. This is a list of those quality attributes (e.g.,
reliability or responsiveness) that are influenced in some way by the
application of this technology.
CMU/SEI-97-HB-001 47

• Computing Reviews category: This category describes the technical
subdiscipline within Computer Science into which the technology falls. The
category is based on the ACM Computing Reviews Classification System
developed in 1991 (and currently undergoing revision). A complete
description of the Classification System and its contents can be found in any
January issue of Computing Surveys or in the annual ACM Guide to
Computing Literature.

References and Information Sources. The final section in each technology description pro-
vides bibliographic information. We include sources cited in the technology description, as well
as pointers to key resources that a reader can go to for additional information. These key re-
sources are designated by a check mark (). Some care has been taken to choose key ref-
erences that will best assist one in learning more about the technology.

Author. The author(s) of the technology description are listed in this section. The only excep-
tions are Draft technology descriptions, which will not have an author’s name.

External Reviewer(s). This section contains names of external experts who have reviewed
this technology description. If no “External Reviewer(s)” heading is present, then an external
review has not occurred.

Last Modified. This is the date on which the technology description was last modified.
48 CMU/SEI-97-HB-001

Explanation of Status Indicators

Each of the four status indicators is explained below:

Draft technology descriptions have the following attributes:

• They need more work.

• They have generally not been reviewed.

• Overall assessment: While technology descriptions labeled “Draft” will
contain some useful information, readers should not rely on these
descriptions as their only source of information about the topic. Readers
should consider these descriptions as starting points for conducting their own
research about the technology.

In Review technology descriptions have the following attributes:

• They are thought to be in fair technical shape.

• They have begun an internal review cycle.

• They may have major issues that must be resolved, or some sections may
require additional text.

• Relevant keywords have been added to the Keyword Index.

• Overall assessment: Readers can get some quality information from these,
but because these descriptions have not been completely reviewed, readers
should explore some of the references for additional information.

Advanced technology descriptions have the following attributes:

• They are in good technical shape.

• Internal review has occurred.

• There are minor issues to be worked, but it is generally polished.

• They are subject to additional review by SEI and external reviewers.

• Relevant keywords have been added to the Keyword Index.

• Overall assessment: These descriptions are in rather good shape, but
because they have not been through external review, readers should
exercise some caution.

• Note: We encourage readers to critique Advanced technology descriptions,
especially for content accuracy. Please see Appendix A, Submitting
Information for Subsequent Editions, pg. 407, for more details.
CMU/SEI-97-HB-001 49

Complete technology descriptions have the following attributes:

• At least one expert external review has occurred, and issues from that review
have been resolved.

• Relevant keywords have been added to the Keyword Index.

• No additional work is necessary at this time.

• Overall assessment: These technology descriptions are believed to be
complete and correct. They would be revised in the future based on
additional external reviewers, new information, and public feedback.

• Note: We encourage readers to critique Complete technology descriptions,
especially for content accuracy. Please see Appendix A, Submitting
Information for Subsequent Editions, pg. 407, and Appendix B, User
Feedback, pg. 409, for more details.
50 CMU/SEI-97-HB-001

3.4 The Technology Adoption Challenge
Before we move to the actual technology descriptions, it is appropriate to focus on the signif-
icant challenges inherent in adopting technology. While individual technology descriptions
may contain hints about adopting or inserting a particular technology, this overview of technol-
ogy adoption focuses on general strategies and guidance applicable to most all situations.

The adoption of a powerful concept, process, method, and/or tool often holds promise of dra-
matic benefit to an organization. However, efforts to realize these benefits often result in frus-
tration and resistance from those who should receive the benefits. Previous problems with
adoption have convinced many to take a very conservative “wait and see” attitude about new
technology. Such conservative strategies may reduce the downside, but in today’s hyper-com-
petitive world, they may also make it impossible to survive. Mastering the adoption of new
technology may indeed separate the winners from the losers.

Experience has shown there are classes of recurring challenges for which effective and re-
peatable solutions exist. The “trick” is to recognize these recurring challenges and be properly
positioned to use one or more of the effective and repeatable solutions. The essence of the
“trick” is to realize that the lessons learned by those who have adopted technologies before
us may still be relevant. There is much more to be gained in finding how to leverage lessons
from the past than from arguing how unique a current situation may be. The key is to realize
that any task can usually be decomposed into three types of sub-tasks:

1. recurring tasks for which effective and repeatable solutions are known

2. recurring tasks for which no effective or repeatable solutions are known

3. truly novel tasks

The truly successful organization is one that finds ways to partition a problem to maximize sub-
problems of the first class and to minimize subproblems of the third. (While problems of the
second class are not as desirable as the first, they are better than those of the third; for prob-
lems of the second class, we can learn what has been tried before to ensure we don’t follow
the footsteps of those who have failed.) By leveraging the experience of others, the new tech-
nology adopter has freed the organization to focus on the truly novel issues at hand. The rest
of this section addresses a collection of issues that are critical for adoption success:

• Adoption plan. Plan the adoption as a mission-critical project.

• Motivation. Establish the mission-critical motivation for the adoption.

• Usage design. Design how the technology will be used to address the
mission-critical need.

• Skill development. Establish how typical workers and managers will develop
the needed skills.

• Pilot testing. Pilot test the usage design and the adoption materials.
CMU/SEI-97-HB-001 51

• Organizational roll-out. Roll out the technology to the entire organization after
refinements from the pilot effort.

• Lessons learned. Continuously learn from usage experience and refine
accordingly.

While it is not possible to supply specific solutions to each of these issues, the general nature
of the solutions will be provided on the following pages.

The Adoption Plan

Key factors in successful adoption of technology are the quality of the adoption plan and the
discipline the organization exhibits to honor the spirit of the plan. The wide variation in the na-
ture of the technologies being adopted and the organizations doing the adoption makes it im-
possible to recommend a single template for adoption.

An adoption plan should not be viewed as a legal contract between two groups involved in the
adoption. Rather, it should be viewed as a communications tool to assist all involved parties
as they strive to understand what is to be done, the rationale, and how it is to be accomplished.
As a communications tool, an adoption plan must not be viewed as a static document, for in-
sights and technology seldom remain static for long. One finds the right amount of detail to
provide in an adoption plan through experience. With too much detail, one risks stifling alter-
nate creative solutions and reducing willingness to alter the plan due to the size of the invest-
ment to create it. If there is too little detail, those charged with the implementation may not fully
appreciate the intent of the plan or see how the critical aspects of the plan fit together.

An effective adoption considers all of the critical issues listed above, assesses the risks of ig-
noring these items, and weighs these risks against the costs and potential benefits of address-
ing and resolving these items. If the adoption of new technology were treated as a mission-
critical project and lessons learned from each effort were captured and fed forward to future
adoption efforts, the organization would discover that the adoption does not have to be un-
manageable or unpredictable.

The primary benefit of an adoption plan is realized only if the plan is used and the organization
is prepared to make near-term sacrifices to honor the plan. If the adoption is not mission-crit-
ical to the point that management is able to remain focused on its implementation, there is little
hope for rapid and effective adoption.

Motivation

One of the first issues that should be captured in the adoption plan is the motivation driving
the adoption effort: What is the truly compelling mission need that drives the adoption? If there
is no obvious answer to this question, why proceed? Similarly, if the realistic costs associated
with the adoption exceed the potential benefit, why proceed? Few adoptions driven by “its the
right thing to do” are successful if a compelling motivation is absent.
52 CMU/SEI-97-HB-001

If a technology adoption is to result in dramatic improvement in how the organization performs
its mission, one must assume that dramatic change is required. This implies that a significant
number of people in the organization must change the way they perform their jobs. Knowing
who must change, what changes are required, and what will motivate them to change is fun-
damental. The change must be seen as being connected to the mission of the organization in
ways the people who must change appreciate and value. Without such a link, fear, uncertainty,
and doubt will lead many to resist the change. Most professionals are not motivated well by
fear. They respond much more favorably to seeing how their involvement is important and how
the success of the effort is directly connected to the success of the organization. Being part of
new and critical work that is clearly valued by the most senior people in the organization is
often all the motivation required.

Some will try to adopt a new technology as a means of shifting the culture of the organization.
For example, if the culture of the organization is to “just do it” without the aid of plans or man-
agement oversight, the adoption of a planning tool is unlikely to bring improvement to the or-
ganization. If planning discipline is required for organizational survival, you should address the
cultural change first and then support the culture change with technology. It seldom works the
other way around.

Usage design

When it is clear why the technology must be adopted, the next obvious question is, “How will
it be used?” The simplest usage design is the “plug-compatible” replacement— the new tech-
nology replaces an existing technology with little dramatic change to the rest of the organiza-
tion. At the other extreme is complete and radical change, such as a complete reorganization
of the organization to support the adoption of the technology.

Experience has shown that plug-compatible replacements can lead to incremental improve-
ments in the organization, but they seldom lead to dramatic improvements: How can an orga-
nization perform its mission dramatically better or faster if the majority of the organization
doesn’t change? This does not mean a plug-compatible approach is bad; rather, it is important
to set expectations and ensure the cost/benefit ratio warrants the investment.

Experience has also shown that complete organizational reengineering is a costly path and
the real benefits may not be as easy to realize as the advocates might suggest. If a technology
demands a complete reorganization before it is possible to benefit from its adoption, other op-
tions should be considered unless there are other truly compelling reasons pushing toward re-
organization.
CMU/SEI-97-HB-001 53

Those charged with the success of the adoption need to consider how the organization will
function with the new technology in place:

• What roles need to be played?

• What information and work flow is required?

• What interfaces need to exist?

• What management involvement is required?

• How will these map onto the people of the organization, the culture of the
organization, and the support process of the organization?

Too many technology adoptions leave these details to each and every affected person to “fig-
ure it out” on their own. While most will, there is no guarantee their solutions will be compatible
with one another and no guarantee the resulting work flow will be an improvement.

Skill development

Motivated people without the skills to perform their new tasks can lead to real problems.
Armed with insight about the new roles, responsibilities, and work flow, the next issue involves
assisting the people to develop the skills they will require to be successful. Most people un-
derstand the need to “train” the workers in the use of a new tool and this usually translates into
some form of class. What often is not appreciated is how much real world practice is required
before one becomes skilled in the use of a new tool. It is also common for people to ignore the
fact that many skills are perishable. Without regular refreshment, skills fade and disappear.

As indicated earlier, it is critical to recognize all of the various groups in the organization that
must change and to question how all of these groups will become skilled in performing their
roles. For example

• How will project managers learn to shift how they plan projects and estimate
skills and resources during the life of a project due to the use of this
technology?

• How will managers track the progress of projects and determine whether
adequate progress is being made?

• In case there is a problem, how does one change things without damaging
work already performed?

• How do executives assess the return on the investment in a new tool and
justify the continued training, sustainment, and overhead costs?

If these questions are not answered, or if the people playing these roles do not understand the
answers, the adoption could fail. (Many technically successful adoptions are cancelled be-
cause management couldn’t appreciate the benefits in terms they valued. This management
skill is just as critical as the operator knowing how to use the tool properly.)
54 CMU/SEI-97-HB-001

Generic classes tend to provide an education, but do little to help students develop the specific
skills they will need as they try to use the new tool on the job. There are two rules of thumb:

• The participants will more likely be able to translate their experiences to the
job when the training is customized to the organization and skill development
activities require hands-on practice.

• The longer the time between the activity and the time when the student is
called on to perform, the less likely the first usage will be successful.

If successful first usages are truly critical, one should consider over-staffing these first at-
tempts to minimize the workload placed on each member of the team. It is also helpful to ob-
tain the services of people skilled in the use of the tool and have them play the role of mentor
or coach. (Nothing is more comforting than knowing that there is someone there to help when
reality does not seem to be the same as what we studied in class or experienced during prac-
tice.)

Pilot testing

Pilot testing can be used to reduce organizational risk in the adoption of a new technology.
The pilot tests are used to perform two critical tests at the same time:

• determine if the organization can obtain the promised benefits from the
technology

• evaluate the adoption approach and materials on a limited scope before
taking the technology to the entire organization

Many consider the first test (Can the technology produce the desired benefit?) to be the pri-
mary role of pilot testing. In reality, the costs of a pilot test and the impact on the organization
make other methods for evaluating the benefit of the technology far more attractive. (For ex-
ample, sometimes a visit to other real customers would show the benefits at a far lower cost
to the organization.) The people running the pilot test should have already determined that the
technology can provide value; the only real questions are how hard will it be for this organiza-
tion to adopt it and benefit from the adoption. A significant caution is that very often pilot
projects are not well enough instrumented or baselined to prove anything about the value of
the technology to the organization; this is a major focus area in any pilot effort.

The best use for pilot tests is to evaluate the adoption of the technology and to showcase the
organization’s commitment to the changes the technology implies. When senior management
embrace the new technology, change their behavior in a visible way to support the technology,
and are regularly seen to assist others who are involved with the adoption, the roll-out of the
technology will be easier for the rest of the organization. If these leaders are seen as having
taken a wait and see attitude, not being intimately involved, and not willing to take risks to
make it work, the roll-out is likely to be long and painful.
CMU/SEI-97-HB-001 55

Selecting the right project for pilot testing is important. The project must be early enough in its
life cycle for the team members to be able to develop the skills they will need before being
called on to use them. Some things to avoid include

• Retro-fitting parts of a project in order to use it as a pilot test: Most people will
view these efforts as a waste of time and effort.

• Picking very short projects, as they are usually not long enough to truly
demonstrate the use of the technology.

• Picking a project that is too long, as the results may not be made visible in a
timely manner.

• Using a project that is in trouble. The extra effort associated with the pilot test
will stress even relatively low-risk projects, and new technologies seldom
make up for ill-considered projects, regardless of how effective the
technology is at doing what it does.

Some of the most significant benefits of a pilot test are found in determining how to enhance
and refine the adoption method based on experience with real people from the organization.
Hopefully, the pilot should help in answering the following questions:

• How useful were the skill development activities?

• Could the skill development exercises have been made more realistic?

• Were there vocabulary problems that weren’t properly recognized?

• Should the materials be rewritten using nomenclature from the organization?

While these lessons are usually too late to help those doing the pilot test, they can influence
what is delivered to the bulk of the organization during roll-out and can significantly reduce the
total cost of adoption.

Organizational roll-out

How the organization moves to introduce the technology to the bulk of the organization can
dramatically influence the likelihood of success. Force-fitting technology solutions where they
don’t fit can be disastrous. There are many questions to consider, for example:

• Should the entire organization adopt the technology, or is it really only
relevant to part of the organization?

• How long will the technology be used?

• Which groups are at the appropriate places in their project life-cycles for
adoption and how long will it be for those who are not yet at reasonable points
in their cycle?
56 CMU/SEI-97-HB-001

A common strategy for organizational roll-out is the mandate. While few mandates have been
successful, their failures tend to be due to an unwillingness of the senior leadership to do those
things required to make the mandate successful. By means of clear and consistent leadership,
personal adoption by the most senior leaders, consistent reward for those who adopt and
sanction for those who don’t, mandated change is possible. The reality is few executives have
the time, energy, or willingness to make the mandate work.

Making adoption optional can only work if there is a clear motivation for projects to risk adop-
tion. If the organizational leadership is willing to fund adoption activities, willing to provide ad-
ditional technical and managerial resources, and willing to ease external pressures in order to
support those who elect to adopt, optional adoptions can be successful. Senior leadership
must establish clear motives to support the adoption, honor those who succeed with the adop-
tion, and withhold sanctions from those who honestly tried but failed.

Lessons Learned

The rapidly-changing world will force successful organizations to establish technology adop-
tion as an area of core competence. Just as soon as one technology adoption is completed,
management should be considering what the next adoption should be and when it should take
place. If the lessons from previous adoptions are not fed forward to the benefit of the subse-
quent adoptions, the organization is bound to suffer needlessly.

The most powerful tool in technology adoption is the use of experienced people and the use
of lessons from previous adoption efforts by the organization. If each adoption effort is per-
formed in a cocoon of ignorance, the team is doomed to repeat previous failures. The organi-
zation should record and maintain information that helps answer the following kinds of
questions:

• What did we do last time?

• What worked and why?

• What didn’t work and why?

• What are we going to do this time and why do we believe these changes will
resolve the issues we failed to resolve well before?

• How should we capture and leverage this knowledge so technology adoption
does become an area of core competence?

Newton explained his great abilities by asserting that he was “able to stand on the shoulders
of giants,” those mathematicians who had lain the critical groundwork on which his work was
based. Technology adoption can be mastered if we are willing to stand on the shoulders of
giants as opposed to insisting that this situation is unique and the past has nothing to tell us.
CMU/SEI-97-HB-001 57

Conclusion

New technology adoption is like any other major effort an organization tackles. If the organi-
zation is dedicated to the task, properly motivated, properly led, properly staffed, properly re-
sourced, and properly managed over the duration of the adoption, the result will most likely be
favorable. When leadership is unwilling to make some or all of these commitments, the risks
grow and chances are low that the organization will attain benefits from the adoption.
58 CMU/SEI-97-HB-001

3.5 Alphabetical List of Technology Descriptions
Ada 83 . 61

Ada 95 . 67

Algorithm Formalization . 73

Application Programming Interface . 79

Architecture Description Languages . 83

Argument-Based Design Rationale Capture Methods for Requirements Tracing 91

Cleanroom Software Engineering . 95

Client/Server Software Architectures . 101

Common Object Request Broker Architecture. 107

Component-Based Software Development/COTS Integration. 119

Computer System Security— an Overview . 129

COTS and Open Systems . 135

Cyclomatic Complexity. 145

Database Two Phase Commit . 151

Defense Information Infrastructure Common Operating Environment. 155

Distributed/Collaborative Enterprise Architectures . 163

Distributed Computing Environment . 167

Domain Engineering and Domain Analysis . 173

Feature-Based Design Rationale Capture Method for Requirements Tracing 181

Feature-Oriented Domain Analysis . 185

Firewalls and Proxies. 191

Function Point Analysis . 195

Graphic Tools for Legacy Database Migration. 201

Graphical User Interface Builders . 205

Halstead Complexity Measures . 209

Hybrid Automata . 215

Intrusion Detection . 217

Java . 221

Mainframe Server Software Architectures . 227

Maintainability Index Technique for Measuring Program Maintainability 231

Maintenance of Operational Systems— an Overview . 237

Message-Oriented Middleware Technology . 247

Middleware. 251

Module Interconnection Languages. 255

Multi-Level Secure Database Management Schemes. 261

Multi-Level Secure One Way Guard with Random Acknowledgment 267

Nonrepudiation in Network Communications. 269
CMU/SEI-97-HB-001 59

Object Linking and Embedding/Component Object Model . 271

Object-Oriented Analysis . 275

Object-Oriented Database . 279

Object-Oriented Design . 283

Object-Oriented Programming Languages . 287

Object Request Broker. 291

Organization Domain Modeling . 297

Personal Software Process for Module-Level Development . 303

Public Key Digital Signatures. 309

Rate Monotonic Analysis . 313

Reference Models, Architectures, Implementations— An Overview 319

Remote Procedure Call . 323

Requirements Tracing . 327

Rule-Based Intrusion Detection . 331

Simple Network Management Protocol . 337

Simplex Architecture . 345

Software Inspections . 351

Statistical-Based Intrusion Detection . 357

TAFIM Reference Model . 361

Three Tier Software Architectures . 367

Transaction Processing Monitor Technology. 373

Trusted Operating Systems . 377

Two Tier Software Architectures . 381

Virus Detection. 387
60 CMU/SEI-97-HB-001

Ada 83
Ada 83 COMPLETE

Purpose and
Origin

Ada is a general-purpose, internationally-standardized computer pro-
gramming language developed by the U.S. Department of Defense to
help software designers and programmers develop large, reliable appli-
cations. The Ada language enhances portability, maintainability, flexibili-
ty, reliability, and provides interoperability by standardization. The Ada
83 (1983) version [ANSI 83] (international standard: ISO/IEC 8652:
1987) is considered object-based as opposed to object-oriented (see pg.
287) because it does not fully support inheritance or polymorphism [Law-
lis 96].

Technical Detail The Ada language supports principles of good software engineering and
discourages poor practices by prohibiting them when possible. Features
that support code clarity and encapsulation (use of packages, use of ge-
neric packages and subprograms with generic parameters, and private
and limited private types) provide support for maintenance and reusabil-
ity. Ada also features strong typing— stronger than C or C++.

The Ada 83 language is independent of any particular hardware or oper-
ating system; the interface to any given platform is defined in a specific
“System” package. Ada features that support portability include the ability
to define numerical types using system-independent declarations and
the ability to encapsulate dependencies.

Ada compilers are validated against established written standards— all
standard language features exist in every validated Ada compiler. To be-
come validated, a compiler must comply with the Ada Compiler Valida-
tion Capability (ACVC) suite of tests. Because of language
standardization and required compiler validation, Ada provides an ex-
tremely high degree of support for interoperability and portability.

Ada 83 includes features that can be used for object-based program-
ming, but it stops short of providing full support for object-oriented pro-
gramming (OOP); this is partly because of concerns regarding runtime
performance during Ada’s development.

By requiring specifications such as type specifications, by performing
consistency checks across separately compiled units, and by providing
exception handling facilities, Ada 83 provides a high degree of reliability
compared to other programming languages.

Ada 83 provides features such as tasking, type declarations, and low-lev-
el language features to give explicit support of concurrency and real-time
processing. However, Ada 83 does not specify tasking and type declara-
CMU/SEI-97-HB-001 61

Ada 83
tions in such a way that the resulting performance can always be predict-
ed; this has been a criticism of the language in certain application areas
such as embedded, real-time systems.

Usage
Considerations

Ada was originally developed to support embedded software systems,
but it has proven to provide good support for real-time, computationally-
intensive, communication, and information system domains [Lawlis 96].

When combined with static code analysis or formal proofs, Ada can be
used in safety-critical systems. For example, Ada has successfully been
used in the development of the control systems for the safety-critical
Boeing 777 Aircraft [AdaIC 96].

When considering performance, benchmarks performed on both Ada
and C software with language toolsets of equal quality and maturity found
that the two languages execute equally efficiently— with Ada versions
having a slight edge over C versions [Syiek 95]. The quality of the com-
piled code is determined mostly by the quality of the compiler and not by
the language. The burden of optimization is somewhat automated in Ada,
as opposed to languages like C, where it is manually performed by the
programmer.

When attempting to interface Ada 83 with other languages, several tech-
nical issues must be addressed. In order for Ada to call subroutines writ-
ten in another language, an Ada compiler must support the pragma
interface for the other language and its compiler. Similarly, if another lan-
guage must call Ada subroutines, that language’s compiler may also
need modifications. The data representation between Ada and the other
language must be compatible. Also, the system runtime support environ-
ment may need to be modified so that space is not wasted by functionally
redundant support software [Hefley 92].

Ada 83 has recently been superseded by Ada 95 (see pg. 67). This new
version places the software community into a transition period. Among
the issues to be considered in transitioning from Ada 83 to Ada 95 are the
following:

• Ada 83 compiler validation status. Validation certificates for all
validated Ada 83 compilers expire at the end of March 1998; this may
affect maintenance on existing systems written in Ada 83.

• Ada 95 compiler capabilities and availability

• the developmental status of a particular system

The current “philosophy” is that unless a demonstrated need exists, cur-
rent operational systems or systems currently in development using Ada
83 do not need to transition to Ada 95 [Engle 96]. Refer to the Ada 95
62 CMU/SEI-97-HB-001

Ada 83
technology description (see pg. 67) for more information on transitioning
from Ada 83 to Ada 95.

A significant resource that addresses management and technical issues
surrounding the adoption of Ada is the Ada Adoption Handbook [Hefley
92].

Maturity Ada 83, with over 700 validated compilers [Compilers 96], has been used
on a wide variety of programs in embedded, real-time, communication,
and information system domains. It is supported by many development
environments. Over 4 million lines of Ada code were successfully used in
developing the AN/BSY-2 and AN/BQG-5 systems of the Seawolf sub-
marine— a large, extensive, embedded system [Holzer 96]. Ada has be-
come the standard programming language for airborne systems at
Boeing Commercial Airplane Group (BCAG). Boeing used Ada to build
60 percent of the systems on the Boeing 777, which represents 70% of
the 2.5 million lines of developed code [Pehrson 96, ReuseIC 95].

Ada is increasingly being taught in schools— approximately 323 institu-
tions and companies are teaching Ada— a trend of 25% growth per year
in schools and courses; this indicates increased and continued accep-
tance of Ada as a programming language [AdaIC 96].

Costs and
Limitations

In a study performed in 1994, it was found that for life-cycle costs, Ada
was twice as cost effective as C [Zeigler 95].

Common perceptions and conventional wisdom regarding Ada 83 (and
Ada 95 (see pg. 67)) have been shown to be incorrect or only partially
correct. These perceptions include the following:

• Ada is far too complex.

• Ada is too difficult to teach, to learn, to use.

• Ada is too expensive.

• Using Ada causes inefficiencies.

• Training in Ada is too expensive.

• Ada is old-fashioned.

• Ada is not object-oriented.

• Ada does not fit into COTS software.

Mangold examines these perceptions in some detail [Mangold 96].

Alternatives Other programming languages to consider are Ada 95 (see pg. 67), C,
C++, FORTRAN, COBOL, Pascal, Assembly Language, LISP, or Small-
talk.
CMU/SEI-97-HB-001 63

Ada 83
References and
Information
Sources

[AdaIC 96] AdaIC NEWS [online]. Available WWW <URL: http://sw-eng.falls-
church.va.us/home/news/Executive Summary> (1996).

[ANSI 83] ANSI/MIL-STD-1815A-1983. Reference Manual for the Ada Program-
ming Language. New York, NY: American National Standards Institute,
Inc., 1983.

[Compilers 96] Ada 83 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/compilers/83val/83vcl.txt>
(August 1996).

[Engle 96] Engle, Chuck. Re[2]: Ada 83/Ada 95 [email to Gary Haines], [online].
Available email: ghaines@spacecom.af.mil (August 19, 1996).

[Halang 90] Halang, W.A. & Stoyenko, A.D. “Comparative Evaluation of High-Level
Real-Time Programming Languages.” Real-Time Systems 2, 4 (Novem-
ber 1990): 365-82.

[HBAP 96] Ada Home: The Home of the Brave Ada Programmers (HBAP) [online].
Available WWW <URL: http://lglwww.epfl.ch:80/Ada/> (1996).

[Hefley 92] Hefley, W.; Foreman, J.; Engle, C.; & Goodenough, J. Ada Adoption
Handbook: A Program Manager’s Guide Version 2.0 (CMU/SEI-92-TR-
29, ADA258937). Pittsburgh, PA: Software Engineering Institute, Carn-
egie Mellon University, 1992.

[Holzer 96] Holzer, Robert. “Sea Trials Prompt U.S. Navy to Tout Seawolf Sub’s Vir-
tues,” Defense News 11, 28 (July 15-20, 1996): 12.

[Lawlis 96] Lawlis, Patricia K. Guidelines for Choosing a Computer Language: Sup-
port for the Visionary Organization [online]. Available WWW <URL: ht-
tp://sw-eng.falls-church.va.us/> (1996).

Index
Categories

Name of technology Ada 83

Application category Programming Language (AP.1.4.2.1), Compil-
er (AP.1.4.2.3)

Quality measures category Reliability (QM.2.1.2), Maintainability
(QM.3.1), Interoperability (QM.4.1), Portability
(QM.4.2), Scalability (QM.4.3), Reusability
(QM.4.4)

Computing reviews category Programming Languages (D.3)
64 CMU/SEI-97-HB-001

Ada 83
[Mangold 96] Mangold, K. “Ada95—An Approach to Overcome the Software Crisis?” 4-
10. Proceedings of Ada in Europe 1995. Frankfurt, Germany, October 2-
6, 1995. Berlin, Germany: Springer-Verlag, 1996.

[Pehrson 96] Pehrson, Ron J. Software Development for the Boeing 777 [online].
Available WWW <URL: http://www.stsc.hill.af.mil/www/xt96jan/
xt96d01a.html> (1996).

[Poza 90] Poza, Hugo B. & Cupak Jr., John J. “Ada: The Better Language for Em-
bedded Applications.” Journal of Electronic Defense 13, 1 (January
1990): 47.

[ReuseIC 95] Boeing 777: Flying High with Ada and Reuse [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/ReuseIC/pubs/flyers/boe-reus.
htm> (1995).

[Syiek 95] Syiek, David. “C vs. Ada: Arguing Performance Religion.” ACM Ada Let-
ters 15, 6 (November/December 1995): 67-9.

[Tang 92] Tang, L.S. “A Comparison of Ada and C++,” 338-49. Proceedings of TRI-
Ada ‘92. Orlando, FL, November 16-20, 1992. New York, NY: Associa-
tion for Computing Machinery, 1992.

[Zeigler 95] Zeigler, Stephen F. Comparing Development Costs of C and Ada [on-
line]. Available WWW <URL: http://sw-eng.falls-church.va.us/> (1995).

Authors Cory Vondrak, TRW, Redondo Beach, CA

Capt Gary Haines, AFMC SSSG
ghaines@spacecom.af.mil

External
Reviewer(s)

John Goodenough, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 65

Ada 83
66 CMU/SEI-97-HB-001

Ada 95
Ada 95 COMPLETE

Purpose and
Origin

Ada is a general-purpose, internationally-standardized computer pro-
gramming language developed by the U.S. Department of Defense
(DoD) to help software designers and programmers develop large, reli-
able applications. The Ada language enhances portability, maintainabili-
ty, flexibility, reliability, and provides interoperability by standardization
[Lawlis 96].

The Ada 95 (1995) version [AdaLRM 95] supersedes the 1983 standard
(see pg. 61). It corrects some shortcomings uncovered from nearly a de-
cade of using Ada 83, and exploits developments in software technology
that were not sufficiently mature at the time of Ada’s original design. Spe-
cifically, Ada 95 provides extensive support for object-oriented program-
ming (OOP) (see pg. 287), efficient real-time concurrent programming,
improved facilities for programming in the large, and increased ability to
interface with code written in other languages.

When distinguishing between the two versions of the language, the 1983
version is referred to as Ada 83, and the revised version is referred to as
Ada or Ada 95.

Technical Detail Ada 95 consists of a core language that must be supported by all validat-
ed compilers, and a set of specialized needs annexes that may or may
not be implemented by a specific compiler. However, if a compiler sup-
ports a special needs annex, all features of the annex must be supported.
The following is the set of annexes [AdaLRM 95]:

Required annexes (i.e., part of core language)
A. Predefined Language Environment
B. Interface to Other Languages
J. Obsolescent Features

Optional special needs annexes
C. Systems Programming
D. Real-time Programming
E. Distributed Systems
F. Information Systems
G. Numerics
H. Safety and Security

Annexes K - P are for informational purposes only and are not part of the
standard.

As in Ada 83, Ada 95 compilers are validated against established written
standards— all standard language features exist in every validated Ada
CMU/SEI-97-HB-001 67

Ada 95
compiler. To become validated, a compiler must comply with the Ada
Compiler Validation Capability (ACVC) suite of tests [AdaIC 96b]. Be-
cause of language standardization and required compiler validation, Ada
provides an extremely high degree of support for interoperability and
portability.

Like Ada 83, the Ada 95 language is independent of any particular hard-
ware or operating system; the interface to any given platform is defined
in a specific “System” package. Ada 95 improves on the Ada 83 features
that support portability, which include the ability to define numerical types
using system-independent declarations and the ability to encapsulate de-
pendencies.

By requiring specifications such as type specifications, by performing
consistency checks across separately compiled units, and by providing
exception handling facilities, Ada 95, like Ada 83, provides a high degree
of reliability when compared to other programming languages.

The Ada language was developed explicitly to support software engi-
neering— it supports principles of good software engineering and dis-
courages poor practices by prohibiting them where possible. Features
supporting code clarity and encapsulation (use of packages, use of ge-
neric packages and subprograms with generic parameters, and private
and limited private types) provide support for maintenance and reusabil-
ity. Ada 95 also provides full support for object-oriented programming,
which allows for a high level of reusability:

• encapsulation of objects and their operations

• OOP inheritance— allowing new abstractions to be built from existing
ones by inheriting their properties at either compile time or runtime

• an explicit pointer approach to polymorphism— the programmer
must decide to use pointers to represent objects [Brosgol 93]

• dynamic binding

Ada 95 also provides special features (hierarchical libraries and parti-
tions) to assist in the development of very large and distributed software
components and systems.

Ada 95 improves on the flexibility provided by Ada 83 for interfacing with
other programming languages by better standardizing the interface
mechanism and providing an Interface to Other Languages Annex.

Ada 95 improves the specification of previous Ada features that explicitly
support concurrency and real-time processing, such as tasking, type
declarations, and low-level language features. A Real-Time Program-
68 CMU/SEI-97-HB-001

Ada 95
ming Annex has been added to better specify the language definition and
model for concurrency. Ada 95 has paid careful attention to avoid runtime
overhead for the new object-oriented programming (OOP) features and
incurs runtime costs commensurate with the generality actually used.
Ada 95 also provides the flexibility for the programmer to specify the de-
sired storage reclamation technique that is desired for the application.

Usage
Considerations

Ada 95 is essentially an upwardly-compatible extension to Ada 83 with
improved support for embedded software systems, real-time systems,
computationally-intensive systems, communication systems, and infor-
mation systems [Lawlis 96]. In revising Ada 83 to Ada 95, incompatibili-
ties were catalogued, tracked, and assessed by the standard revision
committee [Taylor 95]. These incompatibilities have proven to be mostly
of academic interest, and they have not been a problem in practice.1

Combined with at least static code analysis or formal proofs, Ada 95, like
Ada 83, is particularly appropriate for use in safety-critical systems.

The Ada Joint Program Office (AJPO) supports Ada 95 by providing an
Ada 95 Adoption Handbook [AJPO 95] and an Ada 95 Transition Plan-
ning Guide [AJPO 94], and helping form Ada 95 early adoption partner-
ships with DoD and commercial organizations. The Handbook helps
managers understand and assess the transition from Ada 83 to Ada 95
and the Transition Guide is designed to assist managers in developing a
transition plan tailored for individual projects [Patton 95]. Another valu-
able source for Ada 95 training is a multimedia CD-ROM titled Discover-
ing Ada. This CD-ROM contains tutorial information, demo programs,
and video clips [AdaIC 95].

Ada 95 is the standard programming language for new DoD systems; the
use of any other language would require a waiver. Early DoD adoption
partnerships who are working Ada 95 projects include the Marine Corps
Tactical Systems Support Activity (MCTSSA), Naval Research and De-
velopment (NRAD), and the Joint Strike Fighter (JSF) aircraft program
[AdaIC 96a].

The AJPO supported the creation of an Ada 95-to-Java J-code compiler.
This means that Java (see pg. 221) programs can be created by using
Ada. The compiler generates Java “class” files just as a Java language
compiler does. Ada and Java components can even call each other
[Wheeler 96]. This capability gives Ada, like Java, extensive portability

1. From John Goodenough, SEI, in email to John Foreman, Re: Ada 95, August 16,
1996.
CMU/SEI-97-HB-001 69

Ada 95
across platforms and allows Internet programmers to take advantage of
Ada 95 features unavailable in Java.

Maturity On February 15, 1995, Ada 95 became the first internationally-standard-
ized object-oriented programming language. As of June 1996, 15 validat-
ed compilers were available, with many more expected by the end of the
year [Compilers 96]. The Ada 95 compiler validation suite is complete for
the core language; Version 2.1, due in March 1997, will provide the ca-
pability to validate the additional features in the annexes.

Results from early projects, such as the Joint Automated Message Edit-
ing Software (JAMES) and Airfields [AdaIC 96a], indicate that Ada 95 is
upwardly-compatible with Ada 83 and that some Ada 95 compilers are
mature and stable enough to use on fielded projects [Patton 95]. Howev-
er, as of the spring of 1996, Ada 95 tool sets and development environ-
ments were, in general, still rather immature as compared to Ada 83
versions. Because of the relative immaturity, platform compatibility, bind-
ings (i.e., database, user interface, network interface) availability, and
tool support should be closely evaluated when considering Ada 95 com-
pilers.

Costs and
Limitations

Common perceptions and conventional wisdom regarding Ada 83 and
Ada 95 have been shown to be incorrect or only partially correct. These
perceptions include the following:

• Ada is far too complex.

• Ada is too difficult to teach, to learn, to use.

• Ada is too expensive.

• Using Ada causes inefficiencies.

• Training in Ada is too expensive.

• Ada is old-fashioned.

• Ada is not object-oriented.

• Ada does not fit into COTS software.

Mangold examines these perceptions in some detail [Mangold 96].

Alternatives Other programming languages to consider are Ada 83 (see pg. 61), C,
C++, FORTRAN, COBOL, Pascal, Assembly Language, LISP, Smalltalk,
or Java (see pg. 221).

Complementary
Technologies

The Ada-95-to-Java J-code compiler (discussed in Usage Consider-
ations, pg. 69) enables applications for the Internet to be developed in
Ada 95.
70 CMU/SEI-97-HB-001

Ada 95
References and
Information
Sources

[AdaLRM 95] Ada95 Language Reference Manual, International Standard ISO/IEC
8652: 1995(E), Version 6.0 [online]. Available WWW
<URL:http://sw-eng.falls-church.va.us/AdaIC/standards/Welcome.>
(1995).

[AdaIC 95] AdaIC News Brief: November 3, 1995 [online]. Available WWW <URL:
http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/
95-11-03.html >(1995).

[AdaIC 96a] AdaIC NEWS [online]. Available WWW <URL: http://sw-eng.falls-
church.va.us/home/news/Executive Summary> (1996).

[AdaIC 96b] Validation and Evaluation Test Suites: The Ada compiler certification pro-
cess [online]. Available WWW <URL: http://sw-eng.falls-church.va.us/
AdaIC/testing/ > (1996).

[AJPO 94] Ada Joint Program Office. Ada 9X Transition Planning Guide: A Living
Document and Working Guide for PEOs and PMs Version 1.0. Falls
Church, VA: Ada Joint Program Office, 1994.

[AJPO 95] Ada Joint Program Office. Ada 95 Adoption Handbook: A Guide to Inves-
tigating Ada 95 Adoption Version 1.1. Falls Church, VA: Ada Joint Pro-
gram Office, 1995.

[Brosgol 93] Brosgol, Benjamin. “Object-Oriented Programming in Ada 9X.” Object
Magazine 2, 6 (March-April 1993): 64-65.

[Compilers 96] Ada 95 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/compilers/95val/95vcl.txt>
(August 1996).

[HBAP 96] Ada Home: The Home of the Brave Ada Programmers (HBAP) [online].
Available WWW <URL: http://lglwww.epfl.ch:80/Ada/> (1996).

Index
Categories

Name of technology Ada 95

Application category Programming Language (AP.1.4.2.1), Compil-
er (AP.1.4.2.3)

Quality measures category Reliability (QM.2.1.2), Maintainability
(QM.3.1), Interoperability (QM.4.1), Portability
(QM.4.2), Scalability (QM.4.3), Reusability
(QM.4.4)

Computing reviews category Programming Languages (D.3)
CMU/SEI-97-HB-001 71

Ada 95
[Lawlis 96] Lawlis, Patricia K. Guidelines for Choosing a Computer Language: Sup-
port for the Visionary Organization [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/> (1996).

[Mangold 96] Mangold, K. “Ada95—An Approach to Overcome the Software Crisis?” 4-
10. Proceedings of Ada in Europe 1995. Frankfurt, Germany, October 2-
6, 1995. Berlin, Germany: Springer-Verlag, 1996.

[Patton 95] Patton II, I. Lee. “Early Experiences Adopting Ada 95,” 426-34. Proceed-
ings of TRI-Ada ̀ 95. Anaheim, CA, November 5-10, 1995. New York, NY:
Association for Computing Machinery, 1995.

[Taylor 95] Taylor, B. Ada Compatibility Guide Version 6.0 [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/
compat-guide6-0.txt> (1995).

[Tokar 96] Tokar, Joyce L. “Ada 95: The Language for the 90’s and Beyond.” Object
Magazine 6, 4 (June 1996): 53-56.

[Wheeler 96] Wheeler, David A. Java and Ada [online]. Available WWW <URL: http:
//lglsun.epfl.ch/Ada/Tutorials/Lovelace/java.htm> (1996).

Author Cory Vondrak, TRW, Redondo Beach, CA

Capt Gary Haines, AFMC SSSG
ghaines@spacecom.af.mil

External
Reviewer(s)

Chuck Engle (AJPO director)
John Goodenough, SEI

Last Modified 10 Jan 97
72 CMU/SEI-97-HB-001

Algorithm Formalization
Algorithm Formalization ADVANCED

Purpose and
Origin

In an effort to better understand computer algorithms, researchers in this
area began to formally characterize the properties of various classes of
algorithms. Initially, research centered on divide-and-conquer and global
search algorithms. This initial research proved that these formal algo-
rithm characterizations, called algorithm theories, could be used to syn-
thesize implementations (code) for well-defined functions. Used in
program generation or synthesis systems, the purpose of algorithm for-
malization is two-fold:

• The synthesis of consistent, highly CPU efficient algorithms for well-
defined functions.

• The formal characterization of algorithm theory notions [Smith 93b].
A by-product of this formalization is the creation of a taxonomy of
algorithm theories in which relationships between algorithm theories
are formally characterized. These formal characterizations allow a
developer to exploit more effectively the structure inherent in the
problem space, and thereby allow him to derive or synthesize more
efficient implementations.

To synthesize an algorithm for a problem using this technology, the es-
sence of the problem and its associated problem domain must be cap-
tured in a collection of formal specifications.

Technical Detail Algorithm synthesis is an emerging correct-by-construction methodology
in which algorithm theories are refined to satisfy the constraints repre-
sented in an algebraic specification of the problem space [Smith 90].
These algorithm theories represent the structure common to a class of
algorithms and abstract out concerns about the specific problem to be
solved, the control strategy, the target language and style (e.g., function-
al versus imperative), and the target architecture. Because theorem
provers are used to refine the algorithm theories, the resulting synthe-
sized algorithm is guaranteed to be consistent with the problem specifi-
cation. In other words, the synthesized algorithm is guaranteed to find
solutions to the specified problem provided such solutions exist. If multi-
ple solutions are possible, an algorithm can be synthesized to return one,
some, or all of them.

Synthesis systems incorporating formal algorithm theories operate as fol-
lows. The developer supplies a formal specification of the problem for
which an algorithm is needed, and supplies formal specifications for the
operations referenced in the problem specification (i.e., the domain the-
ory). These specifications must be in a prescribed format and language.
Using syntactic information drawn from the problem specification, the
synthesis system selects candidate algorithm theories from a library of
CMU/SEI-97-HB-001 73

Algorithm Formalization
such theories. The developer selects one of these for refinement. The
synthesis system then uses the semantic information provided by the
problem and domain theories and— using a theorem prover— completes
the refinement process. After the algorithm is generated, a developer will
typically apply several computer assisted optimizations to the algorithm
before compilation.

Coupling a theorem prover to the algorithm synthesis environment en-
ables computer management of the inherent complexity of the problem
and solution spaces, permitting computer management of complex code
optimizations. For example, a synthesized algorithm (or implementation)
is modified by a user-requested optimization only if the theorem prover is
able to verify the consistency of the resulting code. For example, simpli-
fication of conditionals, function unfolding (inline expansion), and finite
differencing are all possible.

Usage
Considerations

The use of this technology encourages reuse of codified knowledge.
Specifically, once a domain theory has been developed, it can be used
to help define additional problem specifications within that domain, or it
can be combined with other domain theories to characterize larger do-
mains. Note, however, that the characterization of large and/or complex
domains is non-trivial and may take considerable effort. With respect to
the synthesis system itself, a developer is free to add additional algorithm
theories to its library. However, the development of such algorithm theo-
ries is complex and will require in-depth knowledge of that class of algo-
rithm.

Synthesizing algorithms from formal specifications involves a paradigm
shift from traditional programming practice. Because formal specifica-
tions are used, developers must formally characterize what the opera-
tions in the problem domain do rather than stating how they do it. In
addition, maintenance is not performed on the synthesized code. In-
stead, the problem specification is modified to reflect the new require-
ment(s), and an implementation is rederived.

Synthesis of algorithms from formal specifications is independent of the
target programming language. However, the synthesis environments
themselves may need to be modified to support particular target languag-
es, or code translators may be needed to translate the code generated
by the synthesis environment to the desired target language.

Algorithms for non-real time, well-defined deterministic functions— such
as sorting or complex scheduling— can be synthesized using this tech-
nology. However, additional work is required to determine whether this
technology can be extended with notions state and nondeterminism.
74 CMU/SEI-97-HB-001

Algorithm Formalization
Maturity This technique, along with an algorithm synthesis prototype environment
called Kestrel Interactive Development System (KIDS), was developed
around 1986 [Smith 86, Smith 91]. Although it initially supported divide-
and-conquer and global search algorithm theories, KIDS has been ex-
tended with more powerful algorithm theories and with more sophisticat-
ed constraint propagation mechanisms. KIDS has been used to
synthesize a transportation scheduling algorithm used by US Transpor-
tation Command; this scheduling algorithm is able to schedule 10,000
movement requests in approximately one minute, versus hours for com-
petitive scheduling algorithms [Smith 93c]. Ongoing research in this area
includes a formalization of local search and formalizations of complex
scheduling algorithms. Proof-of-concept scheduling algorithms have
been synthesized for the nuclear power-plant domain in which

• scheduled activities can have complex interactions

• timing constraints are represented by earliest start/finish times

This technology is also being extended to address the synthesis of par-
allel algorithms [Smith 93b].

Costs and
Limitations

Like all software development efforts, specification inconsistency may re-
sult in implementations that do not meet users’ needs. However, the for-
mal nature of problem specifications permits semi-automated
investigation of problem specification properties. Adaptation of this tech-
nology requires knowledge of discrete mathematics at the level of first or-
der logic and experience in developing formal specifications. Knowledge
of constraint propagation, category theory, and resolution-based theo-
rem proving is also required. In addition, formalization of various problem
domains may be difficult; to effectively use this technology, special train-
ing may be required. However, there are currently no commercially-avail-
able, regularly-scheduled courses offered on this subject.

Dependencies Constraint propagation, resolution-based theorem proving, finite differ-
encing technology (used in verifiably correct optimizations), algebraic
specification techniques, and specification construction techniques are
enablers for this technology.

Alternatives Other approaches to developing demonstrably correct algorithm imple-
mentations are based on formal verification or deductive synthesis. Soft-
ware generation systems can be used to select and specialize an
algorithm implementation from a library of implementations, to assemble
an algorithm for a collection of reusable code fragments, or to generate
algorithm implementation stubs (i.e., they can generate code for some
parts of an algorithm using syntactic rather than semantic information),
CMU/SEI-97-HB-001 75

Algorithm Formalization
but generally such implementations are not be guaranteed to be consis-
tent with the problem specification.

Complementary
Technologies

Category-theoretic specification construction methodologies are useful
for developing and refining algorithm, domain, and problem theories. In
addition, various domain analysis technologies can be used to investi-
gate the structure of the problem domain.

References and
Information
Sources

[Gomes 96] Gomes, Carla P.; Smith, Douglas; & Westfold, Stephen. “Synthesis of
Schedulers for Planned Shutdowns of Power Plants,” 12-20. Proceed-
ings of the Eleventh Knowledge-Based Software Engineering Confer-
ence. Syracuse, NY, September 25-28, 1996. Los Alamitos, CA: IEEE
Computer Society Press, 1996.

[Smith 86] Smith, Douglas R. “Top-Down Synthesis of Divide-and-Conquer Algo-
rithms,” 35-61. Readings in Artificial Intelligence and Software Engineer-
ing. Palo Alto, CA: Morgan Kaufmann, 1986.

[Smith 90] Smith, Douglas R. & Lowry, Michael R. “Algorithm Theories and Design
Tactics.” Science of Computer Programming 14, 2-3 (1990): 305-321.

[Smith 91] Smith, Douglas R. “KIDS—A Knowledge-Based Software Development
System,” 483-514. Automating Software Design. Menlo Park, CA: AAAI
Press, 1991.

[Smith 93a] Smith, Douglas R. Classification Approach to Design (KES.U.93.4). Palo
Alto, CA: Kestrel Institute, 1993.

[Smith 93b] Smith, Douglas R. “Derivation of Parallel Sorting Algorithms,” 55-69.
Parallel Algorithm Derivation and Program Transformation. New York,
NY: Kluwer Academic Publishers, 1993.

Index
Categories

Name of technology Algorithm Formalization

Application category Select or Develop Algorithms (AP.1.3.4)

Quality measures category Consistency (QM.1.3.2), Provably Correct
(QM.1.3.4), Throughput (QM.2.2.3)

Computing reviews category Algorithms (I.1.2), Automatic Programming
(D.1.2), Numerical Algorithms and Problems
(F.2.1), Nonumerical Algorithms and Problems
(F.2.2), Specifying and Verifying and Reason-
ing about Programs (F.3.1)
76 CMU/SEI-97-HB-001

Algorithm Formalization
[Smith 93c] Smith, Douglas R. “Transformational Approach to Transportation Sched-
uling,” 60-68. Proceedings of the Eighth Knowledge-Based Software En-
gineering Conference. Chicago, IL, September 20-23, 1993. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

Author Mark Gerken, Rome Laboratory
gerken@ai.rl.af.mil

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 77

Algorithm Formalization
78 CMU/SEI-97-HB-001

Application Programming Interface
Application Programming Interface ADVANCED

Purpose and
Origin

Application Programming Interface (API) is an older technology that fa-
cilitates exchanging messages or data between two or more different
software applications. API is the virtual interface between two interwork-
ing software functions, such as a word processor and a spreadsheet.
This technology has been expanded from simple subroutine calls to in-
clude features that provide for interoperability and system modifiability in
support of the requirement for data sharing between multiple applica-
tions. An API is the software that is used to support system-level integra-
tion of multiple commercial-off-the-shelf (COTS) software products or
newly-developed software into existing or new applications. APIs are
also a type of middleware (see pg. 251) that provide for data sharing
across different platforms; this is an important feature when developing
new or upgrading existing distributed systems. This technology is a way
to achieve the total cross-platform consistency that is a goal of open sys-
tems (see pg. 135) and standards [Krechmer 92].

Technical Detail An API is a set of rules for writing function or subroutine calls that access
functions in a library. Programs that use these rules or functions in their
API calls can communicate with any others that use the API, regardless
of the others’ specifics [Hines 96]. APIs work with a wide spectrum of ap-
plication dialogues (i.e., interprogram communication schemes) to facili-
tate information exchange. These include database access,
client/server, peer-to-peer, real-time, event-driven, store and forward,
and transaction processing. APIs combine error recovery, data transla-
tion, security, queuing, and naming with an easy-to-learn interface that
comprises simple but powerful actions/commands (verbs). To invoke an
API, a program calls a SEND-type function, specifying parameters for
destination name, pointers to the data, and return confirmation options.
The API takes the data and does all the communications-specific work
transparent to the application.

There are four types of APIs that are enablers of data sharing between
different software applications on single or distributed platforms:

• remote procedure calls (RPCs) (see pg. 323)

• Standard Query Language (SQL)

• file transfer

• message delivery

Using RPCs, programs communicate via procedures (or tasks) that act
on shared data buffers. SQL is a non-procedural data access language
CMU/SEI-97-HB-001 79

Application Programming Interface
that allows data sharing between applications by access into a common
database. File transfer allows for data sharing by sending formatted files
between applications. Message delivery provides data sharing by direct
interprogram communications via small formatted messages between
loosely- or tightly-coupled applications. Current standards that apply to
APIs include the ANSI standard SQL API. There are ongoing efforts to
define standards for the other types.

Usage
Considerations

APIs can be developed for all computing platforms and operating sys-
tems or purchased for most platforms and operating systems. All four API
types can be used both on homogeneous and multi-platform applica-
tions. However, because of the added complexity required to share data
across multiple platforms, RPC, SQL or file transfer APIs are better used
to facilitate communication between different applications on homoge-
nous platform systems. These APIs communicate data in different for-
mats (e.g., shared data buffers, database structures, and file constructs).
Each data format requires different network commands and parameters
to communicate the data properly and can cause many different types of
errors. Therefore, in addition to the knowledge required to perform the
data sharing tasks, these types of APIs must account for hundreds of net-
work parameters and hundreds of possible error conditions that each ap-
plication must understand if it is to deliver robust interprogram
communications. A message delivery API, in contrast, will offer a smaller
subset of commands, network parameters, and error conditions because
this API deals with only one format (messages). Because of this reduced
complexity, message delivery APIs are a better choice when applications
require data sharing across multiple platforms.

Maturity Many examples of data sharing between different applications have been
successfully implemented:

• Covia Technologies, in early 1983, supplied the Communication
Integrator (CI), which was the enabler technology for the Apollo
airline reservation system used by a consortium of United, British Air,
Lufthansa, and other international airlines [King 95].

• DECMessageQ is part of the DECnet infrastructure and has been
available since the early 1980s.

• Creative Systems Interface’s (CSI) Application to Application
Interface (AAI) is a full featured API that is suitable for both client-
server and peer-to-peer applications.

• Horizon Strategies’ Message Express was initially developed for
LU6.2 (IBM generic System Network Architecture protocol) host and
VAX/VMS communications. In a typical Message Express
manufacturing application, remote plants with VAX, DOS/VSE, and
80 CMU/SEI-97-HB-001

Application Programming Interface
AS/400 machines conduct work-order scheduling and inventory
assessments via peer-to-peer messaging.

Costs and
Limitations

APIs may “exist” in many forms; the potential user should comprehend
the implications of each. APIs may be

• a bundled part of commercial software packages

• separately-licensed COTS software package(s) (license costs)

• uniquely-developed by a project using the internal
capabilities/features of the applications that must communicate

In the last case, which should generally be the exception, the develop-
ment staff will incur analysis and engineering costs to understand the in-
ternal features of the software applications, in addition to the cost to
develop and maintain the unique API. In all cases, there are training
costs associated with learning how to use the APIs as part of the devel-
opment and maintenance activity. Additional costs are associated with
developing and using APIs to communicate across multiple platforms. As
already described, network communications add complexity to the devel-
opment or use of the APIs. The kinds of costs associated with network
applications include additional programming costs, training costs, and li-
censes for each platform.

Complementary
Technologies

APIs can be used in conjunction with the Common Object Request Bro-
ker Architecture (see pg. 107), Object Linking and Embedding/Compo-
nent Object Model (see pg. 271), Distributed Computing Environment
(see pg. 167), two-tier architectures (see pg. 381), and three tier archi-
tectures (see pg. 367).

References and
Information
Sources

[Bernstein 96] Bernstein, Philip A. “Middleware: A Model for Distributed Services.” Com-
munications of the ACM 39, 2 (February 1996): 86-97.

[Hines 96] Hines, John R. “Software Engineering.” IEEE Spectrum (January 1996):
60-64.

Index
Categories

Name of technology Application Programming Interface

Application category Application Program Interfaces (AP.2.7)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Tools and Techniques (D.2.2), Data-
base Management Languages (H.2.3)
CMU/SEI-97-HB-001 81

Application Programming Interface
[King 95] King, Steven S. “Message Delivery APIs: The Message is the Medium.”
Data Communications 21, 6 (April 1995): 85-90.

[Krechmer 92] Krechmer, K. “Interface APIs for Wide Area Networks.” Business Com-
munications Review 22, 11 (November 1992): 72-4.

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

External
Reviewer(s)

Paul Clements, SEI
John Kereschen, Lockheed Martin Command and Control Systems

Last Modified 10 Jan 97
82 CMU/SEI-97-HB-001

Architecture Description Languages
Architecture Description Languages COMPLETE

Purpose and
Origin

When describing a computer software system, software engineers often
talk about the architecture of the system, where an architecture is gener-
ally considered to consist of components and the connectors (interac-
tions) between them.1 Although architectural descriptions are playing an
increasingly important role in the ability of software engineers to describe
and understand software systems, these abstract descriptions are often
informal and ad hoc.2 As a result

• Architectural designs are often poorly understood and not amenable
to formal analysis or simulation.

• Architectural design decisions are based more on default than on
solid engineering principles.

• Architectural constraints assumed in the initial design are not
enforced as the system evolves.

• There are few tools to help the architectural designers with their tasks
[Garlan 96].

In an effort to address these problems, formal languages for representing
and reasoning about software architecture have been developed. These
languages, called architecture description languages (ADLs), seek to in-
crease the understandability and reusability of architectural designs, and
enable greater degrees of analysis.

1. While definitions of architecture, component, and connector vary among research-
ers, this definition of architecture serves as a baseline for this technology description.
A generally accepted definition describing the difference between a “design” and an
“architecture” is that while a design explicitly addresses functional requirements, an
architecture explicitly addresses functional and non-functional requirements such as
reusability, maintainability, portability, interoperability, testability, efficiency, and
fault-tolerance [Paulisch 94].

2. Source: Garlan, David, et al. “ACME: An Architecture Interchange Language.” Sub-
mitted for publication.

Technical Detail In contrast to module interconnection languages (MILs) (see pg. 255),
which only describe the structure of an implemented system, ADLs are
used to define and model system architecture prior to system implemen-
tation. Further, ADLs typically address much more than system structure.
In addition to identifying the components and connectors of a system,
ADLs typically address:

• Component behavioral specification. Unlike MILs, ADLs are
concerned with component functionality. ADLs typically provide
support for specifying both functional and non-functional
CMU/SEI-97-HB-001 83

Architecture Description Languages
characteristics of components. (Non-functional requirements include
those associated with safety, security, reliability, and performance.)
Depending on the ADL, timing constraints, properties of component
inputs and outputs, and data accuracy may all be specified.

• Component protocol specification. Some ADLs, such as Wright
[Garlan 94a] and Rapide [Luckham 95], support the specification of
relatively complex component communication protocols. Other
ADLs, such as UniCon [Shaw 95], allow the type of a component to
be specified (e.g., filter, process, etc.) which in turn restricts the type
of connector that can be used with it.

• Connector specification. ADLs contain structures for specifying
properties of connectors, where connectors are used to define
interactions between components. In Rapide, connector
specifications take the form of partially-ordered event sequences,
while in Wright, connector specifications are expressed using
Hoare’s Communicating Sequential Processes (CSP) language
[Hoare 85].

As an example, consider the component shown in Figure 1. This compo-
nent defines two data types, two operations (op), and an input and an
output communication port. The component also includes specifications
constraining the behavior of its two operations.

Figure 1: Component

A protocol specification for this component, written in CSP, defines how
it interacts with its environment. Specifically, component Simple will ac-
cept a data value x of type in_type on its input port, and, if the data value

Component Simple is
type in_type is ...
type out_type is ...
op f : in_type -> out_type
op valid_input? : in_type -> Boolean
port input_port : in_type
port output_port : out_type
axiom f-specification is
(behavioral specification for the operation f)

end axiom
axiom valid_input?-specification is
(behavioral specification for the operation
valid_input?)

end axiom
interface is input_port!(x) ->
((output_port!f(x) -> Skip)
< valid_input?(x) >
(output_port!(Invalid_Data) -> Skip))

end Simple
84 CMU/SEI-97-HB-001

Architecture Description Languages
is valid, will output f(x) on its output port. If the data value is not valid, Sim-
ple will output an error message on its output port. Note that component
Simple is a specification, not an implementation. Implementations of ADL
components and connectors are expressed in traditional programming
languages such as Ada (see pgs. 61 and 67) or C. Facilities for associ-
ating implementations with ADL entities vary between ADLs.

Usage
Considerations

ADLs were developed to address a need that arose from programming
in the large; they are well-suited for representing the architecture of a
system or family of systems. Because of this emphasis, several changes
to current system development practices may occur:

• Training. ADLs are formal, compilable languages that support one or
more architectural styles; developers will need training to understand
and use ADL technology and architectural concepts/styles effectively
(e.g., the use of dataflow, layered, or blackboard architectural styles).

• Change/emphasis in life-cycle phases. The paradigm currently used
for system development and maintenance may be affected.
Specifically, architectural design and analysis will precede code
development; results of analysis may be used to alter system
architecture. As such, a growing role for ADLs is expected in
evaluating competing proposed systems during acquisitions. An ADL
specification should provide a good basis for programming activities
[Shaw 95].

• Documentation. Because the structure of a software system can be
explicitly represented in an ADL specification, separate
documentation describing software structure is not necessary. This
implies that if ADLs are used to define system structure, the
architectural documentation of a given system will not become out of
date.1 Additionally, ADLs document system properties in a formal
and rigorous way. These formal characterizations can be used to
analyze system properties statically and dynamically. For example,
dynamic simulation of Rapide [Luckham 95] specifications can be
analyzed by automated tools to identify such things as
communication bottlenecks and constraint violations. Further, these
formal characterizations provide information that can be used to
guide reuse.

• Expanding scope of architecture. ADLs are not limited to describing
the software architecture; application to system architecture (to
include hardware, software, and people) is also a significant
opportunity.

1. However, one can easily imagine a case where an ADL is used to document the ar-
chitecture, but then the project moves to the implementation phase and the ADL is
forgotten. The code or low-level design migrates, but the architecture is lost. This is
often referred to as architectural drift [Perry 92].
CMU/SEI-97-HB-001 85

Architecture Description Languages
Maturity Several ADLs have been defined and implemented that support a variety
of architectural styles, including

• Aesop, which supports the specification and analysis of architectural
styles (formal characterizations of common architectures such as
pipe and filters, and client-server) [Garlan 94b].

• Rapide, which uses event posets to specify component interfaces
and component interaction [Luckham 95].

• Wright, which supports the specification and analysis of
communication protocols [Garlan 94a].

• MetaH, which was developed for the real-time avionics domain
[Vestal 96].

• LILEAnna, which is designed for use with Ada and generalizes Ada’s
notion of generics [Tracz 93].

• UniCon, which addresses packaging and functional issues
associated with components [Shaw 95].

Further information about these and other languages used to describe
software architectures can be found in the Software Architecture Tech-
nology Guide and Architectural Description Languages [SATG 96, SEI
96].

Because ADLs are an emerging technology, there is little evidence in the
published literature of successful commercial application. However,
Rapide and UniCon have been used on various problems,1 and MetaH
appears to be in use in a commercial setting [Vestal 96]. ADLs often have
graphical tools that are similar to CASE tools.

1. For example, Rapide has been used to specify/ analyze the architecture model of the
Sparc Version 9 64-bit instruction set, a standard published by Sparc International.
Models of the extensions for the Ultra Sparc have also been done; they are used ex-
tensively in benchmarking Rapide simulation algorithms. Further information is avail-
able via the World Wide Web at http://anna.stanford.edu/rapide/rapide.html.

Costs and
Limitations

The lack of a common semantic model coupled with differing design
goals for various ADLs complicates the ability to share tool suites be-
tween them. Researchers are addressing this problem; an ADL called
ACME is being developed with the goal that it will serve as an architec-
ture interchange language.2 Some ADLs, such as MetaH, are domain-
specific.

2. Source: Garlan, David, et al. “ACME: An Architecture Interchange Language.” Sub-
mitted for publication.
86 CMU/SEI-97-HB-001

Architecture Description Languages
In addition, support for asynchronous versus synchronous communica-
tion protocols varies between ADLs, as does the ability to express com-
plex component interactions.

Dependencies Simulation technology is required by those ADLs supporting event-based
protocol specification.

Alternatives The alternatives to ADLs include MILs (see pg. 255) (which only repre-
sent the defacto structure of a system), object-oriented CASE tools, and
various ad-hoc techniques for representing and reasoning about system
architecture.

Another alternative is the use of VHSIC Hardware Description Language
(VHDL) tools. While VHDL is often thought of exclusively as a hardware
description language, its modularization and communication protocol
modeling capabilities are very similar to the ones under development for
use in ADLs.

Complementary
Technologies

Behavioral specification technologies and their associated theorem prov-
ing environments are used by several ADLs to provide capabilities to de-
fine component behavior. In addition, formal logics and techniques for
representing relationships between them are being used to define map-
pings between architectures within an ADL and to define mappings be-
tween ADLs.

References and
Information
Sources

[Garlan 93] Garlan, David & Shaw, Mary. “An Introduction to Software Architecture,”
1-39. Advances in Software Engineering and Knowledge Engineering
Volume 2. New York, NY: World Scientific Press, 1993.

[Garlan 94a] Garlan, D. & Allen, R. “Formalizing Architectural Connection,” 71-80.
Proceedings of the 16th International Conference on Software Engineer-

Index
Categories

Name of technology Architecture Description Languages

Application category Architectural Design (AP.1.3.1), Compiler
(AP.1.4.2.3), Plan and Perform Integration
(AP.1.4.4)

Quality measures category Correctness (QM.1.3), Structuredness
(QM.3.2.3), Reusability (QM.4.4)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2), Organization and Design (D.4.7), Per-
formance (D.4.8), Systems Programs and Util-
ities (D.4.9)
CMU/SEI-97-HB-001 87

Architecture Description Languages
ing. Sorrento, Italy, May 16-21, 1994. Los Alamitos, CA: IEEE Computer
Society Press, 1994.

[Garlan 94b] Garlan, D.; Allen, R.; & Ockerbloom, J. “Exploiting Style in Architectural
Design Environments.” SIGSOFT Software Engineering Notes 19, 5 (De-
cember 1994): 175-188.

[Luckham 95] Luckham, David C., et al. “Specification and Analysis of System Architec-
ture Using Rapide.” IEEE Transactions on Software Engineering 21, 6
(April 1995): 336-355.

[Hoare 85] Hoare, C.A.R. Communicating Sequential Processes. Englewood Cliffs,
NJ: Prentice Hall International, 1985.

[Paulisch 94] Paulisch, Frances. “Software Architecture and Reuse— An Inherent
Conflict?” 214. Proceedings of the 3rd International Conference on Soft-
ware Reuse. Rio de Janeiro, Brazil, November 1-4, 1994. Los Alamitos,
CA: IEEE Computer Society Press, 1994.

[Perry 92] Perry, D.E. & Wolf, A.L. “Foundations for the Study of Software Architec-
tures.”SIGSOFT Software Engineering Notes 17,4 (October 1992): 40-
52.

[SATG 96] Software Architecture Technology Guide [online]. Available WWW
<URL: http://www-ast.tds-gn.lmco.com/arch/guide.html> (1996).

[SEI 96] Architectural Description Languages [online]. Available WWW <URL:
http://www.sei.cmu.edu/technology/architecture/adl.html> (1996).

[Shaw 95] Shaw, Mary, et al. “Abstractions for Software Architecture and Tools to
Support Them.” IEEE Transactions on Software Engineering 21, 6 (April
1995): 314-335.

[Shaw 96] Shaw, M. & Garlan, D. Perspective on an Emerging Discipline: Software
Architecture. Englewood Cliffs, NJ: Prentice Hall, 1996.

[STARS 96] Scenarios for Analyzing Architecture Description Languages Version 2.0
[online]. Available WWW <URL: http://www.asset.com/WSRD/abstracts/
ABSTRACT_1183.html> (1996).

[Tracz 93] Tracz, W. “LILEANNA: a Parameterized Programming Language,” 66-
78. Proceedings of the Second International Workshop on Software Re-
use. Lucca, Italy, March 24-26, 1993. Los Alamitos, CA: IEEE Computer
Society Press, 1993.
88 CMU/SEI-97-HB-001

Architecture Description Languages
[Vestal 93] Vestal, Steve. A Cursory Overview and Comparison of Four Architecture
Description Languages [online]. Available FTP <URL: ftp://ftp.htc.
honeywell.com/pub/dssa/papers/four_adl.ps> (1996).

[Vestal 96] Vestal, Steve. Languages and Tools for Embedded Software Architec-
tures [online]. Available WWW <URL: http://www.htc.honeywell.com/
projects/dssa/dssa_tools.html> (1996).

Author Mark Gerken, Rome Laboratory
gerken@ai.rl.af.mil

External
Reviewer(s)

Paul Clements, SEI
Paul Kogut, Lockheed Martin, Paoli, PA
Will Tracz, Lockheed Martin Federal Systems, Owego, NY

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 89

Architecture Description Languages
90 CMU/SEI-97-HB-001

Argument-Based Design Rationale Capture Methods for
Requirements Tracing
Argument-Based Design Rationale Capture Methods for
Requirements Tracing ADVANCED

Purpose and
Origin

A design rationale is a representation of the reasoning behind the design
of an artifact. The purpose of argument-based design rationale capturing
methods is to track

• the discussions and deliberations that occur during initial
requirements analysis

• the reasons behind design decisions

• the changes in the system over the course of its life, whether they are
changes in requirements, design, or code (i.e., any software artifact)

• the reasons for and impact of the changes on the system

Replaying the history of design decisions facilitates the understanding of
the evolution of the system, identifies decision points in the design phase
where alternative decisions could lead to different solutions, and identi-
fies dead-end solution paths. The captured knowledge should enhance
the evolvability of the system.

The study of argument-based design rationale capture originated during
the late 1950s and early 1960s with D. Englebart, who developed a con-
ceptual framework called Humans Using Language, Artifacts, and Meth-
odology in which they are Trained (H-LAM/T) and with Stephen Toulmin
and his work concerning the representational form for arguments [Shum
94].

Technical Detail There are two general approaches to argument-based design rationale
capture, both of which are based upon the entity-relationship paradigm:

1. The Issue Based Information Systems (IBIS) that deals with issues,
positions, and arguments for which the emphasis is on recording the
argumentation process for a single design [Ramesh 92].

2. The Questions, Options, and Criteria (QOC) notation [Shum 94], for
which assessments are relationships between options, and criteria
and arguments are used to conduct debate about the status of the
entities and relationships.

Decision Representation Language (DRL) combines and extends the
two approaches to provide support for computational services like de-
pendency management, precedence management, and plausibility man-
agement. All of the approaches provide mechanisms for a breadth-first
analytic understanding of issues, thus setting the context for concrete re-
finement of the design.
CMU/SEI-97-HB-001 91

Argument-Based Design Rationale Capture Methods for
Requirements Tracing
All of the information gathered using the above mentioned methods/lan-
guages is generally called process knowledge. The process knowledge
is cross-referenced to the requirements created during the requirements
engineering phase. The entities and relationships provide for the struc-
turing of design problems, and they provide a consistent mechanism for
decision making and tracking and communication among team mem-
bers.

Laboratory and small-scale field experiments have been conducted to
determine the utility and effectiveness of design rationale capturing
methods. Potential benefits include the following:

• Revision becomes a natural process.

• Design rationale capture methods can help to keep the design
meetings on track and help maintain a shared awareness of the
meeting’s process.

• The design rationale record can help identify interrelated issues that
need to be resolved. Related arguments enable team members to
prepare for the meeting and lead to a better solution.

• The methods can help originators of ideas understand how they are
understood by the rest of the team. Note: More analysis is required
before the utility of the methods for communicating understandings is
fully demonstrated.

The records can be a valuable resource when it becomes necessary to
reanalyze a previous decision. Note: There is no data on how frequently
the revisitation is necessary, therefore, the benefits may invalidate the ef-
fort necessary to capture the information.

Potential pitfalls include the following:

• Care must be taken to avoid prolonged reflective processes and the
extensive analysis of high-level or peripheral issues.

• There may be inconsistencies in categorizing the design rationale
information in the database because one person’s assumptions may
be another person’s rationale and yet another person’s decision.

• Because of the nature of the semiformal language, the reader may
need to be familiar with the design to understand the design rationale
as represented.

Usage
Considerations

The use of this technology requires the development of a shared, consis-
tent, and coherent requirements traceability policy by a project team.
Each of the team members must provide commitment to the policy and
procedures. A procedure for overall coordination must be developed. To
date, these procedures are project-dependent and there is no consistent
92 CMU/SEI-97-HB-001

Argument-Based Design Rationale Capture Methods for
Requirements Tracing
policy. It will require effort to generate and maintain the entities and rela-
tionships in the design rationale database for a given system.

Maturity To date, there is at least one commercially-available tool to support the
IBIS notation. The vendor also provides training and support for their tool.
Proprietary tools to support the IBIS method are being used on govern-
ment projects (e.g., a database exists with over 100,000 requirements
under management) [Ramesh 92]. Tools to support the other methods
are in various prototype stages.

Costs and
Limitations

Argument-based design rationale capture methods and supporting tools
require additional time and effort throughout the software life cycle. Indi-
viduals must generate and maintain the entity relationship diagrams for
any and all of the methods. Training is essential to make effective use of
the methods.

Dependencies This technology makes use of entity-relationship modeling as the basis
for the methods.

Alternatives There are several alternative approaches to requirements traceability
methods. Examples include: Process Knowledge Method, an extension
of the argument-based approach that includes a formal representation to
provide two way traceability between requirements and artifacts and fa-
cilities for temporal reasoning (i.e., mechanisms to use the captured
knowledge), and Feature-Based Design Rationale Capture Method for
Requirements Tracing (pg. 181), an approach that is centered around the
distinctive features of a system.

References and
Information
Sources

[Gotel 1995] Gotel, Orlena. Contribution Structures for Requirements Traceability.
London, England: Department of Computing, Imperial College, 1995.

Index
Categories

Name of technology Argument-Based Design Rationale Capture
Methods for Requirements Tracing

Application category Requirements Tracing (AP.1.2.3)

Quality measures category Completeness (QM.1.3.1), Consistency
(QM.1.3.2), Traceability (QM.1.3.3), Effective-
ness (QM.1.1), Reusability (QM.4.4), Under-
standability (QM.3.2), Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2), Software Engineering Design
(D.2.10), Project and People Management
(K.6.1)
CMU/SEI-97-HB-001 93

Argument-Based Design Rationale Capture Methods for
Requirements Tracing
[Ramesh 92] Ramesh, Balasubramaniam & Dhar, Vasant. “Supporting Systems De-
velopment by Capturing Deliberations During Requirements Engineer-
ing.” IEEE Transactions on Software Engineering 18, 6 (June 1992): 498-
510.

[Ramesh 95] Ramesh, Bala; Stubbs, Lt Curtis; & Edwards, Michael. “Lessons Learned
from Implementing Requirements Traceability.” Crosstalk, Journal of De-
fense Software Engineering 8, 4 (April 1995).

[Shum 94] Shum, Buckingham Simon & Hammond, Nick. “Argumentation-Based
Design Rationale: What Use at What Cost?” International Journal of Hu-
man-Computer Studies 40, 4 (April 1994): 603-52.

Author Liz Kean, Rome Laboratory
liz@se.rl.af.mil

Last Modified 10 Jan 97
94 CMU/SEI-97-HB-001

Cleanroom Software Engineering
Cleanroom Software Engineering COMPLETE

Purpose and
Origin

Cleanroom software engineering is an engineering and managerial pro-
cess for the development of high-quality software with certified reliability.
Cleanroom was originally developed by Dr. Harlan Mills [Linger 94, Mills
87]. The name “Cleanroom” was taken from the electronics industry,
where a physical clean room exists to prevent introduction of defects dur-
ing hardware fabrication. Cleanroom software engineering reflects the
same emphasis on defect prevention rather than defect removal, as well
as certification of reliability for the intended environment of use.

Technical Detail The focus of Cleanroom involves moving from traditional, craft-based
software development practices to rigorous, engineering-based practic-
es. Cleanroom software engineering yields software that is correct by
mathematically sound design, and software that is certified by statistical-
ly-valid testing. Reduced cycle time results from an incremental develop-
ment strategy and the avoidance of rework.

It is well-documented that significant differences in cost are associated
with errors found at different stages of the software life cycle. By detect-
ing errors as early as possible, Cleanroom reduces the cost of errors dur-
ing development and the incidence of failures during operation; thus the
overall life cycle cost of software developed under Cleanroom can be ex-
pected to be far lower than industry average.

The following ideas form the foundation for Cleanroom-based develop-
ment:

• Incremental development under statistical quality control (SQC).
Incremental development as practiced in Cleanroom provides a basis
for statistical quality control of the development process. Each
increment is a complete iteration of the process, and measures of
performance in each increment (feedback) are compared with
preestablished standards to determine whether or not the process is
“in control.” If quality standards are not met, testing of the increment
ceases and developers return to the design stage.

• Software development based on mathematical principles. In
Cleanroom development, a key principle is that a computer program
is an expression of a mathematical function. The Box Structure
Method is used for specification and design, and functional
verification is used to confirm that the design is a correct
implementation of the specification. Therefore, the specification must
define that function before design and functional verification can
begin. Verification of program correctness is performed through team
CMU/SEI-97-HB-001 95

Cleanroom Software Engineering
review based on correctness questions. There is no execution of
code prior to its submission for independent testing.

• Software testing based on statistical principles. In Cleanroom,
software testing is viewed as a statistical experiment. A
representative subset of all possible uses of the software is
generated, and performance of the subset is used as a basis for
conclusions about general operational performance. In other words,
a “sample” is used to draw conclusions about a “population.” Under a
testing protocol that is faithful to the principles of applied statistics, a
scientifically valid statement can be made about the expected
operational performance of the software in terms of reliability and
confidence.

Benefits of Cleanroom include significant improvements in correctness,
reliability, and understandability. These benefits usually translate into a
reduction in field-experienced product failures, reduced cycle time, ease
of maintenance, and longer product life.

Usage
Considerations

Cleanroom has been documented to be very effective in new develop-
ment and reengineering (whole system or major subunits) contexts. The
following discussion highlights areas where Cleanroom affects or differs
from more conventional practice:

• Team-based development. A Cleanroom project team is small,
typically six to eight persons, and works in a disciplined fashion to
ensure the intellectual control of work in progress. Cleanroom
teamwork involves peer review of individual work, but does not
supplant individual creativity. Once the system architecture has been
established and the interfaces between subunits have been defined,
individuals typically work alone on a given system component.
Individual designs are working drafts that are then reviewed by the
team. In a large project, multiple small teams may be formed, with
one for the development of each subsystem, thus enabling
concurrent engineering after the top-level architecture has been
established.

• Time allocation across life cycle phases. Because one of the major
objectives of Cleanroom is to prevent errors from occurring, the
amount of time spent in the design phase of a Cleanroom
development is likely to be greater than the amount of time
traditionally devoted to design. Cleanroom, however, is not a more
time-consuming development methodology, but its greater emphasis
on design and verification often yields that concern. Management
understanding and acceptance of this essential point— that quality
will be achieved by design rather than through testing— must be
reflected in the development schedule. Design and verification will
require the greatest portion of the schedule. Testing may begin later
and be allocated less time than is ordinarily the case. In large
Cleanroom projects, where historical data has enabled comparison
96 CMU/SEI-97-HB-001

Cleanroom Software Engineering
of traditional and Cleanroom development schedules, the Cleanroom
schedule has equaled or improved upon the usual development time.

• Existing organizational practices. Cleanroom does not preclude
using other software engineering techniques as long as they are not
incompatible with Cleanroom principles. Implementation of the
Cleanroom method can take place in a gradual manner. A pilot
project can provide an opportunity to “tune” Cleanroom practices to
the local culture, and the new practices can be introduced as pilot
results to build confidence among software staff.

 Maturity Initial Cleanroom use within IBM occurred in the mid to late 80s, and
project use continues to this day. Defense demonstration projects began
approximately 1992. Cleanroom has been used on a variety of commer-
cial and defense projects for which reliability was critically important.
Some representative examples include the following:

• IBM COBOL/SF product, which has required only a small fraction of
its maintenance budget during its operating history [Hausler 94].

• Ericsson OS-32 operating system project, which had a 70%
improvement in development productivity, a 100% improvement in
testing productivity, and a testing error rate of 1.0 errors per KLOC
(represents all errors found in all testing) [Hausler 94].

• USAF Space Command and Control Architectural Infrastructure
(SCAI) STARS1 Demonstration Project at Peterson Air Force Base in
Colorado Springs, CO. In this project, Cleanroom was combined with
the TRW (spiral) Ada Process Model and some generated and
reused code to produce software at a rate of $30-40 per line of code
versus industry averages of $130 per line for software of similar
complexity and development timeframe (the size of the application is
greater than 300 KLOC) [STARSSCAI 95].

• US Army Cleanroom project in the Tank-automotive and Armaments
Command at the U.S. Army Picatinny Arsenal. After seven project
increments (approximately 90K lines of code), a 4.2:1 productivity
increase and a 20:1 return on investment has been documented
[Sherer 96a, Sherer 96b]. This project experienced an overall testing
error rate (represents all errors found in all testing) of 0.5
errors/KLOC.

In 1995-1996, tools supporting various aspects of the Cleanroom pro-
cess became commercially available.

1. STARS: Software Technology for Adaptable Reliable Systems

Costs and
Limitations

Using Cleanroom to accomplish piecemeal, isolated changes to a sys-
tem not developed using Cleanroom is not considered an effective use of
this technology. Training is required and commercially available. Avail-
able courses range from overviews to a detailed focus on particular as-
CMU/SEI-97-HB-001 97

Cleanroom Software Engineering
pects of Cleanroom. For some training classes, it is most productive if
software managers and technical staff take the training together. Manag-
ers need a thorough understanding of Cleanroom imperatives, and a
core group of practitioners needs sufficient orientation in Cleanroom
practices to be able to adapt the process to the local environment (this
includes establishing a local design language, local verification stan-
dards, etc.).

Complementary
Technologies

Cleanroom and object-oriented methods. A study/analysis of Clean-
room and three major object-oriented methods: Booch, Objectory, and
Shlaer-Mellor (see Object-Oriented Analysis, pg. 275), found that com-
bining object-oriented methods (known for their focus on reusability) with
Cleanroom (with its emphasis on rigor, formalisms, and reliability) can
define a process capable of producing results that are not only reusable,
but also predictable and of high quality.Thus object-oriented methods
can be used for front-end domain analysis and Cleanroom can be used
for life-cycle application engineering [Ett 96].

Cleanroom and the Capability Maturity Model.1 The SEI has defined
a Cleanroom Reference Model [Linger 96] in terms of a set of Cleanroom
Processes for software management, specification, design, and certifica-
tion, together with a detailed mapping of Cleanroom to the CMM for Soft-
ware.2 The mapping shows that Cleanroom and the CMM are fully
compatible and mutually reinforcing.

1. CMM and Capability Maturity Model are service marks of Carnegie Mellon University
[Paulk 93].

2. The document is expected to be complete by the end of 1996. Linger, R.C.; Paulk,
M.C.; & Trammel, C.J. Cleanroom Software Engineering Implementation of the CMM
for Software (CMU/SEI-96-TR-023). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1996.

Index Categories Name of technology Cleanroom Software Engineering

Application category Detailed Design (AP.1.3.5), Component Test-
ing (AP.1.4.3.5), System Testing (AP.1.5.3.1),
Performance Testing (AP.1.5.3.5), Reengi-
neering (AP.1.9.5)

Quality measures category Correctness (QM.1.3), Reliability (QM.2.1.2),
Understandability (QM.3.2), Availability
(QM.2.1.1), Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10)
98 CMU/SEI-97-HB-001

Cleanroom Software Engineering
References and
Information
Sources

[Cleanroom 96] Cleanroom Tutorial [online]. Available WWW <URL: http://source.asset.
com/stars/loral/cleanroom/tutorial/cleanroom.html> (1996).

[Ett 96] Ett, William. A Guide to Integration of Object-Oriented Methods and
Cleanroom Software Engineering [online]. Available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guide.html>
(1996).

[Hausler 94] Hausler, P. A.; Linger, R. C.; & Trammel, C. J. “Adopting Cleanroom Soft-
ware Engineering with a Phased Approach.” IBM Systems Journal 33, 1
(1994): 89-109.

[Linger 94] Linger, R.C. “Cleanroom Process Model.” IEEE Software 11, 2 (March
1994): 50-58.

[Linger 96] Linger, R.C. & Trammel, C.J. Cleanroom Software Engineering Refer-
ence Model (CMU/SEI-96-TR-022). Pittsburgh, PA: Carnegie Mellon
University, Software Engineering Institute, 1996.

[Mills 87] Mills, H.; Dyer, M.; & Linger, R. “Cleanroom Software Engineering.” IEEE
Software 4, 5 (September 1987): 19-25.

[Paulk 93] Paulk, M.; Curtis B.; Chrissis, M.; & Weber, C. Capability Maturity Model
for Software Version 1.1 (CMU/SEI-96-TR-24, ADA263403). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 1993.

[Sherer 96a] Sherer, S. W. Cleanroom Software Engineering— the Picatinny Experi-
ence [online]. Available WWW <URL: http://software.pica.army.mil/
cleanroom/cseweb.html> (1996).

[Sherer 96b] Sherer, S.W.; Kouchakdjian, A.; & Arnold, P.G. “Experience Using
Cleanroom Software Engineering.” IEEE Software 13, 3 (May 1996): 69-
76.

[STARSSCAI 95] Air Force/STARS Demonstration Project Home Page [online]. Available
WWW <URL: http://www.asset.com/stars/afdemo/home.html> (1995).

Author John Foreman, SEI
jtf@sei.cmu.edu

External
Reviewer(s)

Wayne Sherer, US Army Picatinny Arsenal
Dave Ceely, Lockheed Martin, Gaithersburg, MD
Dr. Jesse Poore, President, Software Engineering Technologies (SET)
Rick Linger, SEI
CMU/SEI-97-HB-001 99

Cleanroom Software Engineering
Last Modified 10 Jan 97
100 CMU/SEI-97-HB-001

Client/Server Software Architectures
Client/Server Software Architectures ADVANCED

Purpose and
Origin

The term client/server was first used in the 1980s in reference to personal
computers (PCs) on a network. The actual client/server model started
gaining acceptance in the late 1980s. The client/server software architec-
ture is a versatile, message-based and modular infrastructure that is in-
tended to improve usability, flexibility, interoperability, and scalability as
compared to centralized, mainframe, time sharing computing.

A client is defined as a requester of services and a server is defined as
the provider of services. A single machine can be both a client and a
server depending on the software configuration. For details on cli-
ent/server software architectures see Schussel and Edelstein [Schussel
96, Edelstein 94].

This technology description provides a summary of some common cli-
ent/server architectures and, for completeness, also summarizes main-
frame and file sharing architectures. Detailed descriptions for many of the
individual architectures are provided elsewhere in the document.

Technical Detail Mainframe architecture (not a client/server architecture). With main-
frame software architectures all intelligence is within the central host
computer. Users interact with the host through a terminal that captures
keystrokes and sends that information to the host. Mainframe software
architectures are not tied to a hardware platform. User interaction can be
done using PCs and UNIX workstations. A limitation of mainframe soft-
ware architectures is that they do not easily support graphical user inter-
faces (see pg. 205) or access to multiple databases from geographically
dispersed sites. In the last few years, mainframes have found a new use
as a server in distributed client/server architectures (see pg. 227) [Edel-
stein 94].

File sharing architecture (not a client/server architecture). The original
PC networks were based on file sharing architectures, where the server
downloads files from the shared location to the desktop environment.
The requested user job is then run (including logic and data) in the desk-
top environment. File sharing architectures work if shared usage is low,
update contention is low, and the volume of data to be transferred is low.
In the 1990s, PC LAN (local area network) computing changed because
the capacity of the file sharing was strained as the number of online user
grew (it can only satisfy about 12 users simultaneously) and graphical
user interfaces (GUIs) became popular (making mainframe and terminal
displays appear out of date). PCs are now being used in client/server ar-
chitectures [Schussel 96, Edelstein 94].
CMU/SEI-97-HB-001 101

Client/Server Software Architectures
Client/server architecture. As a result of the limitations of file sharing
architectures, the client/server architecture emerged. This approach in-
troduced a database server to replace the file server. Using a relational
database management system (DBMS), user queries could be answered
directly. The client/server architecture reduced network traffic by provid-
ing a query response rather than total file transfer. It improves multi-user
updating through a GUI front end to a shared database. In client/server
architectures, remote procedure calls (RPCs) (see pg. 323) or standard
query language (SQL) statements are typically used to communicate be-
tween the client and server [Schussel 96, Edelstein 94].

The remainder of this write-up provides examples of client/server archi-
tectures.

Two tier architectures. With two tier client/server architectures (see pg.
381), the user system interface is usually located in the user’s desktop
environment and the database management services are usually in a
server that is a more powerful machine that services many clients. Pro-
cessing management is split between the user system interface environ-
ment and the database management server environment. The database
management server provides stored procedures and triggers. There are
a number of software vendors that provide tools to simplify development
of applications for the two tier client/server architecture [Schussel 96,
Edelstein 94].

The two tier client/server architecture is a good solution for distributed
computing when work groups are defined as a dozen to 100 people in-
teracting on a LAN simultaneously. It does have a number of limitations.
When the number of users exceeds 100, performance begins to deterio-
rate. This limitation is a result of the server maintaining a connection via
“keep-alive” messages with each client, even when no work is being
done. A second limitation of the two tier architecture is that implementa-
tion of processing management services using vendor proprietary data-
base procedures restricts flexibility and choice of DBMS for applications.
Finally, current implementations of the two tier architecture provide limit-
ed flexibility in moving (repartitioning) program functionality from one
server to another without manually regenerating procedural code.
[Schussel 96, Edelstein 94].

Three tier architectures. The three tier architecture (see pg. 367) (also
referred to as the multi-tier architecture) emerged to overcome the limi-
tations of the two tier architecture. In the three tier architecture, a middle
tier was added between the user system interface client environment and
the database management server environment. There are a variety of
102 CMU/SEI-97-HB-001

Client/Server Software Architectures
ways of implementing this middle tier, such as transaction processing
monitors, message servers, or application servers. The middle tier can
perform queuing, application execution, and database staging. For ex-
ample, if the middle tier provides queuing, the client can deliver its re-
quest to the middle layer and disengage because the middle tier will
access the data and return the answer to the client. In addition the middle
layer adds scheduling and prioritization for work in progress. The three
tier client/server architecture has been shown to improve performance
for groups with a large number of users (in the thousands) and improves
flexibility when compared to the two tier approach. Flexibility in partition-
ing can be a simple as “dragging and dropping” application code modules
onto different computers in some three tier architectures. A limitation with
three tier architectures is that the development environment is reportedly
more difficult to use than the visually-oriented development of two tier ap-
plications [Schussel 96, Edelstein 94]. Recently, mainframes have found
a new use as servers in three tier architectures (see pg. 227).

Three tier architecture with transaction processing monitor tech-
nology. The most basic type of three tier architecture has a middle layer
consisting of Transaction Processing (TP) monitor technology (see pg.
373). The TP monitor technology is a type of message queuing, transac-
tion scheduling, and prioritization service where the client connects to the
TP monitor (middle tier) instead of the database server. The transaction
is accepted by the monitor, which queues it and then takes responsibility
for managing it to completion, thus freeing up the client. When the capa-
bility is provided by third party middleware vendors it is referred to as “TP
Heavy” because it can service thousands of users. When it is embedded
in the DBMS (and could be considered a two tier architecture), it is re-
ferred to as “TP Lite” because experience has shown performance deg-
radation when over 100 clients are connected. TP monitor technology
also provides

• the ability to update multiple different DBMSs in a single transaction

• connectivity to a variety of data sources including flat files, non-
relational DBMS, and the mainframe

• the ability to attach priorities to transactions

• robust security

Using a three tier client/server architecture with TP monitor technology
results in an environment that is considerably more scalable than a two
tier architecture with direct client to server connection. For systems with
thousands of users, TP monitor technology (not embedded in the DBMS)
has been reported as one of the most effective solutions. A limitation to
TP monitor technology is that the implementation code is usually written
CMU/SEI-97-HB-001 103

Client/Server Software Architectures
in a lower level language (such as COBOL), and not yet widely available
in the popular visual toolsets [Schussel 96].

Three tier with message server. Messaging is another way to imple-
ment three tier architectures. Messages are prioritized and processed
asynchronously. Messages consist of headers that contain priority infor-
mation, and the address and identification number. The message server
connects to the relational DBMS and other data sources. The difference
in TP monitor technology and message server is that the message server
architecture focuses on intelligent messages, whereas the TP Monitor
environment has the intelligence in the monitor, and treats transactions
as dumb data packets. Messaging systems are good solutions for wire-
less infrastructures [Schussel 96].

Three tier with an application server. The three tier application server
architecture allocates the main body of an application to run on a shared
host rather than in the user system interface client environment. The ap-
plication server does not drive the GUIs; rather it shares business logic,
computations, and a data retrieval engine. Advantages are that with less
software on the client there is less security to worry about, applications
are more scalable, and support and installation costs are less on a single
server than maintaining each on a desktop client [Schussel 96].

Three tier with an ORB architecture. Currently industry is working on
developing standards to improve interoperability and determine what the
common object request broker (ORB) (see pg. 291) will be. There are two
candidates, OLE (see pg. 271) and CORBA (see pg. 107). It is expected
that by 1997 both candidates will be available and have some degree of
interoperability. With distributed objects being self-contained and execut-
able (all data and procedures present), distributed object computing
holds the promise that features such as fault tolerance may be achieved
by just copying objects onto multiple servers. The application server de-
sign should be used when security, scalability, and cost are major con-
siderations [Schussel 96].

Distributed/collaborative enterprise architecture. The distributed/col-
laborative enterprise architecture emerged in 1993 (see pg. 163). This
software architecture is based on Object Request Broker (ORB) (see pg.
291) technology, but goes further than the Common Object Request Bro-
ker Architecture (CORBA) (see pg. 107) by using shared, reusable busi-
ness models (not just objects) on an enterprise-wide scale. The benefit
of this architectural approach is that standardized business object mod-
els and distributed object computing are combined to give an organiza-
tion flexibility to improve effectiveness organizationally, operationally,
104 CMU/SEI-97-HB-001

Client/Server Software Architectures
and technologically. An enterprise is defined here as a system comprised
of multiple business systems or subsystems. Distributed/collaborative
enterprise architectures are limited by a lack of commercially-available
object orientation analysis and design method tools that focus on appli-
cations [Shelton 93, Adler 95].

Usage
Considerations

Client/server architectures are being used throughout industry and the
military. They provide a versatile infrastructure that supports insertion of
new technology more readily than earlier software designs.

Maturity Client/server software architectures have been in use since the late
1980s. See individual technology descriptions for more detail.

Costs and
Limitations

There a number of tradeoffs that must be made to select the appropriate
client/server architecture. These include business strategic planning,
and potential growth on the number of users, cost, and the homogeneity
of the current and future computational environment.

Dependencies Developing a client/server architecture following an object-oriented
methodology would be dependent on the CORBA or OLE standards for
design implementation (see pg. 107 and pg. 271).

Alternatives Alternatives to client/server architectures would be mainframe or file
sharing architectures.

Complementary
Technologies

Complementary technologies for client/server architectures are comput-
er-aided software engineering (CASE) tools because they facilitate cli-
ent/server architectural development, and open systems (see pg. 135)
because they facilitate the development of architectures that improve
scalability and flexibility.

References and
Information
Sources

[Adler 95] Adler, R. M. “Distributed Coordination Models for Client/Sever Comput-
ing.” Computer 28, 4 (April 1995): 14-22.

Index
Categories

Name of technology Client/Server Software Architectures

Application category Software Architecture Models (AP.2.1.1)

Quality measures category Usability (QM.2.3), Scalability (QM.4.3), Main-
tainability (QM.3.1), Interoperability (QM.4.1)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Design (D.2.10)
CMU/SEI-97-HB-001 105

Client/Server Software Architectures
[Dickman 95] Dickman, A. “Two-Tier Versus Three-Tier Apps.” Informationweek 553
(November 13, 1995): 74-80.

[Edelstein 94] Edelstein, Herb. “Unraveling Client/Server Architecture.” DBMS 7, 5
(May 1994): 34(7).

[Gallaugher 96] Gallaugher, J. & Ramanathan, S. “Choosing a Client/Server Architecture.
A Comparison of Two-Tier and Three-Tier Systems.” Information Sys-
tems Management Magazine 13, 2 (Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW <URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. “Interoperable Object Models for
Large Scale Distributed Systems,” 30-31. Proceedings. International
Seminar on Client/Server Computing. La Hulpe, Belgium, October 30-31,
1995. London, England: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future [online].
Available WWW <URL: http://www.dciexpo.com/geos/> (1995).

[Shelton 93] Shelton, Robert E. “The Distributed Enterprise (Shared, Reusable Busi-
ness Models the Next Step in Distributed Object Computing).” Distributed
Computing Monitor 8, 10 (October 1993): 1.

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

Frank Rogers, GTE

Last Modified 10 Jan 97
106 CMU/SEI-97-HB-001

Common Object Request Broker Architecture
Common Object Request Broker Architecture ADVANCED

Note We recommend Object Request Broker, pg. 291, as prerequisite reading
for this technology description.

Purpose and
Origin

The Common Object Request Broker Architecture (CORBA) is a specifi-
cation of a standard architecture for object request brokers (ORBs) (see
pg. 291). A standard architecture allows vendors to develop ORB prod-
ucts that support application portability and interoperability across differ-
ent programming languages, hardware platforms, operating systems,
and ORB implementations:

“Using a CORBA-compliant ORB, a client can transparently invoke a
method on a server object, which can be on the same machine or
across a network. The ORB intercepts the call, and is responsible for
finding an object that can implement the request, passing it the pa-
rameters, invoking its method, and returning the results of the invo-
cation. The client does not have to be aware of where the object is
located, its programming language, its operating system or any other
aspects that are not part of an object’s interface” [OMG 96].

The “vision” behind CORBA is that distributed systems are conceived
and implemented as distributed objects. The interfaces to these objects
are described in a high-level, architecture-neutral specification language
that also supports object-oriented design abstraction. When combined
with the Object Management Architecture (see Technical Detail, pg.
108), CORBA can result in distributed systems that can be rapidly devel-
oped, and can reap the benefits that result from using high-level building
blocks provided by CORBA, such as maintainability and adaptability.

The CORBA specification was developed by the Object Management
Group (OMG), an industry group with over six hundred member compa-
nies representing computer manufacturers, independent software ven-
dors, and a variety of government and academic organizations [OMG
96]. Thus, CORBA specifies an industry/consortium standard, not a “for-
mal” standard in the IEEE/ANSI/ISO sense of the term. The OMG was
established in 1988, and the initial CORBA specification emerged in
1992. Since then, the CORBA specification has undergone significant re-
vision, with the latest major revision (CORBA v2.0) released in July 1996.
CMU/SEI-97-HB-001 107

Common Object Request Broker Architecture
Technical Detail CORBA ORBs are middleware mechanisms (see pg. 251), as are all
ORBs. CORBA can be thought of as a generalization of remote proce-
dure call (RPC) that includes a number of refinements of RPC, including:

• a more abstract and powerful interface definition language

• direct support for a variety of object-oriented concepts

• a variety of other improvements and generalizations of the more
primitive RPC

CORBA and the Object Management Architecture. It is impossible to
understand CORBA without appreciating its role in the Object Manage-
ment Architecture (OMA), shown in Figure 2. The OMA is itself a specifi-
cation (actually, a collection of related specifications) that defines a broad
range of services for building distributed applications. The OMA goes far
beyond RPC in scope and complexity. The distinction between CORBA
and the OMA is an important one because many services one might ex-
pect to find in a middleware product such as CORBA (e.g., naming, trans-
action, and asynchronous event management services) are actually
specified as services in the OMA. For reference, the OMA reference ar-
chitecture encompasses both the ORB and remote service/object depict-
ed in Figure 21, pg. 291.

Figure 2: Object Management Architecture

OMA services are partitioned into three categories: CORBAServices,
CORBAFacilities, and ApplicationObjects. The ORB (whose details are
specified by CORBA) is a communication infrastructure through which
applications access these services, and through which objects interact
with each other. CORBAServices, CORBAFacilities, and ApplicationOb-
jects define different categories of objects in the OMA; these objects

CORBAServices CORBAFacilities

Application Objects

ORB
108 CMU/SEI-97-HB-001

Common Object Request Broker Architecture
(more accurately object types) define a range of functionality needed to
support the development of distributed software systems.

• CORBAServices are considered fundamental to building non-trivial
distributed applications. These services currently include
asynchronous event management, transactions, persistence,
externalization, concurrency, naming, relationships, and lifecycle.
Table 1 summarizes the purpose of each of these services.

• CORBAFacilities may be useful for distributed applications in some
settings, but are not considered as universally applicable as
CORBAServices. These “facilities” include: user interface,
information management, system management, task management,
and a variety of “vertical market” facilities in domains such as
manufacturing, distributed simulation, and accounting.

• Application Objects provide services that are particular to an
application or class of applications. These are not (currently) a topic
for standardization within the OMA, but are usually included in the
OMA reference model for completeness, i.e., objects are either
application-specific, support common facilities, or are basic services.

Table 1: Overview of CORBA Services

CORBA in detail. Figure 3 depicts most of the basic components and in-
terfaces defined by CORBA. This figure is an expansion of the ORB com-
ponent of the OMA depicted in Figure 2.

Naming Service Provides the ability to bind a name to an
object. Similar to other forms of directory ser-
vice.

Event Service Supports asynchronous message-based com-
munication among objects. Supports chaining
of event channels, and a variety of pro-
ducer/consumer roles.

Lifecycle Service Defines conventions for creating, deleting,
copying and moving objects.

Persistence Service Provides a means for retaining and managing
the persistent state of objects.

Transaction Service Supports multiple transaction models, includ-
ing mandatory “flat” and optional “nested”
transactions.

Concurrency Service Supports concurrent, coordinated access to
objects from multiple clients.

Relationship Service Supports the specification, creation and main-
tenance of relationships among objects.

Externalization Service Defines protocols and conventions for exter-
nalizing and internalizing objects across pro-
cesses and across ORBs.
CMU/SEI-97-HB-001 109

Common Object Request Broker Architecture
Figure 3: Structure of CORBA Interfaces

One element (not depicted in Figure 2) that is crucial to the understand-
ing of CORBA is the interface definition language (IDL) processor. All ob-
jects are defined in CORBA (actually, in the OMA) using IDL. IDL is an
object-oriented interface definition formalism that has some syntactic
similarities with C++. Unlike C++, IDL can only define interfaces; it is not
possible to specify behavior in IDL. Language mappings are defined from
IDL to C, C++, Ada95, and Smalltalk80.

An important point to note is that CORBA specifies that clients and object
implementations can be written in different programming languages and
execute on different computer hardware architectures and different oper-
ating systems, and that clients and object implementations can not detect
any of these details about each other. Put another way, the IDL interface
completely defines the interface between clients and objects; all other
details about objects (such as their implementation language and loca-
tion) can be made “transparent.”

Table 2 summarizes the components of CORBA and their functional role.

IDL
Skeletons

Dynamic
SkeletonDynamic

Invocation
IDL
Stubs

ORB
Interface

Object Adaptor

ORB Core

Interface identical for all ORB implementations
There are stubs and skeletons for each object type
ORB implementation-dependent interface
There may be several object adaptors

Client Object Implementation
110 CMU/SEI-97-HB-001

Common Object Request Broker Architecture
Table 2: Components of the CORBA Specification

Usage
Considerations

Compliance. As noted, CORBA is a specification, not an implementa-
tion. Therefore, the question of compliance is important: How does a con-
sumer know if a product is CORBA-compliant, and, if so, what does that
mean? CORBA compliance is defined by the OMG:

“The minimum required for a CORBA-compliant system is adherence
to the specifications in CORBA Core and one mapping” [CORBA 96]

ORB Core The CORBA runtime infrastructure. The inter-
face to the ORB Core is not defined by
CORBA, and will be vendor proprietary.

ORB Interface A standard interface (defined in IDL) to func-
tions provided by all CORBA-compliant ORBs.

IDL Stubs Generated by the IDL processor for each inter-
face defined in IDL. Stubs hide the low-level
networking details of object communication
from the client, while presenting a high-level,
object type-specific application programming
interface (API).

Dynamic Invocation Interface
(DII)

An alternative to stubs for clients to access
objects. While stubs provide an object type-
specific API, DII provides a generic mecha-
nism for constructing requests at run time
(hence “dynamic invocation”). An interface
repository (another CORBA component not
illustrated in Figure 2) allows some measure of
type checking to ensure that a target object
can support the request made by the client.

Object Adaptor Provides extensibility of CORBA-compliant
ORBs to integrate alternative object technolo-
gies into the OMA. For example, adaptors may
be developed to allow remote access to
objects that are stored in an object-oriented
database. Each CORBA-compliant ORB must
support a specific object adaptor called the
Basic Object Adaptor (BOA) (not illustrated in
Figure 2). The BOA defines a standard API
implemented by all ORBs.

 IDL Skeletons The server-side (or object implementation-
side) analogue of IDL stubs. IDL skeletons
receive requests for services from the object
adaptor, and call the appropriate operations in
the object implementation.

Dynamic Skeleton Interface
(DSI)

The server-side (or object implementation-
side) analogue of the DII. While IDL skeletons
invoke specific operations in the object imple-
mentation, DSI defers this processing to the
object implementation. This is useful for devel-
oping bridges and other mechanisms to sup-
port inter-ORB interoperation.
CMU/SEI-97-HB-001 111

Common Object Request Broker Architecture
where “mapping” refers to a mapping from IDL to a programming lan-
guage (C, C++ or Smalltalk80; Ada95 is specified but has not been for-
mally adopted by the OMG at the time of this writing). The CORBA Core
(not the same as the ORB Core denoted in Figure 3 and Table 2) is de-
fined for compliance as including the following:

• the interfaces to all of the elements depicted in Figure 3

• interfaces to the interface repository (not shown in Figure 3)

• a definition of IDL syntax and semantics

• the definition of the object model that underlies CORBA (e.g., what is
an object, how is it defined, where do they come from)

Significantly, the CORBA Core does not include CORBA interoperability,
nor does it include interworking, the term used to describe how CORBA
is intended to work with Microsoft’s COM (see pg. 291). A separate but
related point is that CORBA ORBs need not provide implementations of
any OMA services.

There are as yet no defined test suites for assessing CORBA compli-
ance. Users must evaluate vendor claims on face value, and assess the
likelihood of vendor compliance based upon a variety of imponderables,
such as the role played by the vendor in the OMG; vendor market share;
and press releases and testimonials. Hands-on evaluation of ORB prod-
ucts is an absolute necessity. However, given the lack of a predefined
compliance test suite, the complexity of the CORBA specification (see
next topic), and the variability of vendor implementation choices, even
this will be inadequate to fully assess “compliance.”

Although not concerned with compliance testing in a formal sense, one
organization has developed an operational testbed for demonstrating
ORB interoperability [CORBANet 96]. It is conceivable that other similar
centers may be developed that address different aspects of CORBA
(e.g., real time, security), or that do formal compliance testing. However,
no such centers exist at the time of this writing.

Complexity. CORBA is a complex specification, and considerable effort
may be required to develop expertise in its use. A number of factors com-
pound the inherent complexity of the CORBA specification.

• While CORBA defines a standard, there is great latitude in many of
the implementation details— ORBs developed by different vendors
may have significantly different features and capabilities. Thus, users
must learn a specification, the way vendors implement the
112 CMU/SEI-97-HB-001

Common Object Request Broker Architecture
specification, and their value-added features (which are often
necessary to make a CORBA product usable).

• While CORBA makes the development of distributed applications
easier than with previous technologies, this ease of use may be
deceptive: The difficult issues involved in designing robust distributed
systems still remain (e.g., performance prediction and analysis,
failure mode analysis, consistency and caching, and security).

• Facility with CORBA may require deep expertise in related
technologies, such as distributed systems design, distributed and
multi-threaded programming and debugging; inter-networking;
object-oriented design, analysis, and programming. In particular,
expertise in object-oriented technology may require a substantial
change in engineering practice, with all the technology transition
issues that implies (see The Technology Adoption Challenge, pg.
51).

Stability. CORBA (and the OMA) represent a classical model of distrib-
uted computing, despite the addition of object-oriented abstraction. Re-
cent advances in distributed computing have altered the landscape
CORBA occupies. Specifically, the recent emergence of mobile objects
via Java (see pg. 221), and the connection of Java with “web browser”
technologies has muddied the waters concerning the role of CORBA in
future distributed systems. CORBA vendors are responding by support-
ing the development of “ORBlets”, i.e., Java applets that invoke the ser-
vices of remote CORBA objects. However, recent additions to Java
support remote object invocation directly in a native Java form. The up-
shot is that, at the time of this writing, there is great instability in the dis-
tributed object technology marketplace.

Industry standards such as CORBA have the advantage of flexibility in
response to changes in market conditions and technology advances (in
comparison, formal standards bodies move much more slowly). On the
other hand, changes to the CORBA specifications— while technically
justified— have resulted in unstable ORB implementations. For example,
CORBA v2.0, released in July 1995 with revisions in July 1996, intro-
duced features to support interoperation among different vendor ORBs.
These features are not yet universally available in all CORBA ORBs, and
those ORBs that implement these features do so in uneven ways. Al-
though the situation regarding interoperation among CORBA ORBs is
improving, instability of implementations is the price paid for flexibility and
evolvability of specification.

The OMA is also evolving, and different aspects are at different maturity
levels. For instance, CORBAFacilities defines more of a framework for
desired services than a specification suitable for implementation. The
more fundamental CORBAServices, while better defined, are not rigor-
CMU/SEI-97-HB-001 113

Common Object Request Broker Architecture
ously defined; a potential consequence is that different vendor imple-
mentations of these services may differ widely both in performance and
in semantics. The consequence is particularly troubling in light of the new
interoperability features; prior to inter-ORB interoperability the lack of uni-
formity among CORBAServices implementations would not have been
an issue.

Maturity A large and growing number of implementations of CORBA are available
in the marketplace, including implementations from most major computer
manufacturers and independent software vendors. See pg. 293 for a list-
ing of available CORBA-compliant ORBs. CORBA ORBs are also being
developed by university research and development projects, for example
Stanford’s Fresco, XeroxPARC’s ILU, Cornell’s Electra, and others.

At the same time, it must be noted that not all CORBA ORBs are equally
mature, nor has the OMA sufficiently matured to support the vision that
lies behind CORBA (see Purpose and Origin, pg. 107). While CORBA
and OMA products are maturing and are being used in increasingly com-
plex and demanding situations, the specifications and product implemen-
tations are not entirely stable. This is in no small way a result of the
dynamism of distributed object technology and middleware in general
and is no particular fault of the OMG. Fortunately techniques exist for
evaluating technology in the face of such dynamism [Wallace 96, Brown
96].

Costs and
Limitations

Costs and limitations include the following:

• CORBA v2.0 does not address real-time issues.

• IDL is a “least-common denominator” language. It does not fully
exploit the capabilities of programming languages to which it is
mapped, especially where the definition of abstract types is
concerned.

• The price of ORBs varies greatly, from a few hundred to several
thousand dollars. Licensing schemes also vary.

• Training is essential for the already experienced programmer: five
days of hands-on training for CORBA programming fundamentals is
suggested [Mowbray 93].

• CORBA specifies only a minimal range of security mechanisms;
more ambitious and comprehensive mechanisms have not yet been
adopted by the OMG. Deng discusses the potential integration of
security into CORBA-based systems [Deng 95].
114 CMU/SEI-97-HB-001

Common Object Request Broker Architecture
Dependencies Dependencies include the following:

• TCP/IP is needed to support the CORBA-defined inter-ORB
interoperability protocol (IIOP).

• Most commercial CORBA ORBs rely on C++ as the principal client
and server programming environment. Java-specific ORBs are also
emerging.

Alternatives Alternatives include the following:

• The Open Group’s Distributed Computing Environment (DCE) is
sometimes cited as an alternative “open” specification for distributed
computing (see pg. 167).

• Where openness is not a concern and “Wintel” platforms are
dominant, Microsoft’s COM/DCOM may be suitable alternatives.

• Other middleware technologies may be appropriate in different
settings (e.g., message-oriented middleware (see pg. 247)).

Complementary
Technologies

Complementary technologies include the following:

• Java and/or web browsers can be used in conjunction with CORBA,
although precise usage patterns have not yet emerged and are still
highly volatile.

• Object-oriented database management systems (OODBMS)
vendors are developing object adaptors to support more robust 3-
tier architecture (see pg. 367) development using CORBA.

References and
Information
Sources

[Baker 94] Baker, S. “CORBA Implementation Issues.” IEEE Colloquium on Distrib-
uted Object Management Digest 1994 7 (January 1994): 24-25.

[Brando 96] Brando, T. “Comparing CORBA & DCE.” Object Magazine 6, 1 (March
1996): 52-7.

Index
Categories

Name of technology Common Object Request Broker Architecture

Application category Client/Server (AP.2.1.2.1), Client/Server Com-
munication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1), Portability (QM.4.2), Scalability
(QM.4.3), Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4), Object-Oriented
Programming (D.1.5)
CMU/SEI-97-HB-001 115

Common Object Request Broker Architecture
[Brown 96] Brown, A. & Wallnau, K. “A Framework for Evaluating Software Technol-
ogy.” IEEE Software (September 1996): 39-49.

[CORBA 96] Common Object Request Broker: Architecture and Specification Revi-
sion 2.0 [online]. Available WWW <URL: http://www.omg.org> (1996).
Also available from the Object Management Group, 492 Old Connecticut
Path, Framingham, MA 01701.

[CORBANet 96] Distributed Software Technology Center Home Page [online]. Available
WWW <URL: http://corbanet.dstc.edu.au> (1996).

[Deng 95] Deng, R.H., et al. “Integrating Security in CORBA-Based Object Architec-
tures,” 50-61. Proceedings of the 1995 IEEE Symposium on Security and
Privacy. Oakland, CA, May 8-10, 1995. Los Alamitos, CA: IEEE Comput-
er Society Press, 1995.

[Foody 96] Foody, M.A. “OLE and COM vs. CORBA.” Unix Review 14, 4 (April
1996): 43-5.

[Jell 95] Jell, T. & Stal, M. “Comparing, Contrasting, and Interweaving CORBA
and OLE,” 140-144. Object Expo Europe 1995. London, UK, September
25-29, 1995. Newdigate, UK: SIGS Conferences, 1995.

[Kain 94] Kain, J.B. “An Overview of OMG’s CORBA,” 131-134. Proceedings of
OBJECT EXPO ‘94. New York, NY, June 6-10, 1994. New York, NY:
SIGS Publications, 1994.

[Mowbray 93] Mowbray, T.J. & Brando, T. “Interoperability and CORBA-Based Open
Systems.” Object Magazine 3, 3 (September/October 1993): 50-4.

[OMG 96] Object Management Group home page [online]. Available WWW <URL:
http://www.omg.org> (1996).

[Roy 95] Roy, Mark & Ewald, Alan. “Distributed Object Interoperability.” Object
Magazine 5, 1 (March/April 1995): 18.

[Steinke 95] Steinke, Steve. “Middleware Meets the Network.” LAN: The Network So-
lutions Magazine 10, 13 (December 1995): 56.

[Tibbets 95] Tibbets, Fred. “CORBA: A Common Touch for Distributed Applications.”
Data Comm Magazine 24, 7 (May 1995): 71-75.

[Wallace 96] Wallnau, Kurt & Wallace, Evan. “A Situated Evaluation of the Object
Management Group’s (OMG) Object Management Architecture (OMA),”
168-178. Proceedings of the OOPSLA’96. San Jose, CA, October 6-10,
1996. New York, NY: ACM, 1996. Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).
116 CMU/SEI-97-HB-001

Common Object Request Broker Architecture
[Watson 96] Watson, A. “The OMG After CORBA 2.” Object Magazine 6, 1 (March
1996): 58-60.

Author Kurt Wallnau, SEI
kcw@sei.cmu.edu

External
Reviewer(s)

Dave Carney, SEI
Ed Morris, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 117

Common Object Request Broker Architecture
118 CMU/SEI-97-HB-001

Component-Based Software Development/ COTS
Integration
Component-Based Software Development/
COTS Integration ADVANCED

Purpose and
Origin

Component-based software development (CBSD) focuses on building
large software systems by integrating previously-existing software com-
ponents. By enhancing the flexibility and maintainability of systems, this
approach can potentially be used to reduce software development costs,
assemble systems rapidly, and reduce the spiraling maintenance burden
associated with the support and upgrade of large systems. At the foun-
dation of this approach is the assumption that certain parts of large soft-
ware systems reappear with sufficient regularity that common parts
should be written once, rather than many times, and that common sys-
tems should be assembled through reuse rather than rewritten over and
over. CBSD embodies the “buy, don’t build” philosophy espoused by
Fred Brooks [Brooks 87]. CBSD is also referred to as component-based
software engineering (CBSE) [Brown 96a, Brown 96b].

Component-based systems encompass both commercial-off-the-shelf
(COTS) products and components acquired through other means, such
as nondevelopmental items (NDIs).1 Developing component-based sys-
tems is becoming feasible due to the following:

• the increase in the quality and variety of COTS products

• economic pressures to reduce system development and
maintenance costs

• the emergence of component integration technology (see Object
Request Broker, pg. 291)

• the increasing amount of existing software in organizations that can
be reused in new systems

CBSD shifts the development emphasis from programming software to
composing software systems [Clements 95].

1. See the definition of NDI in COTS and Open Systems, pg. 135.

Technical Detail In CBSD, the notion of building a system by writing code has been re-
placed with building a system by assembling and integrating existing
software components. In contrast to traditional development, where sys-
tem integration is often the tail end of an implementation effort, compo-
nent integration is the centerpiece of the approach; thus, implementation
has given way to integration as the focus of system construction. Be-
cause of this, integrability is a key consideration in the decision whether
to acquire, reuse, or build the components.
CMU/SEI-97-HB-001 119

Component-Based Software Development/ COTS
Integration
As shown in Figure 4, four major activities characterize the component-
based development approach; these have been adapted from Brown
[Brown 96b]:

• component qualification (sometimes referred to as suitability testing)

• component adaptation

• assembling components into systems

• system evolution

Figure 4: Activities of the Component-Based Development Approach

Each activity is discussed in more detail in the following paragraphs.

Component qualification. Component qualification is a process of de-
termining “fitness for use” of previously-developed components that are
being applied in a new system context. Component qualification is also a
process for selecting components when a marketplace of competing
products exists. Qualification of a component can also extend to include
qualification of the development process used to create and maintain it
(for example, ensuring algorithms have been validated, and that rigorous
code inspections have taken place). This is most obvious in safety-critical
applications, but can also reduce some of the attraction of using preex-
isting components.

There are two phases of component qualification: discovery and evalua-
tion. In the discovery phase, the properties of a component are identified.
Such priorities include component functionality (what services are provid-
ed) and other aspects of a component’s interface (such as the use of

? ?

?

off-the-shelf
components

qualified adapted
components

assembled
componentscomponents

qualification to
discover
interface

adaptation to
remove
architectural
mismatch

composition into
a selected
architectural
style

evolution to
updated
components

updated
components

?

activities/

states

transformations

and fitness
for use

?

120 CMU/SEI-97-HB-001

Component-Based Software Development/ COTS
Integration
standards). These properties also include quality aspects that are more
difficult to isolate, such as component reliability, predictability, and usabil-
ity. In some circumstances, it is also reasonable to discover “non-techni-
cal” component properties, such as the vendor’s market share, past
business performance, and process maturity of the component develop-
er’s organization. Discovery is a difficult and ill-defined process, with
much of the needed information being difficult to quantify and, in some
cases, difficult to obtain.

There are some relatively mature evaluation techniques for selecting
from among a group of peer products. For example, the International
Standards Organization (ISO) describes general criteria for product eval-
uation [ISO 91] while others describe techniques that take into account
the needs of particular application domains [IEEE 93, Poston 92]. These
evaluation approaches typically involve a combination of paper-based
studies of the components, discussion with other users of those compo-
nents, and hands-on benchmarking and prototyping.

One recent trend is toward a “product-line” approach that is based on a
reusable set of components that appear in a range of software products.
This approach assumes that similar systems (e.g., most radar systems)
have a similar software architecture and that a majority of the required
functionality is the same from one product to the next. (See Domain En-
gineering and Domain Analysis, pg. 173, for further details on techniques
to help determine similarity). The common functionality can therefore be
provided by the same set of components, thus simplifying the develop-
ment and maintenance life cycle. Results of implementing this approach
can be seen in two different efforts [Lettes 96, STARSSCAI 95].

Component adaptation. Because individual components are written to
meet different requirements, and are based on differing assumptions
about their context, components often must be adapted when used in a
new system. Components must be adapted based on rules that ensure
conflicts among components are minimized. The degree to which a com-
ponent’s internal structure is accessible suggests different approaches to
adaptation [Valetto 95]:

• white box, where access to source code allows a component to be
significantly rewritten to operate with other components

• grey box, where source code of a component is not modified but the
component provides its own extension language or application
programming interface (API) (see pg. 79)

• black box, where only a binary executable form of the component is
available and there is no extension language or API
CMU/SEI-97-HB-001 121

Component-Based Software Development/ COTS
Integration
Each of these adaptation approaches has its own positives and nega-
tives; however, white box approaches, because they modify source
code, can result in serious maintenance and evolution concerns in the
long term. Wrapping, bridging, and mediating are specific programming
techniques used to adapt grey- and black-box components.

Assembling components into systems. Components must be inte-
grated through some well-defined infrastructure. This infrastructure pro-
vides the binding that forms a system from the disparate components.
For example, in developing systems from COTS components, several ar-
chitectural styles are possible:

• database, in which centralized control of all operational data is the
key to all information sharing among components in the system

• blackboard, in which data sharing among components is
opportunistic, involving reduced levels of system overhead

• message bus, in which components have separate data stores
coordinated through messages announcing changes among
components

• object request broker (ORB) mediated, in which the ORB technology
(see pg. 291) provides mechanisms for language-independent
interface definition and object location and activation

Each style has its own particular strengths and weaknesses. Currently,
most active research and product development is taking place in object
request brokers (ORBs) conforming to the Common Object Request Bro-
ker Architecture (CORBA) (see pg. 107).1

System evolution. At first glance, component-based systems may seem
relatively easy to evolve and upgrade since components are the unit of
change. To repair an error, an updated component is swapped for its de-
fective equivalent, treating components as plug-replaceable units. Simi-
larly, when additional functionality is required, it is embodied in a new
component that is added to the system.

However, this is a highly simplistic (and optimistic) view of system evolu-
tion. Replacement of one component with another is often a time-con-
suming and arduous task since the new component will never be
identical to its predecessor and must be thoroughly tested, both in isola-
tion and in combination with the rest of the system. Wrappers must typi-

1. From Wallnau, K. & Wallace, E. A Robust Evaluation of the Object Management Ar-
chitecture: A Focused Case Study in Legacy Systems Migration. Submitted for pub-
lication to OOPLSA’96.
122 CMU/SEI-97-HB-001

Component-Based Software Development/ COTS
Integration
cally be rewritten, and side-effects from changes must be found and
assessed. One possible approach to remedying this problem is Simplex
(see pg. 345).

Usage
Considerations

Several items need to be considered when implementing component-
based systems:

Short-term considerations

• Development process. An organization’s software development
process and philosophy may need to change. System integration can
no longer be at the end of the implementation phase, but must be
planned early and be continually managed throughout the
development process. It is also recommended that as tradeoffs are
being made among components during the development process,
the rationale used in making the tradeoff decisions should be
recorded and then evaluated in the final product [Brown 96b].

• Planning. Many of the problems encountered when integrating COTS
components cannot be determined before integration begins. Thus,
estimating development schedules and resource requirements is
extremely difficult [Vigder 96].

• Requirements. When using a preexisting component, the component
has been written to a preexisting, and possibly unknown, set of
requirements. In the best case, these requirements will be very
general, and the system to be built will have requirements that either
conform or can be made to conform to the preexisting general
requirements. In the worst case, the component will have been
written to requirements that conflict in some critical manner with
those of the new system, and the system designer must choose
whether using the existing component is viable at all.

• Architecture. The selection of standards and components needs to
have a sound architectural foundation, as this becomes the
foundation for system evolution. This is especially important when
migrating from a legacy system to a component-based system.

• Standards. If an organization chooses to use the component-based
system development approach and it also has the goal of making a
system open, then interface standards need to come into play as
criteria for component qualification. The degree to which a software
component meets certain standards can greatly influence the
interoperability and portability of a system. Reference the open
systems description (see pg. 135) for further discussion.

• Reuse of existing components. Component-based system
development spotlights reusable components. However, even
though organizations have increasing amounts of existing software
that can be reused, most often some amount of reengineering must
CMU/SEI-97-HB-001 123

Component-Based Software Development/ COTS
Integration
be accomplished on those components before they can be adapted
to new systems.

• Component qualification. While there are several efforts focusing on
component qualification, there is little agreement on which quality
attributes or measures of a component are critical to its use in a
component-based system. A useful work that begins to address this
issue is “SAAM: A Method for Analyzing the Properties of Software
Architecture” [Abowd 94]. Another technique addresses the
complexity of component selection and provides a decision
framework that supports multi-variable component selection analysis
[Kontio 96]. Other approaches, such as the qualification process
defined by the US Air Force PRISM program, emphasize “fitness for
use” within specific application domains, as well as the primacy of
integrability of components [PRISM 96]. Another effort is Product
Line Asset Support [CARDS 96].

Long-term considerations

• External dependencies/vendor-driven upgrade problem. An
organization loses a certain amount of autonomy and acquires
additional dependencies when integrating COTS components. COTS
component producers frequently upgrade their components based
on error reports, perceived market needs and competition, and
product aesthetics. DoD systems typically change at a much slower
rate and have very long lifetimes. An organization must juggle its new
functionality requirements to accommodate the direction in which a
COTS product may be going. New component releases require a
decision from the component-based system developer/integrator on
whether to include the new component in the system. To answer
“yes” implies facing an undetermined amount of rewriting of wrapper
code and system testing. To answer “no” implies relying on older
versions of components that may be behind the current state-of-the-
art and may not be adequately supported by the COTS supplier. This
is why the component-based system approach is sometimes
considered a risk transfer and not a risk reduction approach.

• System evolution/technology insertion. System evolution is not a
simple plug-and-play approach. Replacing one component often has
rippling affects throughout the system, especially when many of the
components in the system are black box components; the system’s
integrator does not know the details of how a component is built or
will react in an interdependent environment. Further complicating the
situation is that new versions of a component often require enhanced
versions of other components, or in some cases may be incompatible
with existing components.

Over the long-term life of a system, additional challenges arise, in-
cluding inserting COTS components that correspond to new function-
ality (for example, changing to a completely new communications ap-
proach) and “consolidation engineering” wherein several compo-
124 CMU/SEI-97-HB-001

Component-Based Software Development/ COTS
Integration
nents may be replaced by one “integrated” component. In such
situations, maintaining external interface compatibility is very impor-
tant, but internal data flows that previously existed must also be ana-
lyzed to determine if they are still needed.

Maturity To date, the commercial components available and reliable enough for
operational systems, and whose interfaces are well-enough understood,
have primarily been operating systems, databases, email and messaging
systems, office automation software (e.g., calendars, word processors,
spreadsheets), and GUI builders (see pg. 205). The number of available
components continues to grow and quality and applicability continue to
improve. As such, most successful applications have been in the
AIS/MIS and C3I areas, with rather limited success in applications having
real-time performance, safety, and security requirements. Indeed, in
spite of the possible savings, using COTS components to build safety-
critical systems where reliability, availability, predictability, and security
are essential is frequently too risky [Brown 96b]. An organization will typ-
ically not have complete understanding or control of the COTS compo-
nents and their development.

Examples of apparently successful integration of COTS into operational
systems include the following

• Deep Space Network Program at the NASA Jet Propulsion
Laboratory [NASA 96a]

• Lewis Mission at NASA’s Goddard Space Center [NASA 96b]

• Boeing’s new 777 aircraft with 4 million lines of COTS software
[Vidger 96]

• Air Force Space and Missile System Center’s telemetry, tracking, and
control (TT&C) system called the Center for Research Support
(CERES) [Monfort 96]

In addition to the increasing availability of components applicable to cer-
tain domains, understanding of the issues and technologies required to
expand CBSD practice is also growing, although significant work re-
mains. Various new technical developments and products, including
CORBA (see pg. 107) and OLE/COM (see pg. 271) [Vidger 96] and
changes in acquisition and business practices should further stimulate
the move to CBSD.

Costs and
Limitations

It is widely assumed that the component-based software development
approach, particularly in the sense of using COTS components, will be
significantly less costly (i.e., shorter development cycles and lower devel-
opment costs) than the traditional method of building systems “from
scratch.” In the case of using such components as databases and oper-
CMU/SEI-97-HB-001 125

Component-Based Software Development/ COTS
Integration
ating systems, this is almost certainly true. However, there is little data
available concerning the relative costs of using the component-based ap-
proach and, as indicated in Usage Considerations, there are a number of
new issues that must be considered.

In addition, if integrating COTS components, an additional system devel-
opment and maintenance cost will be to negotiate, manage, and track li-
censes to ensure uninterrupted operation of the system. For example, a
license expiring in the middle of a mission might have disastrous conse-
quences.

Dependencies Adapting preexisting components to a system requires techniques such
as API (see pg. 79), wrapping, bridging, or mediating, as well as an in-
creased understanding of architectural interactions and components’
properties.

Alternatives The alternatives include using preexisting components or creating the
entire system as a new item.

Complementary
Technologies

The advantages of using the CBSD/COTS integration approach can be
greatly enhanced by coupling the approach with open systems (see pg.
135).

Domain Engineering and Domain Analysis, pg. 173, aid in identifying
common functions and data among a domain of systems which in turn
identifies possible reusable components.

References and
Information
Sources

[Abowd 94] Abowd, G., et al. “SAAM: A Method for Analyzing the Properties of Soft-
ware Architecture,” 81-90. Proceedings of the 16th International Confer-
ence on Software Engineering. Sorrento, Italy, May 16-21, 1994. Los
Alamitos, CA: IEEE Computer Society Press, 1994.

Index
Categories

Name of technology Component-Based Software Development/
COTS Integration

Application category System Allocation (AP.1.2.1), Select or Devel-
op Algorithms (AP.1.3.4), Plan and Perform In-
tegration (AP.1.4.4), Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10), Soft-
ware Engineering Miscellaneous (D.2.m)
126 CMU/SEI-97-HB-001

Component-Based Software Development/ COTS
Integration
[Brooks 87] Brooks, F. P. Jr. “No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer 20, 4 (April 1987): 10-9.

[Brown 96a] Brown, Alan W. “Preface: Foundations for Component-Based Software
Engineering,” vii-x. Component-Based Software Engineering: Selected
Papers from the Software Engineering Institute. Los Alamitos, CA: IEEE
Computer Society Press, 1996.

[Brown 96b] Brown, Alan W. & Wallnau, Kurt C. “Engineering of Component-Based
Systems,” 7-15. Component-Based Software Engineering: Selected Pa-
pers from the Software Engineering Institute. Los Alamitos, CA: IEEE
Computer Society Press, 1996.

[CARDS 96] CARDS [online]. Available WWW
<URL: http://www.cards.com/PLAS> (1996).

[Clements 95] Clements, Paul C. “From Subroutines to Subsystems: Component-
Based Software Development,” 3-6. Component-Based Software Engi-
neering: Selected Papers from the Software Engineering Institute. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

[IEEE 93] IEEE Recommended Practice on the Selection and Evaluation of CASE
Tools (IEEE Std. 1209-1992). New York, NY: Institute of Electrical and
Electronics Engineers, 1993.

[ISO 91] Information Technology - Software Product Evaluation - Quality Charac-
teristics and Guidelines for their Use. Geneve, Switzerland: International
Standards Organization/International Electrochemical Commission,
1991.

[Kontio 96] Kontio, J. “A Case Study in Applying a Systematic Method for COTS Se-
lection,” 201-209. Proceedings of the 18th International Conference on
Software Engineering. Berlin, Germany, March 25-30, 1996. Los Alami-
tos, CA: IEEE Computer Society Press, 1996.

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration Project
Experience Report (STARS-VC-A011/003/02). Manassas, VA: Loral De-
fense Systems-East, 1996.

[Monfort 96] Monfort, Lt. Col. Ralph D. “Lessons Learned in the Development and In-
tegration of a COTS-Based Satellite TT&C System.” 33rd Space Con-
gress. Cocoa Beach, FL, April 23-26, 1996.

[NASA 96a] COTS Based Development [online]. Available WWW <URL: http://www-
isds.jpl.nasa.gov/isds/cwo’s/cwo_23/pbd.htm> (1996).
CMU/SEI-97-HB-001 127

Component-Based Software Development/ COTS
Integration
[NASA 96b] Create Mechanisms/Incentives for Reuse and COTS Use [online]. Avail-
able WWW <URL:http://bolero.gsfc.nasa.gov/c600/workshops/
sswssp4b.htm> (1996).

[Poston 92] Poston R.M. & Sexton M.P. “Evaluating and Selecting Testing Tools.”
IEEE Software 9, 3 (May 1992): 33-42.

[PRISM 96] Portable, Reusable, Integrated Software Modules (PRISM) Program [on-
line]. Available WWW
<URL: http://www.cards.com/PRISM/prism_ov.html>(1996).

[STARSSCAI 95] Air Force/STARS Demonstration Project Home Page [online]. Available
WWW <URL: http://www.asset.com/stars/afdemo/home/html> (1995).

[Thomas 92] Thomas, I. & Nejmeh. B. “Definitions of Tool Integration for Environ-
ments.” IEEE Software 9, 3 (March 1992): 29-35.

[Valetto 95] Valetto, G. & Kaiser, G.E. “Enveloping Sophisticated Tools into Comput-
er-Aided Software Engineering Environments,” 40-48. Proceedings of
7th IEEE International Workshop on CASE. Toronto, Ontario, Canada,
July 10-14, 1995. Los Alamitos, CA: IEEE Computer Society Press,
1995.

[Vidger 96] Vidger, M.R.; Gentleman, W.M.; & Dean, J. COTS Software Integration:
State-of-the-Art [online]. Available WWW
<http: //wwwsel.iit.nrc.ca/abstracts/NRC39198.abs> (1996).

Authors Capt Gary Haines, AFMC SSSG
ghaines@spacecom.af.mil

David Carney, SEI
djc@sei.cmu.edu

John Foreman, SEI
jtf@sei.cmu.edu

External
Reviewer(s)

Paul Kogut, Lockheed Martin, Paoli, PA
Ed Morris, SEI
Tricia Oberndorf, SEI
Kurt Wallnau, SEI

Last Modified 10 Jan 97
128 CMU/SEI-97-HB-001

Computer System Security— an Overview
Computer System Security— an Overview ADVANCED

Purpose and
Origin

C4I systems include networks of computers that provide real-time situa-
tion data for military decision makers and a means of directing response
to a situation. These networks collect data from sensors and subordinate
commands. That data is fused with the existing situation status data and
presented by the C4I system to decision makers through display devices.
C4I networks today may incorporate two general types of networks: net-
works of Multi-level Secure (MLS) Systems, and Intranets of single level
systems. Figure 5 shows the relevant major security components of a
C4I computer system network.

Figure 5: Computer System Security in C4I Systems

This technology description is tutorial in nature. It provides a general
overview of key concepts and introduces key technologies. Detailed dis-
cussions of the individual technologies can be found in the referenced
technology descriptions.

Technical Detail Some computers in the network are hosts that collect and process data.
A host can be a mainframe, a server, a workstation, or a PC. It may per-
form the function of an application processor, a communication proces-
sor, a database processor, a display processor, or a combination. The
security mode for the host may be single-level or multi-level. A single-lev-
el host processes all data as though it was one security level. A multi-lev-
el host can process data at different security levels, identify and isolate
data in the appropriate levels or categories, and distribute data only to the
appropriately cleared users.

Multi-Level Secure (MLS) Systems Intranets

Network

Network
MLS
Guards

MLS
Guards

MLS
Guards

Compartmented
Mode
Workstations

MLS Operating
System

MLS Hosts

MLS Operating
System

Hosts Hosts

Firewalls/
Proxies

Internet

MLS
DBMS

Virus
Detection

Intrusion
Detection

Virus
Detection

Intrusion
Detection

MLS
DBMS
CMU/SEI-97-HB-001 129

Computer System Security— an Overview
C4I systems benefit from multi-level security implementations because
C4I systems fuse data from sources with a wide range of security levels
and provide status, warning data, or direction to war fighting systems that
may be at lesser security levels. An MLS operating system (see pg. 377)
provides the software that makes a host MLS. A particular kind of MLS
host is the Compartmented Mode Workstation (CMW). A CMW is a MLS
host that has been evaluated to satisfy the Defense Intelligence Agency
CMW requirements [Woodward 87] in addition to the Trusted Computer
System Evaluation Criteria [DOD 85]. A MLS host may use a MLS
DBMS (see pg. 261) to store and retrieve data at multiple security levels.
A MLS guard provides a secure interface across a security boundary be-
tween systems operating at different security levels or modes.

MLS guards may allow data across the interface automatically or may re-
quire manual review of data and approval of transfer on an attached ter-
minal. They also may control data transfer across the interface in both
directions or be limited to allowing data to be transferred one way, usually
from the low security level side of a security boundary to the high security
level side. One-way guards are usually the easiest to implement and ac-
credit for use. Data integrity is an issue with one-way guards because an
acknowledgment message can not be used. Recent research in one-way
guards has addressed allowing an acknowledgment message.

Intranets use the same kind of networking software (e.g., TCP/IP, Telnet,
Netnews, DNS, browsers, home pages) that is used on the Internet, but
Intranets use them on a private dedicated network. They are in essence
a private Internet. They are used in a growing number of ways in many
military and corporate networks including mission performance, off-line
processing of raw data, administrative support, and mail networks. They
may be incorporated into C4I systems using firewalls or proxies (see pg.
191) and MLS guards. Firewalls or proxies may be used to provide a se-
curity interface to the Internet. If the Intranets are to be connected to MLS
systems, they must be connected through MLS guards. In an environ-
ment with Intranet hosts, a major concern is virus detection (see pg. 387)
and intrusion detection (see pg. 217). PCs on a network are particularly
susceptible to virus attacks from other hosts on the network or the Inter-
net. PCs are also vulnerable to viruses carried on floppy disks. Since PCs
are now in most homes, transfer of files from home to work via floppy disk
provides the risk of introducing a virus into the Intranet. PCs are more vul-
nerable to viruses than UNIX-based workstations or mainframes be-
cause the PC has no memory protection hardware and the operating
system (DOS and Windows) allows a program to access any part of
memory or disk.
130 CMU/SEI-97-HB-001

Computer System Security— an Overview
Security across the networks in a C4I system is crucial. Traditionally this
security is provided by physically protecting the equipment and cables in
the network for localized networks. When that is not possible, the net-
work connections are encrypted using encryption hardware in the com-
munications paths. End-to-end encryption is an alternative that encrypts
the data using software before it is put on the network and decrypts it af-
ter it has been taken off of the network. Then non-encrypted circuits can
be used for communications.

Any encryption system involves the distribution of keys used by the en-
cryption algorithm for the encryption/decryption of messages and data.
Encryption keys must be replaced periodically to enhance security or
when the key has been compromised or lost. Traditionally these keys
have been distributed through couriers or encrypted circuits. Public key
cryptography provides a means of electronic encryption key distribution
that can lower the security risk and administrative workload associated
with encryption.

Data integrity is another issue associated with the networks used in C4I
systems. Public key digital signatures (see pg. 309) and providing for
nonrepudiation in network communications (see pg. 269) are two means
to enhance data integrity. Public key digital signatures, which make use
of public key encryption and message authentication codes, are a means
to authenticate that data came from the person identified as the sender
and that the data has not been modified. The nonrepudiation process
uses a digital signature and a trusted arbitrator process to assure that a
particular message has been sent and received and to establish the time
when this occurred.

Usage
Considerations

MLS systems require specialized knowledge to build, accredit, and main-
tain. The cost of MLS systems can be high. The system development
overhead and operational performance overhead associated with MLS
systems are substantial. They are difficult to implement in an “open” con-
figuration because open requirements sometimes conflict with MLS re-
quirements. On the other hand, using MLS techniques may be the only
allowable way to construct some C4I systems. Operational security vul-
nerabilities may be unacceptable without MLS implementations. Proce-
dural security approaches may be too slow for an operational C4I system
as a non-MLS approach. A single-level system approach may be too re-
strictive. For example, a secret single-level system that contains unclas-
sified, confidential, and secret data will not release confidential data to a
user who is cleared for confidential and needs the data. That is because
the system cannot determine what data is confidential rather than secret.
CMU/SEI-97-HB-001 131

Computer System Security— an Overview
Further usage discussions are addressed in individual technology de-
scriptions.

The National Security Agency (NSA) Multilevel Information Systems Se-
curity Initiative (MISSI) is an evolutionary effort intended to provide better
MLS capability in a cost-effective manner [MISSI 96]. This effort was ini-
tiated after the Gulf War when it was recognized that war fighting com-
manders needed MLS systems in order to incorporate intelligence and
other highly classified data into their planning and operations in a timely
manner. The MISSI effort is developing a set of building block products
that can be obtained commercially to construct an MLS system. The ini-
tial products include the FORTEZZA crypto cards and associated
FORTEZZA ready workstation applications to control access to and pro-
tect data on a workstation in a network environment. Other products in-
clude high-assurance guards and firewalls to provide access control and
encryption services between the local security boundary and external
networks. MISSI will also include secure computing products that provide
high-trust operating systems and application programs for MLS hosts,
and network encryption and security management products. These prod-
ucts can be incorporated into developing MLS systems as the products
become available.

Maturity See individual technologies.

Costs and
Limitations

See individual technologies.

References and
Information
Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Se-
curity An Integrated Collection of Essays. Los Alamitos, CA: IEEE Com-
puter Society Press, 1995.

[Woodward 87] Woodward, John. Security Requirements for High and Compartmented
Mode Workstations (MTR 9992, DDS 2600-5502-87). Washington, DC:
Defense Intelligence Agency, 1987.

Index
Categories

Name of technology Computer System Security— an Overview

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection
(D.4.6), Security & Protection (K.6.5),
Computer-Communications Networks
Security and Protection (C.2.0)
132 CMU/SEI-97-HB-001

Computer System Security— an Overview
[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation Cri-
teria (TCSEC) (DoD 5200.28-STD 1985). Fort Meade, MD: Department
of Defense, 1985.

[MISSI 96] MISSI Web site [online]. Available WWW <URL: http://Beta.MISSILAB.
COM:9000/> (1996).

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics. Sebas-
topol, CA: O’Reilly & Associates, Inc., 1991.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System
and Network Security. Boca Raton, FL: CRC Press, 1996.

Author Tom Mills, Lockheed Martin
TMILLS@ccs.lmco.com

External
Reviewer(s)

Brian Gallagher, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 133

Computer System Security— an Overview
134 CMU/SEI-97-HB-001

COTS and Open Systems
COTS and Open Systems ADVANCED

Purpose and
Origin

One of the latest trends in systems development is to make greater use
of commercial-off-the-shelf (COTS) products. While this change has
been encouraged for many years for all kinds of systems development,
especially in the Department of Defense (DoD), it is only in the early
1990s that the practice has been mandated by everyone from industry
executives to Congress.

At the same time, an open systems approach to develop systems has
been gaining popularity, with visions of open systems that are “plug-and-
play” compatible, where components from one supplier can be easily re-
placed by those from another supplier. Advocates of open systems often
confuse them with the use of COTS products, making it difficult for the
average engineer to know just what (s)he should be doing to develop
(and maintain) systems more effectively.

These two concepts— the use of COTS products and the creation of
open systems— are closely related and complementary, although defi-
nitely not synonymous. The purpose of this technology description is to

• define/clarify what each is

• explain the differences between them

• examine the benefits each brings to the development, maintenance,
and evolution of systems

As a brief summary

• COTS products hold the potential for cost-effective acquisition of
components and advancing technology, but they are not necessarily
open.

• Open systems emphasize (1) the use of interface standards and (2)
the use of implementations that conform to those standard interfaces.
Open systems provide stability and a framework for the effective use
of COTS products and other non-developmental items (NDI) (see pg.
137) through the use of interface standards. Well-chosen interface
standards can out last any particular product, vendor, or technology.

• It is possible to use COTS products without creating an open system;
similarly, it is possible to create an open system without significant
use of COTS products or NDI.

• COTS products and an open systems approach are both means to
important system goals of improving the quality and performance of
our systems, developing them more quickly, and sustaining them
more cost-effectively. The greatest advantage can be gained from
using these two approaches together.
CMU/SEI-97-HB-001 135

COTS and Open Systems
For further detail on COTS, open systems, and component-based soft-
ware development approaches, see Component-Based Software Devel-
opment/ COTS Integration, pg. 119.

Technical Detail COTS. The term “COTS” is meant to refer to things that one can buy,
ready-made, from some manufacturer’s virtual store shelf (e.g., through
a catalogue or from a price list). It carries with it a sense of getting, at a
reasonable cost, something that already does the job. It replaces the
nightmares of developing unique system components with the promises
of fast, efficient acquisition of cheap (or at least cheaper) component im-
plementations.

Because of the need for precision in procurement, the federal govern-
ment has defined the term “commercial item.” The full text of this defini-
tion can be found in the Federal Acquisition Regulations (FARs); the
following is a summary [FAR 93]:

A commercial item is

1. property1 customarily used by the general public in the course of nor-
mal business and

– has been sold, leased, or licensed (or offered for sale, lease
or license) to the public, or

– is not yet available in the commercial marketplace but will be
available within a reasonable period

2. any item that would satisfy (1) but for modifications customarily avail-
able in the commercial marketplace or minor modifications made to
meet Federal Government requirements

3. services for installation, maintenance, repair, training, etc. if such ser-
vices are procured for support of an item in (1) or (2) above, as of-
fered to the public

In recognition of the desirability of staying close to the commercial tech-
nology base even where government requirements diverge, the FARs
also include this related definition:

Commercial-type product means a commercial product (a) modified to
meet some Government-peculiar physical requirement or addition, or (b)
otherwise identified differently from its normal commercial counterparts
[FAR 93].

1. “Property” in this definition explicitly excludes real property.
136 CMU/SEI-97-HB-001

COTS and Open Systems
Most people would agree that these ideas approximate the meaning of
“commercial-off the-shelf” (COTS) products. The salient characteristics
of a COTS product are the following:

• it exists a priori

• it is available to the general public

• it can be bought (or leased or licensed)

Non-developmental item. A closely-related term that is often heard in
government (especially DoD) circles is “nondevelopmental item” (NDI). A
summary definition of a nondevelopmental item is [FAR 93]:

1. any commercial item

2. any previously developed item in use by a U.S. agency (federal,
state, or local) or a foreign government that has a mutual defense
agreement with the U.S.

3. any item described in (1) or (2) above that requires only minor modi-
fication normally available in the commercial marketplace to meet re-
quirements

4. any item currently being produced that does not meet (1), (2), or (3)
above only because it is not yet in use or is not yet available in the
commercial marketplace.

The key point here is that NDI refers to something that was developed by
someone else. It might have been developed by a commercial interest,
but typically it will have been for some other government, department, or
agency. A large-scale example of an NDI would be a fighter aircraft that
was developed by some other nation. A more meaningful example in the
current context would be a radar developed for one aircraft that is avail-
able for use in another aircraft. The salient characteristics of a non-
developmental item are the following:

• it exists, although not necessarily off some vendor’s “shelf”

• it is available, although not necessarily to the general public

• it can be obtained for use, although perhaps not by purchase or lease

While there are certain reasons for using caution in applying the defini-
tions of COTS and NDI (e.g., how safe is a “minor modification,” and what
if it just looks like a vendor has a product, whereas it is in reality just va-
porware?), they do fairly characterize the features that are of interest to
those who believe that “buying COTS” is desirable and beneficial. How-
CMU/SEI-97-HB-001 137

COTS and Open Systems
ever, although closely related, there are differences between NDI and
COTS items:

• COTS products would most likely be found in some sort of catalogue
or price list, whereas it may be more difficult to discover the existence
of NDI.

• The range of possibilities opened up by NDI is broader than what
COTS products alone can offer, but NDI could lack the commercial
leverage that is sought in the use of COTS products.

Open systems. The basic tenet of open systems is the use of interface
standards in the engineering and design of systems, coupled with the
use of implementations (preferably, but not necessarily, COTS and non-
developmental items (NDI)) that conform to those interface standards.
This provides a stable basis on which to make decisions about the sys-
tem, particularly with regard to its evolution. An open systems approach
has the potential to reduce the developmental cost and schedule of sys-
tems while maintaining or even improving performance. The dependence
on stable interface standards makes open systems more adaptable to
advances in technology and changes in the marketplace.

When people use the phrase open systems, they most often have in mind
a system that is flexible and adaptive, one that is “open” to inclusion of
many products from many sources. The phrase open systems often car-
ries with it an image of easy “plug-and-play” between components and
products that were not necessarily originally designed to work together.
Open systems also hold out the promise of being able to take immediate
advantage of new technology as it emerges, because it should be easier
to plug in new technology, either in place of an old component(s) or as a
new extension of the system.

Many different definitions of open system have been offered in the past.
To find a truly workable one, we must look more closely at what it takes
to make this vision a reality. For the purposes of this technology descrip-
tion, open systems is defined as follows [Myers 96]:

An open system is

a collection of interacting software, hardware, and human compo-
nents, designed to satisfy stated needs, with the interface specifica-
tion of components

– fully defined

– available to the public

– maintained according to group consensus, and
138 CMU/SEI-97-HB-001

COTS and Open Systems
in which the implementations of components are conformant to the
specification.

One key part of the definition addresses a set of criteria for the interface
specifications/standards. Not only must they be fully defined, but they
must also be available to the public. This implies that cost and public ac-
cess may not be prohibitive constraining factors; that is, the specification
cannot be available only to a selected group of people who have some
special interest. Anyone is free to obtain a copy of the specification (per-
haps at the cost of duplication and distribution, perhaps even at the cost
of a small license fee) and they are also free to produce and sell imple-
mentations of that specification. It is also very important that the specifi-
cation is of interest to a wide range of parties and is not exclusively under
the control of any single vendor. To this end, the definition includes the
idea that maintenance of the specification is by group consensus. Taken
together, these criteria come very close to requiring that the interface
specification be a “standard.”

The main benefit of this definition of open system is that it is operational.
That is, it can be applied to a single system at a given point in time. In
contrast, most other popular definitions identify desirable system quali-
ties that open systems are expected to display, such as portability, in-
teroperability, and scalability. Unfortunately, there is no way to measure
a system with respect to these qualities at a single point in time (e.g.,
“Portable” to what platforms? And how many? “Interoperable” with what
other systems or components? And how many? “Scalable” for what use?
To what size?). Each of these qualities implies a relationship, either be-
tween the subject system and some other unspecified one(s) or between
the subject system and itself over time.

This definition also supports the vision of what people hope to achieve
with open systems. The very phrase “plug-and-play” brings to mind chil-
dren’s toys like Tinker ToysTM and LegosTM. The key to them is a small
set of well-defined, consistently-enforced interfaces. It also invokes the
images of hardware components that can be plugged together because,
for example, the pins and configuration of the female connector are per-
fectly complementary to those of the male connector. All these schemes
have interface standards in common.

Most of the interface standards used in computer-based systems are for
application program interfaces (APIs), data formats, or protocols. For all
of these kinds of interface standards, one can find fully-defined specifica-
tions; without such clear definition in the specifications, wide variation
quickly emerges among implementations, and this undermines the in-
CMU/SEI-97-HB-001 139

COTS and Open Systems
tended compatibility. Interface standards are made widely available to
the public to generate a thriving market for components that can be
plugged together. They are maintained using many forms of group con-
sensus; this precludes one vendor or group from making arbitrary chang-
es to the interface standard that will limit competition and availability of
alternative products.

Finally, for many of these interface standards it is possible to tell whether
or not a given implementation really matches the specification; this is
called conformance. If the implementations all match the specifica-
tion/standard closely enough, then one kind of incompatibility between
components can be reduced if not eliminated, and it may be possible to
“plug” them into a system and get them to “play” with the other compo-
nents.1 On the other hand, if implementations only loosely implement the
standard or if incompatible interpretations cannot be detected before try-
ing to integrate a component into the system, then it is less likely that the
envisioned flexibility and adaptability can be realized.

It is important to realize that it is possible to create an open system,
based on interface standards, in which no COTS products or NDI are
used. This might be necessary in a situation where, for example, no
COTS product conforming to the interface standard also meet other sys-
tem requirements, such as for real-time performance or security. Al-
though one would not gain the economic and schedule advantages of
using a component implementation that already existed and was shared
and supported by a number of users, the interface standards would still
provide the framework for future evolution of the system (provided ven-
dors do eventually pick up the standard and produce conformant prod-
ucts). Potentially some future product may emerge that does meet all the
requirements. In the mean time, the system enjoys the clarity and stabil-
ity of a well-defined specification.

1. It should be noted that interface specifications are in general not sufficient to ensure
full “plug-and-play” operation. In practice, the real interface between two compo-
nents of a system consists of all the assumptions that each makes about the other.
APIs, data formats, and protocols address a large number of these assumptions, but
by no means all of them. It remains for further investigations to determine the full set
of interface knowledge that must be standardized to ever get really close to an ideal
“plug-and-play” system creation process.
140 CMU/SEI-97-HB-001

COTS and Open Systems
Usage
Considerations

There currently is a very strong push within the federal government, par-
ticularly DoD, to make more use of COTS products and NDI.1 In addition
to action by DoD leaders, the Federal Acquisition Streamlining Acts of
1994 and 1995 directed the increased use of commercial items, coupled
with several adjustments to the federal procurement regulations to en-
courage the new approach.

The reasoning behind these directives and laws is that government orga-
nizations typically spend far too much effort on defining to the lowest level
of detail the desired characteristics of systems and how the contractors
are to build those systems to achieve those characteristics. Thus a lot of
resources are expended developing systems and components that often
already exist— or exist in “good enough” form with nearly the same ca-
pabilities— elsewhere. The prevailing, and time-consuming, approach is
to always develop from the ground up; this approach results in unique
systems each time. The result is systems that are

• very expensive, with only one customer to bear the development and
maintenance costs over the life of the component or system

• inflexible and unable to easily capitalize on advances in technology

• historically fielding technology that is in excess of ten years old

Shifting to a paradigm in which systems are built primarily of components
that are available commercially offers the opportunity to lower costs by
sharing them with other users, thus amortizing them over a larger popu-
lation, while taking advantage of the investments that industry is putting
into the development of new technologies.

Open systems can have a positive impact on either new systems devel-
opment or in the context of legacy systems. Although there is generally
more decision-making freedom in the case of a new development, open
systems can nevertheless help shape an evolutionary path for a legacy
system that will help turn it into a more flexible and maintainable system.

Many initiatives are under way, both in the DoD and in individual servic-
es, agencies, and companies, that are designed to promote the use of an
open systems approach and to secure even greater benefits than can be
realized from the use of COTS products alone. These initiatives are oc-

1. In June 1994 Secretary of Defense William Perry directed that DoD acquisitions
should make maximum use of performance specifications and commercial stan-
dards. In November 1994 Undersecretary of Defense (Acquisition and Technology)
Paul Kaminski directed “that ‘open systems’ specifications and standards be used for
acquisition of weapon systems electronics to the greatest extent practical.”
CMU/SEI-97-HB-001 141

COTS and Open Systems
curring because projects have been learning the hard way that “just buy-
ing COTS” does not necessarily secure all of the benefits desired. There
are other problems and sources of risk introduced by the use of COTS
products.

COTS products are not necessarily open. That is, they do not necessarily
conform to any recognized interface standards. Thus it is possible (in
fact, likely) that using a COTS product commits the user to proprietary in-
terfaces and solutions that are not common with any other product, com-
ponent, or system. If the sole objective is the ability to capture new
technology more cheaply, then the use of COTS products that are not
open will do. But when one considers the future of such a system, the dis-
advantages of this approach become apparent. Many DoD systems have
a 30- to 50-year lifetime, while the average COTS component is upgrad-
ed every 6 to 12 months and new technology appears on the scene about
every 18 to 24 months. Thus any money that is saved by procuring a
COTS product with proprietary interfaces will quickly be lost in mainte-
nance as products and interfaces change— the ability to migrate cost-ef-
fectively to other products and other technologies in the future will have
been lost.

Even if the expected lifetime of a system is only 5 to 10 years, the fluctu-
ations in COTS products and technology result in a state of constant
change for any system employing them. Interface standards provide a
source of stability in the midst of all this. Without such standards every
change in the marketplace can impose an unanticipated and unpredict-
able change to systems that use products found in the marketplace. This
situation is particularly painful when the vendor stops supporting the
product or goes out of business altogether, thus forcing a change to a dif-
ferent product or vendor.

Program managers and lead engineers should also know that the depth
of understanding and technical and management skills required on a
project team are not necessarily diminished or decreased because of the
use of COTS or open systems. Arguably, the skills and understanding
needed increase because of the potential complexity of integration is-
sues; the need to seriously consider longer term system evolution as part
of initial development; and the need to make informed decisions about
which products and standards are best.

Paradoxically, given the desire to produce systems more quickly, the em-
phasis on standards can actually be something of an inhibitor. Some
standards efforts, in their desire to achieve maximum consensus, have
very long cycle times (five or more years), which certainly do not fit well
142 CMU/SEI-97-HB-001

COTS and Open Systems
with product development and release cycles. This conflict is of concern
and is being addressed by some standard groups, but it has led some
projects to become involved with consortia-oriented standards efforts
and also with defacto industry standards. While these are often practical
alternatives, they do have attendant risks; the defacto standards may be
proprietary, for example, and this limit long-term evolution.

Maturity The open systems concept has been at least partially introduced into C3I
systems, but it has been difficult to move these ideas into the realm of
real-time embedded systems, particularly weapon systems, where it is
much more difficult to find standards that meet a system’s requirements,
for example, in cases of extreme real-time performance or security con-
cerns.

There is limited documented experience with the open systems ap-
proach. An example of successful use in the DoD is the Intelligence and
Electronics Warfare Common Sensor (IEWCS) program [IEWCS 96]. A
survey of the awareness, understanding, and implementation of open
system concepts within the DoD has been completed recently by the
Open Systems Joint Task Force (OSJTF) [OSJTF 96].

Costs and
Limitations

An open systems approach requires investments in the following areas
early in a program’s life cycle and on an ongoing basis:

• market surveys to determine the availability of standards

• standards selection

• standards profiling— the coordination and tailoring of standards to
work together

• selection of standards-compliant implementations

These costs/activities are the necessary foundation for creating systems
that serve current needs and yet can grow and advance as technology
advances and the marketplace changes.

A separate cost is the continued willingness of the government to invest
in standards development and maturation activities. While these activi-
ties are most often handled at high government levels concerned with
standards development and usage (for example, Defense Information
Systems Agency (DISA) in the DoD), it is still important for individual pro-
grams (especially the larger programs) to stay informed in this area. For
example, individual programs should be concerned about the following
issues: When are revisions to specific standards coming out? When are
ballots on the revisions going to occur? Where are the implementations
headed?
CMU/SEI-97-HB-001 143

COTS and Open Systems
References and
Information
Sources

[Carney 97] Carney, David & Oberndorf, Tricia. Ten Commandments of COTS. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University,
1997.

[FAR 93] Federal Acquisition Regulations. Washington, DC: General Services Ad-
ministration, 1993.

[IEWCS 96] Open Systems Joint Task Force Case Study of U.S. Army Intelligence
and Electronic Warfare Common Sensor (IEWCS) [online]. Available
WWW <URL: http://www.acq.osd.mil/osjtf/caserpt.htm> (1996).

[Myers 96] Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and the
Pitfalls. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1996.

[OSJTF 96] Open Systems Joint Task Force Baseline Study [online]. Available
WWW <URL: http://www.acq.osd.mil/osjtf/evidence.html> (1996).

Author Tricia Oberndorf, SEI
po@sei.cmu.edu

John Foreman, SEI
jtf@sei.cmu.edu

Internal
Reviewer

John Foreman

Last Modified 10 Jan 97

Index
Categories

Name of technology COTS and Open Systems

Application category Interfaces Design (AP.1.3.3), Software Archi-
tecture (AP.2.1)

Quality measures category Openness (QM.4.1.2), Interoperability
(QM.4.1), Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10), Soft-
ware Engineering Miscellaneous (D.2.m)
144 CMU/SEI-97-HB-001

Cyclomatic Complexity
Cyclomatic Complexity ADVANCED

Note We recommend reading Maintenance of Operational Systems— an
Overview, pg. 237, before reading this description; it offers a view of the
life cycle of software from development through reengineering. We also
recommend concurrent reading of Maintainability Index Technique for
Measuring Program Maintainability, pg. 231, which illustrates a specific
application of cyclomatic complexity to quantify the maintainability of soft-
ware. These descriptions provide a framework for assessing the applica-
bility of cyclomatic complexity and other technologies to a specific
environment.

Purpose and
Origin

Cyclomatic complexity is the most widely used member of a class of stat-
ic software metrics. Cyclomatic complexity may be considered a broad
measure of soundness and confidence for a program. Introduced by Th-
omas McCabe in 1976, it measures the number of linearly-independent
paths through a program module. This measure provides a single ordinal
number that can be compared to the complexity of other programs. Cy-
clomatic complexity is often referred to simply as program complexity, or
as McCabe’s complexity. It is often used in concert with other software
metrics. As one of the more widely-accepted software metrics, it is in-
tended to be independent of language and language format [McCabe
94].

Cyclomatic complexity has also been extended to encompass the design
and structural complexity of a system [McCabe 89].

Technical Detail The cyclomatic complexity of a software module is calculated from a con-
nected graph of the module (that shows the topology of control flow within
the program):

Cyclomatic complexity (CC) = E - N + p

where E = the number of edges of the graph

N = the number of nodes of the graph

p = the number of connected components

To actually count these elements requires establishing a counting con-
vention (tools to count cyclomatic complexity contain these conventions).
The complexity number is generally considered to provide a stronger
measure of a program’s structural complexity than is provided by count-
ing lines of code. Figure 6 is a connected graph of a simple program with
a cyclomatic complexity of seven. Nodes are the numbered locations,
which correspond to logic branch points; edges are the lines between the
nodes.
CMU/SEI-97-HB-001 145

Cyclomatic Complexity
Figure 6: Connected Graph of a Simple Program

A large number of programs have been measured, and ranges of com-
plexity have been established that help the software engineer determine
a program’s inherent risk and stability. The resulting calibrated measure
can be used in development, maintenance, and reengineering situations
to develop estimates of risk, cost, or program stability. Studies show a
correlation between a program’s cyclomatic complexity and its error fre-
quency. A low cyclomatic complexity contributes to a program’s under-
standability and indicates it is amenable to modification at lower risk than
a more complex program. A module’s cyclomatic complexity is also a
strong indicator of its testability (see Test planning under Usage Consid-
erations on pg. 147).

upward flow
downward flow

0

1

3

4

2

5

6

7

9

8

11

10

12

13

14
15

16 17

18

19

20

cyclomatic complexity = 7

essential complexity* = 1

design complexity* = 4

* see the Complementary Technologies section for
definitions of these terms
146 CMU/SEI-97-HB-001

Cyclomatic Complexity
A common application of cyclomatic complexity is to compare it against
a set of threshold values. One such threshold set is as follows:

Usage
Considerations

Cyclomatic complexity can be applied in several areas, including

• Code development risk analysis. While code is under development,
it can be measured for complexity to assess inherent risk or risk
buildup.

• Change risk analysis in maintenance. Code complexity tends to
increase as it is maintained over time. By measuring the complexity
before and after a proposed change, this buildup can be monitored
and used to help decide how to minimize the risk of the change.

• Test Planning. Mathematical analysis has shown that cyclomatic
complexity gives the exact number of tests needed to test every
decision point in a program for each outcome. Thus, the analysis can
be used for test planning. An excessively complex module will require
a prohibitive number of test steps; that number can be reduced to a
practical size by breaking the module into smaller, less-complex sub-
modules.

• Reengineering. Cyclomatic complexity analysis provides knowledge
of the structure of the operational code of a system. The risk involved
in reengineering a piece of code is related to its complexity.
Therefore, cost and risk analysis can benefit from proper application
of such an analysis.

Cyclomatic complexity can be calculated manually for small program
suites, but automated tools are preferable for most operational environ-
ments. For automated graphing and complexity calculation, the technol-
ogy is language-sensitive; there must be a front-end source parser for
each language, with variants for dialectic differences.

Cyclomatic complexity is usually only moderately sensitive to program
change. Other measures (see Complementary Technologies on pg. 148)
may be very sensitive. It is common to use several metrics together, ei-
ther as checks against each other or as part of a calculation set (see
Maintainability Index Technique for Measuring Program Maintainability,
pg. 231).

Cyclomatic Complexity Risk Evaluation

1-10 a simple program, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk program

greater than 50 untestable program (very high risk)
CMU/SEI-97-HB-001 147

Cyclomatic Complexity
Maturity Cyclomatic complexity measurement, an established but evolving tech-
nology, was introduced in 1976. Since that time it has been applied to
tens of millions of lines of code in both Department of Defense (DoD) and
commercial applications. The resulting base of empirical knowledge has
allowed software developers to calibrate measurements of their own soft-
ware and arrive at some understanding of its complexity. Code graphing
and complexity calculation tools are available as part (or as options) of
several commercial software environments.

Costs and
Limitations

Cyclomatic complexity measurement tools are typically bundled inside
commercially-available CASE toolsets. It is usually one of several met-
rics offered. Application of complexity measurements requires a small
amount of training. The fact that a code module has high cyclomatic com-
plexity does not, by itself, mean that it represents excess risk, or that it
can or should be redesigned to make it simpler; more must be known
about the specific application.

Alternatives Cyclomatic complexity is one measure of structural complexity. Other
metrics bring out other facets of complexity, including both structural and
computational complexity, as shown in the following table.

Marciniak offers a more complete description of complexity measures
and the complexity factors they measure [Marciniak 94].

Complementary
Technologies

The following three metrics are specialized measures that are used in
specific situations:

1. Essential complexity. This measures how much unstructured logic
exists in a module (e.g., a loop with an exiting GOTO statement).

The program in Figure 6, pg. 146 has no such unstructured logic, so
its essential complexity value is one.

Complexity Measurement Primary Measure of

Halstead metrics (see pg.
209)

Algorithmic complexity, measured by
counting operators and operands

Henry and Kafura metrics Coupling between modules (parameters,
global variables, calls)

Bowles metrics Module and system complexity; coupling
via parameters and global variables

Troy and Zweben metrics Modularity or coupling; complexity of
structure (maximum depth of structure
chart); calls-to and called-by

Ligier metrics Modularity of the structure chart
148 CMU/SEI-97-HB-001

Cyclomatic Complexity
2. Design complexity. This measures interaction between decision logic
and subroutine or function calls.

The program in Figure 6, pg. 146 has a design complexity value of 4,
which is well within the range of desirability.

3. Data complexity. This measures interaction between data references
and decision logic.

Other metrics that are “related” to Cyclomatic complexity in general intent
are also available in some CASE toolsets.

The metrics listed in Alternatives, pg. 148, are also complementary; each
metric highlights a different facet of the source code.

References and
Information
Sources

[Marciniak 94] Marciniak, John J., ed. Encyclopedia of Software Engineering, 131-165.
New York, NY: John Wiley & Sons, 1994.

[McCabe 89] McCabe, Thomas J. & Butler, Charles W. “Design Complexity Measure-
ment and Testing.” Communications of the ACM 32, 12 (December
1989): 1415-1425.

[McCabe 94] McCabe, Thomas J. & Watson, Arthur H. “Software Complexity.”
Crosstalk, Journal of Defense Software Engineering 7, 12 (December
1994): 5-9.

[Perry 88] Perry, William E. A Structured Approach to Systems Testing. Wellesley,
MA: QED Information Sciences, 1988.

Author Edmond VanDoren, Kaman Sciences
bvandoren-cos3@kaman.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Cyclomatic Complexity

Application category Test (AP.1.4.3), Reapply Software Lifecyle
(AP.1.9.3), Reverse Engineering (AP.1.9.4),
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1), Testability
(QM.1.4.1), Complexity (QM.3.2.1), Struc-
turedness (QM.3.2.3)

Computing reviews category Software Engineering Metrics (D.2.8), Com-
plexity Classes (F.1.3), Tradeoffs Among
Complexity Measures (F.2.3)
CMU/SEI-97-HB-001 149

Cyclomatic Complexity
150 CMU/SEI-97-HB-001

Database Two Phase Commit
Database Two Phase Commit ADVANCED

Note We recommend Three Tier Software Architectures, pg. 367, as prerequi-
site reading for this technology description.

Purpose and
Origin

Since the 1980s, two phase commit technology has been used to auto-
matically control and monitor commit and/or rollback activities for trans-
actions in a distributed database system. Two phase commit technology
is used when data updates need to occur simultaneously at multiple da-
tabases within a distributed system. Two phase commits are done to
maintain data integrity and accuracy within the distributed databases
through synchronized locking of all pieces of a transaction. Two phase
commit is a proven solution when data integrity in a distributed system is
a requirement. Two phase commit technology is used for hotel and airline
reservations, stock market transactions, banking applications, and credit
card systems. For more details on two phase commit see the ORACLE7
Server Concept Manual and The Performance of Two-Phase Commit
Protocols in the Presence of Site Failures [ORACLE7 92, UCSB 94].

Technical Detail As shown in Figure 7, applying two phase commit protocols ensures that
execution of data transactions are synchronized, either all committed or
all rolled back (not committed) to each of the distributed databases.

Figure 7: Distributed Databases When Two Phase Commit Happens Simultaneously
Through the Network

Database

Database

User

Database

Database

User

User
User

User

User

User

User

User

User
User

User

User
CMU/SEI-97-HB-001 151

Database Two Phase Commit
When dealing with distributed databases, such as in the client/server ar-
chitecture, distributed transactions need to be coordinated throughout
the network to ensure data integrity for the users. Distributed databases
using the two phase commit technique update all participating databases
simultaneously.

Unlike non-distributed databases (see Figure 8), where a single change
is or is not made locally, all participating databases must all commit or all
rollback in distributed databases, even if there is a system or network fail-
ure at any node. This is how the two phase commit process maintains
system data integrity.

Figure 8: Non-Distributed Databases Make Only Local Updates

Two phase commit has two distinct processes that are accomplished in
less than a fraction of a second:

1. The Prepare Phase, where the global coordinator (initiating data-
base) requests that all participants (distributed databases) will prom-
ise to commit or rollback the transaction. (Note: Any database could
serve as the global coordinator, depending on the transaction.)

2. The Commit Phase, where all participants respond to the coordinator
that they are prepared, then the coordinator asks all nodes to commit
the transaction. If all participants cannot prepare or there is a system
component failure, the coordinator asks all databases to roll back the
transaction.

Should there be a machine, network, or software failure during the two
phase commit process, the two phase commit protocols will automatical-
ly and transparently complete the recovery with no work from the data-
base administrator. This is done through use of pending transaction

Database
User

User

User
User

User
152 CMU/SEI-97-HB-001

Database Two Phase Commit
tables in each database where information about distributed transaction
is maintained as they proceed through the two phase commit. Informa-
tion in the pending transaction table is used by the recovery process to
resolve any transaction of questionable status. This information can also
be used by the database administrator to override automated recovery
procedures by forcing a commit or a rollback to available participating da-
tabases.

Usage
Considerations

Two phase commit protocols are offered in all modern distributed data-
base products. However, the methods for implementing two phase com-
mits may vary in the degree of automation provided. Some vendors
provide a two phase commit implementation that is transparent to the ap-
plication. Other vendors require specific programming of the calls into an
application, and additional programming would be needed should roll-
back be a requirement; this situation would most likely result in an in-
crease to program cost and schedule.

Maturity The two phase commit protocol has been used successfully since the
1980s for hotel and airline reservations, stock market transactions, bank-
ing applications and credit card systems [Citron 93].

Costs and
Limitations

There have been two performance issues with two phase commit:

1. If one database server is unavailable, none of the servers gets the
updates. This is correctable if the software administrator forces the
commit to the available participants, but if this is a recurring problem
the administrator may not be able to keep up, thus causing system
and network performance will deteriorate.

2. There is significant demand in network resources as the number of
database servers to which data must be distributed increases. This is
correctable through network tuning and correctly building the data
distribution through database optimization techniques.

Currently, two phase commit procedures are vendor proprietary. There
are no standards on how they should be implemented. X/Open has de-
veloped a standard that is being implemented in several transaction pro-
cessing monitors (see pg. 373), but it has not been adopted by the
database vendors [X/Open 96]. Two phase commit proprietary protocols
have been published by several vendors.

Alternatives An alternative to updating distributed databases with a two phase commit
mechanism is to update multiple servers using a transaction queuing ap-
proach where transactions are distributed sequentially. Distributing
transactions sequentially raises the problem of users working with differ-
ent version of the data. In military usage, this could result in planning sor-
ties for targets that have already been eliminated.
CMU/SEI-97-HB-001 153

Database Two Phase Commit
References and
Information
Sources

[Citron 93] Citron, A., et al. “Two-Phase Commit Optimization and Tradeoffs in the
Commercial Environment,” 520-529. Proceedings of the Ninth Interna-
tional Conference on Data Engineering. Vienna, Austria, April 19-23,
1993. Los Alamitos, CA: IEEE Computer Society Press, 1993.

[ORACLE7 92] “Two-Phase Commit,” 22-1–22-21. ORACLE7 Server Concept Manual
(6693-70-1292). Redwood City, CA: Oracle, 1992.

[Schussed 96] Schussed, G. Replication, The Next Generation of Distributed Database
Technology [online]. Available WWW <URL: http://www.dciexpo.com/
geos/replica.html> (1996).

[USCB 94] The Performance of Two-Phase Commit Protocols in the Presence of
Site Failures (TRCS94-09). Santa Barbara, CA: University of California,
Computer Science Department, April 1994.

[X/Open 96] X/Open Web Site [online]. Available WWW <URL: http://www.xopen.co.
uk/> (1996).

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

David Altieri, GTE

Last Modified 10 Jan 97

Index
Categories

Name of technology Database Two Phase Commit

Application category Client-Server (AP.2.1.2.1), Data Management
(AP.2.6.1)

Quality measures category Accuracy (QM.2.1.2.1)

Computing reviews category Distributed Systems (C.2.4)
154 CMU/SEI-97-HB-001

Defense Information Infrastructure Common Operating
Environment
Defense Information Infrastructure Common Operating
Environment ADVANCED

Note We recommend Reference Models, Architectures, Implementations—
An Overview, pg. 319, as prerequisite reading for this technology de-
scription.

Purpose and
Origin

The Defense Information Infrastructure (DII) Common Operating Envi-
ronment (COE) was developed in late 1993. DII COE was designed to
eliminate duplication of development (in areas such as mapping, track
management, and communication interfaces) and eliminate design in-
compatibility among Department of Defense (DoD) systems. Conceptu-
ally, the COE is designed to reduce program cost and risk through
reusing proven solutions and sharing common functionality, rather than
developing systems from “scratch” every time. The purpose of DII COE
is to field systems with increasing interoperability, reusability, portability,
and operational capability, while reducing development time, technical
obsolescence, training requirements, and life-cycle cost.

DII COE reuses proven software components contributed by services
and programs to provide common Command, Control, Communication,
Computer and Intelligence (C4I) functions. For more details on DII COE
see the Defense Information Infrastructure (DII) Common Operating En-
vironment (COE) Integration and Runtime Specification and the DII COE
Style Guide [DII COE 96a, DII COE 96b].

Technical Detail DII COE technically is

• an architecture (including a set of guidelines and standards)

• a runtime environment

• software (including reusable components)

• a definition for acceptable application programming interfaces

The four major areas are described in further detail below:

1. Architecture. The DII COE architecture is fully compliant with the De-
partment of Defense’s Technical Architecture for Information Man-
agement (TAFIM) reference model (see pg. 361). The DII COE archi-
tecture, presented in Figure 9, is a “plug and play,” client/server ar-
chitecture (implemented and running) that defines COE interfaces
and how system components will fit together and interact.
CMU/SEI-97-HB-001 155

Defense Information Infrastructure Common Operating
Environment
2. Runtime environment. A runtime operating environment that includes
a standard user system interface, operating system, and windowing
environment. The DII COE architecture facilitates a developer in es-
tablishing the environment such that there is no conflict with other de-
velopers’ products.

Figure 9: Defense Information Infrastructure Common Operating Environment [DII
COE 96]

3. Software. A defined set of reusable functions that are already built
(available commercially or as government products). Software (with
the exception of the operating system and basic windowing software)
is packaged in self-contained, manageable units called segments.
Segments are the DII COE building block for constructing COE sys-
tems. Segments (mission applications and components) may consist
of one or more Computer Software Configuration Items (CSCIs).
Segments that are part of the reusable (by many mission applica-
tions) COE are referred to as COE component segments. Segments
are named according to their meaning to operators, rather than inter-
nal software structures. Structuring the software into segments al-
lows functionality to be easily added or removed from the target sys-
tem to meet specific mission and site needs. DII COE databases are
divided among segments (as are mission applications) according to
the data they contain and the mission applications they support.

Command
& Control Intelligence Logistics Trans-

portation Personnel Finance

Mission Application Area

Comms
Services

Mapping, Chart-
ing, Geodesy,

& Imagery

Data Xchange
Services

(ODA/ODIF)

Workflow
Management

Services

Global Data
Management

Services

User I/F Svs
(X, Motif,
NT, etc)

Exec Mgr
Services

(CDE)

Security
Admin

Services

System
Admin

Services

Graphics
Services

(GKS, PHIGS)

Data Mgmt
Services

(SQL, IRDS)

Standard Application Program Interfaces

Operating System (UNIX, NT, etc.) and Windowing (X, Motif, etc.) Services

External Environment Interfaces (+ Middleware)

Multi-Media
(Briefing

 Supt)

Communications
(AMHS, E--mail,
Conferencing

Alerts
Generation
& Handling

Database
Utilities

(Data Access)
Logistic
Analysis

Standard Application Program Interfaces

Platform
Services

Standards
• I&RTS
• Style Guide
• POSIX
• TAFIM

Track
Management

Services

Support
Applications Office

Automation

C
O
E

C
O
M
P
O
N
E
N
T

S
E
G
M
E
N
T
S

c
o
e

Kernel COE Comm Links

DISA
AUTODIN
SIPRNET

Databases
156 CMU/SEI-97-HB-001

Defense Information Infrastructure Common Operating
Environment
The kernel COE (light gray shading in Figure 9) is the minimal set of
software that is required on every workstation. It includes operating
system, windowing services, and external environment interfaces.
There are normally five other services also included in the COE ker-
nel: system administration, security administration, executive manag-
er, and two templates, one for creating privileged operator accounts,
and one for creating non-privileged operator accounts. A subset of
the kernel COE (defined as Bootstrap COE) is used during initial in-
stallation of COE. DII COE is hardware-independent and will run on
any open system platform with a standards-based operating system,
such as POSIX-compliant UNIX and Windows NT.

4. APIs. Two types of application programming interfaces (APIs) (see
pg. 79) are defined for accessing COE segments:

– public APIs (COE interfaces that will be supported for the
COE life cycle)

– private APIs (interfaces that are supported for a short period
of time to allow legacy systems to migrate to full COE
compliance)

Newly-developed software (segments) must use public APIs to be
COE compliant. The incremental implementation strategy for DII
COE is to protect legacy system functionality while migrating to fully-
compliant COE design by evolving from private APIs to public APIs.

Usage
Considerations

There is only one COE available for use by other systems. This COE is
currently being used by GCCS (Global Command and Control System)
and GCSS (Global Combat Support System). Any system built to the
COE infrastructure must access the services using the COE APIs. This
improves interoperability between systems because the integration ap-
proach, the tool sets, and the segments (software components, not just
algorithms) are used by each system [DII COE 96a].

Conceptually, compliance to COE standards ensures that software that
is developed or modified for use within COE meets the intended require-
ments and goals and will evolve with the COE system. Another perspec-
tive is that compliance measures the degree to which “plug and play” is
possible [Perry 96]. Owners of legacy systems should be familiar with
COE compliance requirements to ensure that scoping and planning for
future legacy enhancement includes COE requirements and goals.

There are a number of tradeoffs an organization must address when de-
termining evolution of a legacy system to a system that meets COE com-
pliance.

• What are the goals of the legacy system, and will migrating to COE
compliance support achievement of the long range goals?

• What level of COE compliance will best and most cost effectively
achieve the legacy system’s long range goals?
CMU/SEI-97-HB-001 157

Defense Information Infrastructure Common Operating
Environment
• What is the current state of the legacy system— how compliant is it
today?

• Given the current state of the legacy system, what resources are
available to begin and follow through on the migration of the code to
COE compliance?

• Does the organization want/need to control the legacy system code,
and if not, when in the migration to COE is turning it over to DISA
desirable?

Based on this analysis, the appropriate level and strategy for compliance
can be determined.

Technically, the four DII COE compliance categories are described be-
low:

Category 1 (Runtime) compliance progresses through eight (8) levels of
integration from a state of coexistence (agreement on a set of standards
and ensure non-interference) with other COE segments, to federated
(non-interference when on the same workstation), to fully integrated
(share the same software and data). For a segment to be COE compliant,
it must be qualified with a category name and compliance level. The fol-
lowing summarizes Category 1’s eight levels of compliance; Appendix B
of [DII COE 96a] provides a compliance checklist for each of the eight

Category Name Description

1 Runtime
Environment

Measures compliance of the proposed segment’s fit
within the COE executing environment, the amount
it reuses COE segments, whether it will run on a
COE platform, and whether it will interfere with other
segments. This can be done by prototyping within
the COE.

2 Style Guide Measures compliance of the proposed segment’s
user interface to the Style Guide [DII COE 96b]. This
is to ensure that proposed segment will appear con-
sistent with the rest of the COE-based system to
minimize training and maintenance cost. Style
Guide compliance can be done via a checklist
based on the Style Guides requirements.

3 Architectural
Compatibility

Measures compliance of the proposed segment’s fit
within the COE architecture, and the segment’s
potential life cycle as COE evolves. This can be
done by evaluating the segment’s use of TAFIM and
COE standards and guidelines, and it’s internal soft-
ware structures.

4 Software
Quality

Assesses a proposed segment’s program risk and
software maturity through the use of traditional soft-
ware metrics. This can be done using measure-
ments such as lines of code and McCabe
complexity metrics (see Cyclomatic Complexity, pg.
145).
158 CMU/SEI-97-HB-001

Defense Information Infrastructure Common Operating
Environment
levels. Checklists are the current means of assessing progress toward
compliance.

• Standards Compliance Level One - A proposed segment shares only
a common set of standards with the rest of the COE environment,
data sharing is undisciplined, and software reuse is minimal other
than use of Commercial-Off-The Shelf (COTS) software products.
Level 1 allows simultaneous execution of two systems.

• Network Compliance Level Two - Two segments will coexist on the
same Local Area Network (LAN), but on different CPUs. There is
limited data sharing and there may be common user interface “look
and feel” if common user interface standards are applied.

• Workstation Compliance Level Three - Two applications can reside
on the same LAN, share data, and coexist on the same workstation
(environmental conflict have been resolved). The kernel COE, or its
functional equivalent, resides on the workstation. Some COE
components may be reused, but segmenting may not be done.
Segments may not interoperate, and do not use the COE services.

• Bootstrap Compliance Level Four - Segment formatting is used in all
applications. Segments share the bootstrap COE. Some segment
conflicts can be automatically checked by the COE system. COE
services are not being used. To switch between segments, users
may still require separate login accounts. To submit a prototype to
DISA for consideration of use, Bootstrap Compliance is required,
although these segments will not be fielded or put in the DISA
maintained online library.

• Minimal COE Compliance Level Five - All segments share the same
kernel COE (equivalent functionality is not acceptable at Level Five).
Functionality is available through the COE Executive Manager.
Segments may be successfully installed and removed through COE
installation tools. Segment descriptor files describe boot,
background, and local processes. Segments are registered and
available through the online library. Applications appear integrated to
the user, but there may be duplication of functionality. Interoperability
is not guaranteed. DISA may allow Minimal COE Compliance
segments to be installed and used as prototypes at a few sites for
evaluation. They can be placed in the library. Currently, Level 5
appears to be the level many legacy systems are targeting.

• Intermediate COE Compliance Level Six - Segments use existing
account groups, and reuse one or more COE segments. Minor
differences may exist between the Style Guide [DII COE 96b] and the
segment’s graphical user interface implementation.

• Interoperability Compliance Level Seven - To ensure interoperability,
proposed segments must reuse COE segments, including
communication interfaces, message parsers, database tables, track
data elements, and logistic services. Public APIs provide access with
very few, if any, private APIs. There is no duplicate functionality in the
COE segments. DISA requires Interoperability Compliance, for
CMU/SEI-97-HB-001 159

Defense Information Infrastructure Common Operating
Environment
fieldable products and a migration strategy to full COE Compliance
(Level 8). A migration strategy is not needed if the proposed segment
will be phased out in the near term.

• Full COE Compliance Level Eight - All proposed new segments use
COE services to the maximum extent possible. New segments are
available through the Executive Manager and are completely
integrated into the system. All segments fully comply with the Style
Guide. [DII COE 96b]. All segments use only public APIs. There is no
duplication of functionality any where in the system (as COE or as a
mission application).

Two important resources for COE developers and operational sites are
the online COE Software Repository System (CSRS) that is used to dis-
seminate and manage software, and the COE Information Server (CIN-
FO) that is used for documentation, meeting notices and general COE
information. [DII COE 96a]

Maturity COE initial proof of concept was created and installed in 1994 with Global
Command and Control System (GCCS) Version 1.0. GCCS version 1.1
was used to monitor events during the 1994 Haiti crisis. In 1995, GCCS
version 2.0 began fielding to a number of operational sites.There are two
systems currently using DII COE: GCCS (developed in 1994 for a near
term replacement for World-Wide Military Command and Control Sys-
tem) and GCSS (already fielded at a number of operational CINCs). It is
expected that DII COE will be enhanced to include more functionality in
such areas as Electronic Commerce/Electronic Data Interchange
(EC/EDI), transportation, base support, personnel, health affairs, and fi-
nance. [DII COE 96a]

Costs and
Limitations

DII COE is relatively new; actual cost, benefit, and risk information is still
being collected.

Dependencies DII COE is dependent of the evolution of TAFIM to ensure compatibility.
(see pg. 361). An additional dependency could be the Joint Technical Ar-
chitecture (JTA). The JTA is now being mandated as a set of standards
and guidelines for C4I systems, specifically in the area of interoperability,
to supersede TAFIM Volume 7, which did not appear to go far enough to
ensure interoperability [JTA 96].

Alternatives Under conditions where the TAFIM reference model and DII COE com-
pliance is not required, an alternative model would be the Reference
Model for Frameworks of Software Engineering Environments (known as
the ECMA reference model [ECMA 93]) that is promoted in Europe, and
used commercially and world-wide. Commercially-available Hewlett-
Packard products use this model [HP 96]. Another alternative would be
160 CMU/SEI-97-HB-001

Defense Information Infrastructure Common Operating
Environment
the Common Object Request Broker Architecture (CORBA) if the design
called for object-oriented infrastructure (see pg. 107).

Complementary
Technologies

Open systems (see pg. 135) would be a complementary technology to
DII COE because work done in open system supports the COE goal of
achieving interoperable systems.

References and
Information
Sources

[DII COE 96a] Defense Information Infrastructure (DII) Common Operating Environ-
ment (COE) Integration and Runtime Specification (I&RTS) [online].
Available WWW <URL: http://spider.osfl.disa.mil/dii> (1996).

[DII COE 96b] DII COE Style Guide, Version 2.0 [online]. Available WWW <URL: http://
spider.osfl.disa.mil/dii> (1996).

[ECMA 93] Reference Model for Frameworks of Software Engineering Environ-
ments, 3rd Edition (NIST Special Publication 500-211/Technical Report
ECMA TR/55). Prepared jointly by NIST and the European Computer
Manufacturers Association (ECMA). Washington, DC: U.S. Government
Printing Office, 1993.

[HP 96] Integrated Solutions Catalog for the SoftBench Product Family. Palo Al-
to, CA: Hewlett-Packard, 1996.

[JTA 96] U.S. Department of Defense. Joint Technical Architecture (JTA) [online].
Available WWW <URL: http://www.itsi.disa.mil/jta.html> (1996).

[Perry 96] Perry, Frank. Defense Information Infrastructure Common Operating En-
vironment (briefing). April 17, 1996. Arlington, VA: Defense Information
Systems Agency.

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Defense Information Infrastructure Common
Operating Environment

Application category Software Architecture Models (AP.2.1.1)

Quality measures category Interoperability (QM.4.1),Reusability
(QM.4.4), Portability (QM.4.2)

Computing reviews category not available
CMU/SEI-97-HB-001 161

Defense Information Infrastructure Common Operating
Environment
162 CMU/SEI-97-HB-001

Distributed/Collaborative Enterprise Architectures
Distributed/Collaborative Enterprise Architectures ADVANCED

Note We recommend Client/Server Software Architectures, pg. 101, as pre-
requisite reading for this technology description.

Purpose and
Origin

The distributed/collaborative enterprise architecture emerged in 1993.
This software architecture is based on Object Request Broker (ORB)
technology (see pg. 291), but goes further than the Common Object Re-
quest Broker Architecture (CORBA) (see pg. 107) by using shared, reus-
able business models (not just objects) on an enterprise-wide scale.1

The benefit of this architectural approach is that standardized business
object models and distributed object computing are combined to give an
organization flexibility, scalability, and reliability and improve organiza-
tional, operational, and technological effectiveness for the entire enter-
prise. This approach has proven more cost effective than treating the
individual parts of the enterprise. For detailed information on distribut-
ed/collaborative enterprise architectures see Shelton and Adler [Shelton
93, Adler 95].

1. An enterprise is defined as a system comprised of multiple business systems or mul-
tiple subsystems.

Technical Detail The distributed/collaborative enterprise architecture allows a business to
analyze its internal processes in new ways that are defined by changing
business opportunities instead of by preconceived systems design (such
as monolithic data processing applications). In this architectural design,
an object model represents all aspects of the business; what is known,
what the business does, what are the constraints, and what are the inter-
actions and the relationships. A business model is used to integrate and
migrate parts of legacy systems to meet the new business profile.

Distributed/collaborative enterprise builds its new business applications
on top of distributed business models and distributed computing technol-
ogy. Applications are built from standard interfaces with “plug and play”
components. At the core of this infrastructure is an off-the-shelf, stan-
dards-based, distributed object computing, messaging communication
component such as an object request broker (ORB) (see pg. 291) that
meets Common Object Request Broker Architecture (CORBA) stan-
dards (see pg. 107).
CMU/SEI-97-HB-001 163

Distributed/Collaborative Enterprise Architectures
This messaging communication hides the following from business appli-
cations:

• the implementation details of networking and protocols

• the location and distribution of data, process, and hosts

• production environment services such as transaction management,
security, messaging reliability, and persistent storage

The message communication component links the organization and con-
nects it to computing and information resources via the organization’s lo-
cal or wide area network (LAN or WAN). The message communication
component forms an enterprise-wide standard mechanism for accessing
computing and information resources. This becomes a standard inter-
face to heterogeneous system components.

Usage
Considerations

The distributed/collaborative enterprise architecture is being applied in
industries and businesses such as banking, investment, trading, credit-
granting, insurance, policy management and rating, customer service,
transportation and logistics management, telecommunications (long dis-
tance, cellular, and operating company), customer support, billing, order
handling, product cross-selling, network modeling, manufacturing equip-
ment, and automobiles [Shelton 93].

The most common implementations of objects and object models are
written in C++ or Smalltalk. Another popular language for implementing
object and object models is Java (see pg. 221).

Available for use in a distributed/collaborative enterprise architecture are
products being built to open system standards, operating systems, data-
base management systems, transaction processor monitors, and ORBs.
These products are increasingly interchangeable.

Maturity Since 1993 a number of companies have built and used distributed/col-
laborative architectures to address their long-term business needs be-
cause this model adapts to change and is built according to open system
standards [Adler 95].

Costs and
Limitations

Distributed/collaborative enterprise architectures are limited by the lack
of commercially-available, object-oriented analysis and design method
tools that focus on applications (rather than large scale business model-
ing).

Dependencies The refinement of CORBA (see pg. 107) and evolution of Object Linking
and Embedding (see pg. 271), and the results of standards bodies such
164 CMU/SEI-97-HB-001

Distributed/Collaborative Enterprise Architectures
as X/Open [X/Open 96] and Object Management Group (OMG) [OMG
96] will affect the evolution of distributed/collaborative architectures.

Alternatives Three tier client/server architectures (see pg. 367) are an alternative ap-
proach to distributed/collaborative architectures. However, they do not
address the need to evolve the business model over time as well as the
distributed/collaborative architecture does.

Complementary
Technologies

Distributed/collaborative enterprise architectures are enhanced by ob-
ject-oriented design technologies (see pg. 283).

References and
Information
Sources

[Adler 95] Adler, R. M. “Distributed Coordination Models for Client/Sever Comput-
ing.” Computer 28, 4 (April 1995): 14-22.

[Lewis 95] Lewis, T. G. “Where is Client/Server Software Headed?” Computer 28, 4
(April 1995): 49-55.

[OMG 96] Object Management Group [online]. Available WWW <URL: http://www.
omg.org/tech.htm> (1996).

[Shelton 93] Shelton, Robert E. “The Distributed Enterprise (Shared, Reusable Busi-
ness Models the Next Step in Distributed Object Computing).” Distributed
Computing Monitor 8, 10 (October 1993): 1.

[X/Open 96] X/Open [online]. Available WWW <URL: http://www.xopen.co.uk/>
(1996).

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

Larry Stafford, GTE

Last Modified 10 Jan 97

Index
Categories

Name of technology Distributed/Collaborative Enterprise Architec-
tures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Scalability (QM.4.3), Reliability (QM.2.1.2),
Maintainability (QM.3.1)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Design (D.2.10)
CMU/SEI-97-HB-001 165

Distributed/Collaborative Enterprise Architectures
166 CMU/SEI-97-HB-001

Distributed Computing Environment
Distributed Computing Environment ADVANCED

Note We recommend Middleware, pg. 251, as prerequisite reading for this
technology description.

Purpose and
Origin

Developed and maintained by the Open Systems Foundation (OSF), the
Distributed Computing Environment (DCE) is an integrated distributed
environment which incorporates technology from industry. The DCE is a
set of integrated system services that provide an interoperable and flex-
ible distributed environment with the primary goal of solving interopera-
bility problems in heterogeneous, networked environments.

OSF provides a reference implementation (source code) on which all
DCE products are based [OSF 96a].The DCE is portable and flexible—
the reference implementation is independent of both networks and oper-
ating systems and provides an architecture in which new technologies
can be included, thus allowing for future enhancements. The intent of the
DCE is that the reference implementation will include mature, proven
technology that can be used in parts— individual services— or as a com-
plete integrated infrastructure.

The DCE infrastructure supports the construction and integration of cli-
ent/server applications while attempting to hide the inherent complexity
of the distributed processing from the user [Schill 93]. The OSF DCE is
intended to form a comprehensive software platform on which distributed
applications can be built, executed, and maintained.

Technical Detail The DCE architecture is shown in Figure 10 [Schill 93].

Figure 10: Distributed Computing Environment Architecture

Remote Procedure Call

Thread Service

Local operating system and transport services

Distr.
Time

Service

Cell Directory Services
Global Directory

Service

Security
Service

Distr.
File

System

Diskless
Support

Distributed applications
CMU/SEI-97-HB-001 167

Distributed Computing Environment
DCE services are organized into two categories:

1. Fundamental distributed services provide tools for software develop-
ers to create the end-user services needed for distributed computing.
They include

– Remote procedure call (see pg. 323), which provides
portability, network independence, and secure distributed
applications.

– Directory services, which provide full X.500 support and a
single naming model to allow programmers and maintainers
to identify and access distributed resources more easily.

– Time service, which provides a mechanism to monitor and
track clocks in a distributed environment and accurate time
stamps to reduce the load on system administrator.

– Security service, which provides the network with
authentication, authorization, and user account
management services to maintain the integrity, privacy, and
authenticity of the distributed system.

– Thread service, which provides a simple, portable,
programming model for building concurrent applications.

2. Data-sharing services provide end users with capabilities built upon
the fundamental distributed services. These services require no pro-
gramming on the part of the end user and facilitate better use of in-
formation. They include

– Distributed file system, which interoperates with the network
file system to provide a high-performance, scalable, and
secure file access system.

– Diskless support, which allows low-cost workstations to use
disks on servers, possibly reducing the need/cost for local
disks, and provides performance enhancements to reduce
network overhead.

The DCE supports International Open Systems Interconnect (OSI) stan-
dards, which are critical to global interconnectivity. It also implements
ISO standards such as CCITT X.500, Remote Operations Service Ele-
ment (ROSE), Association Control Service Element (ACSE), and the ISO
session and presentation services. The DCE also supports Internet stan-
dards such as the TCP/IP transport and network protocols, as well as the
Domain Name System and Network Time Protocol provided by the Inter-
net.

Usage
Considerations

The DCE can be used by system vendors, software developers, and end
users. It can be used on any network hardware and transport software,
including TCP/IP, OSI, and X.25. The DCE is written in standard C and
uses standard operating system service interfaces like POSIX and
X/Open guidelines. This makes the DCE portable to a wide variety of
platforms. DCE allows for the extension of a network to large numbers of
168 CMU/SEI-97-HB-001

Distributed Computing Environment
nodes, providing an environment capable of supporting networks of nu-
merous low-end computers (i.e., PCs and Macintosh machines), which is
important if downsizing and distributing of processing is desired. Be-
cause DCE is provided in source form, it can be tailored for specific ap-
plications if desired [OSF 96a].

DCE works internally with the client/server model and is well-suited for
development of applications that are structured according to this model.
Most DCE services are especially optimized for a structuring of distribut-
ed computing systems into a “cell” (a set of nodes/platforms) that is man-
aged together by one authority.

For DCE, intra-cell communication is optimized and relatively secure and
transparent. Inter-cell communication, however, requires more special-
ized processing and more complexity than its intra-cell counterpart, and
requires a greater degree of programming expertise.

When using the thread services provided by DCE, the application pro-
grammer must be aware of thread synchronization and shared data
across threads. While different threads are mutually asynchronous up to
a static number defined at initialization, an individual thread is synchro-
nous. The complexity of thread programming should be considered if
these services are to be used.

DCE is being used or is planned for use on a wide variety of applications,
including the following:

• The Common Operating Environment. DCE has been approved by
DISA (Defense Information Systems Agency) as the distributed
computing technology for the joint services Global Command and
Control System (GCCS) Common Operating Environment (COE)
(see pg. 155). GCCS will be the single, global command and control,
communications, computer, and intelligence system to support the
Joint Services.

• The Advanced Photon Source (APS) system. This is a synchrotron
radiation facility under construction at Argonne National Laboratory.

• The Alaska Synthetic Aperture Radar Facility (ASF). This is the
ground station for a set of earth-observing radar spacecraft, and is
one of the first NASA projects to use DCE in an operational system.

• The Deep Space Network’s Communications Complexes Monitor
and Control Subsystem. This project is deploying DCE for subsystem
internal communications, with the expectation that DCE will
eventually form the infrastructure of the entire information system.

• The Multimission Ground Data System Prototype. This project
evaluated the applicability of DCE technology to ground data
CMU/SEI-97-HB-001 169

Distributed Computing Environment
systems for support of JPL flight projects (Voyager, Cassini, Mars
Global Surveyor, Mars Pathfinder).

• Earth Observing Systems Data Information System. This NASA
system is one of the largest information systems ever implemented.
The system is comprised of legacy systems and data, computers of
many varieties, networks, and satellites in space.

• Command and control prototypes. MITRE has prototyped command
and control (C2) applications using DCE technology. These
applications provide critical data such as unit strength, supplies, and
equipment, and allow staff officers to view maps of areas of operation
[OSF 96b].

Maturity In early 1992, the OSF released the source code for DCE 1.0. Approxi-
mately 12 vendors had ported this version to their systems and had DCE
1.0 products available by June 1993. Many of these original products
were “developer’s kits” that were not robust, did not contain the entire set
of DCE features (all lacked distributed file services), and were suited
mostly for UNIX platforms [Chappell 93].

The DCE continues to evolve, but many large organizations have com-
mitted to basing their next generation systems on the DCE— over 14 ma-
jor vendors provided DCE implementations by late 1994, when DCE 1.1
was released.

DCE 1.2.1, released in March 1996, provided the following new features:

• Interface definition language (IDL) support for C++ to include
features such as inheritance and object references in support of
object-oriented applications. This feature supports adoption of any
object model or class hierarchy, thus providing developers with
additional flexibility.

• Features to provide for coexistence with other application
environments.

• Improvements over DCE 1.1 including enhancements to achieve
greater reliability and better performance [OSF 96a].

Two future (post-DCE 1.2) approaches to supporting objects are being
considered besides the approach described for DCE 1.2:

1. Installing a CORBA-based product over DCE to provide additional
support for distributed object technologies and a wide range of stan-
dardized service interfaces.

2. Integrating Network OLE (see pg. 271) into the DCE infrastructure.

Costs and
Limitations

DCE was not built to be completely object-oriented. The standard inter-
faces used by the DCE, as well as all the source code itself, are defined
only in the C programming language. For object-oriented applications
(i.e., applications being developed using an object-oriented language
170 CMU/SEI-97-HB-001

Distributed Computing Environment
(see pg. 287) such as C++ or Ada 95 (see pg. 67)), it may be more com-
plex, less productive (thus more expensive), and less maintainable to
use a non-object-oriented set of services like the DCE [Chappell 96].

Object-oriented extensions of the DCE have been developed by industry,
but an agreed to vendor-neutral standard was still being worked in 1996.

Dependencies Dependencies include remote procedure call (RPC) (see pg. 323).

Alternatives Alternatives include CORBA (see pg. 107), OLE (see pg. 271), and mes-
sage-oriented middleware (see pg. 247).

Complementary
Technologies

DCE, in-part, has been used in building CORBA-compliant (see pg. 107)
products as early as 1995. OSF is considering support for objects using
Network OLE (see pg. 271).

References and
Information
Sources

[Brando 96] Brando, T. “Comparing CORBA & DCE.” Object Magazine 6, 1 (March
1996): 52-7.

[Chappell 93] Chappell, David. “OSF’s DCE and DME: Here Today?” Business Com-
munications Review 23, 7 (July 1993): 44-8.

[Chappell 96] Chappell, David. DCE and Objects [online]. Available WWW
<URL: http://www.osf.org/dce/3rd-party/ChapRpt1.html> (1996).

[OSF 96a] Open Software Foundation. The OSF Distributed Computing Environ-
ment [online]. Available WWW <URL: http://www.osf.org/dce/> (1996).

[OSF 96b] Open Software Foundation. The OSF Distributed Computing Environ-
ment: End-User Profiles [online]. Available WWW URL: <http://www.osf.
org/comm/lit/dce-eup/> (1996).

[Product 96] OSF DCE Product Survey Report [online]. Available WWW
<URL: http://www.asset.com/WSRD/abstracts/ABSTRACT_1296.html>
(1996).

Index
Categories

Name of technology Distributed Computing Environment

Application category Distributed Computing (AP.2.1.2)

Quality measures category Interoperability (QM.4.1), Portability (QM.4.2),
Scalability (QM.4.3), Security (QM.2.1.5),
Maintainability (QM.3.1), Complexity
(QM.3.2.1), Throughput (QM.2.2.3)

Computing reviews category Distributed Systems (C.2.4)
CMU/SEI-97-HB-001 171

Distributed Computing Environment
[Schill 93] Schill, Alexander. “DCE—The OSF Distributed Computing Environment
Client/Server Model and Beyond,” 283. International DCE Workshop.
Karlsruhe, Germany, October 7-8, 1993. Berlin, Germany: Springer-Ver-
lag, 1993.

Author Cory Vondrak, TRW, Redondo Beach, CA

Last Modified 10 Jan 97
172 CMU/SEI-97-HB-001

Domain Engineering and Domain Analysis
Domain Engineering and Domain Analysis ADVANCED

Purpose and
Origin

The term domain is used to denote or group a set of systems or functional
areas, within systems, that exhibit similar functionality. Domain engineer-
ing is the foundation for emerging “product line” software development
approaches, and affects the maintainability, understandability, usability,
and reusability characteristics of a system or family of similar systems.

The purpose of this technology description is to introduce the key con-
cepts of domain engineering and provide overview information about do-
main analysis. Detailed discussions of individual domain analysis
methods can be found in the referenced technology descriptions.

Technical Detail Domain engineering and domain analysis are often used interchange-
ably and/or inconsistently. Although domain analysis as a term may pre-
date domain engineering, domain engineering is the more inclusive term,
and is the process of

• defining the scope (i.e., domain definition)

• analyzing the domain (i.e., domain analysis)

• specifying the structure (i.e., domain architecture development)

• building the components (e.g., requirements, designs, software code,
documentation)

for a class of subsystems that will support reuse [Katz 93].

Figure 11 [Foreman 96] shows the process and products of the overall
domain engineering activity, and shows the relationships and interfaces
of domain engineering to the conventional (individual) system develop-
ment (application engineering) process. This has come to be known as
the two life cycle model.

Domain engineering is related to system engineering, which is an inte-
grated set of engineering disciplines that supports the design, develop-
ment, and operation of large-scale systems [Eisner 94]. Domain
engineering is distinguished from system engineering in that it involves
designing assets1 for a set or class of multiple applications as opposed
to designing the best solution for a single application. In addition, system
engineering provides the “whole solution,” whereas domain engineering
defines (i.e., limits) the scope of functionality addressed across multiple
systems [Simos 96].

1. Examples include requirements, design, history of design decisions, source code,
and test information.
CMU/SEI-97-HB-001 173

Domain Engineering and Domain Analysis
Figure 11: Domain Engineering and Application Engineering (Two Life Cycles)

Domain engineering supports systems engineering for individual sys-
tems by enabling coherent solutions across a family of systems: simpli-
fying their construction, and improving the ability to analyze and predict
the behavior of “systems of systems” composed of aggregations of those
systems [Randall 96].

Domain analysis. Domain analysis (first introduced in the 1980s) is an
activity within domain engineering and is the process by which informa-
tion used in developing systems in a domain is identified, captured, and
organized with the purpose of making it reusable when creating new sys-
tems [Prieto-Diaz 90]. Domain analysis focuses on supporting systematic
and large-scale reuse (as opposed to opportunistic reuse, which suffers
from the difficulty of adapting assets to fit new contexts) by capturing both
the commonalities and the variabilities1 of systems within a domain to im-
prove the efficiency of development and maintenance of those systems.
The results of the analysis, collectively referred to as a domain model,
are captured for reuse in future development of similar systems and in

1. Commonality and variability refer to such items as functionality, data items, perfor-
mance attributes, capacity, and interface protocols.

Reusable
Components

and/or
Generators

Domain Management

System 2
System 1

Domain
Analysis

Software
Architecture

Development

Domain
Model

Reusable
Asset

Component/
Generator

Development

Domain
Software

Architecture

Software
 System
Design

 Based on
Domain

 Architecture

Application
Performance
Specification

Application
Software

Development

Application
Software

Architecture

Application
Software

User
Require-

ments

Domain Engineering

Application Engineering

Analysis
Based

on Model
Domain

System..n

Activities Products
174 CMU/SEI-97-HB-001

Domain Engineering and Domain Analysis
maintenance planning of legacy systems (i.e., migration strategy) as
shown in Figure 12 [Foreman 96].

Figure 12: Domain Engineering and Legacy System Evolution

One of the major historical obstacles to reusing a software asset has
been the uncertainty surrounding the asset. Questions to be answered
included

• How does the software asset behave in its original context?

• How will it behave in a new context?

• How will adaptation affect its behavior [Simos 94]?

Design for reuse techniques (e.g., documentation standards, adaptation
techniques) were developed to answer these questions; however, they
did not provide the total solution, as a software asset’s best scope need-
ed to be determined (i.e., In which set of systems would the software as-
set be most likely reused?). Domain engineering and analysis methods
were developed to answer more global questions, such as:

• Who are the targeted customers for the asset base (the designed
collection of assets targeted to a specific domain)?

• Who are the other stakeholders in the domain?

• What is the domain boundary?

• What defines a feature of the domain?

• When is domain modeling complete?

Legacy
System 1

Domain Engineering

Domain
Architecture

Domain
Model

Domain
Assets

Application
Engineering

System n

System 2

System 1

Domain
Evolution

Design/Arch

Req’s Model

...

Domain
Legacy Base

Legacy
System N

Design/Arch

Req’s Model

Known new
Requirements Req’s Model
CMU/SEI-97-HB-001 175

Domain Engineering and Domain Analysis
• How do features vary across different usage contexts?

• How can the asset base be constructed to adapt to different usage
contexts?

Goals of domain analysis include the following:

• Gather and correlate all the information related to a software asset.
This will aid domain engineers in assessing the reusability of the
asset. For example, if key aspects of the development
documentation (e.g., chain of design decisions used in the
development process) are available to a potential reuser, a more
cost-effective reuse decision can be made.

• Model commonality and variability across a set of systems. This
comparative analysis can reveal hidden contextual information in
software assets and lead to insights about underlying rationale that
would not have been discovered by studying a single system in
isolation. It would answer questions like the following:

– Why did developers make different design tradeoffs in one
system than another?

– What aspects of the development context influenced these
decisions?

– How can this design history be transformed into more
prescriptive guidance to new developers creating systems
within this domain?

• Derive common architectures and specialized languages that can
leverage the software development process in a specific domain.

There is no standard definition of domain analysis; several domain anal-
ysis methods exist. Common themes among the methods include mech-
anisms to

• define the basic concepts (boundary, scope, and vocabulary) of the
domain that can be used to generate a domain architecture

• describe the data (e.g., variables, constants) that support the
functions and state of the system or family of systems

• identify relationships and constraints among the concepts, data, and
functions within the domain

• identify, evaluate, and select assets for (re-)use

• develop adaptable architectures

Wartik provides criteria for comparing domain analysis methods [Wartik
92]. Major differences between the methods fall into three categories:

• Primary product of the analysis. In the methods, the results of the
analysis and modeling activities may be represented differently.
Examples include: different types of reuse library infrastructures
176 CMU/SEI-97-HB-001

Domain Engineering and Domain Analysis
(e.g., structured frameworks for cataloging the analysis results),
application engineering processes, etc.

• Focus of the analysis. The methods differ in the extent they provide
support for

– context analysis: the process by which the scope of the
domain is defined and analyzed to identify variability

– stakeholder analysis: the process of modeling the set of
stakeholders of the domain, which is the initial step in
domain planning

– rationale capture: the process for identifying and recording
the reasoning behind the design of an artifact

– scenario definition: mechanisms to capture the dynamic
aspects of the system

– derivation histories: mechanisms for replaying the history of
design decisions

– variability modeling: the process for identifying the ways in
which two concepts or entities differ

– legacy analysis: the process for studying and analyzing an
existing set of systems

– prescriptive modeling: the process by which binding
decisions and commitments about the scope, architecture,
and implementation of the asset base are made

• Representation techniques. An objective of every domain analysis
method is to represent knowledge in a way that is easily understood
and machine-processable. Methods differ in the type of
representation techniques they use and in the ease with which new
representation techniques can be incorporated within the method.

Examples of domain analysis methods include

• Feature-oriented domain analysis (FODA) (see pg. 185), a domain
analysis method based upon identifying the features of a class of
systems, defines three basic activities: context analysis, domain
modeling, and architecture modeling [Kang 90].

• Organization domain modeling (ODM) (see pg. 297), a domain
engineering method that integrates organizational and strategic
aspects of domain planning, domain modeling, architecture
engineering and asset base engineering [Simos 96].

Randall, Arango, Prieto-Diaz, and the Software Productivity Consortium
offer other domain engineering and analysis methods [Randall 96, Aran-
go 94, Prieto-Diaz 91, SPC 93].

Usage
Considerations

Domain analysis is best suited for domains that are mature and stable,
and where context and rationale for legacy systems can be rediscovered
through analysis of legacy artifacts and through consultation with domain
experts. In general, when applying a domain analysis method, it is impor-
CMU/SEI-97-HB-001 177

Domain Engineering and Domain Analysis
tant to achieve independence from architectural and design decisions of
legacy systems. Lessons learned from the design and implementation of
the legacy system are essential; however, the over-reliance on prece-
dented features and legacy implementations may bias new develop-
ments.

Maturity See individual technologies.

Costs and
Limitations

See individual technologies.

Complementary
Technologies

Use of visual programming techniques can provide better understanding
of key software assets like execution patterns, specification and design
animations, testing plans, and systems simulation. Other complementary
technologies include comparative/taxonomic modeling and techniques
for the development of adaptable architectures/implementations (e.g.,
generation, decision-based composition).

References and
Information
Sources

[Arango 94] Arango, G. “Domain Analysis Methods,” 17-49. Software Reusability.
Chichester, England: Ellis Horwood, 1994.

[Eisner 94] Eisner, H. “Systems Engineering Sciences,” 1312-1322. Encyclopedia of
Software Engineering. New York, NY: John Wiley and Sons, 1994.

[Foreman 96] Foreman, John. Product Line Based Software Development— Signifi-
cant Results, Future Challenges. Software Technology Conference, Salt
Lake City, UT, April 23, 1996.

[Hayes 94] Hayes-Roth, F. Architecture-Based Acquisition and Development of
Software: Guidelines and Recommendations from the ARPA Domain-
Specific Software Architecture (DSSA) Program. Palo Alto, CA: Teknowl-
edge Federal Systems, 1994.

[Kang 90] Kang, K., et al. Feature-Oriented Domain Analysis (FODA) Feasibility
Study (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University, 1990.

Index
Categories

Name of technology Domain Engineering and Domain Analysis

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4), Maintainability (QM.3.1),
Understandability (QM.3.2)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
178 CMU/SEI-97-HB-001

Domain Engineering and Domain Analysis
[Katz 94] Katz, S., et al. Glossary of Software Reuse Terms. Gaithersburg, MD:
National Institute of Standards and Technology, 1994.

[Prieto-Diaz 90] Prieto-Diaz, R. “Domain Analysis: An Introduction.” Software Engineer-
ing Notes 15, 2 (April 1990): 47-54.

[Prieto-Diaz 91] Prieto-Diaz, R. Domain Analysis and Software Systems Modeling. Los
Alamitos, CA: IEEE Computer Society Press, 1991.

[Randall 96] Randall, Rick. Space and Warning C2Product Line Domain Engineering
Guidebook, Version 1.0 [online]. Available WWW
<URL: http://source.asset.com/stars/loral/Test/deguidebook/home.htm>
(1996). Note: This is a beta version of the document; this URL is subject
to change.

[Simos 96] Simos, M., et al. Software Technology for Adaptable Reliable Systems
(STARS) Organization Domain Modeling (ODM) Guidebook Version 2.0
(STARS-VC-A025/001/00). Manassas, VA: Lockheed Martin Tactical
Defense Systems, 1996. Also available [online] WWW
<URL: http://www.asset.com/WSRD/abstracts/ABSTRACT_1176.html>
(1996).

[SPC 93] Reuse-Driven Software Processes Guidebook Version 2.00.03 (SPC-
92019-CMC). Herndon, VA: Software Productivity Consortium, 1993.

[Svoboda 96] Svoboda, Frank. The Three “R’s” of Mature System Development: Re-
use, Reengineering, and Architecture [online]. Available WWW <URL:
http://source.asset.com/stars/darpa/Papers/ArchPapers.html> (1996).

[Wartik 92] Wartik, S. & Prieto-Diaz, R. “Criteria for Comparing Reuse-Oriented Do-
main Analysis Approaches.” International Journal of Software Engineer-
ing and Knowledge Engineering 2, 3 (September 1992): 403-431.

Author Liz Kean, Rome Laboratory
liz@se.rl.af.mil

External
Reviewer(s)

Jim Baldo, MITRE, Washington, DC
Dick Creps, Lockheed Martin, Manassas, VA
Teri Payton, Lockheed Martin, Manassas, VA
Spencer Peterson, SEI
Rick Randall, Kaman Sciences, Colorado Springs, CO
Mark Simos, Organon Motives, Belmont, MA

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 179

Domain Engineering and Domain Analysis
180 CMU/SEI-97-HB-001

Feature-Based Design Rationale Capture Method for
Requirements Tracing
Feature-Based Design Rationale Capture Method for Requirements
Tracing ADVANCED

Purpose and
Origin

A design rationale is a representation of the reasoning behind the design
of an artifact. The purpose of a feature-based design rationale capturing
method is to provide mechanisms to track for each feature of the system;
the description of the engineering decision that the feature represents in-
cludes

• the summary of the tradeoffs that were considered in arriving at the
decision

• the ultimate rationale for the decision

The idea for feature-based design rationale capture originated during the
performance of domain analysis in a software development project
[Bailin 90]. The need to reverse engineer the rationales for various deci-
sions suggested that a reuse environment should not simply present to
the developer a set of alternative architectures that have been used on
previous systems. It is necessary to present the rationales and issues in-
volved in choosing among the alternatives. The feature-based approach
evolved from the argumentation-based design rationale capture methods
(see pg. 91). The major difference between the approaches is that the
knowledge is organized around distinctive features of a system (feature-
based) rather than around issues raised during the development process
(argument-based).

Replaying the history of design decisions facilitates the understanding of
the evolution of the system, identifies decision points in the design phase
where alternative decisions could lead to different solutions, and identi-
fies dead-end solution paths. The captured knowledge should enhance
the evolvability of the system and the reusability of components in the
system.

Technical Detail In the feature-based design rationale capture method, a feature is any
distinctive or unusual aspect of a system, or a manifestation of a key en-
gineering decision [Bailin 90]. (Note: The definition of a feature in this
context is different from a feature in feature-oriented domain analysis
(FODA) (see pg. 185), in which a feature is a user-visible aspect or char-
acteristic of the domain [Kang 90].) The features in a system make this
system different from any other system in the domain. Examples of cat-
egories of features are: operational, interface, functional, performance,
development methodology, design, and implementation. Each feature
has a list of tradeoffs and rationale associated with it. Representations of
the set of features may be entity relationship, dataflow, object communi-
CMU/SEI-97-HB-001 181

Feature-Based Design Rationale Capture Method for
Requirements Tracing
cation, assembly, classification, stimulus-response, and state transition
diagrams. The purpose of the multiple representations or views is to add
flexibility in responding to evolving design paradigms, life cycle models,
etc. A new way of looking at a system can be represented by adding a
new view or way of looking at the features of the system. This provides a
uniqueness and strength to this method that does not exist in other de-
sign rationale capturing methods. This approach makes the software en-
gineering process become a process of answering questions about the
features of a system rather than a cookbook-like procedure defined by a
particular development method.

Usage
Considerations

The use of this technology is oriented toward the entire organization,
rather than single projects, because the big payoff occurs when a sub-
stantial database of corporate knowledge is organized and maintained. If
an organization builds the same types of systems, the knowledge ac-
quired in previous developments can be reused. Since the organization
of information is around the features of a system as opposed to the is-
sues that arise during a development project, only the issues that observ-
ably affect the content of the resulting system are saved.

The use of this technology requires the development of a shared, consis-
tent, and coherent policy by a project team. A procedure for overall coor-
dination must be developed.

Maturity To date, there is at least one commercially-available tool to support the
feature-based design rationale capture method. It is not a highly auto-
mated tool, but rather a bookkeeper to support an experience-based,
learning-based development process. The commercial tool is based
upon a prototype that has been used in laboratory experiments. The fea-
ture-based design rational capture method was used on the Software
Technology for Adaptable, Reliable Systems (STARS) program to sup-
port the Organization Domain Modeling (ODM) process (see pg. 297)
[Lettes 96].

Costs and
Limitations

Feature-based design rationale capture methods and supporting tools
require additional time and effort throughout the software life cycle. The
system is described using multiple views that must be generated and
maintained throughout the life of the project. Depending upon the size of
the system, the number of views could be large. There is no integrated
view of the system and this must be accomplished either mentally by the
engineers on the project or through the use of an additional tool/tech-
nique. Training for the project team as well as the potential reuser is es-
sential to make effective use of the method.
182 CMU/SEI-97-HB-001

Feature-Based Design Rationale Capture Method for
Requirements Tracing
Alternatives There are several alternative approaches to requirements traceability
methods. Examples include Argument-Based Design Rationale Capture
Methods for Requirements Tracing (see pg. 91), an approach centered
around the debate process (i.e., arguments and their resolution) that oc-
curs during requirements analysis, and the Process Knowledge Method,
an extension of the argument-based approach that includes a formal rep-
resentation to provide two way traceability between requirements and ar-
tifacts and facilities for temporal reasoning (i.e., mechanisms to use the
captured knowledge).

References and
Information
Sources

[Bailin 90] Bailin, S., et al. “KAPTUR: Knowledge Acquisition for Preservation of
Tradeoffs and Underlying Rationale,” 95-104. Proceedings of the 5th An-
nual Knowledge-Based Software Assistant Conference. Liverpool, NY,
September 24-28, 1990. Rome, NY: Rome Air Development Center,
1990.

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements Traceability.
London, England: Department of Computing, Imperial College, 1995.

[Kang 90] Kang, Kyo C., et al. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study (CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1990.

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration Project
Experience Report (STARS-VC-A011/003/02). Manassas, VA: Loral De-
fense Systems-East, 1996.

[Ramesh 92] Ramesh, Balasubramaniam & Dhar, Vasant. “Supporting Systems De-
velopment by Capturing Deliberations During Requirements Engineer-
ing.” IEEE Transactions on Software Engineering 18, 6 (June 1992): 498-
510.

Index
Categories

Name of technology Feature-Based Design Rationale Capture
Method for Requirements Tracing

Application category Requirements Tracing (AP.1.2.3), Domain En-
gineering (AP.1.2.4)

Quality measures category Completeness (QM.1.3.1), Consistency
(QM.1.3.2), Traceability (QM.1.3.3), Effective-
ness (QM.1.1), Reusability (QM.4.4), Under-
standability (QM.3.2), Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2), Software Engineering Design (D.2.10)
CMU/SEI-97-HB-001 183

Feature-Based Design Rationale Capture Method for
Requirements Tracing
[Shum 94] Shum, Buckingham Simon & Hammond, Nick. “Argumentation-Based
Design Rationale: What Use at What Cost?” International Journal of Hu-
man-Computer Studies 40, 4 (April 1994): 603-52.

Author Liz Kean, Rome Laboratory
liz@se.rl.af.mil

Last Modified 10 Jan 97
184 CMU/SEI-97-HB-001

Feature-Oriented Domain Analysis
Feature-Oriented Domain Analysis ADVANCED

Note Domain Engineering and Domain Analysis, pg. 173, provides overview
information about domain analysis.

Purpose and
Origin

Feature-oriented domain analysis (FODA) is a domain analysis method
based upon identifying the prominent or distinctive features of a class of
systems. FODA resulted from an in-depth study of other domain analysis
approaches [Kang 90]. FODA affects the maintainability, understandabil-
ity, and reusability characteristics of a system or family of systems.

Technical Detail The FODA methodology was founded on two modeling concepts: ab-
straction and refinement. Abstraction is used to create domain products
from the specific applications in the domain. These generic domain prod-
ucts abstract the functionality and designs of the applications in a do-
main. The generic nature of the domain products is created by
abstracting away “factors” that make one application different from other
related applications. The FODA method advocates that applications in
the domain should be abstracted to the level where no differences exist
between the applications. Specific applications in the domain are devel-
oped as refinements of the domain products.

Domain Engineering and Domain Analysis, pg. 173, identifies three ar-
eas to differentiate between domain analysis methods. Distinguishing
features for FODA include the following:

Primary Product of the Analysis. The primary product of FODA is a
structured framework of related models that catalog the domain analysis
results.

Focus of Analysis. The FODA process is divided into three phases:

• Context analysis. The purpose of context analysis is to define the
scope of a domain. Relationships between the domain and external
elements (e.g., different operating environments, different data
requirements, etc.) are analyzed, and the variabilities are evaluated.
The results are documented in a context model (e.g., block diagram,
structure diagram, dataflow diagram, etc.).

• Domain modeling. Once the domain is scoped, the domain modeling
phase provides steps to analyze the commonalities and differences
addressed by the applications in the domain and produces several
domain models. The domain modeling phase consists of three major
activities:

– Feature analysis. During feature analysis, a customer’s or
end user’s understanding of the general capabilities or
features of the class of systems is captured. The features,
CMU/SEI-97-HB-001 185

Feature-Oriented Domain Analysis
which describe the context of domain applications, the
needed operations and their attributes, and representation
variations are important results because the features model
generalizes and parameterizes the other models produced
in FODA. Examples of features include: function
descriptions, descriptions of the mission and usage
patterns, performance requirements, accuracy, time
synchronization, etc. Features may be defined as
alternative, optional, or mandatory. Mandatory features
represent baseline features and their relationships. The
alternative and optional features represent the
specialization of more general features (i.e., they represent
what changes are likely to occur in different circumstances).
For optimal benefit, the resulting features model should be
captured in a tool with access to rule-based language(s) so
dependencies among features can be maintained and
understood.

– Information analysis. During information analysis, the
domain knowledge and data requirements for implementing
applications in the domain are defined and analyzed.
Domain knowledge includes relevant scientific theory and
engineering practice, capabilities and uses of existing
systems, past system development and maintenance
experience and work products, design rationales, history of
design changes, etc. The purpose of information analysis is
to represent the domain knowledge in terms of domain
entities and their relationships, and to make them available
for the derivation of objects and data definitions during
operational analysis and architecture modeling. The
information model may be of the form of an entity
relationship (ER) model, a semantic network, or an object-
oriented (OO) model.

– Operational analysis. During operational analysis, the
behavioral characteristics (e.g., dataflow and control-flow
commonalities and differences, finite state machine model)
of the applications in a domain are identified. This activity
abstracts and then structures the common functions found
in the domain and the sequencing of those actions into an
operational model. Common features and information
model entities form the basis for the abstract functional
model. Unique features and information model entities
complete the functional model. The control and data flow of
an individual application can be instantiated or derived from
the operational model with appropriate adaptation.

• Architecture Modeling. This phase provides a software solution for
applications in the domain. An architectural model, which is a high-
level design for applications in a domain, is developed. It focuses on
identifying concurrent processes and domain-oriented common
modules. It defines the process for allocating the features, functions,
186 CMU/SEI-97-HB-001

Feature-Oriented Domain Analysis
and data objects defined in the domain models to the processes and
modules.

Representation Techniques. The use of COTS methods or tools must
be integrated on a case-by-case basis. Currently FODA has been inte-
grated with tools that support object-oriented models, entity relationship
models, and semantic networks.

Usage
Considerations

Based upon early pilot projects applying the FODA method [Kang 90, Co-
hen 92], the following lessons learned should be considered:

• A clear definition of the users of the domain model is essential. They
should be well-defined during the context analysis phase.

• Early identification of the domain experts and sources of information
is important. Effectively working with domain experts is the best
means to achieving adoption of the domain model by potential users.

• The need for automated support for the domain modeling phase was
identified. No modeling tools that support the FODA approach to ER
modeling (i.e., ER + semantic data modeling) exist. Integration with
existing modeling capabilities is achieved on a case-by-case basis.
FODA was integrated with Hamilton Technologies 001 tool suite [Krut
93]. The integration was not automatic and there were areas where
the 001 capabilities did not meet the FODA requirements. These
were resolved through workarounds and negotiations with Hamilton
Technologies.

Maturity The FODA method is well-defined and has been applied on both com-
mercial and military applications. It was applied to the

• Army Movement Control Domain [Cohen 92]

• In-Transit Visibility Modernization (ITVMOD) domain analysis effort
[Petro 95, Devasirvatham 94]

• Telecommunication Automated Prompt and Response Domain at
NORTEL (Northern Telecom) [Schnell 96]

Training is available.

Costs and
Limitations

For small projects, use of the simulation capabilities of a commercial tool
like Statemate was effective during operational analysis in demonstrating
the capabilities of a system; however, for large projects potential users
must be convinced that the model and tool can be effectively used to
specify a new system of the scale needed. The ability to use a modeling
tool that can both capture the domain model and produce prototype code
to simulate a system based upon feature selection would benefit the
FODA method.
CMU/SEI-97-HB-001 187

Feature-Oriented Domain Analysis
References and
Information
Sources

[Cohen 92] Cohen, Sholom G., et al. Application of Feature-Oriented Domain Analy-
sis to the Army Movement Control Domain (CMU/SEI-91-TR-28, ADA
256590). Pittsburgh, PA: Software Engineering Institute, Carnegie Mel-
lon University, 1992.

[Devasirvatham
94]

Devasirvatham, Josiah, et al. In-Transit Visibility Modernization Domain
Scoping Report Comprehensive Approach to Reusable Defense Soft-
ware (STARS-VC-H0002/001/00). Fairmont, WV: Comprehensive Ap-
proach to Reusable Defense Software, 1994.

[Kang 90] Kang, Kyo C., et al. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1990.

[Krut 93] Krut, Robert W. Jr. Integrating 001 Tool Support into the Feature-Orient-
ed Domain Analysis Methodology (CMU/SEI-93-TR-11, ESC-TR-93-
188) Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1993.

[Krut 96] Krut, R. & Zalman, N. Domain Analysis Workshop Report for the Auto-
mated Prompt & Response System Domain (CMU/SEI-96-SR-001).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Univer-
sity, 1996.

[Peterson 91] Peterson, A. Spencer & Cohen, Sholom G. A Context Analysis of Move-
ment Control Domain for the Army Tactical Command and Control Sys-
tem (CMU/SEI-91-SR-03). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1991.

[Petro 95] Petro, James J.; Peterson, Alfred S.; & Ruby, William F. In-Transit Visi-
bility Modernization Domain Modeling Report Comprehensive Approach
to Reusable Defense Software (STARS-VC-H002a/001/00). Fairmont,
WV: Comprehensive Approach to Reusable Defense Software, 1995.

Index
Categories

Name of technology Feature-Oriented Domain Analysis

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4), Maintainability (QM.3.1),
Understandability (QM.3.2)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
188 CMU/SEI-97-HB-001

Feature-Oriented Domain Analysis
[Schnell 96] Schnell, K.; Zalman, N.; & Bhatt, Atul. Transitioning Domain Analysis: An
Industry Experience (CMU/SEI-96-TR-009). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.

Author Liz Kean, Rome Laboratory
liz@se.rl.af.mil

External
Reviewer(s)

Spencer Peterson, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 189

Feature-Oriented Domain Analysis
190 CMU/SEI-97-HB-001

Firewalls and Proxies
Firewalls and Proxies IN REVIEW

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

Firewalls and proxies were developed in the early 1990s as the use of the
Internet rapidly expanded. Malicious users on the Internet often try to
break into computers on a network to obtain information illegally or to
cause damage. There can also be malicious users on Intranets and
LANs. In addition to the security provided within each host on the network
to prevent malicious access, firewalls and proxies are a means of provid-
ing security between networks (see Figure 22, pg. 310). A firewall is one
of several ways of protecting one network from another network [Vacca
96]. Proxies are application programs that masquerade as other pro-
grams to provide security checks. They frequently masquerade as email,
FTP, Telnet, or World Wide Web (WWW) clients.

Technical Detail The fundamental function of a firewall is to restrict the flow of information
between two networks [Garfinkel 96]. As shown in Figure 13, there are
three basic firewall configurations:

1. screening router

2. screened host

3. sub network

Figure 13: Firewall Configurations

The simplest scheme is the Screening Router. Networks are connected
to other networks through hardware called a router. Sophisticated routers
can be set up to operate as a packet filter. They only allow Internet Pro-

Screening Router
Configuration

Screened Host
Configuration

Sub-Network
Firewall

Host Host

Router

External Network

Protected Network

Bastion
Host

Host Host... ...

Router

External Network

Protected Network

Bastion
Host

Host Host...

Router

External Network

Router

Protected Network

Host Host...
CMU/SEI-97-HB-001 191

Firewalls and Proxies
tocol (IP) packets that have a predetermined destination or source ID to
pass to the protected network. This scheme is sometimes called the
Packet Filtering firewall.

The Screened Host is a more secure scheme. It consists of a screening
router that only routes to a single host on the protected network, which
then determines whether the data can be passed on to other hosts in the
network. That host is sometimes called the Bastion Host. This host ex-
amines incoming traffic to determine if it can be passed to one of the oth-
er hosts on the protected network, and examines outgoing traffic to
determine if it can be permitted to leave. In addition to the filtering soft-
ware that executes on the Bastion Host, proxies may execute. This soft-
ware allows for programs like Telnet and FTP, that have their own
applications protocol, to execute that protocol across the firewall and still
be secure. For example, a proxy for FTP can examine an incoming FTP
block and, if approved, pass it on to the FTP code that executes in one
of the protected hosts. A variation of the Screened Host scheme is to
eliminate the router. The Bastion Host is connected directly to the exter-
nal network and the protected network and performs the screening func-
tion of the missing router in software. This variation of the Screened Host
configuration is called the Dual-Homed Gateway.

The most secure firewall scheme is the Sub-Network Firewall scheme. It
consists of a network of hosts (there may be only one host) that is isolat-
ed from the external network with a router and also isolated from the pro-
tected network with another router. This sub-network is sometimes called
the Perimeter Network. The hosts in the sub-network may include appli-
cations like FTP or Telnet that are protected by proxies. Individual hosts
may be used to service separate protocols— e.g., one host services FTP
transactions, another services Telnet transactions. The router between
the external network and the sub-network performs the same function as
the router in the Screened Host scheme. It routes traffic that is allowed to
pass to a Bastion Host in the sub-network. The router between the sub-
network and the protected network provides protection if the Bastion
Host is penetrated. It will not allow packets that did not originate from the
Bastion Host in the sub-network through to the protected network.

Usage
Considerations

The least expensive and fastest form of a firewall is the Screening Rout-
er. The Screening Router allows the most free Internet access from with-
in the protected network. This scheme is most likely to be used where
minimum security is required, for example, on an administrative network,
as it is most susceptible to penetration. The Screened Host Gateway fire-
wall scheme is more secure but is also more expensive than the Screen-
ing Router, as it ties up one of the hosts on the protected network. The
192 CMU/SEI-97-HB-001

Firewalls and Proxies
Sub-Network is the most secure firewall scheme but also requires the
most hardware and is the most difficult to administer.

Maturity Many commercial products are available to implement firewalls. Routers
and Gateway software capabilities have come into widespread use with
the explosive growth of the Internet that began in the early 1990s. The
capabilities provided by these products must be constantly reevaluated
by network managers since the threat to network security is constantly
getting more sophisticated. A large number of Internet hackers are con-
stantly seeking ways to circumvent current technology. The most mature
firewall scheme is the Dual-Homed Gateway, which used a commercial-
ly-available host connected to two networks before sophisticated routers
were developed.

Costs and
Limitations

The Screening Router firewall scheme is inexpensive but also has the
most security limitations. Routers used in this scheme have no software,
so logging of activity through the router (that may be break-in attempts)
is not feasible. Individualized filtering by users is not possible. Since de-
tection of break-ins is difficult, the hosts on the protected network may be
thoroughly compromised before a successful break-in attempt is known.
Since any of the hosts in the protected network can be accessed through
the router, the network is only as secure as the weakest host on the net-
work. Once that host is broken into it can be used to access the other
hosts.

Since the Screened Host firewall by design disables the UNIX capability
to automatically forward received packets, it complicates the processing
of application level protocols for programs like FTP and Telnet. In some
cases, Screened Host firewalls prevent those services from being used.
The Bastion Host requires particular effort to make it the most secure
host on the protected network because if it is broken into the other hosts
are all vulnerable.

The Sub-Network scheme requires the most hardware and is the most
difficult to administer because the addresses on two routers must be
maintained. The software for the Bastion host in the network is more
complex since it must have proxies to provide many Internet services to
the protected network.

Dependencies Firewall technology is driven by the capabilities of the rapidly-changing
networking technologies. For instance, when Java (see pg. 221) applets
became available on the World Wide Web (WWW), it was possible to im-
port malicious code hidden in the applets. To prevent this, it was desir-
able to block any Java applet at the firewall. If a proxy was being used in
CMU/SEI-97-HB-001 193

Firewalls and Proxies
the firewall to filter WWW traffic, the proxy had to be enhanced to recog-
nize Java applets from the WWW protocol.

Alternatives The security alternative to using Firewalls to prevent theft of data or dam-
age from malicious network users is physical isolation of the networks.
That may conflict with mission performance needs in a C4I environment
if manual transfer of data from network to network is not acceptable. Data
theft may be prevented through the encryption of data, but that will not
stop malicious damage.

Complementary
Technologies

Network security guards are a complimentary technology as they per-
form similar functionality in a trusted environment. Intrusion detection
technology (see pg. 217) may be incorporated into Firewall software.

References and
Information
Sources

[Garfinkel 96] Garfinkel, Simson & Spafford, Gene. Practical UNIX and Internet Securi-
ty Second Edition. Sebastopol, CA: O’Reilly & Associates, Inc., 1996.

[Vacca 96] Vacca, John. Internet Security Secrets. Foster City, CA: IDG Books
Worldwide, Inc., 1996.

Author Tom Mills, Lockheed Martin
TMILLS@ccs.lmco.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Firewalls and Proxies

Application category System Security (AP.2.4.3)

Quality measures category Vulnerability (QM.2.1.4.1), Security(QM.2.1.5)

Computing reviews category Security & Protection (K.6.5), Computer-Com-
munications Network Security and Protection
(C.2.0)
194 CMU/SEI-97-HB-001

Function Point Analysis
Function Point Analysis ADVANCED

Purpose and
Origin

The function point metric was devised in 1977 by A. J. Albrecht, then of
IBM, as a means of measuring software size and productivity. It uses
functional, logical entities such as inputs, outputs, and inquiries that tend
to relate more closely to the functions performed by the software as com-
pared to other measures, such as lines of code. Marciniak provides a
good capsule introduction to the application of function point measure-
ment [Marciniak 94].

Function point definition and measurement have evolved substantially;
the International Function Point User Group (IFPUG), formed in 1986,
actively exchanges information on function point analysis (FPA) [IFPUG
96]. The original metric has been augmented and refined to cover more
than the original emphasis on business-related data processing. FPA
has become generally accepted as an effective way to

• estimate a software project’s size (and in part, duration)

• establish productivity rates in function points per hour

• evaluate support requirements

• estimate system change costs

• normalize the comparison of software modules

However, uniformity of application and results are still issues (see Usage
Considerations on pg. 196). For reasons explained below in Technical
Detail, FPA has been renamed functional size measurement, but FPA re-
mains the more commonly used term.

Technical Detail Basic function points are categorized into five groups: outputs, inquiries,
inputs, files, and Interfaces. A function point is defined as one end-user
business function, such as a query for an input. This distinction is impor-
tant because it tends to make a function point map easily into user-ori-
ented requirements, but it also tends to hide internal functions, which
also require resources to implement. To make up for this (and other)
weaknesses, some refinements to and/or variations of the basic Albrecht
definition have been devised, including

• Early and easy function points. Adjusts for problem and data
complexity with two questions that yield a somewhat subjective
complexity measurement; simplifies measurement by eliminating the
need to count data elements.

• Engineering function points. Elements (variable names) and
operators (e.g., arithmetic, equality/inequality, Boolean) are counted.
This variation highlights computational function [Umholtz 94]. The
CMU/SEI-97-HB-001 195

Function Point Analysis
intent is similar to that of the operator/operand-based Halstead
measures (see pg. 209).

• Bang measure. Defines a function metric based on twelve primitive
(simple) counts that affect or show Bang, defined as “the measure of
true function to be delivered as perceived by the user” [DeMarco 82].
Bang measure may be helpful in evaluating a software unit’s value in
terms of how much useful function it provides, although there is little
evidence in the literature of such application. The use of Bang
measure could apply when reengineering (either complete or
piecewise) is being considered, as discussed in Maintenance of
Operational Systems— an Overview, pg. 237

• Feature points. Adds changes to improve applicability to systems
with significant internal processing (e.g., operating systems,
communications systems). This allows accounting for functions not
readily perceivable by the user, but essential for proper operation.

Usage
Considerations

There is a very large user community for function points; IFPUG has
more than 1200 member companies, and they offer assistance in estab-
lishing a FPA program. The standard practices for counting and using
function points are found in the IFPUG Counting Practices Manual [IF-
PUG 96]. Without some standardization of how the function points are
enumerated and interpreted, consistent results can be difficult to obtain.
Successful application seems to depend on establishing a consistent
method of counting function points and keeping records to establish
baseline productivity figures for your specific systems. Function mea-
sures tend to be independent of language, coding style, and software ar-
chitecture, but environmental factors such as the ratio of function points
to source lines of code will vary.

The proliferation of refinements and variations of FPA noted in Technical
Detail, pg. 195, has led to fragmentation. To remedy this, a Joint Techni-
cal Committee (JTC1) of the International Standards Organization (ISO)
has been working since 1993 to develop ISO standards for sizing meth-
ods [Rehesaar 96]. This standardization effort is now called Functional
Size Measurement.

Counting the function points needed for FPA remains largely a manual
operation. This is an impediment to use. Wittig offers an approach to par-
tial automation of function point counting [Wittig 94].
196 CMU/SEI-97-HB-001

Function Point Analysis
There are continuing concerns about the reliability and consistency of
function point counts, such as

• whether two trained human counters will produce the same result for
the same system

• the lack of inter-method reliability resulting from the variations
described in Technical Detail on pg. 195

These reliability questions are addressed in a practical research effort
described in Kemerer [Kemerer 93]. Siddiqee presents FPA as a good
measure of productivity in a large software production environment in
Lockheed Corporation [Siddiqee 93].

Any systematic FPA effort should collect the information into a database
for ongoing analysis as the code is developed and/or modified.

Maturity FPA is in use in many industrial software companies; IFPUG is large, with
more than 1200 member companies, and offers many resources. As not-
ed above, however, an ISO-level standard is still in the making.

Costs and
Limitations

Currently, function point counting is a time-consuming and largely man-
ual activity unless tools are built to assist the process. Wittig and Kemerer
cite that it took more than five days to count a 4,000 function point system
[Wittig 94, Kemerer 93]. However, the level of acceptance by software
companies indicates that FPA is useful. Training in FPA is highly recom-
mended; IFPUG can assist in securing training and locating FPA tools
[IFPUG 96].

Alternatives For estimation of effort, approaches based on lines of code (LOC) are an
alternative. The now-classic COCOMO (constructive cost model) meth-
od and its REVIC (revised intermediate COCOMO) implementation pro-
vide a discipline for using LOC as a software size estimator [Boehm 81].

Complementary
Technologies

LOC can also be used in a complementary sense as a check on results.
There is also a technique called Backfiring that consists of a set of bidi-
rectional equations for converting between function points and LOC
[Jones 95]. This is reportedly useful when using sizing data from a com-
bination of projects, some with metrics in LOC and some in function
points. However, generalizing the Backfiring technique to yield a simple
LOC-per-function point ratio is not advisable.
CMU/SEI-97-HB-001 197

Function Point Analysis
References and
Information
Sources

[Boehm 81] Boehm, Barry W. Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[DeMarco 82] DeMarco, Tom. Controlling Software Projects: Management, Measure-
ment, and Estimation. New York, NY: Yourdon Press, 1982.

[Dreger 89] Dreger, J. Brian. Function Point Analysis. Englewood Cliffs, NJ: Prentice
Hall, 1989.

[Heller 95] Heller, Roger. “An Introduction to Function Point Analysis,” Crosstalk,
Journal of Defense Software Engineering 8, 11 (November/December
1995): 24-26.

[IFPUG 96] The International Function Point Users’ Group (IFPUG) Web site [online].
Available WWW <URL: http://www.bannister.com/ifpug/home/docs/
ifpughome.html> (1996).

[Jones 95] Jones, Capers. “Backfiring: Converting Lines of Code to Function
Points.” IEEE Computer 28, 11 (November 1995): 87-8.

[Kemerer 93] Kemerer, Chris. “Reliability of Function Points Measurement: A Field Ex-
periment.” Communications of the ACM 36, 2 (February 1993): 85-97.

[Marciniak 94] Marciniak, John J., ed. Encyclopedia of Software Engineering, 518-524.
New York: John Wiley & Sons, 1994.

[Rehesaar 96] Rehesaar, Hugo. “ISO/IEC Functional Size Measurement Standards,”
311-318. Proceedings of the GUFPI/IFPUG Conference on Software
Measurement and Management. Rome, Italy, February 5-9, 1996. West-
erville, OH: International Function Point Users Group, 1996.

[Siddiqee 93] Siddiqee, M. Waheed. “Function Point Delivery Rates Under Various En-
vironments: Some Actual Results,” 259-264. Proceedings of the Comput-
er Management Group’s International Conference. San Diego, CA,
December 5-10, 1993. Chicago, IL: Computer Management Group,
1993.

Index
Categories

Name of technology Function Point Analysis

Application category Cost Estimation (AP.1.3.7)

Quality measures category Productivity (QM.5.2)

Computing reviews category Software Engineering Metrics (D.2.8), Soft-
ware Engineering Management (D.2.9)
198 CMU/SEI-97-HB-001

Function Point Analysis
[Umholtz 94] Umholtz, Donald C. & Leitgeb, Arthur J. “Engineering Function Points
and Tracking Systems.”Crosstalk, Journal of Defense Software Engi-
neering 7, 11 (November 1994): 9-14.

[Wittig 94] Wittig, G. E. & Finnie, G. R. “Software Design for the Automation of Un-
adjusted Function Point Counting,” 613-623. Business Process Re-Engi-
neering Information Systems Opportunities and Challenges, IFIP TC8
Open Conference. Gold Coast, Queensland, Australia, May 8-11, 1994.
The Netherlands: IFIP, 1994.

Author Edmond VanDoren, Kaman Sciences
bvandoren-cos3@kaman.com

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 199

Function Point Analysis
200 CMU/SEI-97-HB-001

Graphic Tools for Legacy Database Migration
Graphic Tools for Legacy Database Migration ADVANCED

Purpose and
Origin

Graphic tools for legacy database migration are used to aid in the exam-
ination of legacy data in preparation for migration of one or more data-
bases, often as part of a system migration or reengineering effort. They
are intended to enhance understandability and portability of databases
by providing easily-manipulated views of both content and structure that
facilitate analysis [Selfridge 94].

Technical Detail A graphical tool portrays a database’s organization and data in graphical
form. This enhances the understandability of the database(s) by allowing
the analyst to assess the condition and organization of the data, including
overlap and duplication of data items, in preparation for migration. This
enhancement is desirable for several reasons:

1. Databases are typically complex, and may lack adequate documen-
tation.

2. The information to be migrated may be contained in several separate
databases built for different purposes.

The latter usually creates data redundancy, including multiple instances
of a field, and even different representations of the same data (e.g., float-
ing point in one place, fixed point or text in another). Important legacy in-
formation may be buried in text fields that must be found in order to
capture the data’s content. Bennett describes some of these problems
[Bennett 95]. Legacy database migration is usually done to improve a
system’s maintainability (modifiability, testability, and/or ease of life cycle
evolution). Database migration is typically performed as part of a larger
system reengineering effort. It is a branch of database design and engi-
neering, and requires the same set of disciplines.

Usage
Considerations

A visualization tool is only part of the toolset of interest in migrating lega-
cy data. Other tools might include the following:

• data modelers

• data entry and/or query screen translators

• report translators

• data-moving and translation utilities

A migration strategy is required to create a normalized file structure with
referential integrity out of large, multiple databases. The tools must fit the
environment, and the target database must be interfaced with the system
and application software; this implies the need for compatibility with the
languages used. The design of the target database can greatly affect
CMU/SEI-97-HB-001 201

Graphic Tools for Legacy Database Migration
performance and maintainability; therefore the first goal of the migration
effort should be to define a target schema suitable for the application.

Maturity Major database vendors offer tools of this type; the tools are typically op-
timized toward their database product as the target, but they accept other
databases as input. There are also independent sources of visualization
tools, as well as tools produced by research efforts [Selfridge 94, Gray
94]. Database migration, when offered as a service, often uses visualiza-
tion tools to facilitate understanding between customer and consultant
about the migration approach, process, and results [Ning 94].

Costs and
Limitations

The cost of such a tool, including training, should be nominal compared
to the total cost of the target database system’s software, and may even
be included. However, the migration itself can be costly in time and train-
ing; experience is required for good, normalized database design.

Dependencies A migration effort would typically be coincident with a reengineering of
the software that access the data, and would be intimately tied to the ap-
proaches used to do this reengineering.

Alternatives An alternative to migration of the database is to link existing heteroge-
neous databases to each other. This approach eliminates the need to mi-
grate the data, but also retains all the structural inefficiencies of the
current databases, and may degrade performance. It may also create
maintainability problems because each old database will require a sepa-
rate knowledge set, and because their platforms may be not be support-
able. The approach requires writing interface software that act as
gateways to the other database management systems (DBMS), file sys-
tems, and/or other existing applications. The object request broker tech-
nology (see pg. 291) exemplified by the emerging Common Object
Broker Architecture (CORBA) standard (see pg. 107), as well as prod-
ucts offered by commercial database vendors, offer the capability to link
existing heterogeneous databases. This includes the ability to associate
data elements in different databases, and do JOINS across database
boundaries.

Complementary
Technologies

Other tools for analyzing data content and structure are available from
commercial vendors and academic and research organizations. Knowl-
edge-based approaches, for example, may have the ability to infer iden-
tity between multiple, differently-named instances of a data item. Other
approaches such as these can compliment the use of graphical analyz-
ers. Migration is typically done in the context of open systems (see pg.
135), which implies a large number of technologies that would be helpful
together.
202 CMU/SEI-97-HB-001

Graphic Tools for Legacy Database Migration
References and
Information
Sources

[Bennett 95] Bennett, K. “Legacy Systems: Coping With Stress.” IEEE Software 12, 1
(January 1995): 19-23.

[Gray 94] Gray, W. A.; Wikramanayake, G. N.; & Fiddian, N. J. “Assisting Legacy
Database Migration,” 5/1-3. IEE Colloquium: Legacy Information Sys-
tem— Barriers to Business Process Re-Engineering (1994/246). Lon-
don, UK, December 13, 1994. London, UK: IEE, 1994.

[Ning 94] Ning, Jim Q.; Engberts, Andre; & Kozaczynski, W. “Automated Support
for Legacy Code Understanding.” Communications of the ACM 37, 5
(May 1994): 50-57.

[Selfridge 94] Selfridge, Peter G. & Heineman, George T. “Graphical Support for Code-
Level Software Understanding,” 114-24. Ninth Knowledge-Based Soft-
ware Engineering Conference. Monterey, CA, September 1994. Los
Alamitos, CA: IEEE Computer Society Press, 1994.

Author Edmond VanDoren, Kaman Sciences
bvandoren-cos3@kaman.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Graphic Tools for Legacy Database Migration

Application category Database Design (AP.1.3.2), Reengineering
(AP.1.9.5)

Quality measures category Understandability (QM.3.2), Maintainability
(QM.3.1), Testability (QM.1.4.1), Compatibility
(QM.4.1.1), Throughput (QM.2.2.3)

Computing reviews category Database Management - Logical Design
(H.2.1)
CMU/SEI-97-HB-001 203

Graphic Tools for Legacy Database Migration
204 CMU/SEI-97-HB-001

Graphical User Interface Builders
Graphical User Interface Builders ADVANCED

Purpose and
Origin

Graphical user interface (GUI) builders are software engineering tools
developed to increase the productivity of user interface (UI) development
teams, and to lower the cost of UI code in both the development and
maintenance phases. One study found that an average of 48% of appli-
cation code is devoted to the UI, and 50% of the development time re-
quired for the entire application is devoted to the UI portion [Myers 95].
Use of GUI builders can significantly reduce these numbers. For exam-
ple, the MacApp system from Apple has been reported to reduce devel-
opment time by a factor of four. Another study found that an application
using a popular GUI tool wrote 83% fewer lines of code and took one-half
the time compared to applications written without GUI tools [Myers 95].
Original GUI research was conducted at the Stanford Research Institute,
Xerox Palo Alto Research Center, and Massachusetts Institute of Tech-
nology in the 1970s [Myers 95].

Technical Detail A GUI development tool simplifies the coding of complex UI applications
by providing the developer with building blocks (or widgets) of UI compo-
nents. These building blocks are manipulated by the developer into a co-
hesive UI allowing a smaller workforce to develop larger amounts of user
interface software in shorter time periods. A GUI builder enhances us-
ability by providing a development team with a prototyping capability so
that proposed UI changes can be rapidly demonstrated to the end user
to secure requirements validation and acceptance. This aspect can de-
crease the turnaround time for making UI changes in the Operations and
Maintenance (O&M) phase, which enhances maintainability as well.

GUI development tools can be broadly categorized into two types:

• Interface Development Tools (IDTs)

• User Interface Management Systems (UIMSs)

IDTs are used for building the interface itself, but nothing more. By con-
trast, UIMSs extend the functionality of IDTs to include application devel-
opment (code generation tools) or scripting tools. A UIMS also allows the
developer to specify the behavior of an application with respect to the in-
terface. These two types of GUI builders permit the interactive creation
of the front-end GUI using a palette of widgets, a widget attribute speci-
fication form, a menu hierarchy (menu tree structure), a tool bar, and a
view of the form. The UIMS adds the benefits of code generation tools,
which can greatly increase the productivity of the GUI development staff.
After the front-end is created by a UIMS, a code generator is used to pro-
CMU/SEI-97-HB-001 205

Graphical User Interface Builders
duce C/C++ code, Motif User Interface Language (UIL) code, Ada code
or some combination of C, Ada, and UIL.

Usage
Considerations

GUI builders are useful for development of complex user interfaces be-
cause they increase software development speed by providing tools to
lay out screens graphically and automatically generate interface code.
Additionally, in applications that are susceptible to continuing user inter-
face change such as command and control applications, the use of GUI
builders greatly increases the ability to add/modify user interface func-
tionality in minimal time to support mission changes or new require-
ments.

This technology works best when used in new development and reengi-
neering. To take full advantage of the benefits of using GUI builders, the
most desirable software architecture would be one that ensures the user
interface software is isolated on a single layer as opposed to being em-
bedded within several different software components. This isolation sim-
plifies the UI portion of the software, thus making changes during
development easier as well as enhancing future maintainability and
evolvability.

Maturity From the early GUI research started in the 1970s, GUI builder tools have
grown into an estimated $1.2 billion business [Myers 95]. Today there are
literally hundreds of GUI builders on the market supporting platforms
ranging from UNIX to DOS. Virtually all new commercial and government
applications use some form of UI builder tool. GUI builders have been
successfully used on legacy systems when large changes or UI rede-
signs were applied to the user interface portion of the software [Myers
95].

Costs and
Limitations

This technology requires workstations or PCs dedicated to support the
development, rapid prototype, and validation of user interfaces. The most
widely used GUI builders on the market today require minimal learning
time for C and C++ trained developers. These packages come with ap-
propriate training materials, online help features, and vendor-supplied
help lines which help make the developers productive in minimal time.
There are few formal training costs associated with the use of GUI build-
ers; however an organization would be well advised to provide internal
training focusing on standardized approaches and techniques similar to
design and coding standards for source code.

The prime costs with GUI builders are the initial license fees, annual
maintenance agreements, and the cost of the workstations. In the UNIX
environment, typical license costs for full UIMS GUI builders are in the
range of $5k to $7.5k per single user license. For Windows or Macintosh
206 CMU/SEI-97-HB-001

Graphical User Interface Builders
environments, the costs range from $300 to $600 per user license. The
maintenance agreements are key to keeping each GUI builder updated
with vendor corrections and upgrades.

Dependencies GUI development tools employ window managers as the foundation
upon which a user interface can be built. A window manager allows the
user to display, alter, and interact with more than one window at a time.
The window manager’s primary responsibility is to keep track of all as-
pects of each of the windows being displayed. In terms of numbers of ap-
plications in use, the two most popular window managers are Open
Windows and Motif from Open Software Foundation (OSF) [OSF 96].

Alternatives UI software can be developed without the use of GUI builders by using
the features of window managers. For example, developers can use the
X Windows based Motif (from OSF) and its rich set of widgets and fea-
tures to design and implement UIs. This may be desirable for smaller,
less complex UI applications for which the developer does not require the
assistance (and extra cost) of GUI builders.

References and
Information
Sources

[Myers 95] Myers, Brad A. “User Interface Software Tools.” ACM Transactions on
Computer-Human Interaction 2, 1 (March 1995): 64-108.

[OSF 96] OSF Home Page [online]. Available WWW <URL: http://www.osf.org>
(1996).

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

External
Reviewer(s)

Brian Gallagher, SEI

Last Modified 10 Jan 97

Index
Categories

Name of technology Graphical User Interface Builders

Application category Interfaces Design (AP.1.3.3), Code (AP.1.4.2),
Reapply Software Life Cycle (AP.1.9.3), Re-
engineering (AP.1.9.5)

Quality measures category Usability (QM.2.3), Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2), User Interfaces (H.1.2)
CMU/SEI-97-HB-001 207

Graphical User Interface Builders
208 CMU/SEI-97-HB-001

Halstead Complexity Measures
Halstead Complexity Measures ADVANCED

Note We recommend that Maintainability Index Technique for Measuring Pro-
gram Maintainability, pg. 231, be read concurrently with this technology
description, It illustrates a specific application of Halstead complexity to
quantify the maintainability of software.

Purpose and
Origin

Halstead complexity measurement was developed to measure a pro-
gram module’s complexity directly from source code, with emphasis on
computational complexity. The measures were developed by the late
Maurice Halstead as a means of determining a quantitative measure of
complexity directly from the operators and operands in the module [Hal-
stead 77]. Among the earliest software metrics, they are strong indicators
of code complexity. Because they are applied to code, they are most of-
ten used as a maintenance metric. There are widely differing opinions on
the worth of Halstead measures, ranging from “convoluted... [and] unre-
liable” [Jones 94] to “among the strongest measures of maintainability”
[Oman 92]. The material in this technology description is largely based
on the empirical evidence found in the Maintainability Index work, but
there is evidence that Halstead measures are also useful during devel-
opment, to assess code quality in computationally-dense applications.

Technical Detail The Halstead measures are based on four scalar numbers derived di-
rectly from a program’s source code:

From these numbers, five measures are derived:

These measures are simple to calculate once the rules for identifying op-
erators and operands have been determined (Szulewski notes that es-
tablishing these rules can be quite difficult [Szulewski 84]). The extraction

n1 = the number of distinct operators

n2 = the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

Measure Symbol Formula

Program length N N= N1 + N2

Program vocabulary n n= n1 + n2

Volume V V= N * (LOG2 n)

Difficulty D D= (n1/2) * (N2/n2)

Effort E E= D * V
CMU/SEI-97-HB-001 209

Halstead Complexity Measures
of the component numbers from code requires a language-sensitive
scanner, which is a reasonably simple program for most languages.
Oman describes a tool for use in determining maintainability which, for
Pascal and C, computes the following [Oman 91]:

V for each module; and

V(g), the average Halstead volume per module for a system
of programs

For Pascal alone, the following are also computed:

E for each module; and

E(g), the average Halstead volume per module for a system
of programs

Usage
Considerations

Applicability. The Halstead measures are applicable to operational sys-
tems and to development efforts once the code has been written. Be-
cause maintainability should be a concern during development, the
Halstead measures should be considered for use during code develop-
ment to follow complexity trends. A significant complexity measure in-
crease during testing may be the sign of a brittle or high-risk module.
Halstead measures have been criticized for a variety of reasons, among
them the claim that they are a weak measure because they measure lex-
ical and/or textual complexity rather than the structural or logic flow com-
plexity exemplified by cyclomatic complexity measures (see pg. 145).
However, they have been shown to be a very strong component of the
Maintainability Index measurement of maintainability (see pg. 231). In
particular, the complexity of code with a high ratio of calculational logic to
branch logic may be more accurately assessed by Halstead measures
than by cyclomatic complexity (see pg. 145), which measures structural
complexity.

Relation to other complexity measures. Marciniak describes all of the
commonly-known software complexity measures and puts them in a
common framework [Marciniak 94]. This is helpful background for any
complexity measurement effort. Most measurement programs benefit
from using several measures, at least initially; discarding those that do
not suit the specific environment; and combining those that work (see
Complementary Technologies on pg. 211). This is illustrated by Maintain-
ability Index Technique for Measuring Program Maintainability, pg. 231,
which describes the use of Halstead measures in combination with other
complexity measures. When used in this context, the problems with es-
tablishing rules for identifying the elements to be counted are eliminated.

Maturity Halstead measures were introduced in 1977 and have been used and
experimented with extensively since that time. They are one of the oldest
210 CMU/SEI-97-HB-001

Halstead Complexity Measures
measures of program complexity. Because of the criticisms mentioned
above, they have seen limited use. However, their properties are well-
known and, in the context explained in Usage Considerations, pg. 210,
they can be quite useful.

Costs and
Limitations

The algorithms are free; the tool described in Technical Detail, pg. 209,
contains Halstead scanners for Pascal and C, and some commercially-
available CASE toolsets include the Halstead measures as part of their
metric set. For languages not supported, standalone scanners can prob-
ably be written inexpensively, and the results can be exported to a
spreadsheet or database to do the calculations and store the results for
use as metrics. It should be noted that difficulties sometimes arise in
uniquely identifying operators and operands. Consistency is important.
Szulewski discusses this, defines consistent counting techniques for
Ada, and points to other sources of counting techniques for some other
languages [Szulewski 84]. Adding Halstead measures to an existing
maintenance environment’s metrics collection effort and then applying
them to the software maintenance process will require not only the code
scanner, but a collection system that feeds the resulting data to the met-
rics effort. Halstead measures may not be sufficient by themselves as
software metrics (see Complementary Technologies).

Alternatives Common practice today is to combine measures to suit the specific pro-
gram environment. Most measures are amenable for use in combination
with others (although some overlap). Thus, many alternative measures
are to some degree complementary. Oman presents a very comprehen-
sive list of code metrics that are found in maintainability analysis work,
and orders them by degree of influence on the maintainability measure
being developed in that effort [Oman 94]. Some examples are (all are av-
erages across the set of programs being measured)

• lines of code per module

• lines of comments per module

• variable span per module

• lines of data declarations per module

Complementary
Technologies

Cyclomatic complexity and its associated complexity measures (see pg.
145) measure the structural complexity of a program. Maintainability In-
dex Technique for Measuring Program Maintainability, pg. 231, com-
bines cyclomatic complexity with Halstead measures to produce a
practical measure of maintainability.

Function point measures (see pg. 195) provide a measure of functional-
ity, with some significant limitations (at least in the basic function point
CMU/SEI-97-HB-001 211

Halstead Complexity Measures
enumeration method); the variant called engineering function points adds
measurement of mathematical functionality that may complement Hal-
stead measures.

Lines-of-code (LOC) metrics offer a gross measure of code, but do not
measure content well. However, LOC in combination with Halstead mea-
sures may help relate program size to functionality.

References and
Information
Sources

[Halstead 77] Halstead, Maurice H. Elements of Software Science, Operating, and Pro-
gramming Systems Series Volume 7. New York, NY: Elsevier, 1977.

[Jones 94] Jones, Capers. “Software Metrics: Good, Bad, and Missing.” Computer
27, 9 (September 1994): 98-100.

[Marciniak 94] Marciniak, John J., ed. Encyclopedia of Software Engineering, 131-165.
New York: John Wiley & Sons, 1994.

[Oman 91] Oman, P. HP-MAS: A Tool for Software Maintainability, Software Engi-
neering (#91-08-TR). Moscow, ID: Test Laboratory, University of Idaho,
1991.

[Oman 94] Oman, P. & Hagemeister, J. “Constructing and Testing of Polynomials
Predicting Software Maintainability.” Journal of Systems and Software
24, 3 (March 1994): 251-266.

[Szulewski 84] Szulewski, Paul, et al. Automating Software Design Metrics (RADC-TR-
84-27). Rome, NY: Rome Air Development Center, 1984.

Index
Categories

Name of technology Halstead Complexity Measures

Application category Code (AP.1.4.2), Debugger (AP.1.4.2.4), Test
(AP.1.4.3), Unit Testing (AP.1.4.3.4), Compo-
nent Testing (AP.1.4.3.5), Reapply Software
Life Cycle (AP.1.9.3), Reengineering
(AP.1.9.5)

Quality measures category Maintainability (QM.3.1), Testability
(QM.1.4.1), Understandability (QM.3.2), Com-
plexity (QM.3.2.1)

Computing reviews category Software Engineering Distribution and Mainte-
nance (D.2.7), Software Engineering Metrics
(D.2.8), Complexity Classes (F.1.3), Tradeoffs
Among Complexity Measures (F.2.3)
212 CMU/SEI-97-HB-001

Halstead Complexity Measures
Author Edmond VanDoren, Kaman Sciences
bvandoren-cos3@kaman.com

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 213

Halstead Complexity Measures
214 CMU/SEI-97-HB-001

Hybrid Automata
Hybrid Automata ADVANCED

Purpose and
Origin

Hybrid automata form the basis for a specification and design technique
for use in software support tools [Henzinger 94]. They were developed by
Thomas Henzinger to broaden formal specifications to include continu-
ous variables, such as response time and distance — that describe a
system’s operating environment.

Technical Detail Hybrid automata increase the completeness of specifications and the fi-
delity of models by allowing continuous properties of the operating envi-
ronment to be specified and modeled directly. Hybrid automata are
extensions of finite state automata to continuous quantities. Finite state
automata provide a mathematical foundation for reasoning about sys-
tems in terms of their discrete properties. In hybrid automata, state tran-
sitions may be triggered by functions on continuous variables. Any linear
continuous property of a system can be specified and modeled using this
technique. It is not clear whether hybrid automata can be usefully extend-
ed to nonlinear continuous variables.

Usage
Considerations

Hybrid automata are useful for developing systems that must interact in
a substantial way with the physical world. Response time, as required in
command and control, avionics, and air traffic control, is an example of
such interaction. Because the resulting models are more faithful to reali-
ty, hybrid automata will likely contribute to increased correctness and re-
liability. Additional work is needed to determine whether this technique is
extendible to nonlinear continuous variables and scalable to large sys-
tems of linear continuous variables.

Maturity The technique was devised around 1992 with a prototype model checker,
HyTech, developed in 1994. The technique has been applied experimen-
tally to a few cases, including verification of an industrial converter be-
tween analog and digital signals. This converter uses distributed clocks
that may drift apart. The model checker automatically computes maxi-
mum clock drift so that the converter works correctly.

Costs and
Limitations

Adaptation of this technique requires knowledge of discrete mathematics
at the level of automata theory and continuous mathematics at the level
of differential equations.

Dependencies Hybrid automata are enablers for technologies that check the consisten-
cy of requirements for contiguous properties.

Alternatives Other approaches to capturing and processing continuous properties of
a system’s operating environment have been stochastic methods, prob-
abilistic automata, and dynamic simulation.
CMU/SEI-97-HB-001 215

Hybrid Automata
Complementary
Technologies

Model checking is a useful approach for verifying that hybrid automata
meet a specific requirement.

References and
Information
Sources

[Henzinger 94] Henzinger, T.A. & Ho, P. “HYTECH: The Cornell HYbrid TECHnology
Tool,” 265-93. Proceedings of the 1994 Workshop on Hybrid Systems
and Autonomous Control. Berlin, Germany, October 28-30, 1994. Berlin,
Germany: Springer-Verlag, 1995.

Author David Fisher, SEI
dfisher@sei.cmu.edu

Major David Luginbuhl, Air Force Office of Scientific Research
david.luginbuhl@afosr.af.mil

External
Reviewer(s)

Tom Henzinger, Assistant Professor Electrical Engineering and
Computer Sciences, University of California at Berkeley

Last Modified 10 Jan 97

Index
Categories

Name of technology Hybrid Automata

Application category Detailed Design (AP.1.3.5)

Quality measures category Completeness (QM.1.3.1), Fidelity (QM.2.4),
Correctness (QM.1.3), Reliability (QM.2.1.2)

Computing reviews category Models of Computation (F.1.1)
216 CMU/SEI-97-HB-001

Intrusion Detection
Intrusion Detection ADVANCED

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

In the mid to late 1960s, as time sharing systems emerged, controlling
access to computer resources became a concern. In the 1970s, the De-
partment of Defense (DoD) Ware Report pointed out the need for com-
puter security [Ware 79]. In the mid to late 1970s, a number of systems
were designed and implemented using security kernel architectures. In
the late 1970s, Tiger Teams began to evaluate the security of various
systems. In 1983, the Department of Defense Trusted Computer System
Evaluation Criteria — the “orange book” — was published and provided
a set of criteria for evaluating computer security control effectiveness
[DoD 85]. Research in this area continued through the 1980s, but many
facets of computer security control remained a largely manual process.
For example, the Internet Worm program of 1988 — which infected thou-
sands of machines and disrupted normal activities for several days—
was detected primarily through manual means [Spafford 88]. Today,
there are primarily four approaches to achieving a secure computing en-
vironment [Kemmerer 94]:

1. the use of special procedures — such as password selection and
use, access control, and manual review of output products— for
working with a system

2. the inclusion of additional functions or mechanisms in the system

3. the use of assurance techniques — such as penetration analysis, for-
mal specification and verification, and covert channel analysis — to
increase one’s confidence in the security of a system

4. the use of intrusion detection systems (IDSs)

The fourth approach, intrusion detection, is an emerging technology that
seeks to automate the detection and elimination of intrusions. IDSs seek
to increase the security and hence the availability, integrity, and confi-
dentiality of computer systems by eliminating unauthorized system/data
access.

Technical Detail Intrusion detection systems (IDSs) are predicated on the assumption that
an intruder can be detected through an examination of various parame-
ters such as network traffic, CPU utilization, I/O utilization, user location,
and various file activities [Lunt 93]. System monitors or daemons convert
observed parameters into chronologically sorted records of system activ-
CMU/SEI-97-HB-001 217

Intrusion Detection
ities. Called “audit trails,” these records are analyzed by IDSs for unusual
or suspect behavior. IDS approaches include

• rule-based intrusion detection (see pg. 331)

• statistical-based intrusion detection (see pg. 357)

IDSs designed to protect networks typically monitor network activity,
while IDSs designed for single hosts typically monitor operating system
activity.

Usage
Considerations

Although IDSs are likely to increase the security of computer systems,
the collection and processing of audit data will degrade system perfor-
mance. Note that an IDS can be used to augment crypto-based security
systems— which cannot defend against cracked passwords or lost or
stolen keys— and to detect the abuse of privileges by authorized users
[Mukherjee 94]. User authentication systems can be used to augment
IDS systems.

Maturity Prototypes of several intrusion detection systems have been developed,
and some intrusion detection systems have been deployed on an exper-
imental basis in operational systems. At least one network-based IDS
— the Network Security Monitor (NSM) — successfully detected an at-
tack in which an intruder exploited known security flaws to gain access to
systems distributed over seven sites, three states, and two countries
[Mukherjee 94]. However, additional work is required to determine appro-
priate levels of auditing, to strengthen the representation of intrusion at-
tempts, and to extend the concept of intrusion detection to arbitrarily
large networks [Lunt 93, Mukherjee 94].

Costs and
Limitations

Audit trail analysis can be conducted either offline (after the fact) or in real
time. Although offline analysis permits greater depth of coverage while
shifting the processing of audit information to non-peak times, it can only
detect intrusions after the fact. Real-time IDSs can potentially catch intru-
sion attempts before the system state is compromised, but real-time
IDSs must run concurrently with other system applications and will there-
fore negatively affect throughput. In addition to the costs associated with
creating and analyzing audit trails, IDS systems cannot detect all intru-
sion attempts, primarily because only known intrusion scenarios can be
represented. An intrusion attempt made using a scenario not represent-
ed by an IDS system may be successful, and some intrusion attempts
have succeeded in either turning off the audit daemon or in modifying the
audit data prior to its being processed by an IDS.

Although most IDSs are designed to support multiple operating systems,
audit data collected by monitoring operating system activity will be oper-
218 CMU/SEI-97-HB-001

Intrusion Detection
ating system specific [Mukherjee 94]; this type of data may therefore
need to be converted into a standard form before it can be processed by
an IDS.

For these reasons, many IDS systems are designed as assistants to hu-
man computer security monitors.

Dependencies System or network auditing tools and techniques are necessary enablers
for this technology. Depending on the type of IDS, expert systems tech-
nology may also be needed.

References and
Information
Sources

[DoD 85] Department of Defense Trusted Computer System Evaluation Criteria,
DoD standard DoD 5200.28-STD [online]. Available WWW <URL: http://
www.v-one.com/newpages/obook.html> (1985).

[Kemmerer 94] Kemmerer, Richard A. “Computer Security,” 1153-1164. Encyclopedia of
Software Engineering. New York, NY: John Wiley and Sons, 1994.

[Lunt 93] Lunt, Teresa F. “A Survey of Intrusion Detection Techniques.” Comput-
ers and Security 12, 4 (June 1993): 405-418.

[Mukherjee 94] Mukherjee, Biswanath, L.; Heberlein, Todd; & Levitt, Karl N. “Network In-
trusion Detection.” IEEE Network 8, 3 (May/June 1994): 26-41.

[Smaha 88] Smaha, Stephen E. “Haystack: An Intrusion Detection System,” 37-44.
Proceedings of the Fourth Aerospace Computer Security Applications
Conference. Orlando, Florida, December 12-16, 1988. Washington, DC:
IEEE Computer Society Press, 1989.

[Sundaram 96] Sundaram, Aurobindo. An Introduction to Intrusion Detection [online].
Available WWW <URL: http://www.acm.org/crossroads/xrds2-4/xrds2-4.
html> (1996).

[Spafford 88] Spafford, Eugene H. The Internet Worm Program: An Analysis (CSD-TR-
823). West Lafayette, IN: Purdue University, 1988.

Index
Categories

Name of technology Intrusion Detection

Application category System Security (AP.2.4.3)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security and Protection
(D.4.6), Computer-Communication Networks
Security and Protection (C.2.0), Security and
Protection (K.6.5)
CMU/SEI-97-HB-001 219

Intrusion Detection
[Ware 79] Ware, W. H. Security Controls for Computer Systems: Report of Defense
Science Board, Task Force on Computer Security. Santa Monica, CA:
The Rand Corporation, 1979.

Author Mark Gerken, Rome Laboratory
gerken@ai.rl.af.mil

Last Modified 10 Jan 97
220 CMU/SEI-97-HB-001

Java
Java ADVANCED

Purpose and
Origin

Java is a hardware- and implementation-independent programming lan-
guage originally developed by a team of engineers headed by James
Gosling at Sun Microsystems (development began in 1991). Java ad-
dresses many of the issues of software distribution over a network, in-
cluding interoperability, security, and portability.

Java is an interpreted language that uses a virtual machine, or runtime
environment, on the client computer that can be executed on any ma-
chine to which the interpreter has been ported. Java virtual machines
were developed initially for use as part of World Wide Web (WWW)
browsers but are continuing to be developed for a wider range of plat-
forms such as operating systems and telephones [Hamilton 96].

Java has potential for revolutionizing the WWW [Sun 96b]. Java enables
a programmer to extend Internet browsers by enabling Java programs,
called “applets,” to be embedded on a Web page [Singleton 1996]. Em-
bedding Java applets into Web pages provides a developer the flexibility
to develop a more sophisticated user interface on a Web page [Yourdon
96]. Java applets can provide a full range of event-driven pop-up win-
dows and graphical user interface (GUI) widgets (see pg. 205), which
can support a variety of applications such as animations, simulations,
teaching tools, and spreadsheets [van Hoff 95].

Technical Detail Java programs provide portability and a measure of security. Java pro-
grams are compiled into a byte-code format (a low-level, pseudo-ma-
chine language) called J-code that can be executed on many platforms
without recompilation. The J-code is interpreted at runtime and since the
J-code is consistent, interpreters have been written for a significant pop-
ulation of processor architectures, thus allowing for portability across var-
ious processor architectures and hardware. Java is designed to allow
Applets to be downloaded without introducing viruses or misbehaved
code. This intent has been somewhat realized, although several weak-
nesses in the security design have been found [Sun 96a].

The Java virtual machine is typically installed on a user’s machine as ei-
ther part of a Web browser or as part of the operating system. Java pro-
vides flexibility in that it allows a user to download the specific
functionality the user wants at the moment the user requests that func-
tionality. This is a paradigm shift from the normal model, which requires
the entire suite of possible functionality to be installed onto a user’s plat-
form prior to execution [Yourdon 96].
CMU/SEI-97-HB-001 221

Java
Java applications are arguably more robust than C or C++ applications.
Java has features, like C++-style exceptions, runtime type checking, and
automatic garbage collection and memory management, that allow the
writing of robust code that can recover from runtime errors [Hamilton 96].
Several methods/techniques for garbage collection are provided. Java
garbage collection aids the programmer by eliminating the need for a
user to explicitly free memory, thus eliminating a whole class of memory
bugs and the tools designed to check for them [Hamilton 96]. In addition,
Java is object-oriented (see pg. 287); it provides support for a single-in-
heritance class hierarchy, and an efficient implementation of method in-
vocations for both virtual and static methods.

Usage
Considerations

Java is intended for use in the development of large distributed systems.
Java specifies a core set of application programming interfaces
(APIs)(see pg. 79)— required in all Java implementations— and an ex-
tended set of APIs covering a much broader set of functionality. The core
set of APIs include interfaces for

• basic language types

• file and stream I/O

• network I/O

• container and utility classes

• abstract windowing toolkit

The extended set of APIs includes interfaces for 2D-rendering and 2D-
animation; a 3D-programming model; telephony, time-critical audio, vid-
eo, and MIDI data; network and systems management; electronic com-
merce; and encryption and authentication [Hamilton 96].

The Java syntax for expressions and statements are almost identical to
ANSI C, thus making the language easy to learn for C or C++ program-
mers. Because Java is a programming language, it requires a higher skill
level for content developers than hypertext markup language (HTML).
Programmers need to learn the Java standard library, which contains ob-
jects and methods for opening sockets, implementing the HTTP protocol,
creating threads, writing to the display, and building a user interface.
Java provides mechanisms for interfacing with other programming lan-
guages such as C and existing libraries such as Xlib, Motif, or legacy da-
tabase software.

The code generated by Java is small— the basic interpreter and class
support are about 40Kbytes; thread support and basic standard libraries
are another 175K.
222 CMU/SEI-97-HB-001

Java
Performance is a major consideration when deciding to use Java. In
some comparisons, the Java interpreter was about 10-15 times slower
than compiled C or C++, which should be acceptable for most applica-
tions [van Hoff 95]. Another comparison indicates that C++ is 30 times
faster than Java [Yourdon 96]. If performance must be increased, it is
possible and straightforward to convert the machine-independent byte-
codes to machine instructions. The performance implications of the Java
garbage collector should also be considered, especially for real-time ap-
plications. Note that performance has been improving; as of September
1996, code from a just in time (JIT) compiler supporting Java was bench-
marked at 0.8 of an optimizing C++ compiler [Coffee 96].

A number of items should be considered if migrating from C or C++ to Ja-
va, including the following:

• Java is totally object-oriented, thus everything must be done via a
method invocation.

• Java has no pointers or parameterized types.

• Java supports multithreading and garbage collection [Aitken 96].

Maturity Java was made available to the general public in May 1995, and has en-
joyed unprecedented transition into practice:

• As of September 1996, Java has been licensed by over 35 vendors,
and is supported by the leading operating systems, including
Windows, Macintosh, and many variants of UNIX [Elmer-Dewitt 96].

• More than 5,000 applets have appeared on the Internet [Hamilton
96].

• Java support has been incorporated into all leading Web browsers
(e.g., Netscape Navigator v3.0 and Microsoft Internet Explorer v3.0).

• A survey in May 1996 found that 62% of large companies already use
Java for some development; another 14% expect to start using Java
by the end of 1996. Over 40% of the companies say Java will
“become strategic” within a year [Wilder 96].

Early implementations of Java contained bugs relating to security [Sun
96a]. These bugs were fixed for the Java Development Kit version 1.02
and Netscape Navigator 3.0b4 [Hamilton 96]. Felten examines Java se-
curity in detail [Felten 96].

One of the first, and possibly largest, mission-critical applications written
in Java is TWSNet, a shipment tracking and processing application for
CSX Corp. TWSNet began testing of its initial phase in April 1996 after
90 days of development. Other existing applications of Java include a
stock trading service (Lombard Institutional Brokerage) and semiconduc-
CMU/SEI-97-HB-001 223

Java
tor product catalogs (National Semiconductor, Hitachi America, and Phil-
ips Electronics) [Wilder 96].

Development environments that support Java programming started to
appear on the market in 1996. The environments support creation of the
user interface but stop short of providing full CASE (computer aided soft-
ware engineering) tool support for Java developers [Yourdon 96].

Costs and
Limitations

Java and the source for the Java interpreter are freely available for non-
commercial use. Some restrictions exist for incorporating Java into com-
mercial products. Sun Microsystems licenses Java to hardware and
software companies that are developing products to run the Java virtual
machine and execute Java code. Developers, however, can write Java
code without a license. A complete Java Development Kit, including a
Java compiler, can be downloaded for free [Sun 96c, Hamilton 96].

Yourdon discusses the potential impact of Java on the cost of software
applications in the future— purchased software packages could be re-
placed with transaction-oriented rental of Java applets attached to Web
pages [Yourdon 96].

Alternatives Alternatives include C++,C, PERL, TCL, and Smalltalk.

Complementary
Technologies

Cross-compilers are being developed for Ada95 (see pg. 67).

References and
Information
Sources

[Aitken 96] Aitken, G. “Moving from C++ to Java.” Dr. Dobb’s Journal 21, 3 (March
1996): 52-56.

[Carlson 95] Carlson, Bob. “A Jolt of Java Could Shake up the Computing Communi-
ty.” Computer Magazine 28, 11 (November 1995): 81-2.

Index
Categories

Name of technology Java

Application category Distributed Computing (AP.2.1.2), Application
Program Interfaces (AP.2.7), Programming
Language (AP.1.4.2.1), Compiler (AP.1.4.2.3)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1), Portability (QM.4.2), Complexity
(QM.3.2.1), Trustworthiness (QM.2.1.4)

Computing reviews category Programming Languages (D.3), Distributed
Systems (C.2.4)
224 CMU/SEI-97-HB-001

Java
[Elmer-Dewitt 96] Elmer-Dewitt, Philip. “Why Java is Hot.” Time 147, 4 (January 22, 1996):
58-60.

[Felten 96] Felten, E.W.; Dean, D.; & Wallach, D.S. “Java Security: From Hot Java
to Netscape and Beyond,” 190-200. Proceedings of the 1996 IEEE Sym-
posium on Security and Privacy. Oakland, CA, May 6-8, 1996. Los Alam-
itos, CA: IEEE Computer Society Press, 1996.

[Hamilton 96] Hamilton, Marc. “Java and the Shift to Net-Centric Computing.” Comput-
er 29, 8 (August 1996): 31-39.

[Singleton 96] Singleton, Andrew. “Wired on the Web.” BYTE 21, 1 (January 1996): 58-
61.

[Coffee 96] Coffee, Peter. “I’m Not Supposed To Make up My Mind.” PC Week 13,
34 (August 26, 1996): 16. Also available [online] WWW
<URL: http://www. pcweek.com/archive/1334/pcwk0089.htm> (1996).

[Sun 96a] Frequently Asked Questions— Applet Security [online]. Available WWW
<URL: http://java.sun.com/sfaq> (1996).

[Sun 96b] Java Computing in the Enterprise. Strategic Overview: Java [online].
Available WWW <URL: http://www.sun.com/javacomputing> (1996).

[Sun 96c] Sun Java Web site [online]. Available WWW <URL: http://java.sun.com>
(1996).

[van Hoff 95] van Hoff, A. “Java and Internet Programming.” Dr. Dobb’s Journal 20, 8
(August 1995): 56-61, 101-2.

[Wilder 96] Wilder, Clinton. “Java in Gear.” Informationweek 592 (August 12, 1996):
14-16.

[Yourdon 96] Yourdon, Edward. “Java, the Web, and Software Development.” Com-
puter 29, 8 (August 1996): 25-30.

Author Cory Vondrak, TRW, Redondo Beach, CA

External
Reviewer(s)

Archie Andrews, SEI
Scott Tilley, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 225

Java
226 CMU/SEI-97-HB-001

Mainframe Server Software Architectures
Mainframe Server Software Architectures COMPLETE

Note We recommend Client/Server Software Architectures, pg. 101, as pre-
requisite reading for this technology description.

Purpose and
Origin

Since 1994 mainframes have been combined with distributed architec-
tures to provide massive storage and to improve system security, flexibil-
ity, scalability, and reusability in the client/server design. In a mainframe
server software architecture, mainframes are integrated as servers and
data warehouses in a client/server environment. Additionally, main-
frames still excel at simple transaction-oriented data processing to auto-
mate repetitive business tasks such as accounts receivable, accounts
payable, general ledger, credit account management, and payroll. Siwolp
and Edelstein provide details on mainframe server software architectures
see [Siwolp 95, Edelstein 94].

Technical Detail While client/server systems (see pg. 101) are suited for rapid application
deployment and distributed processing, mainframes are efficient at on-
line transactional processing, mass storage, centralized software distri-
bution, and data warehousing [Data 96]. Data warehousing is information
(usually in summary form) extracted from an operational database by
data mining (drilling down into the information through a series of related
queries). The purpose of data warehousing and data mining is to provide
executive decision makers with data analysis information (such as trends
and correlated results) to make and improve business decisions.

Figure 14: Using a Mainframe in a Three Tier Client/Server
Architecture

Figure 14 shows a mainframe in a three tier client/server architecture.
The combination of mainframe horsepower as a server in a client/server
distributed architecture results in a very effective and efficient system.

Three Tiers

User System Interface

Process Management

Database Management

Mainframe
CMU/SEI-97-HB-001 227

Mainframe Server Software Architectures
Mainframe vendors are now providing standard communications and
programming interfaces that make it easy to integrate mainframes as
servers in a client/server architecture. Using mainframes as servers in a
client/server distributed architecture provides a more modular system de-
sign, and provides the benefits of the client/server technology.

Using mainframes as servers in a client/server architecture also enables
the distribution of workload between major data centers and provides di-
saster protection and recovery by backing up large volumes of data at
disparate locations. The current model favors “thin” clients (contains pri-
marily user interface services) with very powerful servers that do most of
the extensive application and data processing, such as in a two tier ar-
chitecture (see pg. 381). In a three tier client/server architecture (see pg.
367), process management (business rule execution) could be off-load-
ed to another server.

Usage
Considerations

Mainframes are preferred for big batch jobs and storing massive
amounts of vital data. They are mainly used in the banking industry, pub-
lic utility systems, and for information services. Mainframes also have
tools for monitoring performance of the entire system, including networks
and applications not available today on UNIX servers [Siwolp 95].

New mainframes are providing parallel systems (unlike older bipolar ma-
chines) and use complementary metal-oxide semiconductor (CMOS) mi-
croprocessors, rather than emitter-coupler logic (ECL) processors.
Because CMOS processors are packed more densely than ECL micro-
processors, mainframes can be built much smaller and are not so power-
hungry. They can also be cooled with air instead of water [Siwolp 95].

While it appeared in the early 1990s that mainframes were being re-
placed by client/server architectures, they are making a comeback.
Some mainframe vendors have seen as much as a 66% jump in main-
frame shipments in 1995 due to the new mainframe server software ar-
chitecture [Siwolp 95].

Given the cost of a mainframe compared to other servers, UNIX worksta-
tions and personal computers (PCs), it is not likely that mainframes
would replace all other servers in a distributed two or three tier cli-
ent/server architecture.

Maturity Mainframe technology has been well known for decades. The new im-
proved models have been fielded since 1994. The new mainframe server
software architecture provides the distributed client/server design with
massive storage and improved security capability. New technologies of
data warehousing and data mining data allow extraction of information
228 CMU/SEI-97-HB-001

Mainframe Server Software Architectures
from the operational mainframe server’s massive storage to provide busi-
nesses with timely data to improve overall business effectiveness. For
example, stores such as Wal-Mart found that by placing certain products
in close proximity within the store, both products sold at higher rates than
when not collocated.1

1. Source: Stodder, David. Open Session Very Large Data Base (VLDB) Summit. New
Orleans, LA 23-26 April, 1995.

Costs and
Limitations

By themselves, mainframes are not appropriate mechanisms to support
graphical user interfaces. Nor can they easily accommodate increases in
the number of user applications or rapidly changing user needs [Edel-
stein 94].

Alternatives Using a client/server architecture without a mainframe server is a possi-
ble alternative. When requirements for high volume (greater than 50 gi-
gabit), batch type processing, security, and mass storage are minimal,
three tier (see pg. 367) or two tier architectures (see pg. 381) without a
mainframe server may be viable alternatives. Other possible alternatives
to using mainframes in a client/server distributed environment are using
parallel processing software architecture or using a database machine.

Complementary
Technologies

A complementary technology to mainframe server software architectures
is open systems (see pg. 135). This is because movement in the industry
towards interoperable heterogeneous software programs and operating
systems will continue to increase reuse of mainframe technology and
provide potentially new applications for mainframe capabilities.

References and
Information
Sources

[Data 96] Data Warehousing [online]. Available WWW
<URL: http://www-db.stanford.edu/warehousing/publications.html> and
<URL: http://www-db.stanford.edu/warehousing/warehouse.html>
(1996).

Index
Categories

Name of technology Mainframe Server Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Maintainability (QM.3.1), Scalability (QM.4.3),
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4)
CMU/SEI-97-HB-001 229

Mainframe Server Software Architectures
[Edelstein 94] Edelstein, Herb. “Unraveling Client/Server Architecture.” DBMS 7, 5
(May 1994): 34(7).

[Siwolp 95] Siwolp, Sana. “Not Your Father’s Mainframe.” Information Week 546
(Sept 25, 1995): 53-58.

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

Frank Rogers, GTE

Last Modified 10 Jan 97
230 CMU/SEI-97-HB-001

Maintainability Index Technique for Measuring Program
Maintainability
Maintainability Index Technique for Measuring
Program Maintainability COMPLETE

Purpose and
Origin

Quantitative measurement of an operational system’s maintainability is
desirable both as an instantaneous measure and as a predictor of main-
tainability over time. Efforts to measure and track maintainability are in-
tended to help reduce or reverse a system’s tendency toward “code
entropy” or degraded integrity, and to indicate when it becomes cheaper
and/or less risky to rewrite the code than to change it. Software Maintain-
ability Metrics Models in Practice is the latest report from an ongoing,
multi-year joint effort (involving the Software Engineering Test Laborato-
ry of the University of Idaho, the Idaho National Engineering Laboratory,
Hewlett-Packard, and other companies) to quantify maintainability via a
Maintainability Index (MI) [Welker 95]. Measurement and use of the MI is
a process technology, facilitated by simple tools, that in implementation
becomes part of the overall development or maintenance process. These
efforts also indicate that MI measurement applied during software devel-
opment can help reduce lifecycle costs. The developer can track and
control the MI of code as it is developed, and then supply the measure-
ment as part of code delivery to aid in the transition to maintenance.

Other studies to define code maintainability in various environments
have been done [Peercy 81, Bennett 93], but the set of reports leading to
the MI measurement technique offered by Welker [Welker 95] describes
a method that appears to be very applicable to today’s Department of De-
fense (DoD) systems.

Technical Detail The literature of at least the last ten years shows that there have been
several efforts to characterize and quantify software maintainability;
Maintenance of Operational Systems— an Overview (pg. 237) provides
a broad overview of software maintenance issues. In this specific tech-
nology, a program’s maintainability is calculated using a combination of
widely-used and commonly-available measures to form a Maintainability
Index (MI). The basic MI of a set of programs is a polynomial of the fol-
lowing form (all are based on average-per-code-module measurement):

171 - 5.2 * ln(aveV) - 0.23 * aveV(g’) - 16.2 * ln (aveLOC) - 50 * sin
(sqrt(2.4 * perCM))

The coefficients are derived from actual usage (see Usage Consider-
ations, pg. 232). The terms are defined as follows:

aveV = average Halstead Volume V per module (see Halstead
Complexity Measures, pg. 209)
CMU/SEI-97-HB-001 231

Maintainability Index Technique for Measuring Program
Maintainability
aveV(g’) = average extended cyclomatic complexity per module
(see Cyclomatic Complexity, pg. 145)

aveLOC = the average count of lines of code (LOC) per module;
and, optionally

perCM = average percent of lines of comments per module

Oman develops the MI equation forms and their rationale [Oman 92a];
the Oman study indicates that the above metrics are good and sufficient
predictors of maintainability. Oman builds further on this work using a
modification of the MI and describing how it was calibrated for a specific
large suite of industrial-use operational code [Oman 94]. Oman de-
scribes a prototype tool that was developed specifically to support cap-
ture and use of maintainability measures for Pascal and C [Oman 91].
The aggregate strength of this work and the underlying simplicity of the
concept make the MI technique potentially very useful for operational De-
partment of Defense (DoD) systems.

Usage
Considerations

Calibration of the equations. The coefficients shown in the equation
are the result of calibration using data from numerous software systems
being maintained by Hewlett-Packard. Detailed descriptions of how the
MI equation was calibrated and used appear in Coleman, Pearse, and
Welker [Coleman 94, Coleman, 95, Pearse 95, Welker 95]. The authors
claim that follow-on efforts show that this form of the MI equation gener-
ally fits other industrial-sized software systems [Oman 94 and Welker
95], and the breadth of the work tends to support this claim. It is advisable
to test the coefficients for proper fit with each major system to which the
MI is applied.

Effects from comments in code. The user must analyze comment con-
tent and quality in the specific system to decide whether the comment
term perCM is useful.

Ways of using MI

1. The system can be checked periodically for maintainability, which is
also a way of calibrating the equations.

2. It can be integrated into a development effort to screen code quality
as it is being built and modified; this could yield potentially significant
life cycle cost savings.

3. It can be used to drive maintenance activities by evaluating modules
either selectively or globally to find high-risk code.

4. MI can be used to compare or evaluate systems: Comparing the MIs
of a known-quality system and a third-party system can provide key
information in a make-or-buy decision.
232 CMU/SEI-97-HB-001

Maintainability Index Technique for Measuring Program
Maintainability
Example of usage. Welker relates how a module containing a routine
with some “very ugly” code was assessed as unmaintainable, when ex-
pressed in terms of the MI (note that just quantifying the problem is a step
forward) [Welker 95]. The module was first redesigned, and then func-
tionally enhanced. The measured results are shown in the table below:

a. Halstead Effort, rather that Halstead Volume, was used in this case study. See pg. 209 for more in-
formation on both these measures. Generally, the lower a program’s measure of effort, the simpler
a change to the program will be (because Halstead measures are weighted toward measuring com-
putational complexity, not all programs will behave this way).

b. Note that a low Cyclomatic Complexity (see pg. 145) is generally indicative of a lower risk, hence
more maintainable, program. In this case, restructuring increased the module complexity slightly
(from 49 to 64), but reduced the “ugly” routine’s complexity significantly. In both, the subsequent
enhancement drove the complexity slightly higher.

If the enhancement had been made without first doing the restructuring,
these figures indicate the change would have been much more risky.

Coleman, Pearse, and Welker provide detailed descriptions of how MI
was calibrated and used at Hewlett-Packard [Coleman 94, Coleman 95,
Pearse 95, Welker 95].

Maturity Oman tested the MI approach by using production operational code con-
taining around 50 KLOC to determine the metric parameters, and by
checking the results against subjective data gathered using the 1989
AFOTEC maintainability evaluation questionnaire [AFOTEC 89, Oman
94]. Other production code of about half that size was used to check the
results, with apparent consistency.

Welker applied the results to analyses of a US Air Force (USAF) system,
the Improved Many-On-Many (IMOM) electronic combat modeling sys-
tem. The original IMOM (in FORTRAN) was translated to C and the C

Measure Initial Code Restructured Code After
Enhancement

Code Unit Routine Module Routine Module Routine Module

MI (larger MI =
more maintain-
able)

6.47 33.55 39.93 70.13 37.62 69.60

Halstead Efforta 2,216,499 2,233,072 182,216 480,261 201,429 499,474

Extended
Cyclomatic
Complexityb

45 49 18 64 21 67

Lines of Code 622 663 196 732 212 748
CMU/SEI-97-HB-001 233

Maintainability Index Technique for Measuring Program
Maintainability
version was later reengineered into Ada. The maintainability of both new-
er versions was measured over time using the MI approach [Welker 95].
Results were as follows:

• The reengineered version’s MI was more than twice as high as the
original code (larger MI = more maintainable), and declined only
slightly over time (note that the original code was not measured over
time for maintainability, so change in its MI could not be measured).

• The translated baseline’s MI was not significantly different from the
original. This is of special interest to those considering translation,
because one of the primary objectives of translation is to reduce
future maintenance costs. There was also evidence that the MI of
translated code deteriorates more quickly than reengineered code.

Costs and
Limitations

Calculating the MI is generally simple and straightforward, given that sev-
eral commercially-available programming environments contain utilities
to count code lines, comment lines, and even cyclomatic complexity (see
pg. 145). Other than the tool described in Oman [Oman 91], tools to cal-
culate Halstead measures (see pg. 209) are less common because the
measure is not used as widely. However, once conventions for the count-
ing have been established, it is generally not difficult to write language-
specific code scanners to count the Halstead components (operators and
operands) and calculate the E and V measures. In relating that removal
of unused code in a single module did not affect the MI, Pearse highlights
the fact that MI is a system measurement; its parameters are average
values [Pearse 95]. However, measuring the MI of individual modules is
useful because changes in either structural or computational complexity
are reflected in a module’s MI. A product/process measurement program
not already gathering the metrics used in MI could find them useful addi-
tions. Those metrics already being gathered may be useful in construct-
ing a custom MI for the system. However, it would be advisable to consult
the references for their findings on the effectiveness of metrics, other
than Halstead E and V and cyclomatic complexity, in determining main-
tainability.

Dependencies The MI method depends on the use of cyclomatic complexity (see pg.
145) and Halstead complexity measures (see pg. 209). To realize the full
benefit of MI, the maintenance environment must allow the rewriting of a
module when it becomes measurably unmaintainable. The point of mea-
suring the MI is to identify risk; when unacceptably risky code is identi-
fied, it should be rewritten.

Alternatives The process described by Sittenauer is designed to assist in deciding
whether or not to reengineer a system [Sittenauer 92]. There are also
many research and analytic efforts that deal with maintainability as a
234 CMU/SEI-97-HB-001

Maintainability Index Technique for Measuring Program
Maintainability
function of program structure, design, and content, but none was found
that was as clearly appropriate as MI to current DoD systems in the life-
cycle phases described in Maintenance of Operational Systems— an
Overview, pg. 237.

Complementary
Technologies

The test in Sittenauer is meant to verify generally the condition of a sys-
tem, and would be useful as a periodic check of a software system and
to compare to the MI [Sittenauer 92].

References and
Information
Sources

[AFOTEC 89] Software Maintainability Evaluation Guide 800-2, Volume 3. Kirtland
AFB, NM: HQ Air Force Operational Test and Evaluation Center (AFO-
TEC), 1989.

[Ash 94] Ash, Dan, et al. “Using Software Maintainability Models to Track Code
Health,” 154-160. Proceedings of the International Conference on Soft-
ware Maintenance. Victoria, BC, Canada, September 19-23, 1994. Los
Alamitos, CA: IEEE Computer Society Press, 1994.

[Bennett 93] Bennett, Brad & Satterthwaite, Paul. “A Maintainability Measure of Em-
bedded Software,” 560-565. Proceedings of the IEEE 1993 National
Aerospace and Electronics Conference. Dayton, OH, May 24-28, 1993.
New York, NY: IEEE, 1993.

[Coleman 94] Coleman, Don, et al. “Using Metrics to Evaluate Software System Main-
tainability.” Computer 27, 8 (August 1994): 44-49.

[Coleman 95] Coleman, Don; Lowther, Bruce; & Oman, Paul. “The Application of Soft-
ware Maintainability Models in Industrial Software Systems.” Journal of
Systems Software 29, 1 (April 1995): 3-16.

Index
Categories

Name of technology Maintainability Index Technique for Measuring
Program Maintainability

Application category Debugger (AP.1.4.2.4), Test (AP.1.4.3), Unit
Testing (AP.1.4.3.4), Component Testing
(AP.1.4.3.5), Reapply Software Life Cycle
(AP.1.9.3), Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1), Testability
(QM.1.4.1), Understandability (QM.3.2)

Computing reviews category Software Engineering Distribution and Mainte-
nance (D.2.7), Software Engineering Metrics
(D.2.8), Complexity Classes (F.1.3), Tradeoffs
Among Complexity Measures (F.2.3)
CMU/SEI-97-HB-001 235

Maintainability Index Technique for Measuring Program
Maintainability
[Oman 91] Oman, P. HP-MAS: A Tool for Software Maintainability (91-08-TR). Mos-
cow, ID: Software Engineering Test Lab, University of Idaho, 1992.

[Oman 92a] Oman, P. & Hagemeister, J. Construction and Validation of Polynomials
for Predicting Software Maintainability (92-01TR). Moscow, ID: Software
Engineering Test Lab, University of Idaho, 1992.

[Oman 92b] Oman, P. & Hagemeister, J. “Metrics for Assessing a Software System’s
Maintainability,” 337-344. Conference on Software Maintenance 1992.
Orlando, FL, November 9-12, 1992. Los Alamitos, CA: IEEE Computer
Society Press, 1992.

[Oman 94] Oman, P. & Hagemeister, J. “Constructing and Testing of Polynomials
Predicting Software Maintainability.” Journal of Systems and Software
24, 3 (March 1994): 251-266.

[Pearse 95] Pearse, Troy & Oman, Paul. “Maintainability Measurements on Industrial
Source Code Maintenance Activities,” 295-303. Proceedings. of the In-
ternational Conference on Software Maintenance. Opio, France, October
17-20, 1995. Los Alamitos, CA: IEEE Computer Society Press, 1995.

[Peercy 81] Peercy, David E. “A Software Maintainability Evaluation Methodology.”
Transactions on Software Engineering 7, 7 (July 1981): 343-351.

[Sittenauer 92] Sittenauer, Chris & Olsem, Mike. “Time to Reengineer?” Crosstalk, Jour-
nal of Defense Software Engineering 32 (March 1992): 7-10.

[Welker 95] Welker, Kurt D. & Oman, Paul W. “Software Maintainability Metrics Mod-
els in Practice,” Crosstalk, Journal of Defense Software Engineering 8,
11 (November/December 1995): 19-23.

[Zhuo 93] Zhuo, Fang, et al. “Constructing and Testing Software Maintainability As-
sessment Models,” 61-70. Proceedings of the First International Soft-
ware Metrics Symposium. Baltimore, MD, May 21-22, 1993. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

Author Edmond VanDoren, Kaman Sciences
bvandoren-cos3@kaman.com

External
Reviewer(s)

Paul W. Oman, Ph.D., Computer Science Department, University of
Idaho, Moscow, ID

Kurt Welker, Lockheed Martin, Idaho Falls, ID

Last Modified 10 Jan 97
236 CMU/SEI-97-HB-001

Maintenance of Operational Systems— an Overview
Maintenance of Operational Systems— an Overview COMPLETE

Note This description provides background information for technologies for op-
timizing maintenance environments. We recommend Cyclomatic Com-
plexity, pg. 145; Halstead Complexity Measures, pg. 209; Maintainability
Index Technique for Measuring Program Maintainability, pg. 231; and
Function Point Analysis, pg. 195, as concurrent reading, as they contain
information about specific technologies.

Purpose and
Origin

Technologies specific to the maintenance of software evolved (and are
still evolving) out of development-oriented technologies. As large sys-
tems have proliferated and aged, the special needs of the operational en-
vironment have begun to emerge. Maintenance is defined here as the
modification of a software product after delivery to correct faults, improve
performance or other attributes, or to adapt the product to a changed en-
vironment [IEEE 83]. Historically, the software lifecycle has usually fo-
cused on development. However, so much of a system’s cost is incurred
during its operational lifetime that maintenance issues have become
more important and, arguably, this should be reflected in development
practices. Systems are required to last longer than originally planned; in-
evitably, the percentage of costs going to maintenance has been steadily
climbing. Hewlett-Packard estimates that 60% to 80% of its R&D person-
nel are involved in maintaining existing software, and that 40% to 60% of
production costs were directly related to maintenance [Coleman 94].
There was a rule of thumb that eighty percent of a Department of De-
fense (DoD) system’s cost is in maintenance; older Cheyenne Mountain
Complex systems may have surpassed ninety percent. Yet software de-
velopment practices still do not put much emphasis on making the prod-
uct highly maintainable.

Cost and risk of maintenance of older systems are further exacerbated
by a shortage of suitable maintenance skills; analysts and programmers
are not trained to deal with these systems. Industry wide, it is claimed that
75%-80% of all operational software was written without the discipline of
structured programming [Coleman 95]. Only a minuscule fraction of cur-
rent operational systems were built using the object-oriented techniques
taught today.

The purpose of this description is to provide a framework or a contextual
reference for some of the maintenance and reengineering technologies
described in this document.
CMU/SEI-97-HB-001 237

Maintenance of Operational Systems— an Overview
Technical Detail The operational system lifecycle. The operational environment has its
own lifecycle that, while connected to the development lifecycle, has spe-
cific and unique characteristics and needs. As shown in Figure 15, a sys-
tem’s total lifecycle is defined as having four major phases:

• the development or pre-delivery phase

• the early operational phase

• the mature operational phase

• the evolution/replacement phase

Each of the phases has typical characteristics and problems. The opera-
tional phases are most of the lifecycle and cost. The narrative following
describes each phase, and identifies specific technologies in (or planned
for) this document that can be applied to correct or improve the situation.
In almost every case, taking the proper action in a given phase can elim-
inate, or greatly reduce, problems in a later phase— at much less cost.

Figure 15: Total System Life Cycle

Requirements
Traceability to code

The TOTAL
System

Lifecycle

DEVELOPMENT/
PRE-DELIVERY

PHASE
EARLY OPERATIONAL PHASE MATURE OPERATIONAL PHASE

EVOLUTION /
REPLACEMENT

PHASE

L
IF

E
C

Y
C

L
E

 C
O

S
T

 /
R

IS
K

 IS
S

U
E

S

Documenting for
Maintenance

Software
Complexity

Software
Maintainability

Reengineering

Planning
Selective

Reengineering
System

Reengineering

Extremely difficult over total system lifecycle

Continuous monitoring for usefulness

Continuous monitoring and assessment

Testing
Processes,

 Procedures,
 and Issues

Starts EARLY in Development Phase --Very large lifecycle cost driver

Maintenance
Cost

Measurement
Essential to cost estimation and control of lifecycle cost and risk

Tailored to environment-- must change as system ages and operational needs change
Release Process

Establishment and
Improvement

Reengineering is an essential element for cost and risk reduction
238 CMU/SEI-97-HB-001

Maintenance of Operational Systems— an Overview
Terminology. To set a baseline for the descriptions of these phases, the
following definitions are used:

Reengineering: rebuilding a piece of software to suit some new purpose
(to work on another platform, to switch to another language, to make it
more maintainable, etc.); often preceded by reverse engineering. Exam-
ination and alteration of a subject system to reconstitute it in a new form.
Any activity that improves one’s understanding of software, or prepares
or improves the software itself for increased maintainability, reusability,
or evolvability.

Restructuring: transformation of a program from one representation to
another at the same relative abstraction level, usually to simplify or clarify
it in some way (e.g., remove GOTOs, increase modularity), while pre-
serving external behavior.

Reverse engineering: the process of analyzing a system’s code, docu-
mentation, and behavior to identify its current components and their de-
pendencies to extract and create system abstractions and design
information. The subject system is not altered; however, additional
knowledge about the system is produced. Redocumenting and design re-
covery are techniques associated with reverse engineering.

Software complexity: some measure of the mental effort required to un-
derstand a piece of software.

Software maintainability: some measure of the ease and/or risk of mak-
ing a change to a piece of software. The measured complexity of the soft-
ware is often used in quantifying maintainability.

Translation: conversion of a program from one language to another, of-
ten as a companion action to restructuring the program.

Phase 1: The development or pre-delivery phase, when the system is
not yet operational. Most of the effort in this phase goes into making Ver-
sion One of the system function. But if total lifecycle costs are to be min-
imized, planning and preparation for maintenance during the
development phase are essential. Most currently operational systems did
not receive this attention during development. Several areas should be
addressed:

• Requirements traceability to code. Requirements are the foundation
of a system, and one of the most common faults of an operational
system is that the relationship between its requirements and its code
cannot be determined. Recovering this information for a system after
it goes operational is a costly and time-consuming task. See
CMU/SEI-97-HB-001 239

Maintenance of Operational Systems— an Overview
Requirements Tracing (pg. 327), Feature-Based Design Rationale
Capture Method for Requirements Tracing (pg. 181), and Argument-
Based Design Rationale Capture Methods for Requirements Tracing
(pg. 91) for assistance in creating initial mapping from requirements
to code.

• Documentation and its usefulness in maintenance. The ostensible
purpose of documentation is to aid in understanding what the system
does, and (for the maintenance programmer) how the system does it.
There is at least anecdotal evidence that

– Classical specification-type documentation is not a good
primary source of information for the maintenance
programmer looking for a problem’s origin, especially since
the documentation is frequently inconsistent with the code.

– The most useful maintenance information is derived directly
and automatically from the code; examples include
structure charts, program flow diagrams, and cross-
reference lists. This suggests that tools that create and
maintain these documentation forms should be used during
development of the code, and delivered with it.

• The complexity of the software. If the software is too complex to
understand when it is first developed, it will only become more
complex and brittle as it is changed. Measuring complexity during
code development is useful for checking code condition, helps in
quantifying testing costs, and aids in forecasting future maintenance
costs (see Cyclomatic Complexity (pg. 145), Halstead Complexity
Measures (pg. 209), and Maintainability Index Technique for
Measuring Program Maintainability (pg. 231)).

• The maintainability of the software. This is perhaps the key issue for
the maintainer. The ability to measure a system’s maintainability
directly affects the ability to predict future costs and risks.
Maintainability Index Technique for Measuring Program
Maintainability (pg. 231) describes a practical approach to such a
measurement, applicable throughout the lifecycle.

Phase 2: The early operational phase, when the delivered system is
being maintained and changed to meet new needs and fix problems.
Typically the tools and techniques used for maintenance are those that
were used to develop the system. In this phase, the following issues are
critical:

• Complexity and maintainability must be measured and controlled in
this phase if the major problems of Phase 3 are to be avoided. Ideally,
this a continuation of the same effort that began in Phase 1, and it
depends on the same tools and techniques (see Cyclomatic
Complexity (pg. 145), Halstead Complexity Measures (pg. 209), and
Maintainability Index Technique for Measuring Program
Maintainability (pg. 231)). In a preventative maintenance regime, use
of these types of measures will help establish guidelines about how
240 CMU/SEI-97-HB-001

Maintenance of Operational Systems— an Overview
much complexity and/or deterioration of maintainability is tolerable. If
a critical module becomes too complex under the guidelines, it should
be considered for rework before it becomes a problem. Early
detection of problems, such as risk due to increasing complexity of a
module, is far cheaper than waiting until a serious problem arises.

• A formal release-based maintenance process that suits the
environment must be established. This process should always be
subject to inspection, and should be revised when it does not meet
the need.

• The gathering of cost data must be part of the maintenance process
if lifecycle costs are to be understood and controlled. The cost of
each change (e.g., person-hours, computer-hours) should be known
down to a suitable granularity such as phase within the release (e.g.,
design, code and unit test, integration testing). Without this detailed
cost information, it is very hard to estimate future workload or the cost
of a proposed change.

Phase 3: Mature operational phase, in which the system still meets the
users’ primary needs but is showing signs of age. For example

• The incidence of bugs caused by changes or “day-one errors”
(problems that existed at initial code delivery) is rising, and the
documentation, especially higher-level specification material, is not
trustworthy. Most analyses of changes to the software must be done
by investigating the code itself.

• Code “entropy” and complexity are increasing and, even by
subjective measures, its maintainability is decreasing.

• New requirements increasingly uncover limitations that were
designed into the system.

• Because of employee turnover, the programming staff may no longer
be intimately familiar with the code, which increases both the cost of
a change and the code’s entropy.

• A change may have a ripple effect: Because the true nature of the
code is not well known, coupling across modules has increased and
made it more likely that a change in one area will affect another area.
It may be appropriate to restructure or reengineer selected parts of
the system to lessen this problem.

• Testing has become more time-consuming and/or risky because as
code complexity increases, test path coverage also increases. It may
be appropriate to consider more sophisticated test approaches (see
Preventive Maintenance, pg. 242)

• The platform is obsolete: The hardware is not supported by the
manufacturer and parts are not readily available; the COTS software
is not supported through new releases (or the new releases will not
CMU/SEI-97-HB-001 241

Maintenance of Operational Systems— an Overview
work with the application, and it is too risky to make the application
changes needed to align with the COTS software).

At this point, the code has not been rewritten en masse or reverse engi-
neered to recover design, but the risk and cost of evolution by modifica-
tion of the system have increased significantly. The system has become
brittle with age. It may be appropriate to assess the system’s condition.
Sittenauer describes a quick methodology for gauging the need for re-
engineering, and the entire approach for measuring maintainability (see
pg. 231) allows continuous or spot assessment of the system’s maintain-
ability [Sittenauer 92].

Phase 4: Evolution/Replacement Phase, in which the system is ap-
proaching or has reached insupportability. The software is no longer
maintainable. It has become so “entropic” or brittle that the cost and/or
risk of significant change is too high, and/or the host hardware/software
environment is obsolete. Even if none of these is true, the cost of imple-
menting a new requirement is not tolerable because it takes too long un-
der the maintenance environment. It is time to consider reengineering
(see Cleanroom Software Engineering, pg. 95 and Graphical User Inter-
face Builders, pg. 205).

Usage
Considerations

Software maintainability factors. The characteristics influencing or de-
termining a system’s maintainability have been extensively studied, enu-
merated, and organized. One thorough study is described in Oman; such
characteristics were analyzed and a simplified maintainability taxonomy
was constructed [Oman 91]. Maintainability Index Technique for Measur-
ing Program Maintainability (pg. 231) describes an approach to measur-
ing and controlling code maintainability that was founded on several
years of work and analysis and includes analysis of commercial software
maintenance. References to other maintainability research results also
appear in that technology description.

Preventive maintenance approaches. The approaches listed below
are a few of the ways current technology can help to enhance system
maintainability.

• Complexity analysis. Before attempting to reach a destination, it is
essential to know where you are. For a software system, a good first
step is measuring the complexity of the component modules (see
Cyclomatic Complexity (pg. 145) and Halstead Complexity Measures
(pg. 209)). Maintainability Index Technique for Measuring Program
Maintainability (pg. 231) describes a method of assessing
maintainability of code using those complexity measures. Test path
coverage can also be determined from complexity measures, which
242 CMU/SEI-97-HB-001

Maintenance of Operational Systems— an Overview
can help in optimizing system testing (see Test generation and
optimization, 244).

• Functionality analysis. Function Point Analysis (pg. 195) describes
the uses and limitations of function point analysis (also known as
functional size measurement) in measuring software. By measuring
a program’s functionality, one can arrive at some estimate of its value
in a system, which is of use when making decisions about rewriting
the program or reengineering the system. Measures of functionality
can also guide decisions about where to put testing effort (see Test
generation and optimization, 244).

• Reverse engineering / design recovery. Over time, a system’s code
diverges from the documentation; this is a well-known tendency of
operational systems. Another phenomenon that is frequently
underestimated or ignored is that (regardless of the divergence
effect) the information required to make a given change is often found
only in the code. Several approaches are possible here. Various tools
offer the ability to construct program flow diagrams (PFDs) from
code. More sophisticated techniques, often classified as program
understanding, are emerging. These technologies are implemented
as tools that act as agents for the human analyst to assist in gathering
information about a program’s function at higher levels of abstraction
than a program flow diagram (e.g., retask a satellite).

• Piecewise reengineering. If the system’s known lifetime is sufficiently
short, and if the evolutionary changes needed are sufficiently
bounded, the system may benefit from a piecewise reengineering
approach:

– Brittle, high-risk modules that are likely to need changes are
identified and reengineered to make them more
maintainable. Techniques such as wrappers, an emerging
technology, are expected to aid here.

– For the sake of prudence, other risky modules are “locked,”
so that a prospective change to them can be made only after
thoroughly assessing the risks involved.

– For database systems, it may be possible to retrofit a
modern relational or object-oriented database to the
system; Common Object Request Broker Architecture (pg.
107) and Graphic Tools for Legacy Database Migration (pg.
201) describe technologies of possible use here.

Piecewise reengineering can generally be done at a lower cost than
complete reengineering of the system. If it is the right choice, it delays
the inevitable obsolescence. The downsides of piecewise reengi-
neering include the following:

– Platform obsolescence is not reversed. Risks arising from
the platform’s software are unchanged; if the original
database or operating system has risks, the application
using them will also.
CMU/SEI-97-HB-001 243

Maintenance of Operational Systems— an Overview
– Unforeseen requirements changes still carry high risk if they
affect the old parts of the system.

– Performance may suffer because of the interface structures
added to splice reengineered functions to old ones.

• Translation/restructuring/modularizing. Translation and/or
restructuring of code are often of interest when migrating software to
a new platform. Frequently the new environment will not support the
old language or dialect. Restructuring/modularizing, or rebuilding the
code to reduce complexity, can be done simply to improve the code’s
maintainability, but code to be translated is often restructured first so
that the result will be less complex and more easily understood.
There are several commercial tools that do one or more of these
operations, and energetic research to achieve more automated
approaches is being done. Welker cites evidence that translation
does little or nothing to enhance maintainability [Welker 95]. Most
often, it simply continues the existing problem in a different
syntactical form; the mechanical forms output by translators
decrease understandability, which is a key component of
maintainability. None of these technologies is a cure-all, and none of
them should be applied without first assessing the quality of the
output and the amount of programmer resources required.

• Test generation and optimization. Mission criticality of many DoD
systems drives the maintenance activity to test very thoroughly.
Boehm reported integration testing activities consuming only 16-34%
of project totals [Boehm 81], but other evidence is available to show
that commercial systems testing activity can take half of a
development effort’s resources [Alberts 76, DeMillo 87, Myers 79].
Recent composite post-release reviews of operational Cheyenne
Mountain Complex system releases show that testing consumed 60-
70% of the total release effort.1 Any technology that can improve
testing efficiency will have high leverage on the system’s life-cycle
costs. Technologies that can possibly help include: automatic test
case generation; generation of test and analysis tools; redundant test
case elimination; test data generation by chaining; techniques for
software regression testing; and techniques for statistical test plan
generation and coverage analysis.

1. Source: Kaman Sciences Corp. Minutes of the 96-1 Composite Post-Release Re-
view (CPRR), Combined CSS/CSSR and ATAMS Post-Release Review and Soft-
ware Engineering Post-Release Review KSWENG Memo # 96-03, 26 July, 1996.
244 CMU/SEI-97-HB-001

Maintenance of Operational Systems— an Overview
References and
Information
Sources

[Alberts 76] Alberts, D. “The Economics of Software Quality Assurance.” National
Computer Conference. New York, NY, June 7-10, 1976. Montvale, NJ:
American Federation of Information Processing Societies Press, 1976.

[Boehm 81] Boehm, Barry W. Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[Coleman 94] Coleman, Don, et al. “Using Metrics to Evaluate Software System Main-
tainability.” Computer 27, 8 (August 1994): 44-49.

[Coleman 95] Coleman, Don; Lowther, Bruce; & Oman, Paul. “The Application of Soft-
ware Maintainability Models in Industrial Software Systems.” Journal of
Systems Software 29, 1 (April 1995): 3-16.

[DeMillo 87] DeMillo, R., et al. Software Testing and Evaluation. Menlo Park, CA:
Benjamin/Cummings, 1987.

[IEEE 83] IEEE Standard Glossary of Software Engineering Terminology. New
York, NY: Institute of Electrical and Electronic Engineers, 1983.

[Myers 79] Myers, G. The Art of Software Testing. New York, NY: John Wiley and
Sons, 1979.

[Oman 91] Oman, P.; Hagermeister, J.; & Ash, D. A Definition and Taxonomy for
Software Maintainability (91-08-TR). Moscow, ID: Software Engineering
Test Laboratory, University of Idaho, 1991.

[Sittenauer 92] Sittenauer, Chris & Olsem, Mike. “Time to Reengineer?” Crosstalk, Jour-
nal of Defense Software Engineering 32 (March 1992): 7-10.

Index
Categories

Name of technology Maintenance of Operational Systems— an
Overview

Application category Requirements Tracing (AP.1.2.3), Cost Esti-
mation (AP.1.3.7), Test (AP.1.4.3), System
Testing (AP.1.5.3.1), Regression Testing
(AP.1.5.3.4), Reapply Software Lifecycle
(AP.1.9.3), Reverse Engineering (AP.1.9.4),
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Software Engineering Distribution and Mainte-
nance (D.2.7), Software Engineering Metrics
(D.2.8), Software Engineering Management
(D.2.9)
CMU/SEI-97-HB-001 245

Maintenance of Operational Systems— an Overview
[Welker 95] Welker, Kurt D. & Oman, Paul W. “Software Maintainability Metrics Mod-
els in Practice.” Crosstalk, Journal of Defense Software Engineering 8,
11 (November/December 1995): 19-23.

Author Edmond VanDoren, Kaman Sciences
bvandoren-cos3@kaman.com

External
Reviewer(s)

Brian Gallagher, SEI
Ed Morris, SEI
Dennis Smith, SEI

Last Modified 10 Jan 97
246 CMU/SEI-97-HB-001

Message-Oriented Middleware Technology
Message-Oriented Middleware Technology ADVANCED

Note We recommend Middleware, pg. 251, as prerequisite reading for this
technology description.

Purpose and
Origin

Message-oriented middleware (MOM) is a client/server (see pg. 101) in-
frastructure that increases the interoperability, portability, and flexibility of
an application by allowing the application to be distributed over multiple
heterogeneous platforms. It reduces the complexity of developing appli-
cations that span multiple operating systems and network protocols by
insulating the application developer from the details of the various oper-
ating system and network interfaces— application programming interfac-
es (APIs) (see pg. 79) that extend across diverse platforms and networks
are typically provided by the MOM [Rao 95].

Technical Detail Message-oriented middleware, as shown in Figure 16 [Steinke 95], is
software that resides in both portions of a client/server architecture and
typically supports asynchronous calls between the client and server ap-
plications. Message queues provide temporary storage when the desti-
nation program is busy or not connected. MOM reduces the involvement
of application developers with the complexity of the master-slave nature
of the client/server mechanism.

Figure 16: Message-Oriented Middleware

MOM increases the flexibility of an architecture by enabling applications
to exchange messages with other programs without having to know what
platform or processor the other application resides on within the network.
The aforementioned messages can contain formatted data, requests for
action, or both. Nominally, MOM systems provide a message queue be-
tween interoperating processes, so if the destination process is busy, the

Application-specific or
proprietary messages

MOM
(with

message
queue)

T
r
a
n
s
p
o
r
t

N
e
t
w
o
r
k

A
p
p
l
i
c
a
t
i
o
n

MOM
(with

message
queue)

T
r
a
n
s
p
o
r
t

N
e
t
w
o
r
k

Application
or

server
CMU/SEI-97-HB-001 247

Message-Oriented Middleware Technology
message is held in a temporary storage location until it can be processed.
MOM is typically asynchronous and peer-to-peer, but most implementa-
tions support synchronous message passing as well.

Usage
Considerations

MOM is most appropriate for event-driven applications. When an event
occurs, the client application hands off to the messaging middleware ap-
plication the responsibility of notifying a server that some action needs to
be taken. MOM is also well-suited for object-oriented systems because it
furnishes a conceptual mechanism for peer-to-peer communications be-
tween objects. MOM insulates developers from connectivity concerns—
the application developers write to APIs that handle the complexity of the
specific interfaces.

Asynchronous and synchronous mechanisms each have strengths and
weaknesses that should be considered when designing any specific ap-
plication.The asynchronous mechanism of MOM, unlike remote proce-
dure call (RPC) (see pg. 323), which uses a a synchronous, blocking
mechanism, does not guard against overloading a network. As such, a
negative aspect of MOM is that a client process can continue to transfer
data to a server that is not keeping pace. Message-oriented middle-
ware’s use of message queues, however, tends to be more flexible than
RPC-based systems, because most implementations of MOM can de-
fault to synchronous and fall back to asynchronous communication if a
server becomes unavailable [Steinke 95].

Maturity Implementations of MOM first became available in the mid-to-late 1980s.
Many MOM implementations currently exist that support a variety of pro-
tocols and operating systems. Many implementations support multiple
protocols and operating systems simultaneously.

Some vendors provide tool sets to help extend existing interprocess
communication across a heterogeneous network.

Costs and
Limitations

MOM is typically implemented as a proprietary product, which means
MOM implementations are nominally incompatible with other MOM im-
plementations. Using a single implementation of a MOM in a system will
most likely result in a dependence on the MOM vendor for maintenance
support and future enhancements. This could have a highly negative im-
pact on a system’s flexibility, maintainability, portability, and interopera-
bility.
248 CMU/SEI-97-HB-001

Message-Oriented Middleware Technology
The message-oriented middleware software (kernel) must run on every
platform of a network. The impact of this varies and depends on the char-
acteristics of the system in which the MOM will be used:

• Not all MOM implementations support all operating systems and
protocols. The flexibility to choose a MOM implementation may be
dependent on the chosen application platform or network protocols
supported, or vice versa.

• Local resources and CPU cycles must be used to support the MOM
kernels on each platform. The performance impact of the middleware
implementation must be considered; this could possibly require the
user to acquire greater local resources and processing power.

• The administrative and maintenance burden would increase
significantly for a network manager with a large distributed system,
especially in a mostly heterogeneous system.

• A MOM implementation may cost more if multiple kernels are
required for a heterogeneous system, especially when a system is
maintaining kernels for old platforms and new platforms
simultaneously.

Alternatives Other infrastructure technologies that allow the distribution of processing
across multiple processors and platforms are

• object request broker (ORB) (see pg. 291)

• Distributed Computing Environment (DCE) (see pg. 167)

• remote procedure call (RPC) (see pg. 323)

• transaction processing monitor (see pg. 373)

• three tier architectures (see pg. 367)

Complementary
Technologies

MOM can be effectively combined with remote procedure call (RPC)
technology—RPC can be used for synchronous support by a MOM.

Index
Categories

Name of technology Message-Oriented Middleware Technology

Application category Client/Server (AP.2.1.2.1), Client/Server
Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1), Portability (QM.4.2)

Computing reviews category Distributed Systems (C.2.4), Network Archi-
tecture and Design (C.2.1)
CMU/SEI-97-HB-001 249

Message-Oriented Middleware Technology
References and
Information
Sources

[Rao 95] Rao, B.R. “Making the Most of Middleware.” Data Communications Inter-
national 24, 12 (September 1995): 89-96.

[Steinke 95] Steinke, Steve. “Middleware Meets the Network.” LAN Magazine 10, 13
(December 1995): 56.

Author Cory Vondrak, TRW, Redondo Beach, CA

External
Reviewer(s)

Ed Morris, SEI

Last Modified 10 Jan 97
250 CMU/SEI-97-HB-001

Middleware
Middleware ADVANCED

Purpose and
Origin

Middleware is connectivity software that consists of a set of enabling ser-
vices that allow multiple processes running on one or more machines to
interact across a network. Middleware is essential to migrating main-
frame applications to client/server applications and to providing for com-
munication across heterogeneous platforms. This technology has
evolved during the 1990s to provide for interoperability in support of the
move to client/server architectures (see pg. 101). The most widely-publi-
cized middleware initiatives are the Open Software Foundation’s Distrib-
uted Computing Environment (DCE) (see pg. 167), Object Management
Group’s Common Object Request Broker Architecture (CORBA) (see pg.
107), and Microsoft’s Object Linking and Embedding/Component Object
Model (OLE) (see pg. 271) [Eckerson 95].

Technical Detail As outlined in Figure 17, middleware services are sets of distributed soft-
ware that exist between the application and the operating system and
network services on a system node in the network.

Figure 17: Use of Middleware [Bernstein 96]

Middleware services provide a more functional set of application program
interfaces (API) (see pg. 79) than the operating system and network ser-
vices to allow an application to

• locate transparently across the network, providing interaction with
another application or service

Application Application

Middleware (Distributed System Services)

APIs

Platform Interface

Platform
-OS
-hardware

Platform Interface

Platform
-OS
-hardware
CMU/SEI-97-HB-001 251

Middleware
• be independent from network services

• be reliable and available

• scale up in capacity without losing function [Schreiber 95]

Middleware can take on the following different forms:

• Transaction processing (TP) monitors (see pg. 373), which provide
tools and an environment for developing and deploying distributed
applications.

• Remote procedure calls (RPCs) (see pg. 323), which enable the logic
of an application to be distributed across the network. Program logic
on remote systems can be executed as simply as calling a local
routine.

• Message-oriented middleware (MOM) (see pg. 247), which provides
program-to-program data exchange, enabling the creation of
distributed applications. MOM is analogous to email in the sense it is
asynchronous and requires the recipients of messages to interpret
their meaning and to take appropriate action.

• Object request brokers (ORBs) (see pg. 291), which enable the
objects that comprise an application to be distributed and shared
across heterogeneous networks.

Usage
Considerations

The main purpose of middleware services is to help solve many applica-
tion connectivity and interoperability problems. However, middleware
services are not a panacea:

• There is a gap between principles and practice. Many popular
middleware services use proprietary implementations (making
applications dependent on a single vendor’s product).

• The sheer number of middleware services is a barrier to using them.
To keep their computing environment manageably simple,
developers have to select a small number of services that meet their
needs for functionality and platform coverage.

• While middleware services raise the level of abstraction of
programming distributed applications, they still leave the application
developer with hard design choices. For example, the developer
must still decide what functionality to put on the client and server
sides of a distributed application [Bernstein 96].

The key to overcoming these three problems is to fully understand both
the application problem and the value of middleware services that can
enable the distributed application. To determine the types of middleware
services required, the developer must identify the functions required,
which fall into one of three classes:
252 CMU/SEI-97-HB-001

Middleware
1. Distributed system services, which include critical communications,
program-to-program, and data management services. This type of
service includes RPCs, MOMs and ORBs.

2. Application enabling services, which give applications access to dis-
tributed services and the underlying network. This type of services in-
cludes transaction monitors (see pg. 373) and database services
such as Structured Query Language (SQL).

3. Middleware management services, which enable applications and
system functions to be continuously monitored to ensure optimum
performance of the distributed environment [Schreiber 95].

Maturity A significant number of middleware services and vendors exist. Middle-
ware applications will continue to grow with the installation of more het-
erogeneous networks. An example of middleware in use is the Delta
Airlines Cargo Handling System, which uses middleware technology to
link over 40,000 terminals in 32 countries with UNIX services and IBM
mainframes. By 1999, middleware sales are expected to exceed $6 bil-
lion [Client 95].

Costs and
Limitations

The costs of using middleware technology (i.e., license fees) in system
development are entirely dependent on the required operating systems
and the types of platforms. Middleware product implementations are
unique to the vendor. This results in a dependence on the vendor for
maintenance support and future enhancements. This reliance could have
a negative effect on a system’s flexibility and maintainability. However,
when evaluated against the cost of developing a unique middleware so-
lution, the system developer and maintainer may view the potential neg-
ative effect as acceptable.

References and
Information
Sources

[Bernstein 96] Bernstein, Philip A. “Middleware: A Model for Distributed Services.” Com-
munications of the ACM 39, 2 (February 1996): 86-98.

[Client 95] “Middleware Can Mask the Complexity of your Distributed Environment.”
Client/Server Economics Letter 2, 6 (June 1995): 1-5.

Index
Categories

Name of technology Middleware

Application category Client/Server (AP.2.1.2.1), Client/Server Com-
munication (AP.2.2.1)

Quality measures category Interoperability (QM.4.1)

Computing reviews category Distributed Systems (C.2.4), Network Archi-
tecture and Design (C.2.1), Database Man-
agement Languages (D.3.2)
CMU/SEI-97-HB-001 253

Middleware
[Eckerson 95] Eckerson, Wayne. “Searching for the Middle Ground.” Business Commu-
nications Review 25, 9 (September 1995): 46-50.

[Schreiber 95] Schreiber, Richard. “Middleware Demystified.” Datamation 41, 6 (April 1,
1995): 41-45.

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

Last Modified 10 Jan 97
254 CMU/SEI-97-HB-001

Module Interconnection Languages
Module Interconnection Languages COMPLETE

Purpose and
Origin

As software system size and complexity increase, the task of integrating
independently-developed subsystems becomes increasingly difficult. In
the 1970s, manual integration was augmented with various levels of au-
tomated support, including support from module interconnection lan-
guages (MILs). The first MIL, MIL75, was described by DeRemer and
Kron [DeRemer 76], who argued with integrators and developers about
the differences between programming in the small, for which typical lan-
guages are suitable, and programming in the large, for which a MIL is re-
quired for knitting modules together [Prieto-Diaz 86]. MILs provide formal
grammar constructs for identifying software system modules and for de-
fining the interconnection specifications required to assemble a complete
program [Prieto-Diaz 86]. MILs increase the understandability of large
systems in that they formally describe the structure of a software system;
they consolidate design and module assembly in a single language. MILs
can also improve the maintainability of a large system in that they can be
used to prohibit maintainers from accidentally changing the architectural
design of a system, and they can be integrated into a larger development
environment in which changes in the MIL specification of a system are
automatically reflected at the code level and vice versa.

Technical Detail A MIL identifies the system modules and states how they fit together to
implement the system’s function; MILs are not concerned with what the
system does, how the major parts of the system are embedded in the or-
ganization, or how the individual modules implement their functions [Pri-
eto-Diaz 86]. A MIL specification of a system constitutes a written
description of the system design. A MIL specification can be used to

• Enforce system integrity and inter-modular compatibility.

• Support incremental modification. Modules can be independently
compiled and linked; full recompilation of a modified system is not
needed.

• Enforce version control. Different versions (implementations) of a
module can be identified and used in the construction of a software
system. This idea has been generalized to allow different versions of
subsystems to be defined in terms of different versions of modules.
Thus MILs can be used to describe families of modules and systems
[Tichy 79, Cooprider 79].

For example, consider the simplified MIL specification shown in Figure
18 and its associated graphical representation shown in Figure 19. The
hypothetical MIL used in Figure 18 contains structures for identifying the
modules of interest (in this case the modules are ABC, Z, and YBC);
structures for identifying required and provided data; provided functions;
CMU/SEI-97-HB-001 255

Module Interconnection Languages
and structures for identifying module and function versions. The module
ABC defined in the figure consists of two parts, a function XA and a mod-
ule YBC; the structure of each of these entities is also defined. Note that
function XA has three versions, a Pascal, an Ada, and a FORTRAN ver-
sion. These three versions would be written and compiled using their re-
spective language development environments. A compilation system for
this hypothetical MIL would process the specification given in Figure 18
to check that all required resources (such as x and z) are provided, and
to check data type compatibility between required and provided resourc-
es. Provided these checks passed, the MIL compilation system, in con-
junction with outside (user or environmental) inputs such as version
availability and language choices, would select, compile (if necessary),
and link the system. Incremental compilation is supported; for example,
if the implementations for function XA change, the MIL compilation sys-
tem will analyze the system structure and recompile and relink only those
portions of the overall system affected by that change.

Figure 18: MIL Specification of a Simple Module

Module ABC
provides a,b,c
requires x,y
consists-of function XA, module YBC

 function XA
must-provide a
requires x
has-access-to Module Z
real x, integer a
realization

version Pascal resources file
(<Pascal_XA>) end Pascal
version Ada resources file
(<Ada_XA>) end Ada
version FORTRAN resources file
(<FORTRAN_XA>) end FORTRAN

end XA

Module YBC
must-provide b, c
requires a, y
real y, integer a, b, c

end YBC
end ABC
256 CMU/SEI-97-HB-001

Module Interconnection Languages
Figure 19: Graphical Representation

MILs do not attempt to do the following [Prieto-Diaz 86]:

• Load compiled images. This function is left to a separate facility within
the development environment.

• Define system function. A MIL defines only the structure, not the
function, of a system.

• Provide type specifications. A MIL is concerned with showing or
identifying the separate paths of communication between modules.
Syntactic checks along these communications paths may be
performed by a MIL, but because MILs are independent of the
language chosen to implement the modules they reference, such
type checking will be limited to simple syntactic— not semantic—
compatibility.

• Define embedded link-edit instructions.

Recently, MILs have been extended with notions of communication pro-
tocols [Garlan 94] and with constructs for defining semantic properties of
system function. These extended MILs are referred to as architecture de-
scription languages (ADLs) (see pg. 83).

Usage
Considerations

MILs were developed to address the need for automated integration sup-
port when programming in the large; they are well-suited for representing
the structure of a system or family of systems, and are typically used for
project management and support. When adopting the use of MILs, an or-
ganization will need to consider the effect on its current system develop-
ment and maintenance philosophy.

ABC

XAZ YBC

x,y a,b,c

x

a
b,c

a,y
has-access-to

versions

Pascal Ada

FORTRAN
CMU/SEI-97-HB-001 257

Module Interconnection Languages
Because the structure of a software system can be explicitly represented
in a MIL specification, separate documentation describing software struc-
ture may be unnecessary. This implies that if MILs are used to define the
structure, then the architectural documentation of a given system will not
become outdated.

Although some support is provided for ensuring data type compatibility,
MILs typically lack the structures required to define or enforce protocol
compatibility between modules, and the structures necessary to enforce
semantic compatibility.

Maturity The MESA system at Xerox PARC was developed during 1975 and has
been used extensively within Xerox [Geschke 77, Mitchell 79, Prieto-Diaz
86]. Other MILs have been proposed, defined, and implemented, but
most of these appear to have been within a research context. For exam-
ple, MIL concepts have been used to help design and build software re-
use systems such as Goguen’s library interconnection language (LIL)
that was extended by Tracz for use with parameterized Ada components
[Tracz 93]. Zand, et al., describe a system called ROPCO that can be
used to “facilitate the selection and integration of reusable modules”
[Zand 93].

At the time of publication, however, there are no tools supporting MILs
and little research in this area.1 Recent MIL-based research has shifted
focus and now centers around the themes of software reuse and archi-
tecture description languages (ADLs). ADLs (see pg. 83) can be viewed
as extended MILs in that ADLs augment the structural information of a
MIL with information about communication protocols [Garlan 94] and sys-
tem behavior.

1. Source: Will Tracz in Re: External Review - MILS, email to Bob Rosenstein (1996).

Costs and
Limitations

MILs are formal compilable languages. Developers will need training to
understand and use a MIL effectively. Training in architectural concepts
may also be required.

The lack of a formal semantic for defining module function has at least
the following implications:

• Limited inter-module consistency checking. MIL-based consistency
checking is limited to simple type checking and— if supported—
simple protocol checking.

• Limited consistency checking among module versions. MILs lack the
facilities to ensure that different versions of a module satisfy a
258 CMU/SEI-97-HB-001

Module Interconnection Languages
common specification, and may potentially lead to inconsistent
versions within a family.

• Limited type checking. If mixing languages with a system, a
developer may need to augment standard MIL tools with more
sophisticated type checking utilities. For example, data types may be
represented differently in C than in Ada, but the simple type checking
found in a typical MIL will not flag unconverted value passing
between languages.

Dependencies Incremental compilers and linkers are required by most MILs.

Alternatives Alternatives to MILs include documenting the structure of a system exter-
nally, such as in an interface control document or a structure chart. Ar-
chitecture description languages (ADLs) (see pg. 83) can also be used to
define the structure of a system, and are believed to be the current direc-
tion for this technology area.

References and
Information
Sources

[Cooprider 79] Cooprider, Lee W. The Representation of Families of Software Systems
(CMU-CS-79-116). Pittsburgh, PA: Computer Science Department, Car-
negie Mellon University, 1979.

[DeRemer 76] DeRemer, F. & Kron, H. “Programming-in-the-Large Versus Program-
ming-in-the-Small.” IEEE Transactions on Software Engineering SE-2, 2
(June 1976): 321-327.

[Garlan 94] Garlan, David & Allen, Robert. “Formalizing Architectural Connection,”
71-80. Proceedings of the 16th International Conference on Software En-
gineering. Sorrento, Italy, May 16-21, 1994. Los Alamitos, CA: IEEE
Computer Society Press, 1994.

[Geschke 77] Geschke, C.; Morris, J.; & Satterthwaite, E. “Early Experience with ME-
SA.” Communications of the ACM 20, 8 (August 1977): 540-553.

Index
Categories

Name of technology Module Interconnection Languages

Application category Architectural Design (AP.1.3.1), Compiler
(AP.1.4.2.3), Plan and Perform Integration
(AP.1.4.4)

Quality measures category Correctness (QM.1.3), Structuredness
(QM.3.2.3), Reusability (QM.4.4)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2), Organization and Design (D.4.7), Per-
formance (D.4.8), Systems Programs and Util-
ities (D.4.9)
CMU/SEI-97-HB-001 259

Module Interconnection Languages
[Mitchell 79] Mitchell, J.; Maybury, W.; & Sweet, R. MESA Language Manual (CSL-
79-3). Palo Alto, CA: Xerox Palo Alto Research Center, April 1979.

[Prieto-Diaz 86] Prieto-Diaz, Ruben & Neighbors, James. “Module Interconnection Lan-
guages.” Journal of Systems and Software 6, 4 (1986): 307-334.

[Tichy 79] Tichy, W. F. “Software Development Control Based on Module Intercon-
nection,” 29-41. Proceedings of the 4th International Conference on Soft-
ware Engineering. Munich, Germany, September 17-19, 1979. New
York, NY: IEEE Computer Society Press, 1979.

[Tracz 93] Tracz, W. “LILEANNA: a Parameterized Programming Language,” 66-
78. Proceedings oFf the Second International Workshop on Software Re-
use. Lucca, Italy, March 24-26, 1993. Los Alamitos, CA: IEEE Computer
Society Press, 1993.

[Zand 93] Zand, M., et al. “An Interconnection Language for Reuse at the Tem-
plate/Module Level.” Journal of Systems and Software 23, 1 (October
1993): 9-26.

Author Mark Gerken, Rome Laboratory
gerken@ai.rl.af.mil

External
Reviewer(s)

Will Tracz, Lockheed Martin Federal Systems, Owego, NY

Last Modified 10 Jan 97
260 CMU/SEI-97-HB-001

Multi-Level Secure Database Management Schemes
Multi-Level Secure Database Management
Schemes ADVANCED

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

Conventional database management systems (DBMS) do not recognize
different security levels of the data they store and retrieve. They treat all
data at the same security level. Multi-level secure (MLS) DBMS schemes
provide a means of maintaining a collection of data with mixed security
levels. The access mechanisms allow users or programs with different
levels of security clearance to store and obtain only the data appropriate
to their level.

Technical Detail As shown in Figure 20, multi-level secure DBMS architecture schemes
are categorized into two general types:

• the Trusted Subject architecture

• the Woods Hole architectures

Figure 20: MLS DBMS Schemes

Data Base Data Base Data Base Data Base

DBMS DBMS

High

DBMS

Low

DBMS

High

DBMS

Low

Data Base

High Low

Trusted
Subject
Architecture

Woods Hole Architectures

Integrity
Lock
Architecture

Kernalized
Architecture

Distributed
Architecture

Trusted
Operating System

DBMS

Trusted

High Trusted
Front End

LowTrusted
Front End

High Trusted
Front End

LowTrusted
Front End

Trusted Operating System

Trusted Front End

Crypto Unit

Un Trusted
Front End

Un Trusted
Front End

High
User

Low
User

High
User

Low
User

High
User

Low
User

High
User

Low
User

Trusted Data Replicator

High and Low
Data

Low Data
Only
CMU/SEI-97-HB-001 261

Multi-Level Secure Database Management Schemes
The Woods Hole architectures are named after an Air Force-sponsored
study on multi-level data management security that was conducted at
Woods Hole, Massachusetts.

The Trusted Subject architecture is a scheme that contains a trusted
DBMS and operating system (see pg. 377). The DBMS is custom-devel-
oped with all the required security policy (the security rules that must be
enforced) developed in the DBMS itself. The DBMS uses the associated
trusted operating system to make actual disk data accesses. This is the
traditional way of developing MLS DBMS capabilities and can achieve
high mandatory assurance for a particular security policy at the sacrifice
of some DBMS functionality [Abrams 95]. This scheme results in a spe-
cial purpose DBMS and operating system that requires a large amount of
trusted code to be developed and verified along with the normal DBMS
features.Trusted code provides security functionality and has been de-
signed and developed using a rigorous process, tested, and protected
from tampering in a manner that ensures the Designated Approving Au-
thority (DAA) that it performs the security functions correctly. The DAA is
the security official with the authority to say a system is secure and is per-
mitted to be used. A benefit of the trusted subject architecture is that the
DBMS has access to all levels of data at the same time, which minimizes
retrieval and update processing. This scheme also can handle a wide
range of sensitivity labels and supports complex access control. A sensi-
tivity label identifies the classification level (e.g., confidential, secret) and
a set of categories or compartments that apply to the data associated
with the label.

The Woods Hole architectures assume that an untrusted (usually com-
mercial-off-the-shelf (COTS)) DBMS is used to access data and that
trusted code is developed around that DBMS to provide an overall secure
DBMS system. The three different Woods Hole architectures address
three different ways to wrap code around the untrusted DBMS.

The Integrity Lock architecture scheme places a trusted front end filter
between the users and the DBMS. The filter provides security for the
MLS. When data is added to the database, the trusted front end filter
adds an encrypted integrity lock to each unit of data added to the data-
base. The lock is viewed by the DBMS as just another element in the unit
stored by the DBMS. The encrypted lock is used to assure that the re-
trieved data has not been tampered with and contains the security label
of the data. When data is retrieved, the filter decrypts the lock to deter-
mine if the data can be returned to the requester. The filter is designed
and trusted to keep users separate and to store and provide data appro-
262 CMU/SEI-97-HB-001

Multi-Level Secure Database Management Schemes
priate to the user. A benefit of this scheme is that an untrusted COTS
DBMS can perform most indexed data storage and retrieval.

The Kernalized architecture scheme uses a trusted operating system
and multiple copies of the DBMS; each is associated with a trusted front
end. The trusted front end-DBMS pair is associated with a particular se-
curity level. Between the DBMS and the database, a portion of the trusted
operating system keeps the data separated by security level. Each trust-
ed front end is trusted to supply requests to the proper DBMS. The data-
base is separated by security level. The trusted operating system
separates the data when it is added to the database by a DBMS and
combines the data when it is retrieved (if allowed by the security rules it
enforces for the requesting DBMS). The high DBMS gets data combined
from the high and low segments of the database. The low DBMS can only
get data from the low segment of the database. A benefit of this scheme
is that access control and separation of data at different classification lev-
els is performed by a trusted operating system rather than the DBMS.
Data at different security levels is isolated in the database, which allows
for higher level assurance. Users interact with a DBMS at the user’s sin-
gle-session level.

The Distributed architecture scheme uses multiple copies of the trusted
front end and DBMS, each associated with its own database storage. In
this architecture scheme, low data is replicated in the high database.
When data is retrieved, the DBMS retrieves it only from its own database.
A benefit of this architecture is that data is physically separated into sep-
arate hardware databases. Since separate replicated databases are
used for each security level, the front end does not need to decompose
user query data to different DBMSs.

Castano and Abrams provide thorough discussions of these alternative
architecture schemes and their merits [Castano 95, Abrams 95].

Usage
Considerations

This technology is most likely to be used when relational databases must
be accessed by users with different security clearances. This is typical of
Command and Control systems. The different architectures suit different
needs. The Trusted Subject architecture is best for applications where
the trusted operating system and the hardware used in the architecture
already provide an assured, trusted path between applications and the
DBMS [Castano 95]. The Integrity Lock architecture provides the ability
to label data down to the row (or record) level, the ability to implement a
wide range of categories, and is easiest to validate [Castano 95]. The
Kernalized architecture scheme is suited to MLS DBMS systems with
more simple table structures because it is economical and easier to im-
CMU/SEI-97-HB-001 263

Multi-Level Secure Database Management Schemes
plement for simple structures [Castano 95]. The Distributed architecture
is best suited for DBMSs where physical separation of data by security
level is required [Abrams 95].

Maturity The four different architectures have different maturity characteristics. As
of August 1996, an R&D A11 system and six commercial2 DBMSs have
been implemented using the Trusted Subject architecture scheme for dif-
ferent assurance levels and security policies. One R&D system and one
commercial DBMS have been implemented using the Integrity Lock ar-
chitecture scheme. One R&D system and one commercial DBMS have
been implemented using the Kernalized architecture scheme [Castano
95]. The Distributed architecture scheme has only been used in proto-
type systems because of the high performance cost of the replicater, al-
though one commercial DBMS claims to have this feature [Abrams 95].
This DBMS however, has not been evaluated by the National Computer
Security Center (NCSC) [TPEP 96].

1. An A1 system is one that meets the highest (most stringent) set of requirements in
the Department of Defense Trusted Computer Systems Evaluation Criteria (the Or-
ange Book) [DoD 85]. See page 377 for a further description of the classes of trusted
operating systems.

2. A commercial DBMS does not imply a general-purpose DBMS. It means that it can
be packaged and sold to other people. If a MLS DBMS has been developed to pro-
vide specific security functions that customers need, and the customer is willing to
be restricted to that set of functions and use the same hardware and support soft-
ware, then it can be sold as a product. It is then a commercial DBMS. The six com-
mercial DBMSs that have been implemented with the Trusted Subject architecture
are all different from each other, as they have been developed with different security
policies for different hardware and software environments.

Costs and
Limitations

Each of the different MLS architecture schemes has different costs and
limitations. The Trusted Subject architecture scheme has a closely linked
DBMS and Operating System that must be proven trusted together. This
makes it hardest to validate and gives it the highest accreditation cost
compared to the other schemes. The Integrity Lock architecture scheme
requires that a Crypto Key management system is implemented and sup-
ported in operation. The Kernalized architecture requires a DBMS for
each security level, which makes it expensive as more than two or three
levels are considered. The Distributed architecture requires a different
hardware platform for each security level and the data replicater provides
a heavy processor and I/O load for high access data.

Dependencies The MLS architecture schemes have individual dependencies. The
Trusted Subject scheme is dependent on trusted schemes for a related
DBMS and operating system. The Integrity Lock scheme is dependent on
264 CMU/SEI-97-HB-001

Multi-Level Secure Database Management Schemes
cryptographic technologies to provide the integrity lock. The Kernalized
architecture scheme depends on trusted operating system (see pg. 377)
technologies. The Distributed architecture scheme is dependent on effi-
cient automatic data replication techniques.

Alternatives The alternative to these technologies is to use a single-level DBMS and
use manual review of retrieved data or have every user cleared for the
data in the database. That may not be feasible in a Command and Con-
trol system.

References and
Information
Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Se-
curity An Integrated Collection of Essays. Los Alamitos, CA: IEEE Com-
puter Society Press, 1995.

[Castano 95] Castano, Silvana, et al. Database Security. New York, NY: ACM Press,
1995.

[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation Cri-
teria (TCSEC) (DoD 5200.28-STD). Fort George G. Meade, MD: United
States Department of Defense, 1985.

[TPEP 96] Trusted Product Evaluation Program Evaluated Product List [online].
Available WWW <URL: http://www.radium.ncsc.mil/tpep/index.html>
(1996).

Author Tom Mills, Lockheed Martin
TMILLS@ccs.lmco.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Multi-Level Secure Database Management
Schemes

Application category Data Management Security (AP.2.4.2)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection
(D.4.6), Security & Protection (K.6.5), Comput-
er-Communications Network Security and
Protection (C.2.0)
CMU/SEI-97-HB-001 265

Multi-Level Secure Database Management Schemes
266 CMU/SEI-97-HB-001

Multi-Level Secure One Way Guard with Random
Acknowledgment
Multi-Level Secure One Way Guard with Random
Acknowledgment DRAFT

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

Multi-level secure (MLS) systems are composed of low systems and high
systems. Low systems can transmit data to a high system, but high sys-
tems cannot transmit data to a low system. That is called write down and
it is not allowed by multi-level security models, not even to acknowledge
(ACK) receipt of data from the low system. This rule exists to prevent a
covert timing channel from the high system to the low system. If data in-
tegrity and reliable communications are to occur in a system, then mes-
sages must be acknowledged. MLS one way guard with random ACK is
a form of information flow controls to be imbedded in operational systems
that provides a means of acknowledging data without providing a covert
path. This technology was first developed (theoretically) in 1993 as an in-
terface between one source and one destination. In 1995 the concept
was expanded to address a network of several source low and destina-
tion high systems.

Technical Detail This technology employs a one way guard that buffers a message from
a low system and passes it on to the high system. When the high system
ACKs the message, the one way guard holds the ACK for a bounded ran-
dom length of time until passing the ACK to the low system. This destroys
any possible covert timing channel as the high system has no control of
the timing to the low system. The algorithm to determine the length of
time to delay the ACK considers the effect on throughput of delaying mul-
tiple sources of data for each destination and the combined throughput
to the destination. The algorithm therefore becomes more complex as
more sources and destinations are considered. There will be a small neg-
ative performance influence on individual messages that could require
upgraded interfaces if they are close to capacity. A benefit of this tech-
nology is that it allows reliable transmission over an MLS network be-
cause messages that are not ACKed are recognized as not received and
can then be retransmitted by the sending system.

Usage
Considerations

Sending processes using this technology must account for the maximum
possible delay in an ACK before retransmitting a message. Increased
buffer space must be provided in the one way guard to hold messages
until they can be ACKed. The amount of time and amount of buffer space
required are a function of the number of sources and destinations in-
volved and the size and rate of messages. Using this technology in a net-
CMU/SEI-97-HB-001 267

Multi-Level Secure One Way Guard with Random
Acknowledgment
work of mixed security systems provides for no lost messages and no
duplication of messages.

Maturity This technology is new but is an incremental development of one way se-
curity guards that have been in use since the 1960s. This technology has
been modeled and prototyped but has not been used in an operational
system.

Costs and
Limitations

Using this technology will require knowledge of security architectures,
the recognition of covert timing channels and means to eliminate them,
and Designated Approving Authority (DAA) requirements for assurance.1

1. The DAA is the security official with the authority to say a system is secure and is
permitted to be used.

Dependencies Successful use of this technology in a system requires that an ACK pro-
tocol be employed by the nodes that sends another message only after
the last transmitted message has been ACKed.

Alternatives Other approaches to transferring data through a one way guard to en-
hance reliability involve multiple transmissions of a message without ac-
knowledging receipt or manual accounting of messages and requests for
transmission. These alternatives lead to increased traffic over the net-
work because of duplicate messages or increased operator interaction.

Complementary
Technologies

A complimentary technology is covert channel analysis in MLS systems.

References and
Information
Sources

[IEEE 95] Proceedings of the 1995 IEEE Symposium on Security and Privacy. Oak-
land, CA, May 8-10, 1995. Los Alamitos, CA: IEEE Computer Society
Press, 1995.

Last Modified 10 Jan 97

Index
Categories

Name of technology Multi-Level Secure One Way Guard with Ran-
dom Acknowledgment

Application category Information Security (AP.2.4.3)

Quality measures category Vulnerability (QM.2.1.4.1), Security
(QM.2.1.5)

Computing reviews category Computer-Communications Networks Securi-
ty and Protection (C.2.0), Security and Protec-
tion (K.6.5)
268 CMU/SEI-97-HB-001

Nonrepudiation in Network Communications
Nonrepudiation in Network Communications DRAFT

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

The goal of nonrepudiation is to prove that a message has been sent and
received. This is extremely important in C4I networks where commands
and status must be issued and responded to, in banking networks where
financial transactions must be verifiably completed, and in legal networks
where signed contracts are transmitted. The Trusted Network Interpreta-
tion of the Trusted Computer System Evaluation Criteria (the Red Book)
defines the requirement for the military environment. Current technology
to accomplish this involves a central authority that verifies and time
stamps digital signatures. The technologies for digital signatures have
existed since the development of Public Key Cryptography in the late
1970s.

Technical Detail Three parties are involved in current nonrepudiation schemes: the mes-
sage sender, the message arbitrator, and the message receiver. The
sender creates a message and creates and appends a public key en-
cryption based digital signature to the message. The sender appends
identifying data to the message and signs it again. The sender then trans-
mits the message over the network to the arbitrator. The arbitrator veri-
fies the sender’s signature and identifying data. The arbitrator then adds
a time stamp to the message and signs it. The message is then sent to
both the sender and the receiver. The receiver verifies the arbitrator’s
signature and the sender’s signature. The sender verifies the message
transmitted by the arbitrator as a copy of the one the sender originally
sent. If it does not verify or the sender did not send an original message,
the arbitrator is notified immediately. This prevents someone from pre-
tending to be the sender and transmitting a message to the receiver. The
arbitrator keeps a record of expired or compromised secret keys to use
in the verification process. This whole technology process assures the
receiver that the message came from the indicated source and records
the time that the message was sent from the sender to the receiver. The
sender can not claim to not have sent the message nor that a lost cryp-
tographic key was used. The message sender, arbitrator, and receiver
can be implemented in software in different parts of the network.

Usage
Considerations

This technology introduces considerable overhead in the processing of
messages. Not only are there creation and verification additions at each
end of the transmission but the third party arbitrator processing adds ad-
ditional overhead and delay. The additional overhead should be consid-
ered in the design of the system that uses the technology. This
CMU/SEI-97-HB-001 269

Nonrepudiation in Network Communications
technology may provide the only assured means to identify a source of a
message on a network and associate it with a time. The same technology
can be used to validate an acknowledgment message.

Maturity The components of this technology are mature and are used in networks
consisting of PCs, workstations, or mainframes.

Costs and
Limitations

Using this technology requires knowledge of digital signature algorithms,
public key encryption, one-way hashing algorithms and the means of pro-
tecting the related keys from inadvertent or malicious compromise.

Dependencies Successful use of this technology requires the generation and distribu-
tion of public keys and the generation and protection of secret keys.

Alternatives A less secure alternative is to use a time stamp in the senders signature
without using a central arbitrator. This is less secure because the sender
could claim that someone else sent the message with a stolen or lost key.

Complementary
Technologies

Complementary technologies include one-way hashing, digital signa-
tures, and public key cryptography.

References and
Information
Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Se-
curity An Integrated Collection of Essays. Los Alamitos, CA: IEEE Com-
puter Society Press, 1995

[Schneier 96] Schneier, Bruce. Applied Cryptography. New York, NY: John Wiley &
Sons, 1996.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System
and Network Security. Boca Raton, FL: CRC Press, 1996.

Last Modified 10 Jan 97

Index
Categories

Name of technology Nonrepudiation in Network Communications

Application category System Security (AP.2.4.3)

Quality measures category Integrity (QM.2.1.4.1.1), Trustworthiness
(QM.2.1.4)

Computing reviews category Computer-Communications Networks Securi-
ty and Protection (C.2.0), Security and Protec-
tion (K.6.5)
270 CMU/SEI-97-HB-001

Object Linking and Embedding/Component Object Model
Object Linking and Embedding/Component Object
Model DRAFT

Note We recommend Object Request Broker, pg. 291, as prerequisite reading
for this technology description.

Purpose and
Origin

OLE/COM is a specification and implementation developed by Microsoft
Corporation for providing a distributed compound document framework
for desktop applications. OLE/COM attempts to provide a way to simplify
complexity in software, reduce the learning curve, allow interoperation
and integration of multiple vendor programs, and save investment in leg-
acy hardware/software.

Technical Detail OLE/COM provides a standard application programming interface (API)
to allow exchanging of objects and creation of standard objects for use in
integrating custom applications, packaged software, or to allow diverse
objects to freely interact— it is an object-enabling capability. APIs are de-
fined at the binary level to remove language bias and promote interoper-
ability and portability.

The OLE/COM model defines a powerful way to create documents from
multiple sources from different applications. OLE objects associate two
types of data: presentation data (display) and information for editing.
OLE “linking” places presentation data and pointers to native data in a
document while OLE “embedding” places both physically into a docu-
ment. A “container” is a document with objects from multiple sources.

COM (Component Object Model) is the underlying object model and im-
plementation for OLE and provides a binary standard for software-com-
ponent interoperability. COM is based on object request broker (ORB)
technology (see pg. 291) and is used to simplify the implementation of
linking and embedding. COM contains object-based extensions to DCE
(Distributed Computing Environment) RPC (remote procedure calls) (see
pg. 323). A proprietary interface design language (IDL) called Object Def-
inition Language is used for dynamic method invocation. COM IDL is
based on the C programming language.

Usage
Considerations

A number of issues must be evaluated when considering OLE/COM.
They include

• Platform support. Because of its lack of support for a variety of
platforms, OLE/COM is currently best used for 100% COTS end-user
systems on Windows platforms.

• Support for distributed objects. COM does not yet support distributed
objects, thereby reducing its effectiveness for a distributed
CMU/SEI-97-HB-001 271

Object Linking and Embedding/Component Object
Model
environment. Compound documents are non-distributed and single-
user.

• Stability of APIs. OLE/COM APIs are heavily dependent upon
Microsoft’s C++ implementation and many changes are expected for
the APIs, thus providing a potentially unstable basis for
development/maintenance. The binary API does not guarantee
portable language bindings (e.g., C binding is quite complex). OLE
APIs are rather narrow in applicability. Short-term limitations are built
into APIs, thus justifying obsolescence of legacy APIs.

• Long-term system maintainability. Maintainability may be an issue
because of Microsoft’s pattern for technology evolution: Constant
technology change and single-generation backwards compatibility.
Innovations in OLE/COM assume universal adaptation.

COM supports reuse by never changing previously-defined interface
specifications— new specifications are created for each change.

Embedding uses more overhead but allows transferring and editing with
a document. Linking is more efficient and single-instance but cannot trav-
el with a document.

Maturity OLE was originally a proprietary solution for Microsoft’s Office products.
Microsoft and third party developers provided basic linking and embed-
ding in Windows 3.0 and 3.1, Windows NT version 3.1. OLE 1.0 was able
to create pictures, text, charts, video clips, and sound annotations. OLE
2.0 provided a greater ability to interact seamlessly; visual editing; nested
objects; storage-independent object links; adaptable links; OLE automa-
tion; version management; and object conversion (to allow different ap-
plications to use same object).

The COM technology is lagging the industry in distributed objects. A dis-
tributed implementation of a small subset of OLE2 was to be made avail-
able in late 1995. Network OLE, featuring a distributed COM, is planned
for 1996 and will be based on the DCE RPC (see pg. 323). In the near
future, CORBA (Common Object Request Broker Architecture) gateways
to OLE/COM are planned to allow interoperability. The Object Manage-
ment Group is considering standardizing interoperability between COM
and CORBA. In early 1996, plans to standardize a mapping between
CORBA and Network OLE were underway.

Costs and
Limitations

Constant technology change drives up operations and maintenance
costs.

Dependencies Dependencies include remote procedure call (see pg. 323) and Distrib-
uted Computing Environment (see pg. 167).
272 CMU/SEI-97-HB-001

Object Linking and Embedding/Component Object Model
Alternatives Many groups are inventing their own integration technologies to be inde-
pendent of Microsoft. Other infrastructure technologies that allow the dis-
tribution of processing across multiple processors include the following:

• Distributed Computing Environment (see pg. 167)

• remote procedure call (RPC) (see pg. 323)

• message oriented middleware (MOM) (see pg. 247)

• transaction processing monitor technology (see pg. 373)

• Common Object Request Broker Architecture (see pg. 107)

• two tier architectures (see pg. 381)

Complementary
Technologies

An alternative is application programming interfaces (see pg. 79).

References and
Information
Sources

[Endrijones 94] Endrijones, Janet. “OLE: Not a Cheer But a Step to Integration.” Manag-
ing Automation 9, 8 (August 1994): 30-2.

[Foody 96] Foody, M.A. “OLE and COM vs. CORBA.” Unix Review 14, 4 (April
1996): 43-5.

[Mowbray 94] Mowbray, T.J. “Choosing Between OLE/COM and CORBA.” Object Mag-
azine 4, 7 (November/December 1994): 39-46.

Last Modified 10 Jan 97

Index
Categories

Name of technology Object Linking and Embedding/Component
Object Model

Application category Software Architecture Models (AP.2.1.1), Cli-
ent/Server (AP.2.1.2.1), Client/Server Com-
munications (AP.2.2.1)

Quality measures category Interoperability (QM.4.1), Portability (QM.4.2),
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4), Object-Oriented
Programming (D.1.5)
CMU/SEI-97-HB-001 273

Object Linking and Embedding/Component Object
Model
274 CMU/SEI-97-HB-001

Object-Oriented Analysis
Object-Oriented Analysis IN REVIEW

Purpose and
Origin

Object-oriented analysis (OOA) is concerned with developing software
engineering requirements and specifications that expressed as a sys-
tem’s object model (which is composed of a population of interacting ob-
jects), as opposed to the traditional data or functional views of systems.
OOA can yield the following benefits: maintainability through simplified
mapping to the real world, which provides for less analysis effort, less
complexity in system design, and easier verification by the user; reusabil-
ity of the analysis artifacts which saves time and costs; and depending
on the analysis method and programming language, productivity gains
through direct mapping to features of object-oriented programming lan-
guages (see pg. 287) [Baudoin 96].

Technical Detail An object is a representation of a real-life entity or abstraction. For exam-
ple, objects in a flight reservation system might include: an airplane, an
airline flight, an icon on a screen, or even a full screen with which a travel
agent interacts. OOA specifies the structure and the behavior of the ob-
ject— these comprise the requirements of that object. Different types of
models are required to specify the requirements of the objects. The infor-
mation or object model contains the definition of objects in the system,
which includes: the object name, the object attributes, and object rela-
tionships to other objects. The behavior or state model describes the be-
havior of the objects in terms of the states the object exists in, the
transitions allowed between objects, and the events that cause objects to
change states. These models can be created and maintained using
CASE tools that support representation of objects and object behavior.

OOA views the world as objects with data structures and behaviors and
events that trigger operations, or object behavior changes, that change
the state of objects. The idea that a system can be viewed as a popula-
tion of interacting objects, each of which is an atomic bundle of data and
functionality, is the foundation of object technology and provides an at-
tractive alternative for the development of complex systems. This is a
radical departure from prior methods of requirements specification, such
as functional decomposition and structured analysis and design [Your-
don 79].

Usage
Considerations

This technology works best when used in new development. The experi-
ences of Hewlett-Packard in trying to recapture the requirements of leg-
acy systems using OOA suggests that the process can be accomplished
only when legacy systems are projected to be long-lived and frequently
updated [Malan 95].
CMU/SEI-97-HB-001 275

Object-Oriented Analysis
Maturity Numerous OOA methods have been described since 1988. These OOA
methods include: Shlaer-Mellor, Jacobson, Coad-Yourdon, and Rum-
baugh [Baudoin 96]. The results of implementing these methods range
from tremendous successes at AT&T Bell Labs [Kamath 93] to a mixture
of successes and partial failures on other projects. AT&T Bell Labs real-
ized benefits from OOA on a large project called the Call Attempt Data
Collection System (CADCS). Additionally, they found during the develop-
ment of two releases of the CADCS that use of the OOA techniques re-
sulted in an 8% reduction in requirements specification time and a 30%
reduction in requirements staff effort [Kamath 93]. Other OOA efforts
have not been able to reproduce these successes for reasons such as
the lack of completed pilot projects, and the lack of formal OOA training
[Malan 95].

Costs and
Limitations

The use of this technology requires a commitment to formal training in
OOA methods. A method of training that has produced desired results is
to initiate pilot projects, conduct formal classes, employ OOA mentors,
and conduct team reviews to train properly both the analysis and devel-
opment staff as well as the program management team [Kamath 93].
There are almost no reported successes using OOA methods on the first
application without this type of training program [Kamath 93]. Projects
with initial and continuing OOA training programs realize that the benefits
of this technology depend upon the training and experience levels of their
staffs. Purchase of CASE tools that support object-oriented methods
may significantly enhance OOA— this is another cost to consider.

Alternatives Alternative technologies that are used for developing software engineer-
ing requirements and specifications include functional decomposition,
essential systems analysis, and structured analysis [Yourdon 79].

Complementary
Technologies

There is a strong relationship between OOA and other object-oriented
technologies (see Object-Oriented Database (pg. 279), Object-Oriented
Design (pg. 283), and Object-Oriented Programming Languages (pg.
287)). This is especially true of object-oriented design— certain object-
oriented methods combine particular analysis and design methods that
work well together. In fact, the seamless use of objects throughout the
analysis, design, and programming phases provides the greatest benefit.
Use of OOA alone, without transition into OOD, would be a severely lim-
ited approach.

Combining object-oriented methods with Cleanroom (with its emphasis
on rigor, formalisms, and reliability) (see pg. 95) can define a process ca-
pable of producing results that are reusable, predictable, and high-quali-
ty. Thus, object-oriented methods can be used for front-end domain
276 CMU/SEI-97-HB-001

Object-Oriented Analysis
analysis and design, and Cleanroom can be used for life-cycle applica-
tion engineering [Ett 96].

References and
Information
Sources

[Baudoin 96] Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Life-
cycle. Englewood Cliffs, NJ: Prentice Hall, 1996.

[Embley 95] Embley, David W.; Jackson, Robert B.; & Woodfield, Scott N. “OO Sys-
tems Analysis: Is it or Isn’t it?” IEEE Software 12, 2 (July 1995): 19-33.

[Ett 96] Ett, William. A Guide to Integration of Object-Oriented Methods and
Cleanroom Software Engineering [online]. Available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guide.html>
(1996).

[Kamath 93] Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. “Reaping Benefits With Ob-
ject-Oriented Technology.” AT&T Technical Journal 72, 5 (Septem-
ber/October 1993): 14-24.

[Malan 95] Malan, R.; Coleman, D.; & Letsinger, R. “Lessons Learned from the Ex-
periences of Leading-Edge Object Technology Projects in Hewlett-Pack-
ard,” 33-46. Proceedings of Tenth Annual Conference on Object-
Oriented Programming Systems Languages and Applications. Austin,
TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

[Yourdon 79] Yourdon, E. & Constantine, L. Structured Design. Englewood Cliffs, NJ:
Prentice Hall, 1979.

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Object-Oriented Analysis

Application category Define and Develop Requirements
(AP.1.2.2.1), Analyze Functions (AP.1.2.1.1),
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1), Reusability (QM.4.4)

Computing reviews category Software Engineering Requirements and
Specifications (D.2.1), Software Engineering
Tools and Techniques (D.2.2), Software Engi-
neering Design (D.2.10)
CMU/SEI-97-HB-001 277

Object-Oriented Analysis
278 CMU/SEI-97-HB-001

Object-Oriented Database
Object-Oriented Database IN REVIEW

Purpose and
Origin

Object-oriented databases (OODBs) evolved from a need to support ob-
ject-oriented programming and to reap the benefits, such as system
maintainability, from applying object orientation to developing complex
software systems. The first OODBs appeared in the late 1980s. Martin
provides a complete list of these early OODBs [Martin 93]. OODBs are
based on the object model and use the same conceptual models as ob-
ject-oriented analysis (see pg. 275), object-oriented design (see pg. 283)
and object-oriented programming (see pg. 287). Using the same concep-
tual model simplifies development; improves communication among us-
ers, analysts, and programmers; and lessens the likelihood of errors
[Martin 93].

Technical Detail OODBs are designed for the purpose of storing and sharing objects; they
are a solution for persistent object handling. Persistent data are data that
remain after a process is terminated.

There is no universally-acknowledged standard for OODBs. There is,
however, some commonality in the architecture of the different OODBs
because of three necessary components: object managers, object serv-
ers, and object stores. Applications interact with object managers, which
work through object servers to gain access to object stores.

OODBs provide the following benefits:

• OODBs allow for the storage of complex data structures that can not
be easily stored using conventional database technology.

• OODBs support all the persistence necessary when working with
object-oriented languages.

• OODBs contain active object servers that support not only the
distribution of data but also the distribution of work (in this context,
relational database management systems (DBMS) have limited
capabilities) [Vorwerk 94].

In addition, OODBs were designed to be well integrated with object-ori-
ented programming languages such as C++ and Smalltalk. They use the
same object model as these languages. With OODBs, the programmer
deals with transient (temporary) and persistent (permanent) objects in a
uniform manner. The persistent objects are in the OODB, and thus the
conceptual walls between programming and database are removed. As
stated earlier, the employment of a unified conceptual model greatly sim-
plifies development [Tkach 94].
CMU/SEI-97-HB-001 279

Object-Oriented Database
Usage
Considerations

The type of database application should dictate the choice of database
management technology. In general, database applications can be cate-
gorized into two different applications:

1. Data collection applications focus on entering data into a database
and providing queries to obtain information about the data. Examples
of these kinds of database applications are accounts payable, ac-
counts receivable, order processing, and inventory control. Because
these types of applications contain relatively simple data relation-
ships and schema design, relational database management systems
(RDBMs) are better suited for these applications.

2. Information analysis applications focus on providing the capability to
navigate through and analyze large volumes of data. Examples of
these applications are CAD/CAM/CAE, production planning, network
planning, and financial engineering. These types of applications are
very dynamic and their database schemas are very complex. This
type of application requires a tightly-coupled language interface and
the ability to handle the creation and evolution of schema of arbitrary
complexity without a lot of programmer intervention. Object-oriented
databases support these features to a great degree and are therefore
better suited for the information analysis type of applications [Desanti
94].

OODBs are also used in applications handling BLOBs (binary large ob-
jects) such as images, sound, video, and unformatted text. OODBs sup-
port diverse data types rather than only the simple tables, columns and
rows of relational databases.

Maturity Claims have been made that OODBs are not used in mainstream appli-
cations, are not scalable, and represent an immature technology [Object
96]. Two examples to the contrary include the following:

• Northwest Natural Gas uses an OODB for a customer information
system. The system stores service information on 400,000
customers and is accessed by 250 customer service representatives
in seven district offices in the Pacific Northwest.

• Ameritech Advanced Data Services uses an OODB for a
comprehensive management information system that currently
includes accounting, order entry, pricing, and pre-sales support and
is accessed by more than 200 people dispersed in a five state region.

Both of these applications are mainstream and represent databases well
over a gigabyte in size; this highlights the fact that OODBs do work well
with large numbers of users in large applications [Object 96].

Costs and
Limitations

The costs of implementing OODB technology are dependent on the re-
quired platforms and numbers of licenses required. The costs of the ac-
tual OODB software are comparable to relational database management
systems on similar platforms. The use of OODBs requires an educational
280 CMU/SEI-97-HB-001

Object-Oriented Database
change among the software developers and database maintainers and
requires a corporate commitment to formal training in the proper use of
the OODB features.

Alternatives An alternative is relational database management systems (RDBMs).

References and
Information
Sources

[Desanti 94] Desanti, Mike & Gomsi, Jeff. “A Comparison of Object and Relational Da-
tabase Technologies.” Object Magazine 3, 5 (January 1994): 51-57.

[Martin 93] Martin, James. Principles of Object-Oriented Analysis and Design. En-
glewood Cliffs, NJ: Prentice Hall, 1993.

[Object 96] “Focus on ODBMS Debunking the Myths.” Object Magazine 5, 9 (Febru-
ary 1996): 21-23.

[Tkach 94] Tkach, Daniel & Puttick, Richard. Object Technology in Application De-
velopment. Redwood City, CA: The Benjamin/Cummings Publishing
Company, Inc., 1994.

[Vorwerk 94] Vorwerk, Raymond. “Towards a True OBBMS.” Object Magazine 3, 5
(January 1994): 38-39.

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Object-Oriented Database

Application category Database Design (AP.1.3.2), Database Ad-
ministration (AP.1.9.1), Databases (AP.2.6)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Database Management (H.2)
CMU/SEI-97-HB-001 281

Object-Oriented Database
282 CMU/SEI-97-HB-001

Object-Oriented Design
Object-Oriented Design IN REVIEW

Purpose and
Origin

Object-oriented design (OOD) is concerned with developing an object-
oriented model of a software system to implement the identified require-
ments. Many OOD methods have been described since the late 1980s.
The most popular OOD methods include Booch, Buhr, Wasserman, and
the HOOD method developed by the European Space Agency [Baudoin
96]. OOD can yield the following benefits: maintainability through simpli-
fied mapping to the problem domain, which provides for less analysis ef-
fort, less complexity in system design, and easier verification by the user;
reusability of the design artifacts, which saves time and costs; and pro-
ductivity gains through direct mapping to features of object-oriented pro-
gramming languages (see pg. 287) [Baudoin 96].

Technical Detail OOD builds on the products developed during object-oriented analysis
(OOA) (see pg. 275) by refining candidate objects into classes, defining
message protocols for all objects, defining data structures and proce-
dures, and mapping these into an object-oriented programming language
(OOPL) (see pg. 287). Several OOD methods (Booch, Shlaer-Mellor, Bu-
hr, Rumbaugh) describe these operations on objects, although none is
an accepted industry standard. Analysis and design are closer to each
other in the object-oriented approach than in structured analysis and de-
sign. For this reason, similar notations are often used during analysis and
the early stages of design. However, OOD requires the specification of
concepts nonexistent in analysis, such as the types of the attributes of a
class, or the logic of its methods.

Design can be thought of in two phases. The first, called high-level de-
sign, deals with the decomposition of the system into large, complex ob-
jects. The second phase is called low-level design. In this phase,
attributes and methods are specified at the level of individual objects.
This is also where a project can realize most of the reuse of object-ori-
ented products, since it is possible to guide the design so that lower-level
objects correspond exactly to those in existing object libraries or to de-
velop objects with reuse potential. As in OOA, the OOD artifacts are rep-
resented using CASE tools with object-oriented terminology.

Usage
Considerations

OOD techniques are useful for development of large complex systems.
AT&T Bell Labs used OOD and realized the benefits of reduced product
development time and increased reuse of both code and analysis/design
artifacts on a large project called the Call Attempt Data Collection System
(CADCS). This large project consisted of over 350,000 lines of C++ code
that ran on a central processor with over 100 remote systems distributed
across the United States. During the development of two releases of the
CMU/SEI-97-HB-001 283

Object-Oriented Design
CADCS they found that use of the OOD techniques resulted in a 30% re-
duction in development time and a 20% reduction in development staff
effort as compared to similarly sized projects using traditional software
development techniques [Kamath 93]. However, these successes were
realized only after thorough training and completion of three- to six-
month pilot projects by their development staff [Kamath 93].

Experiences from other organizations show costly learning curves and
few productivity improvements without thoroughly-trained designers and
developers. Additionally, OOD methods must be adapted to the project
since each method contains object models that may be too costly, or pro-
vide little value, for use on a specific project [Malan 95].

The maximum impact from OOD is achieved when used with the goal of
designing reusable software systems. For objects without significant re-
use potential, OOD techniques were more costly than traditional software
development methodologies. This was because of the costs associated
with developing objects and the software to implement these objects for
a one-time use [Maring 96].

Maturity Many OOD methods have been used in industry since the late 1980s.
OOD has been used worldwide in many commercial, Department of De-
fense (DoD), and government applications. There exists a wealth of doc-
umentation and training courses for each of the various OOD methods,
along with commercially-available CASE tools with object-oriented ex-
tensions that support these OOD methods.

Costs and
Limitations

One reason for the mixed success reviews on OOD techniques is that the
use of this technology requires a corporate commitment to formal training
in the OOD methods and the purchase of CASE tools with capabilities
that support these methods. The method of training that produces the
best results is to initiate pilot projects, conduct formal classes, employ
OOD mentors, and conduct team reviews to train properly both the anal-
ysis and development staff as well as the program management team
[Kamath 93]. There are few, if any, reported successes using OOD meth-
ods on the first application without this type of training program [Maring
96]. Projects with initial and continuing OOD training programs realize
that the benefits of this technology depend upon the training and experi-
ence levels of their staffs.

Dependencies The use of OOD technology requires the development of object require-
ments using OOA techniques, and CASE tools to support both the draw-
ing of objects and the description of the relationships between objects.
Also, the final steps of OOD, representing classes and objects in pro-
gramming constructs, are dependent on the object-oriented program-
284 CMU/SEI-97-HB-001

Object-Oriented Design
ming language (OOPL) (see pg. 287) chosen. For example, if the OOPL
is Ada 95 (see pg. 67), a package-based view of the implementation
should be used; if C++ is the OOPL, then a class-based view should be
used. These different views require different technical design decisions
and implementation considerations.

Alternatives An alternative technology that can be used for developing a model of a
software system design to implement the identified requirements is a tra-
ditional design approach such as Yourdon and Constantine’s Structured
Design [Yourdon 79]. This method, used successfully for many different
types of applications, is centered around design of the required functions
of a system and does not lend itself to object orientation.

Complementary
Technologies

Combining object-oriented methods with Cleanroom (with its emphasis
on rigor, formalisms, and reliability) (see pg. 95) can define a process ca-
pable of producing results that are reusable, predictable, and high-quali-
ty. Thus, object-oriented methods can be used for front-end domain
analysis and design, and Cleanroom can be used for life-cycle applica-
tion engineering [Ett 96].

References and
Information
Sources

[Baudoin 96] Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Life-
cycle. Upper Saddle River, NJ: Prentice Hall, 1996.

[Ett 96] Ett, William. A Guide to Integration of Object-Oriented Methods and
Cleanroom Software Engineering [online]. Available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guide.html>
(1996).

[Kamath 93] Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. “Reaping Benefits With Ob-
ject-Oriented Technology.” AT&T Technical Journal 72, 5 (September
1993): 14-24.

[Malan 95] Malan, R.; Coleman, D.; & Letsinger, R. “Lessons Learned from the Ex-
periences of Leading-Edge Object Technology Projects in Hewlett-Pack-
ard,” 33-46. Proceedings of Tenth Annual Conference on Object-

Index
Categories

Name of technology Object-Oriented Design

Application category Detailed Design (AP.1.3.5), Reengineering
(AP.1.9.5)

Quality measures category Maintainability (QM.3.1), Reusability (QM.4.4)

Computing reviews category Object-Oriented Programming (D.1.5), Soft-
ware Engineering Design (D.2.10)
CMU/SEI-97-HB-001 285

Object-Oriented Design
Oriented Programming Systems Languages and Applications. Austin,
TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

[Maring 96] Maring, B. “Object-Oriented Development of Large Applications.” IEEE
Software 13, 3 (May 1996): 33-40.

[Yourdon 79] Yourdon, E. & Constantine, L. Structured Design. Englewood Cliffs, NJ:
Prentice Hall, 1979.

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

Last Modified 10 Jan 97
286 CMU/SEI-97-HB-001

Object-Oriented Programming Languages
Object-Oriented Programming Languages IN REVIEW

Purpose and
Origin

Object-oriented programming languages (OOPLs) are the natural choice
for implementation of an object-oriented design (see pg. 283) because
they directly support the object notions of classes, inheritance, informa-
tion hiding, and dynamic binding. Because they support these object no-
tions, OOPLs make an object-oriented design easier to implement
[Baudoin 96]. An object-oriented system programmed with an OOPL re-
sults in less complexity in the system design and implementation, which
can lead to an increase in maintainability [Baudoin 96]. The genesis of
this technology dates back to the early 1960s with the work of Nygaard
and Dahl in the development of the first object-oriented language called
Simula 67. Research progressed through the 1970s with the develop-
ment of Smalltalk at Xerox. Current OOPLs include C++, Objective C,
Smalltalk, Eiffel, Common LISP Object System (CLOS), Object Pascal,
Java (see pg. 221), and Ada 95 (see pg. 67) [Baudoin 96].

Technical Detail Object-oriented (OO) applications can be written in either conventional
languages or OOPLs, but they are much easier to write in languages es-
pecially designed for OO programming. OO language experts divide
OOPLs into two categories, hybrid languages and pure OO languages.
Hybrid languages are based on some non-OO model that has been en-
hanced with OO concepts. C++ (a superset of C), Ada 95, and CLOS (an
object-enhanced version of LISP) are hybrid languages. Pure OO lan-
guages are based entirely on OO principles; Smalltalk, Eiffel, Java, and
Simula are pure OO languages.

In terms of numbers of applications, the most popular OO language in
use is C++. One advantage of C++ for commercial use is its syntactical
familiarity to C, which many programmers already know and use; this
lowers training costs. Additionally, C++ implements all the concepts of
object orientation, which include classes, inheritance, information hiding,
polymorphism, and dynamic binding. One disadvantage of C++ is that it
lacks the level of polymorphism and dynamics most OO programmers
expect. Ada 95 is a reliable, standardized language well-suited for devel-
oping large, complex systems that are reliable [Tokar 96].

The major alternative to C++ or Ada 95 is Smalltalk. Its advantages are
its consistency and flexibility. Its disadvantages are its unfamiliarity
(causing an added training cost for developers), and its inability to work
with existing systems (a major benefit of C++) [Tokar 96].

Usage
Considerations

OOPLs are strongly recommended to complete the implementation of
object-oriented analysis (OOA) (see pg. 275) and object-oriented design
CMU/SEI-97-HB-001 287

Object-Oriented Programming Languages
(OOD) (see pg. 283) technologies. AT&T Bell Labs used OOD and OOP-
Ls and realized the benefits of reduced product development time and in-
creased reuse of both code and analysis/design artifacts on a large
project called Call Attempt Data Collection System (CADCS). This large
project consisted of over 350,000 lines of C++ code that ran on a central
processor with over 100 remote systems distributed across the United
States. During the development of two releases of the CADCS, the use
of the OOD techniques and subsequent implementation in OOPL result-
ed in an 30% reduction in development time and a 20% reduction in de-
velopment staff effort as compared to similarly-sized projects using
traditional software development techniques and languages [Kamath
93].

Organizations such as Bell Labs have found that through the introduction
of OO programming techniques in pilots and training courses, the devel-
opers were able to learn properly and experiment with the OOPL con-
structs. This resulted in increased object-oriented expertise such that
much of the CADCS software (objects) was reused on a similar project
[Kamath 93].

OOPLs such as Ada 95 and C++ can also be used to develop traditional
non-object-oriented software. These applications can be developed by
avoiding the use of the object-oriented language features. There are
many commercial, Department of Defense (DoD), and government appli-
cations of this type in existence today.

For applications where OOPL code is to be generated by a CASE tool,
developers must decide which programming language to generate: C++,
Ada 95, Smalltalk, Java, or CLOS. The choice of an OOPL can limit the
choices of CASE tools because the tools may not support the chosen lan-
guage. However, if language generation is not a consideration, then
CASE tools can be chosen based on features and design capabilities
without regard to the OOPL chosen for implementation.

Since different OOPLs support different levels of ’objectiveness’ (e.g., in-
heritance), different OOD constructs may or may not map directly to
OOPL constructs. Therefore, the choice of an OOPL is affected by a de-
sign captured using OOD techniques. Where OOD is not present, any
OOPL can be used, depending upon the training of the developers.

Maturity OOPLs have been used worldwide on many commercial, DoD, and
government applications/projects. There exists a wealth of documenta-
tion and training courses for each of the various OOPLs.
288 CMU/SEI-97-HB-001

Object-Oriented Programming Languages
Costs and
Limitations

The use of OOPL technology requires a corporate commitment to formal
training in the proper use of the OOPL features and the purchase of the
language compiler. The costs of completely training a development staff
implies that the insertion of this technology should be undertaken only on
new developments (instead of maintenance of legacy systems), and only
after pilot project(s) are successfully completed [Malan 95].

Alternatives Both object-oriented and non-object-oriented applications can be written
in either traditional languages or OOPLs. To fully realize the benefits of
an object orientation, it is much easier to write the implementations in lan-
guages especially designed for OO programming.

Complementary
Technologies

Combining object-oriented methods with Cleanroom (with its emphasis
on rigor, formalisms, and reliability) (see pg. 95) can define a process ca-
pable of producing results that are reusable, predictable, and high-quali-
ty. Thus, OOPLs can be used for implementation of an object-oriented
design and Cleanroom can be used for life-cycle application engineering.

References and
Information
Sources

[Baudoin 96] Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Life-
cycle. Upper Saddle River, NJ: Prentice Hall, 1996.

[Kamath 93] Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. “Reaping Benefits with Ob-
ject-Oriented Technology.” AT&T Technical Journal 72, 5 (September
1993): 14-24.

[Malan 95] Malan, R.; Coleman, D.; & Letsinger, R. “Lessons Learned from the Ex-
periences of Leading-Edge Object Technology Projects in Hewlett-Pack-
ard,” 33-46. Proceedings of Tenth Annual Conference on Object-
Oriented Programming Systems Languages and Applications. Austin,
TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

[Tokar 96] Tokar, Joyce L. “Ada 95: The Language for the 90’s and Beyond.” Object
Magazine 6, 4 (June 1996): 53-56.

Author Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

Index
Categories

Name of technology Object-Oriented Programming Languages

Application category Programming Language (AP.1.4.2.1)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Object-Oriented Programming (D.1.5), Pro-
gramming Language Classifications (D.3.2)
CMU/SEI-97-HB-001 289

Object-Oriented Programming Languages
Last Modified 10 Jan 97
290 CMU/SEI-97-HB-001

Object Request Broker
Object Request Broker COMPLETE

Note We recommend Middleware, pg. 251, as prerequisite reading for this
technology description.

Purpose and
Origin

An object request broker (ORB) is a middleware technology that manag-
es communication and data exchange between objects. ORBs promote
interoperability of distributed object systems because they enable users
to build systems by piecing together objects— from different vendors—
that communicate with each other via the ORB [Wade 94]. The imple-
mentation details of the ORB are generally not important to developers
building distributed systems. The developers are only concerned with the
object interface details. This form of information hiding enhances system
maintainability since the object communication details are hidden from
the developers and isolated in the ORB [Cobb 95].

Technical Detail ORB technology promotes the goal of object communication across ma-
chine, software, and vendor boundaries. The relevant functions of an
ORB technology are

• interface definition

• location and possible activation of remote objects

• communication between clients and object

An object request broker acts as a kind of telephone exchange. It pro-
vides a directory of services and helps establish connections between cli-
ents and these services [CORBA 96, Steinke 95]. Figure 21 illustrates
some of the key ideas.

Figure 21: Object Request Broker

establish
connection

ORB

Client
Application

Remote
Service (object)

activate
service

locate
service

communicate
CMU/SEI-97-HB-001 291

Object Request Broker
Note that there are many ways of implementing the basic ORB concept;
for example, ORB functions can be compiled into clients, can be sepa-
rate processes, or can be part of an operating system kernel. These ba-
sic design decisions might be fixed in a single product, as is the case with
Microsoft’s OLE (see below); or there might be a range of choices left to
the ORB implementer, as is the case with CORBA (see below).

The ORB must support many functions in order to operate consistently
and effectively, but many of these functions are hidden from the user of
the ORB. It is the responsibility of the ORB to provide the illusion of local-
ity, in other words, to make it appear as if the object is local to the client,
while in reality it may reside in a different process or machine [Reddy 95].
Thus the ORB provides a framework for cross-system communication
between objects. This is the first technical step toward interoperability of
object systems.

The next technical step toward object system interoperability is the com-
munication of objects across platforms. An ORB allows objects to hide
their implementation details from clients. This can include programming
language, operating system, host hardware, and object location. Each of
these can be thought of as a “transparency,”1 and different ORB technol-
ogies may choose to support different transparencies, thus extending the
benefits of object orientation across platforms and communication chan-
nels.

There are two major ORB technologies:

• The Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) specification (see pg. 107)

• Microsoft’s Common Object Model, partly implemented in Object
Linking and Embedding (OLE) (see pg. 271)

An additional, newly-emerging ORB model is Remote Method Invocation
(RMI); this is specified as part of the Java language/virtual machine (see
pg. 221). RMI allows Java objects to be executed remotely. This provides
ORB-like capabilities as a native extension of Java.

1. transparency: making something invisible to the client

Usage
Considerations

Successful adoption of ORB technology requires a careful analysis of the
current and future software architectural needs of the target application
and analysis of how a particular ORB will satisfy those needs [Abowd 96].
Among the many things to consider are platform availability, support for
various programming languages, and product performance parameters.
292 CMU/SEI-97-HB-001

Object Request Broker
After performing this analysis, developers can make informed decisions
in choosing the ORB best suited for their application’s needs. A quick ref-
erence chart on ORBs follows:

a. Examples include ORBIX by IONA Technology, NEO by SunSoft, VisiBroker by VisiGenic, PowerBroker by Ex-
persoft, SmallTalkBroker by DNS Technologies, Object Director by Fujitsu, DSOM by IBM, DAIS by ICL, SOR-
BET by Siemens Nixdorf, and NonStop DOM by Tandem.

b. Implementations of the Java VM have been ported to various platforms.

Maturity As shown in the chart above, there are a number of commercial ORB
products available. ORB products that are not compliant with either
CORBA or OLE also exist; however, these tend to be vendor-unique so-
lutions that may affect system interoperability, portability, and maintain-
ability.

Major developments in commercial ORB products are occurring, with life
cycles seemingly lasting only four to six months. In addition, new ORB
technology (Java/RMI) is emerging, and there are signs of potential
“mergers” involving two of the major technologies. The continued trend
toward Intranet- and Internet-based applications is another stimulant in
the situation. Whether these commercial directions are fully technically
viable and will be accepted by the market is unknown.

Given the current situation and technical uncertainty, potential users of
ORB technologies need to determine

• what new features ORB technologies add beyond technologies
currently in use in their organizations

• the potential benefits from using these new features

• the key risks involved in adopting the technology as a whole

• how much risk is acceptable to them

ORB Platform Availability Applicable to Mechanism Implementations

OLE/
COM

PC platforms document
management
architecture

APIs to proprietary
system

one

CORBA platform-
independent and
interoperability among
platforms

general distributed
system architecture

specification of
distributed object
technology

manya

Java/
RMI

wherever Java virtual
machine (VM) executes

general distributed
system architecture
and Web-based
Intranets

implementation of
distributed object
technology

variousb
CMU/SEI-97-HB-001 293

Object Request Broker
One possible path would be to undertake a disciplined and “situated”
technology evaluation. Such an evaluation, as described by Brown and
Wallnau, focuses on evaluating so-called “innovative” technologies and
can provide technical information for adoption that is relative to the cur-
rent/existing approaches in use by an organization [Brown 96, Wallnau
96]. Such a technology evaluation could include pilot projects focusing on
model problems pertinent to the individual organization.

Costs and
Limitations

The license costs of the ORB products from the vendors listed above are
dependent on the required operating systems and the types of platform.
ORB products are available for all major computing platforms and oper-
ating systems.

References and
Information
Sources

[Abowd 96] Abowd, Gregory, et al. “Architectural Analysis of ORBs.” Object Maga-
zine 6, 1 (March 1996): 44-51.

[Brown 96] Brown, A. & Wallnau, Kurt. “A Framework for Evaluating Software Tech-
nology.” IEEE Software 13, 5 (September 1996): 39-49.

[Cobb 95] Cobb, Edward E. “TP Monitors and ORBs: A Superior Client/Server Al-
ternative.” Object Magazine 4, 9 (February 1995): 57-61.

[CORBA 96] The Common Object Request Broker: Architecture and Specification,
Version 2.0. Framingham, MA: Object Management Group, 1996. Also
available [online] WWW <URL: http://www.omg.org> (1996).

[Reddy 95] Reddy, Madhu. “ORBs and ODBMSs: Two Complementary Ways to Dis-
tribute Objects.” Object Magazine 5, 3 (June 1995): 24-30.

[Steinke 95] Steinke, Steve. “Middleware Meets the Network.” LAN Magazine 10, 13
(December 1995): 56.

Index
Categories

Name of technology Object Request Broker

Application category Client/Server (AP.2.1.2.1), Client/Server Com-
munication (AP.2.2.1)

Quality measures category Interoperability (QM.4.1), Maintainability
(QM.3.1)

Computing reviews category Distributed Systems (C.2.4), Object-Oriented
Programming (D.1.5)
294 CMU/SEI-97-HB-001

Object Request Broker
[Tkach 94] Tkach, Daniel & Puttick, Richard. Object Technology in Application De-
velopment. Redwood City, CA: Benjamin/Cummings Publishing Compa-
ny, 1994.

[Wade 94] Wade, Andrew E. “Distributed Client-Server Databases.” Object Maga-
zine 4, 1 (April 1994): 47-52.

[Wallnau 96] Wallnau, Kurt & Wallace, Evan. “A Situated Evaluation of the Object
Management Group’s (OMG) Object Management Architecture (OMA),”
168-178. Proceedings of the OOPSLA’96. San Jose, CA, October 6-10,
1996. New York, NY: ACM, 1996. Also available [online] FTP. <URL:
ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).

Authors Kurt Wallnau, SEI
kcw@sei.cmu.edu

John Foreman, SEI
jtf@sei.cmu.edu

Mike Bray, Lockheed-Martin Ground Systems
michael.w.bray@den.mmc.com

External
Reviewer(s)

Ed Morris, SEI
Richard Soley, VP, Chief Technical Officer, Object Management Group

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 295

Object Request Broker
296 CMU/SEI-97-HB-001

Organization Domain Modeling
Organization Domain Modeling COMPLETE

Note We recommend Domain Engineering and Domain Analysis, pg. 173, as
prerequisite reading for this technology description.

Purpose and
Origin

Organization domain modeling (ODM) was developed to provide a for-
mal, manageable, and repeatable approach to domain engineering. The
ODM method evolved and was subsequently formalized by Mark Simos
(Organon Motives, Inc.) with collaboration and sponsorship from Hewlett-
Packard Company, Lockheed-Martin,1 and the DARPA STARS2 pro-
gram [Simos 96]. ODM affects the maintainability, understandability, and
reusability characteristics of a system or family of systems.

1. formerly Unisys Defense Systems, Reston, VA

2. Defense Advanced Research Projects Agency (DARPA) Software Technology for
Adaptable, Reliable Systems (STARS)

Technical Detail ODM was developed and refined as part of the overall reuse/product line
approaches developed under the STARS program. The STARS reuse
approach decomposes reuse technologies into several levels or layers of
abstraction, specifically: Concepts, Processes, Methods, and Tools. An
example of a “concept” is the Conceptual Framework for Reuse Process-
es (CFRP), a conceptual foundation and framework for understanding
domain-specific reuse in terms of the processes involved [STARS 93].
An example of a “process” is the Reuse-Oriented Software Evolution
(ROSE) process model, which is based on the CFRP life-cycle process
model; it partitions software development into domain engineering, asset
management, and application engineering; and emphasizes the role of
reuse in software evolution. ODM is an example of a “method” compati-
ble with the CFRP framework.

The primary goal of ODM is the systematic transformation of artifacts
(e.g., requirements, design, code, tests, and processes) from multiple
legacy systems into assets that can be used in multiple systems. The
method can also be applied to requirements for new systems; the key el-
ement is to ground domain models empirically by explicit consideration
of multiple exemplars, which determine the requisite range of variability
that the models must encompass. ODM stresses the use of legacy arti-
facts and knowledge as a source of domain knowledge and potential re-
sources for reengineering/reuse. However, one of its objectives is to
avoid embedding hidden constraints that may exist in legacy systems
into the domain models and assets.
CMU/SEI-97-HB-001 297

Organization Domain Modeling
Domain Engineering and Domain Analysis, pg. 173, identifies three ar-
eas where domain analysis methods can be differentiated. Distinguishing
features for ODM are:

Primary product of the analysis. The result of ODM is a knowledge
representation framework populated with a domain architecture and a
flexible asset base. It can be thought of as a reuse library designed to
support systematic reuse in a prescribed context; however, the method
supports the use of diverse implementation techniques such as genera-
tors in the asset base.

Focus of analysis

• ODM is structured in terms of a core domain engineering life cycle,
which is distinct from and orthogonal to the system engineering life
cycle. The ODM life cycle is divided into three phases:

– plan domain: selecting, scoping, and defining target
domains

– model domain: modeling the range of variability that can
exist within the scope of the domain

– engineer asset base: engineering an asset base that
satisfies some subset of the domain variability, based on the
needs of specific target customers [Simos 96]

• Iterative scoping. The approach to systematic scoping involves
structuring the ODM life cycle as a series of incremental scoping
steps; each step builds upon and validates the previous step.

• Stakeholder focus. The ODM life cycle provides an up-front analysis
of the organizational stakeholders and objectives. The stakeholder
focus is carried throughout the life cycle with tasks to reconsider the
strategic interests of stakeholders at critical points.

• Exemplar-based modeling. ODM works from a set of explicit
examples, called exemplars, of the domain rather than a single,
generalized example or speculation about a “general” solution.

• Emphasis on descriptive modeling. ODM places heavy emphasis on
studying a set of example systems for the domain in order to derive
the shape of the domain space.

• Explicit modeling of variability. ODM encourages modelers to
maximize variability in the descriptive phase of modeling. This is to
generate as much insight as possible about the potential range of
variability in the domain.

• Methods for context recovery. ODM emphasizes identifying
contextual information (e.g., language, values, assumptions,
dependencies, history) embedded within an artifact to make them
more dependable and predictable. (Note: This activity does not
298 CMU/SEI-97-HB-001

Organization Domain Modeling
remove dependencies. This occurs during the engineering asset
base phase.)

• Prescriptive asset base engineering. After descriptive modeling takes
place, the prescriptive modeling phase begins. Initially, the range of
functionality to be supported by the reusable assets are re-scoped
and commitments are made to a real set of customers. Prescriptive
features are mapped onto the structure of the asset base and to sets
of specifications for particular assets. Traceability from the features
back to exemplar artifacts are maintained to enable the retrieval of
additional information (e.g., existing prototypes, history).

Representation Techniques. Although ODM encompasses all of do-
main engineering, the core method focuses on activities that are unique
to domain engineering. Other activities that fall within, but are not specific
to domain engineering are supported through “supporting methods.” This
means that ODM can be integrated with a variety of existing methods
(e.g., system and taxonomic modeling techniques) to support unique
constraints or preferences of an organization or domain. Examples of
supporting methods are the methods associated with the Reuse Library
Framework (RLF) [STARS 96c], Canvas [STARS 96a], Domain Architec-
ture-Based Generation for Ada Reuse (DAGAR) [Klinger 96, STARS
96b], and the Knowledge Acquisition for Preservation of Tradeoffs and
Underlying Rationales (KAPTUR) Tool, which is described as a part of
Argument-Based Design Rationale Capture Methods for Requirements
Tracing, pg. 91.

Usage
Considerations

ODM was developed primarily to support domain engineering projects for
domains that are mature, reasonably stable, and economically viable. Al-
though all of the criteria do not need to be met, ODM is most successful
when all are present. ODM can be applied in reuse programs that are in
their infancy or very mature. ODM does not assume application within an
established reuse program, and in fact includes some risk-reduction
steps (such as up-front stakeholder analysis) that enable the use of do-
main analysis as a first step in establishing such a program.

However, it is recommended that the first application of ODM be on a pi-
lot project in a relatively small domain. ODM supports evolution to larger
domains or a broader reuse program.

Maturity ODM has been applied on small-scale and relatively large-scale projects.
The following are examples:

• Hewlett-Packard developed a domain engineering workbook by
tailoring aspects of an early version of the ODM process model to
their organizational objectives. The workbook is being used on
CMU/SEI-97-HB-001 299

Organization Domain Modeling
numerous internal domain engineering projects within their divisions
[Cornwell 96, Simos 96].

• The Air Force CARDS Program applied ODM in several different
areas: as a means of structuring a comparative study on architecture
representation languages; on the automated message handling
system (AMHS) domain analysis effort; and for product-line analysis
as part of the Hanscom AFB Domain Scoping effort.

• ODM formed the basis for the domain engineering approach of the
Army STARS Demonstration Project. ODM processes were
integrated closely with the CFRP [STARS 93] as a higher level
planning guide, and with RLF as a domain modeling representation
technology [Lettes 96].

Costs and
Limitations

Before incorporating ODM into the overall reuse plan, an organization
should consider the following:

• The core ODM method does not directly address the ongoing
management of domain models and assets, or the use of the assets
by application development projects. These activities are part of a
larger reuse program described in the CFRP [STARS 93].

• ODM does not encompass the overall reuse program planning
including the establishment of producer-consumer relationships
between domain engineering projects and other efforts, such as
system reengineering projects or planned new projects.

• ODM may not be applicable within organizations that are not
prepared to commit to, or at least experiment with, systematic reuse
(i.e., reuse of assets that were developed using a software
engineering process that is specifically structured for reuse).

• ODM requires that an organization adopt the level of modeling rigor,
the modeling styles, or approaches recommended within ODM.

• The use of ODM necessitates a technology infrastructure and level of
technical expertise sufficient to support ODM modeling needs [Simos
96].

Complementary
Technologies

A complimentary technology is generation techniques.

Index
Categories

Name of technology Organization Domain Modeling

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4), Maintainability (QM.3.1),
Understandability (QM.3.2)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
300 CMU/SEI-97-HB-001

Organization Domain Modeling
References and
Information
Sources

[Cornwell 96] Cornwell, Patricia Collins. “HP Domain Analysis: Producing Useful Mod-
els for Reusable Software.” HP Journal (August 1996): 46-55.

[Klinger 96] Klinger, Carol & Solderitsch, James. DAGAR: A Process for Domain Ar-
chitecture Definition and Asset Implementation [online]. Available WWW
<URL: http://source.asset.com/stars/darpa/Papers/ArchPapers.html>
(1996).

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration Project
Experience Report (STARS-VC-A011/003/02). Manassas, VA: Loral De-
fense Systems-East, 1996.

[Simos 94] Simos, M. “Juggling in Free Fall: Uncertainty Management Aspects of
Domain Analysis Methods,” 512-521. Fifth International Conference on
Information Processing and Management of Uncertainty in Knowledge-
Based Systems. Paris, France, July 4-8, 1994. Berlin, Germany: Spring-
er-Verlag, 1995.

[Simos 96] Simos, M., et al. Software Technology for Adaptable Reliable Systems
(STARS). Organization Domain Modeling (ODM) Guidebook Version 2.0
(STARS-VC-A025/001/00). Manassas, VA: Lockheed Martin Tactical
Defense Systems, 1996. Also available [online] WWW
<URL: http://www.asset.com/WSRD/abstracts/ABSTRACT_1176.html>
(1996).

[STARS 93] Conceptual Framework for Reuse Processes Volume I, Definition, Ver-
sion 3.0 (STARS-VC-A018/001/00). Reston, VA: Software Technology
for Adaptable Reliable Systems, 1993.

[STARS 96a] Canvas Knowledge Acquisition Guide Book Version 1.0 (STARS-PA29-
AC01/001/00) Reston, VA: Software Technology for Adaptable, Reliable
Systems, 1996.

[STARS 96b] Domain Architecture-Based Generation for Ada Reuse (DAGAR) Guide-
book Version 1.0. Manassas, VA: Lockheed Martin Tactical Defense
Systems, 1996.

[STARS 96c] Open RLF (STARS-PA31-AE08/001/00). Manassas, VA: Lockheed Mar-
tin Tactical Defense Systems, 1996.

Author Liz Kean, Rome Laboratory
liz@se.rl.af.mil
CMU/SEI-97-HB-001 301

Organization Domain Modeling
External
Reviewer(s)

Dick Creps, Lockheed Martin, Manassas, VA
Teri Payton, Lockheed Martin, Manassas, VA
Mark Simos, Organon Motives, Inc., Belmont, MA

Last Modified 10 Jan 97
302 CMU/SEI-97-HB-001

Personal Software Process for Module-Level
Development
Personal Software Process for Module-Level
Development COMPLETE

Purpose and
Origin

Personal Software Process (PSP)1 is a framework of advanced process
and quality techniques to help software engineers improve their perfor-
mance and that of their organizations through a step-by-step, disciplined
approach to measuring and analyzing their work. Software engineers
that use the PSP can substantially improve their ability to estimate and
plan their work and significantly improve the quality, i.e., reduce the de-
fects, in the code they develop. PSP is a result of research by Watts
Humphrey into applying process principles to the work of individual soft-
ware engineers and small software teams [Humphrey 95]. The objective
was to transfer the quality concepts of the Capability Maturity Model
(CMM)2 for Software [Paulk 95] to the individual and small team level.

1. Personal Software Process and PSP are service marks of Carnegie Mellon Univer-
sity.

2. Capability Maturity Model and CMM are service marks of Carnegie Mellon Universi-
ty.

Technical Detail The foundations of PSP are the advanced process and quality methods
that have been used in manufacturing to improve all forms of production.
These concepts include the following:

• definition of the processes

• use of the defined processes

• measurement of the effects of the processes on product

• analysis of the effects on the product

• continuous refinement of the processes based on analysis

Some of the engineering methods used in PSP are data gathering, size
and resource estimating, defect management, yield management, and
cost of quality and productivity analysis. The basic data gathered in PSP
are

• the time the engineer spends in each process phase

• the defects introduced and found in each phase

• the size of the developed product

All PSP process quality measures are derived from this basic set of data.
Size and resource estimating is done using a proxy-based estimating
method, PROBE [Humphrey 96b], that uses the engineer’s personal data
CMU/SEI-97-HB-001 303

Personal Software Process for Module-Level
Development
and statistical techniques to calculate a new item’s most likely size and
development time, and the likely range of these estimates. A key PSP te-
net is that defect management is an engineer’s personal responsibility.
By analyzing the data gathered on the defects they injected, engineers
refine their personal process to minimize injecting defects, and devise
tailored checklists and use personal reviews to remove as many defects
as possible. Yield, the principal PSP quality measure, is used to measure
the effectiveness of review phases. Yield is defined as the percentage of
the defects in the product at the start of the review that were found during
the review phase. The basic cost-of-quality measure in PSP is the ap-
praisal-to-failure-ratio (A/FR), which is the ratio of the cost of the review
and evaluation phases to the cost of the diagnosing and repair phases.
PSP-trained engineers learn to relate productivity and quality, i.e., that
defect-free (or nearly so) products require much less time in diagnosing
and repair phases, so their projects will likely be more productive.

The PSP (and the courses based on it) concentrates on applying PSP to
the design, code, and Unit Test phases, i.e. module-level development
phases of software development [Humphrey 95]. As such, an instance of
PSP for module-level development is created. In PSP for module-level
development

• The individual process phases are planning, design, design review,
code, code review, compile, test, and postmortem.

• Size is measured in lines of code and size/resource estimating is
done using functions or objects as the proxies for the PROBE
method.

• Engineers build individually tailored checklists for design review and
code review based on the history of the defects they inject most
frequently.

• Yield is the percentage of defects found before the first compile,
engineers are taught to strive for a 100% yield and can routinely
achieve yields in the range of 70%.

• A/FR is the ratio of the time spent in design review and code review
phases to the time spent in compile and test phases, and engineers
are encouraged to plan for an A/FR of 2 or higher, which has been
shown to correlate well with high yield.

The PSP for module-level development substantially improves engineer-
ing performance on estimating accuracy, defect injection, and defect re-
moval. Class data from 104 engineers that have taken the PSP course
shows reductions of 58% in the average number of defects injected (and
found in development) per 1,000 lines of code (KLOC), and reductions of
72% in the average number of defects per KLOC found in test. Estimating
and planning accuracy also improved with an average 26% reduction in
304 CMU/SEI-97-HB-001

Personal Software Process for Module-Level
Development
size estimating error and an average 46% reduction in time estimating er-
ror. Average productivity of the group went up slightly [Humphrey 96a].

Usage
Considerations

PSP for module-level development is applicable to new development and
enhancement work on whole systems or major subunits. Based on use
and analysis to date, introduction of PSP for module-level development
is most effective in software organizations that have launched process
improvement work and are implementing CMM Level 2 [Paulk 95] or
higher practices. Because PSP emphasizes early defect removal, i.e.,
spending time in the design through code review phases to prevent and
remove as many defects as possible before the first compile, PSP intro-
duction will likely be difficult in organizations that are concerned primarily
with schedule and not with product quality.

PSP is an individual development process; however, it can be used by
small teams if all members are PSP-trained and team conventions are
established for code counting and defect types. PSP does not require so-
phisticated tools or software development environments; however, sim-
ple spreadsheet-based tools can significantly help individual engineers
reduce the effort needed to track and analyze their personal data.

The principles of PSP are being applied to other areas such as develop-
ing documentation, handling maintenance, conducting testing, and doing
requirements analysis. Humphrey describes how the PSP can be adapt-
ed to these and other areas [Humphrey 95].

Maturity PSP is a new technology. It is already being taught in a number of uni-
versities, but industrial introduction has just begun and only limited re-
sults are available. Early industrial results are similar to the PSP course
results, showing reduced defects and improved quality. Work on indus-
trial transition methods, support tools, and operational practices is ongo-
ing.

Costs and
Limitations

PSP training (class room instruction, programming exercises, and per-
sonal data analysis reports) requires approximately 150 to 200 hours on
the part of each engineer. Through the use of 10 programming exercises
and 5 reports, engineers are led through a progressive sequence of soft-
ware processes, taking them from their current process to the full-up PSP
for module-level development process. By doing the exercises, engi-
neers learn to use the methods and by analyzing their own data, engi-
neers see how the methods work for them.

Based on demonstrated benefits from course data, it is projected that the
costs of training will be recovered by an organization within one year
CMU/SEI-97-HB-001 305

Personal Software Process for Module-Level
Development
through reduced defects, reduced testing time, improved cycle time, and
improved product quality.

Attempts by engineers to learn PSP methods by reading the book and
then trying to apply the techniques on real projects have generally not
worked. Until they have practiced PSP methods and have become con-
vinced of their effectiveness, engineers are not likely to apply them on the
job.

PSP introduction requires strong management commitment because of
the significant effort required to learn PSP. Management must provide
engineers the time to learn PSP and track their training progress to en-
sure the training is completed.

Complementary
Technologies

PSP is complementary to organizational software process improvements
efforts based on the CMM for Software [Paulk 95]. The CMM is an orga-
nization-focused process-improvement framework that provides a disci-
plined, efficient organizational environment for software engineering
work. The PSP equips engineers with the personal skills and methods to
do high-quality work and participate in organizational process improve-
ment. Of the 18 key process areas in the CMM, PSP demonstrates/cov-
ers 12 of the 18.

References and
Information
Sources

[Humphrey 95] Humphrey, Watts. A Discipline for Software Engineering. Reading, MA:
Addison-Wesley Publishing Company, 1995.

[Humphrey 96a] Humphrey, Watts. “Using a Defined and Measured Personal Software
Process.” IEEE Software 13, 3 (May 1996): 77-88.

[Humphrey 96b] Humphrey, Watts. “The PSP and Personal Project Estimating.” American
Programmer 9, 6 (June 1996): 2-15.

Index
Categories

Name of technology Personal Software Process for Module-Level
Development

Application category Detailed Design (AP.1.3.5), Code (AP.1.4.2),
Unit Testing (AP.1.4.3.4), Component Testing
(AP.1.4.3.5), Reapply Software Life Cycle
(AP.1.9.3), Reengineering (AP.1.9.5)

Quality measures category Reliability (QM.2.1.2), Availability (QM.2.1.1),
Maintenance Control (QM.5.1.2.3), Productivi-
ty (QM.5.2)

Computing reviews category not available
306 CMU/SEI-97-HB-001

Personal Software Process for Module-Level
Development
[Paulk 95] Paulk, Mark C. The Capability Maturity Model: Guidelines for Improving
the Software Process. Reading, MA: Addison-Wesley, 1995.

Author Dan Burton, SEI
dburton@sei.cmu.edu

External
Reviewer(s)

Archie Andrews, SEI
Watts Humphrey, SEI
Mark Paulk, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 307

Personal Software Process for Module-Level
Development
308 CMU/SEI-97-HB-001

Public Key Digital Signatures
Public Key Digital Signatures ADVANCED

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

Public key digital signature techniques provide data integrity and source
authentication capabilities to enhance data trustworthiness in computer
networks. This technology uses a combination of a message authentica-
tion code (MAC) to guarantee the integrity of data and unique features of
paired public and secret keys associated with public key cryptography to
uniquely authenticate the sender [Schneier 96, Abrams 95]. This technol-
ogy was first defined in the early 1980s with the development of public
key cryptography but has received renewed interest as an authentication
mechanism on the Internet.

Technical Detail Trustworthiness of data received by a computer from another computer
is a function of the security capabilities of both computers and the com-
munications between them. One of the fundamental objectives of com-
puter security is data integrity [White 96]. Two aspects of data integrity
are improved by public key digital signature techniques. These are send-
er authentication and data integrity verification. Positive authentication of
the message source is provided by the unique relationship of the two en-
cryption keys used in public key cryptography. Positive verification of
message integrity is provided by the use of a message authentication
code (sometimes called a manipulation detection code or a cryptographic
checksum) that is produced by a message digest (sometimes called a
data hashing) function. The use of a message authentication code and
public key cryptography are combined in the public key digital signature
techniques technology.

Sender authentication. Public key cryptography uses two paired keys.
These are the public key and the secret key (sometimes called the pri-
vate key), which are related to each other mathematically. The public key
is distributed to anyone that needs to encrypt a message destined for the
holder of the secret key. The secret key is not known to anyone but the
holder of the secret key. Because of the mathematical relationship of the
keys, data encrypted with the public key can only be decrypted with the
secret key. Another feature of the paired key relationship is that if a mes-
sage can be successfully decrypted with the public key then it must have
been encrypted with the secret key. Therefore, any message decrypted
by a holder of the public key must have been sent by the holder of the
secret key. This is used to authenticate the source of a message. Public
key cryptography can use one of several algorithms but the most com-
mon one is the Revisit, Shamir, and Adleman (RSA) algorithm. It is used
CMU/SEI-97-HB-001 309

Public Key Digital Signatures
to produce the paired keys and to encrypt or decrypt data using the ap-
propriate key.

Data integrity verification. Message digest functions produce a single
large number called the message authentication code (MAC) that is
unique1 to the total combination and position of characters in the mes-
sage being digested. The message digest function distributed with RSA
is called the MD5 message digest function. It produces a unique 128 bit
number for each different message digested. If even one character is
changed in the message, a dramatically-different 128 bit number is gen-
erated.

The overall process for using Public Key Digital Signatures to verify data
integrity is shown in Figure 22.

1. Of course they are not absolutely unique. We say unique here because it is extreme-
ly unlikely statistically for two files to have the same MAC and, more importantly, it is
extremely difficult for an attacker/malicious user to create/craft two files having the
same MAC.

Figure 22: Public Key Digital Signatures

The Digital Signature of a message is produced in two steps:

1. The sender of the message uses the message digest function to pro-
duce a message authentication code (MAC).

2. This MAC is then encrypted using the private key and the public key
encryption algorithm. This encrypted MAC is attached to the mes-
sage as the digital signature.

The receiver of the message uses the public key to decrypt the digital sig-
nature. If it is decrypted successfully, the receiver of the message knows
it came from the holder of the secret key. The receiver then uses the

Text

Msg

Message
Digest

Function

Message
Authentication
Code

Sender Data

Transmitted
Receiver

Secret Key Public Key
Encryption
Algorithm

Digital Signature

Text

Msg

Digital Signature
Public Key
Encryption
Algorithm

Public Key

Message
Digest

Function

Message
Authentication
Code

Message
Authentication
Code

Compare
310 CMU/SEI-97-HB-001

Public Key Digital Signatures
message digest function to calculate the MAC associated with the re-
ceived message contents. If this number compares to the one decrypted
from the Digital Signature, the message was received unaltered and data
integrity is assured. This technique provides data source authentication
and verification of message content integrity.

There are many message digest functions and public key encryption al-
gorithms that may be used in developing the public key digital signature
technique. A discussion of these alternative algorithms and their merits
is in Schneier [Schneier 96].

Usage
Considerations

This technology is most likely to be used in networks of computers where
all the communication paths can not be physically protected and where
the integrity of data and sender authenticity aspects of trustability are es-
sential. Military C4I networks and banking networks that are on a wide-
spread local area network or a wide area network are prime examples of
this use.

Implementation of the public key digital signature techniques establishes
additional requirements on a network. The same message digest func-
tions and public key cryptography algorithm used to process the digital
signature must be used by both the sender and receiver. Secret/public
key pairs must be generated and maintained. Public keys must be dis-
tributed and secret keys protected.

Maturity The components of this technology, public key encryption and message
digest functions, have been in use since the early 1980s. The combined
technology is mature and is available in implementations that range from
small networks of PCs to protection of data being transferred over the In-
ternet.

The algorithms supporting public key digital signatures have historically
consumed large amounts of processing power. However, given recent
advances in processors used in PCs and workstations; this is no longer
a concern in most circumstances of use.

Costs and
Limitations

Using this technology requires network management personnel with
knowledge of public key cryptography and the use of software that imple-
ments public key and digital signature algorithms. It also requires security
personnel that can generate, distribute, and control encryption/decryp-
tion keys and respond to the loss or compromise of keys.

Dependencies Public key cryptography and message digest functions.

Alternatives Data integrity and authentication can be provided by a combination of
dedicated circuits, integrity protocols, and procedural control of sources
CMU/SEI-97-HB-001 311

Public Key Digital Signatures
and destinations. These approaches are not foolproof and can be expen-
sive. Data integrity and authentication can also be provided using private
key encryption and a third party arbitrator. This approach has the disad-
vantage that a third party must be trusted and the data must be encrypted
and decrypted twice with two separate private keys.

References and
Information
Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Se-
curity An Integrated Collection of Essays. Los Alamitos, CA: IEEE Com-
puter Society Press, 1995.

[Garfinkel 95] Garfinkel, Simpson. PGP: Pretty Good Privacy. Sebastopol, CA: O’Reilly
& Associates, 1995.

[Russel 91] Russel, Deborah & Gangemi, G. T. Sr. Computer Security Basics. Se-
bastopol, CA: O’Reilly & Associates,1991.

[Schneier 96] Schneier, Bruce. Applied Cryptography. New York, NY: John Wiley &
Sons, 1996.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System
and Network Security. Boca Raton, FL: CRC Press 1996.

Author Tom Mills, Loral
TMILLS@ccs.lmco.com

External
Reviewer(s)

Jim Ellis, SEI

Last Modified 10 Jan 97

Index
Categories

Name of technology Public Key Digital Signatures

Application category System Security (AP.2.4.3)

Quality measures category Trustworthiness (QM.2.1.4)

Computing reviews category Computer-Communication Networks Security
and Protection (C.2.0), Security and Protec-
tion (K.6.5)
312 CMU/SEI-97-HB-001

Rate Monotonic Analysis
Rate Monotonic Analysis COMPLETE

Purpose and
Origin

Rate Monotonic Analysis (RMA) is a collection of quantitative methods
and algorithms that allows engineers to specify, understand, analyze,
and predict the timing behavior of real-time software systems, thus im-
proving their dependability and evolvability.

RMA grew out of the theory of fixed priority scheduling. A theoretical
treatment of the problem of scheduling periodic tasks was first discussed
by Serlin in 1972 [Serlin 72] and then more comprehensively treated by
Liu and Layland in 1973 [Liu 73]. They studied an idealized situation in
which all tasks are periodic, do not synchronize with one another, do not
suspend themselves during execution, can be instantly preempted by
higher priority tasks, and have deadlines at the end of their periods. The
term “rate monotonic” originated as a name for the optimal task priority
assignment in which higher priorities are accorded to tasks that execute
at higher rates (that is, as a monotonic function of rate). Rate monotonic
scheduling is a term used in reference to fixed priority task scheduling
that uses a rate monotonic prioritization.

During the 1980s the limitations of the original theory were overcome and
the theory was generalized to the point of being practicable for a large
range of realistic situations encountered in the design and analysis of
real-time systems [Sha 91a]. RMA can be used by real-time system de-
signers, testers, maintainers, and troubleshooters, as it provides

• mechanisms for predicting real-time performance

• structuring guidelines to help ensure performance predictability

• insight for uncovering subtle performance problems in real-time
systems

This body of theory and methods is also referred to as generalized rate
monotonic scheduling (GRMS), a codification of which can be found in
Klein [Klein 93].

Technical Detail RMA provides the analytical foundation for understanding the timing be-
havior of real-time systems that must manage many concurrent threads
of control. Real-time systems often have stringent latency requirements
associated with each thread that are derived from the environmental pro-
cesses with which the system is interacting. RMA provides the basis for
CMU/SEI-97-HB-001 313

Rate Monotonic Analysis
predicting whether such latency requirements can be satisfied. Some of
the important factors that are used in RMA calculations include:

• the worst-case execution time of each thread of control

• the minimum amount of time between successive invocations of each
 thread

• the priority levels associated with the execution of each thread

• sources of overhead such as those due to an operating system

• delays due to interprocess communication and synchronization

• allocation of threads of control to physical resources such as CPUs,
buses, and networks

These factors and other aspects of the system design are used to calcu-
late worst-case latencies for each thread of control. These worst-case la-
tencies are then compared to each thread’s timing requirements to
determine if the requirement can be satisfied.

A problem commonly revealed as a result of rate monotonic analysis is
priority inversion. Priority inversion is a state in which the execution of a
higher priority thread is forced to wait for a resource while a lower priority
thread is using the resource. Not all priority inversion can be avoided but
proper priority management can reduce priority inversion. For example,
priority inheritance is a useful technique for reducing priority inversion in
cases where threads must synchronize [Rajkumar 91].

Since RMA is an analytic approach that can be used before system inte-
gration to determine if latency requirements will be met, it can result in
significant savings in both system resources and development time.

Usage
Considerations

RMA is most suitable for systems dominated by a collection of periodic
or sporadic processes (i.e., processes with minimum inter-arrival inter-
vals), for which the processing times can be bounded and are without ex-
cessive variability. RMA is also primarily focused on hard deadlines
rather than soft. However, soft deadlines can be handled through the use
of server mechanisms that allocate time to tasks with soft deadlines in a
manner that ensures that hard deadlines are still met. Still, with soft dead-
line tasks, the aperiodic server predictions work best when the workload
is primarily periodic.

Systems in which worst-case executions are realized very infrequently or
in which there is no minimum inter-arrival interval between thread invo-
cations might not be suitable for RMA analysis. For example, consider
multimedia applications where voice and data transmissions involve a
great deal of variability. Principles of RMA, such as priority representa-
tion, priority arbitration, and priority inheritance, can be used in multime-
314 CMU/SEI-97-HB-001

Rate Monotonic Analysis
dia systems to reduce response times and meet deadlines at relatively
high levels of use. However, deadlines in such environments may not be
hard, and execution times can be stochastic, two requirements that are
not currently handled well in the RMA framework. When most of the
workload is aperiodic, one needs to move to queueing theory.

Maturity Indicators of RMA maturity include the following:

• In 1989 IBM applied RMA to a sonar training system, allowing them
to discover and correct performance problems [Lucas 92].

• Since 1990, RMA was recommended by IBM Federal Sector Division
(now Lockheed Martin) for its real-time projects.

• RMA was successfully applied to active and passive sonar of a major
submarine system of US Navy.

• RMA was selected by the European Space Agency as the baseline
theory for its Hard Real-Time Operating System Project.

• The applicability of RMA to a typical avionics application was
demonstrated [Locke 91].

• RMA was adopted in 1990 by NASA for development of real-time
software for the space station data management subsystem. In 1992
Acting Deputy Administrator of NASA, Aaron Cohen stated, “Through
the development of rate monotonic scheduling, we now have a
system that will allow (Space Station) Freedom’s computers to
budget their time to choose [among] a variety of tasks, and decide not
only which one to do first but how much time to spend in the process.”

• Magnavox Electronics Systems Company incorporated RMA into
real-time software development [Ignace 94].

• RMA principles have influenced the design and development of the
following standards:

– IEEE Futurebus+ [Sha 91b]

– POSIX

– Ada 95 (see pg. 67)

• Tool vendors provide the capability to analyze real-time designs
using RMA. RMA algorithms, such as priority inheritance, have been
used by operating system and Ada compiler vendors.

Costs and
Limitations

Case studies of RMA adoption show that “While RMA does require engi-
neers to re-frame their understanding of scheduling issues to a more ab-
stract level, only moderate training is required for people to be effective
in using the technology” [Fowler 93]. A short (1-2 day) tutorial is usually
sufficient to gain a working knowledge of RMA.

Additionally, the studies found “RMA can be incorporated into software
engineering processes with relative ease over a period of several
months.... RMA can be adopted incrementally; its adoption can range
CMU/SEI-97-HB-001 315

Rate Monotonic Analysis
from application to an existing system by one engineer to application
across an entire division as standard practice in designing new systems”
[Fowler 93].

RMA can be applied with varying degrees of detail. Qualitative analysis
through the application of design and trouble shooting heuristics can be
very effective. Simple quantitative analysis using back-of-the-envelope
calculations quickly yields insight into system timing behavior. More pre-
cise quantitative analysis can be performed as more precise system
measurements become available during the development activity.

Dependencies Application performance is influenced by system components such as
operating systems networks and communication protocols. Therefore, it
is important for such system components to be designed with RMA in
mind.

Complementary
Technologies

Simulation is often used to gain insight into a system’s performance. Sim-
ulation can be used to corroborate RMA’s performance predictions.
Queueing theory is complementary to RMA. Whereas RMA is used to
predict worst-case latencies when bounds can be placed on arrival dates
and execution times, queueing theory can be used to predict average-
case behavior when arrival rates and execution times are described sto-
chastically. Together RMA and queuing theory solve a wide set of perfor-
mance problems.

References and
Information
Sources

[Audsley 95] Audsley, N.C., et al. “Fixed Priority Pre-Emptive Scheduling: An Histori-
cal Perspective.” Real Time Systems 8, 2-3. (March-May 1995): 173-98.

[Fowler 93] Fowler, P. & Levine, L. Technology Transition Push: A Case Study of
Rate Monotonic Analysis Part 1 (CMU/SEI-93-TR-29). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,1993.

Index
Categories

Name of technology Rate Monotonic Analysis

Application category Detailed Design (AP.1.3.5), System Analysis
and Optimization (AP.1.3.6), Code (AP.1.4.2),
Performance Testing (AP.1.5.3.5), Reapply
Software Life Cycle (AP.1.9.3), Reengineering
(AP.1.9.5)

Quality measures category Real-Time Responsiveness/Latency
(QM.2.2.2), Maintainability (QM.3.1), Reliabili-
ty (QM.2.1.2)

Computing reviews category Real-Time Systems (C.3)
316 CMU/SEI-97-HB-001

Rate Monotonic Analysis
[Ignace 94] Ignace, S. J.; Sedlmeyer, R. L.; & Thuente, D. J. “Integrating Rate Mono-
tonic Analysis into Real-Time Software Development,” 257-274. IFIP
Transactions, Diffusion, Transfer and Implementation of Information
Technology (A-45). Pittsburgh, PA, October 11-13, 1993. The Nether-
lands: International Federation of Information Processing, 1994.

[Klein 93] Klein, M.H., et al. A Practitioners’ Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems. Boston, MA:
Kluwer Academic Publishers, 1993.

[Lehoczky 94] Lehoczky, J.P. “Real-Time Resource Management Techniques,” 1011-
1020. Encyclopedia of Software Engineering. New York, NY: J. Wiley &
Sons, 1994.

[Liu 73] Liu, C. L. & Layland, J. W. “Scheduling Algorithms for Multi-Programming
in a Hard Real-Time Environment.” Journal of the Association for Com-
puting Machinery 20, 1 (January 1973): 40-61.

[Locke 91] Locke, C.D.; Vogel, D.R.; & Mesler, T.J. “Building a Predictable Avionics
Platform in Ada: a Case Study,” 181-189. Proceedings of the Twelfth
Real-Time Systems Symposium. San Antonio, TX, December 4-6, 1991.
Los Alamitos, CA: IEEE Computer Society Press, 1991.

[Lucas 92] Lucas, L. & Page, B. “Tutorial on Rate Monotonic Analysis.” Ninth Annual
Washington Ada Symposium. McLean, VA, July 13-16, 1992. New York,
NY: Association for Computing Machinery, 1992.

[Rajkumar 91] Rajkumar, Ragunathan. Synchronization in Real-Time Systems: A Prior-
ity Inheritance Approach. Boston, MA: Kluwer Academic Publishers,
1991.

[Serlin 72] Serlin, O. “Scheduling of Time Critical Processes,” 925-932. Proceedings
of the Spring Joint Computer Conference. Atlantic City, NJ, May 16-18,
1972. Montvale, NJ: American Federation of Information Processing So-
cieties, 1972.

[Sha 91a] Sha, Klein & Goodenough, J. “Rate Monotonic Analysis for Real-Time
Systems,” 129-155. Foundations of Real-Time Computing: Scheduling
and Resource Management. Boston, MA: Kluwer Academic Publishers,
1991.

[Sha 91b] Sha, L.; Rajkumar, R.; & Lehoczky, J. P. “Real-Time Computing with
IEEE Futurebus+.” IEEE Micro 11, 3 (June 1991): 30-38.

Author Mark Klein, SEI
mk@sei.cmu.edu
CMU/SEI-97-HB-001 317

Rate Monotonic Analysis
External
Reviewer(s)

Mike Gagliardi, SEI
John Goodenough, SEI
John Lehoczky, Professor, Statistics Department, Carnegie Mellon

University
Ray Obenza, SEI
Raj Rajkumar, Carnegie Mellon University
Lui Sha, SEI

Last Modified 10 Jan 97
318 CMU/SEI-97-HB-001

Reference Models, Architectures, Implementations— An
Overview
Reference Models, Architectures, Implementations—
An Overview ADVANCED

Purpose and
Origin

Much confusion exists regarding the definition, applicability, and scope of
the terms reference model, architecture, and implementation. Under-
standing these terms facilitates understanding legacy system designs
and how to migrate them to more open systems. The purpose of this
technology description is to provide definitions, and more importantly, to
describe how the terms are related.

Technical Detail Reference model. A reference model is a description of all of the possi-
ble software components, component services (functions), and the rela-
tionships between them (how these components are put together and
how they will interact). Examples of commonly-known reference models
include the following:

• the Technical Architecture for Information Management (TAFIM)
reference model (see pg. 361)

• the Reference Model for Frameworks of Software Engineering
Environments [ECMA 93]

• Project Support Environment Reference Model (PSERM)

• the Tri-Service Working Group Open Systems Reference Model

Architecture. An architecture is a description of a subset of the refer-
ence model’s component services that have been selected to meet a
specific system’s requirements. In other words, not all of the reference
model’s component services need to be included in a specific architec-
ture. There can be many architectures derived from the same reference
model. The associated standards and guidelines for each service includ-
ed in the architecture form the open systems architecture and become
the criteria for implementing the system.

Implementation. The implementation is a product that results from se-
lecting (e.g., commercial-off-the-shelf), reusing, building and integrating
software components and component services according to the specified
architecture. The selected, reused, and/or built components and compo-
nent services must comply 100% with the associated standards and
guidelines for the implementation to be considered compliant.

Usage
Considerations

Figure 23 attempts to show the interrelationships of these concepts using
the TAFIM as an example. TAFIM provides the reference model and a
number of specific architectures can be derived from the TAFIM refer-
ence model based on specific program requirements. From there a num-
ber of implementations may be developed based on the products
CMU/SEI-97-HB-001 319

Reference Models, Architectures, Implementations— An
Overview
selected to meet the architecture’s services, so long as these products
meet the required standards and guidelines. For instance, in one imple-
mentation, the product ORACLE might be selected and used to meet
some of the data management services. In another implementation, the
product Sybase might be selected and used.

Figure 23: Reference Model, Architecture, and Implementation

References and
Information
Sources

[ECMA 93] Reference Model for Frameworks of Software Engineering Environ-
ments, 3rd Edition (NIST Special Publication 500-211/Technical Report
ECMA TR/55). Prepared jointly by NIST and the European Computer

TAFIM Reference Model - Defines all possible components,
component services, and interfaces

Reference Model

COE - TAFIM-based component and
component services. Identifies applicable
standards and guidelines

Architecture A1
JTA - TAFIM based C4I standards and guidelines specifically
focus on interoperability. Interoperability standards in JTA
supersede those in volume 7 of TAFIM

Architecture A2
Possible TAFIM-based component and
component services. Identifies applicable
standards and guidelines

DII COE - Implementation
of TAFIM Reference Model

and COE specific architecture
- Includes the actual system

 software, GOTS and COTS.

 Potential C4I system
implementations

of TAFIM and JTA standards and
guidelines - Would include

actual system software, GOTS
and COTS

Implementation A1- I1

Architecture A3

Implementation A1-I1 Implementation A3-I1 Implementation A3-I2
Potential system

implementation of TAFIM
standards and guidelines

- Would include
actual system software,
GOTS and COTS e.g.,

ORACLE

Potential system
implementation of TAFIM
standards and guidelines

- Would include
actual system software,
GOTS and COTS, e.g.,

Sybase

Implementation A2-I3

Implementation A2-I2

Implementation A2-In

Index
Categories

Name of technology Reference Models, Architectures, Implemen-
tations— An Overview

Application category Software Architecture Models (AP.2.1.1), Soft-
ware Architecture (AP.2.1)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1), Portability (QM.4.2)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Design (D.2.10)
320 CMU/SEI-97-HB-001

Reference Models, Architectures, Implementations— An
Overview
Manufacturers Association (ECMA). Washington, DC: U.S. Government
Printing Office, 1993.

[Myers 96] Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and the
Pitfalls. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1996.

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

Tricia Oberndorf, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 321

Reference Models, Architectures, Implementations— An
Overview
322 CMU/SEI-97-HB-001

Remote Procedure Call
Remote Procedure Call ADVANCED

Note We recommend Middleware, pg. 251, as prerequisite reading for this
technology description.

Purpose and
Origin

Remote Procedure Call (RPC) is a client/server infrastructure that in-
creases the interoperability, portability, and flexibility of an application by
allowing the application to be distributed over multiple heterogeneous
platforms. It reduces the complexity of developing applications that span
multiple operating systems and network protocols by insulating the appli-
cation developer from the details of the various operating system and
network interfaces— function calls are the programmer’s interface when
using RPC [Rao 1995].

The concept of RPC has been discussed in literature as far back as 1976,
with full-scale implementations appearing in the late 1970s and early
1980s [Birrell 84].

Technical Detail In order to access the remote server portion of an application, special
function calls, RPCs, are embedded within the client portion of the cli-
ent/server application program. Because they are embedded, RPCs do
not stand alone as a discreet middleware layer. When the client program
is compiled, the compiler creates a local stub for the client portion and an-
other stub for the server portion of the application. These stubs are in-
voked when the application requires a remote function and typically
support synchronous calls between clients and servers. These relation-
ships are shown in Figure 24 [Steinke 95].

By using RPC, the complexity involved in the development of distributed
processing is reduced by keeping the semantics of a remote call the
same whether or not the client and server are collocated on the same
system. However, RPC increases the involvement of an application de-
veloper with the complexity of the master-slave nature of the client/server
mechanism.

RPC increases the flexibility of an architecture by allowing a client com-
ponent of an application to employ a function call to access a server on
a remote system. RPC allows the remote component to be accessed
without knowledge of the network address or any other lower-level infor-
mation. Most RPCs use a synchronous, request-reply (sometimes re-
ferred to as “call/wait”) protocol which involves blocking of the client until
the server fulfills its request. Asynchronous (“call/nowait”) implementa-
tions are available but are currently the exception.
CMU/SEI-97-HB-001 323

Remote Procedure Call
Figure 24: Remote Procedure Calls

RPC is typically implemented in one of two ways:

1. within a broader, more encompassing propriety product

2. by a programmer using a proprietary tool to create client/server RPC
stubs

Usage
Considerations

RPC is appropriate for client/server applications in which the client can
issue a request and wait for the server’s response before continuing its
own processing. Because most RPC implementations do not support
peer-to-peer, or asynchronous, client/server interaction, RPC is not well-
suited for applications involving distributed objects or object-oriented pro-
gramming (see pg. 287).

Asynchronous and synchronous mechanisms each have strengths and
weaknesses that should be considered when designing any specific ap-
plication. In contrast to asynchronous mechanisms employed by mes-
sage-oriented middleware (see pg. 247), the use of a synchronous
request-reply mechanism in RPC requires that the client and server are
always available and functioning (i.e., the client or server is not blocked).
In order to allow a client/server application to recover from a blocked con-
dition, an implementation of a RPC is required to provide mechanisms
such as error messages, request timers, retransmissions, or redirection
to an alternate server. The complexity of the application using a RPC is
dependent on the sophistication of the specific RPC implementation (i.e.,
the more sophisticated the recovery mechanisms supported by RPC, the
less complex the application utilizing the RPC is required to be). RPCs
that implement asynchronous mechanisms are very few and are difficult
(complex) to implement [Rao 1995].

RPC
stub

program

Application T
r
a
n
s
p
o
r
t

N
e
t
w
o
r
k

RPC
stub

program

Application
or

server

T
r
a
n
s
p
o
r
t

N
e
t
w
o
r
k

Application-specific
procedure invocations

and returns
324 CMU/SEI-97-HB-001

Remote Procedure Call
When utilizing RPC over a distributed network, the performance (or load)
of the network should be considered. One of the strengths of RPC is that
the synchronous, blocking mechanism of RPC guards against overload-
ing a network, unlike the asynchronous mechanism of message-oriented
middleware (MOM) (see pg. 247). However, when recovery mecha-
nisms, such as retransmissions, are employed by an RPC application,
the resulting load on a network may increase, making the application in-
appropriate for a congested network. Also, because RPC uses static
routing tables established at compile-time, the ability to perform load bal-
ancing across a network is difficult and should be considered when de-
signing an RPC-based application.

Maturity Tools are available for a programmer to use in developing RPC applica-
tions over a wide variety of platforms, including Windows (3.1, NT, 95),
Macintosh, 26 variants of UNIX, OS/2, NetWare, and VMS [Steinke
1995]. RPC infrastructures are implemented within the Distributed Com-
puting Environment (DCE) (see pg. 167), and within Open Network Com-
puting (ONC), developed by Sunsoft, Inc. These two RPC
implementations dominate the current middleware (see pg. 251) market
[Rao 1995].

Costs and
Limitations

RPC implementations are nominally incompatible with other RPC imple-
mentations, although some are compatible. Using a single implementa-
tion of a RPC in a system will most likely result in a dependence on the
RPC vendor for maintenance support and future enhancements. This
could have a highly negative impact on a system’s flexibility, maintain-
ability, portability, and interoperability.

Because there is no single standard for implementing an RPC, different
features may be offered by individual RPC implementations. Features
that may affect the design and cost of a RPC-based application include
the following:

• support of synchronous and/or asynchronous processing

• support of different networking protocols

• support for different file systems

• whether the RPC mechanism can be obtained individually, or only
bundled with a server operating system

Because of the complexity of the synchronous mechanism of RPC and
the proprietary and unique nature of RPC implementations, training is es-
sential even for the experienced programmer.
CMU/SEI-97-HB-001 325

Remote Procedure Call
Alternatives Other middleware technologies that allow the distribution of processing
across multiple processors and platforms are

• Object Request Brokers (ORB) (see pg. 291)

• Distributed Computing Environment (DCE) (see pg. 167)

• Message-oriented Middleware (MOM) (see pg. 247)

• OLE/COM (see pg. 271)

• Transaction Processing Monitor Technology (see pg. 373)

• Three Tier Architectures (see pg. 367)

Complementary
Technologies

RPC can be effectively combined with message-oriented middleware
(MOM) technology (see pg. 247)— MOM can be used for asynchronous
processing.

References and
Information
Sources

[Birrell 84] Birrell, A.D. & Nelson, B.J. “Implementing Remote Procedure Calls.”
ACM Transactions on Computer Systems 2, 1 (February 1984): 39-59.

[Rao 95] Rao, B.R. “Making the Most of Middleware.” Data Communications Inter-
national 24, 12 (Sept. 1995): 89-96.

[Steinke 95] Steinke, Steve. “Middleware Meets the Network.” LAN Magazine (De-
cember 1995): 56-63.

[Thekkath 93] Thekkath, C.A. & Levy, H.M. “Limits to Low-Latency Communication on
High-Speed Networks.” ACM Transactions on Computer Systems 11, 2
(May 1993): 179-203.

Author Cory Vondrak, TRW, Redondo Beach, CA

Last Modified 10 Jan 97

Index
Categories

Name of technology Remote Procedure Call

Application category Client/Server (AP.2.1.2.1), Client/Server Com-
munication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1), Portability (QM.4.2), Complexity
(QM.3.2.1)

Computing reviews category Distributed Systems (C.2.4)
326 CMU/SEI-97-HB-001

Requirements Tracing
Requirements Tracing ADVANCED

Purpose and
Origin

The development and use of requirements tracing techniques originated
in the early 1970s to influence the completeness, consistency, and trace-
ability of the requirements of a system. They provide an answer to the fol-
lowing questions:

• What mission need is addressed by a requirement?

• Why is this requirement here?

• Where is a requirement implemented?

• Is this requirement necessary?

• How do I interpret this requirement?

• What design decisions affect the implementation of a requirement?

• Are all requirements allocated?

• Why is the design implemented this way and what were the other
alternatives?

• Is this design element necessary?

• Is the implementation compliant with the requirements?

• What acceptance test will be used to verify a requirement?

• Are we done?

• What is the impact of changing a requirement [SPS 94]?

The purpose of this technology description is to introduce the key con-
cepts of requirements tracing. Detailed discussions of the individual tech-
nologies can be found in the referenced technology descriptions.

Technical Detail Requirements traceability is defined as the ability to describe and follow
the life of a requirement, in both a forward and backward direction (i.e.,
from its origins, through its development and specification, to its subse-
quent deployment and use, and through periods of ongoing refinement
and iteration in any of these phases) [Gotel 95]. It can be achieved by us-
ing one or more of the following techniques:

• Cross referencing, which involves embedding phrases like “see
section x” throughout the project documentation (e.g., tagging,
numbering, or indexing of requirements, and specialized tables or
matrices that track the cross references).

• Using specialized templates and integration or transformation
documents to store links between documents created in different
phases of development.

• Restructuring the documentation in terms of an underlying network or
graph to keep track of requirements changes (e.g., assumption-
CMU/SEI-97-HB-001 327

Requirements Tracing
based truth maintenance networks, chaining mechanisms, constraint
networks, and propagation) [Gotel 95].

Usage
Considerations

For any given project, a key milestone (or step) is to determine and agree
upon requirements traceability details. Initially, three important questions
need to be answered before embarking on any particular requirements
traceability approach:

1. What needs to be traceable?

2. What linkages need to be made?

3. How, when, and who should establish and maintain the resulting da-
tabase?

Once the questions are answered, then selection of an approach can be
made. One approach could be the structured use of general-purpose
tools (e.g., hypertext editors, word processors, and spreadsheets) con-
figured to support cross-referencing between documents. For large soft-
ware development projects, an alternative approach could be the use of
a dedicated workbench centered around a database management sys-
tem providing tools for documenting, parsing, editing, decomposing,
grouping, linking, organizing, partitioning, and managing requirements.
The following table describes the strengths and weaknesses of each of
the approaches.

Approaches Strengths Weaknesses

General purpose
tools

• readily available

• flexible

• good for small
projects

• need to be configured to support
Requirements Traceability (RT)

• potential high RT maintenance
cost

• limited control over RT informa-
tion

• potential limited integration with
other software development
tools

Workbenches • fine-grained for-
ward, backward,
horizontal, and
vertical RT

• RT results may
facilitate later
development ac-
tivities (i.e., test-
ing)

• suitable for large
projects

• depend upon stakeholder buy-in

• manual intervention may be re-
quired

• RT in later development phases
may be difficult
328 CMU/SEI-97-HB-001

Requirements Tracing
Regardless of the approach taken, requirements tracing requires a com-
bination of models (i.e., representation forms), methods (i.e., step by step
processes), and/or languages (i.e., semiformal and formal) that incorpo-
rate the above techniques. Some examples of requirements tracing
methods are discussed in the following technology descriptions:

• Feature-Based Design Rationale Capture Method for Requirements
Tracing (pg. 181),

• Argument-Based Design Rationale Capture Methods for
Requirements Tracing (pg. 91)

Maturity Every major office tool manufacturer has spreadsheet and/or database
capabilities that can be configured to support requirements tracing.
There are at least ten commercial products that fall in the workbench cat-
egory and support some level of requirements traceability. At a minimum,
they provide bidirectional requirement linking to system elements; cap-
ture of allocation rationale, accountability, and test/validation; identifica-
tion of inconsistencies; capabilities to view/trace links; verification of
requirements; and a history of requirements changes. Environments to
support requirements traceability past the requirements engineering
phase of the system/software life cycle are being researched. Areas in-
clude the development of a common language, method, model, and da-
tabase repository structure, as well as mechanisms to provide data
exchange between different tools in the environment. Prototypes exist
and at least one commercial product provides support for data exchange
through its object-oriented database facilities.

Costs and
Limitations

In general, the implementation of requirements tracing techniques within
an organization should facilitate reuse and maintainability of the system.
However, additional resources (time and manpower) to initially imple-
ment traceability processes (i.e., definition of traceability information, se-
lection of automated tools, training, etc.) will be required. One case study
found that the cost was more than twice the normal documentation cost
associated with the development of a system of similar size and com-
plexity. However, this was determined to be a one-time cost and the over-
all costs to maintain the software system are expected to be reduced.
Almost immediate return was observed in the reduced amount of time to
perform hardware upgrades [Ramesh 95].
CMU/SEI-97-HB-001 329

Requirements Tracing
References and
Information
Sources

[Bailin 90] Bailin, S., et al. “KAPTUR: Knowledge Acquisition for Preservation of
Tradeoffs and Underlying Rationales,” 95-104. Proceedings of the 5th
Annual Knowledge-Based Software Assistant Conference. Liverpool,
NY, September 24-28, 1990. Rome, NY: Rome Air Development Center,
1990.

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements Traceability.
Doctoral Dissertation. London, England: Department of Computing, Im-
perial College, 1995.

[Ramesh 92] Ramesh, Balasubramaniam and Dhar, Vasant. “Supporting Systems De-
velopment by Capturing Deliberations During Requirements Engineer-
ing.” IEEE Transactions on Software Engineering 18, 6 (June 1992): 498-
510.

[Ramesh 95] Ramesh, B., et al. “Lessons Learned from Implementing Requirements
Traceability.” Crosstalk, Journal of Defense Software Engineering 8, 4
(April 1995): 11-15.

[Shum 94] Shum, Buckingham Simon & Hammond, Nick. “Argumentation-Based
Design Rationale: What Use at What Cost?” International Journal of Hu-
man-Computer Studies 40, 4 (April 1994): 603-652.

[SPS 94] Analysis of Automated Requirements Management Capabilities. Mel-
bourne, FL: Software Productivity Solutions, 1994.

Author Liz Kean, Rome Laboratory
liz@se.rl.af.mil

External
Reviewer(s)

Brian Gallagher, SEI

Last Modified 10 Jan 97

Index
Categories

Name of technology Requirements Tracing

Application category Requirements Tracing (AP.1.2.3)

Quality measures category Completeness (QM.1.3.1), Consistency
(QM.1.3.2), Traceability (QM.1.3.3), Effective-
ness (QM.1.1), Reusability (QM.4.4), Under-
standability (QM.3.2), Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2), Software Engineering Requirements/
Specifications (D.2.1)
330 CMU/SEI-97-HB-001

Rule-Based Intrusion Detection
Rule-Based Intrusion Detection ADVANCED

Note We recommend Intrusion Detection, pg. 217, as prerequisite reading for
this technology description.

Purpose and
Origin

Due to the voluminous, detailed nature of system audit data — some of
which may have little if any meaning to a human reviewer — and the dif-
ficulty of discriminating between normal and intrusive behavior, one ap-
proach taken by developers of intrusion detection systems is to use
expert systems technology to analyze automatically audit trail data for in-
trusion attempts [Lunt 93]. These security systems, known as rule-based
intrusion detection (RBID) systems, can be used to analyze system audit
trails for pending or completed computer security violations. This emerg-
ing technology seeks to increase the availability of computer systems by
automating the detection and elimination of intrusions.

Technical Detail Rule-based intrusion detection (RBID) is predicated on the assumption
that intrusion attempts can be characterized by sequences of user activ-
ities that lead to compromised system states. RBID systems are charac-
terized by their expert system properties that fire rules1 when audit
records or system status information begin to indicate illegal activity [Il-
gun 93]. These predefined rules typically look for high-level state change
patterns observed in the audit data compared to predefined penetration
state change scenarios. If an RBID expert system infers that a penetra-
tion is in process or has occurred, it will alert the computer system secu-
rity officers and provide them with both a justification for the alert and the
user identification of the suspected intruder.

1. In an expert system, knowledge about a problem domain is represented by a set of
rules. These rules consist of two parts:

1) The antecedent, which defines when the rule should be applied. An expert sys-
tem will use pattern matching techniques to determine when the observed data
matches or satisfies the antecedent of a rule.

2) The consequent, which defines the action(s) that should be taken if its antecedent
is satisfied.

A rule is said to be “fired” when the action(s) defined in its consequent are executed.
For RBID systems, rule antecedents will typically be defined in terms of audit trail da-
ta, while rule consequents may be used to increase or decrease the level of monitor-
ing of various entities, or they may be used to notify system administration personnel
about significant changes in system state.
CMU/SEI-97-HB-001 331

Rule-Based Intrusion Detection
There are two major approaches to rule-based intrusion detection:

1. State-based. In this approach, the rule base is codified using the ter-
minology found in the audit trails. Intrusion attempts are defined as
sequences of system state— as defined by audit trail information—
leading from an initial, limited access state to a final compromised
state [Ilgun 93].

2. Model-based. In this approach, known intrusion attempts are mod-
eled as sequences of user behavior; these behaviors may then be
modeled, for example, as events in an audit trail. Note, however, that
the intrusion detection system itself is responsible for determining
how an identified user behavior may manifest itself in an audit trail.
This approach has many benefits, including the following:

– More data can be processed, because the technology
allows you to narrow the focus of the data selectively.

– More intuitive explanations of intrusion attempts are
possible.

– The system can predict the intruder’s next action.

Usage
Considerations

RBID rule bases are affected by system hardware or software changes
and require updates by system experts as the system is enhanced or
maintained. The protection afforded by RBID systems would be most
useful in an environment where physical protection of the computer sys-
tem is not always possible (e.g., a battlefield situation), yet the data is of
high value and requires stringent protection.

Maturity Although RBID systems are in the research and early prototype stage,
articles describing RBID systems date to at least the 1986 description of
the Discovery system [Tener 86]. In 1987, Denning described an early,
abstract model of a rule-based intrusion detection system (IDS) [Denning
87]; in 1989, Vaccarro and Liepins described the Wisdom and Sense
system [Vaccarro 89]. More recent systems include USTAT [Ilgun 93]
and the Intrusion Detection Expert System (IDES) [Lunt 93]; IDES com-
bines statistical-based (see pg. 357) and model-based intrusion detec-
tion approaches to achieve a level of intrusion detection not feasible with
either approach alone. Mukherjee describes several other recent RBID
systems [Mukherjee 94]. Feasibility for an operational system has not yet
been demonstrated.
332 CMU/SEI-97-HB-001

Rule-Based Intrusion Detection
Costs and
Limitations

The use of RBID systems requires the following:

• personnel knowledgeable in rule-based systems, especially with
respect to rule representation

• personnel who know how various activities may be represented in
audit trails

• personnel experienced in intrusion detection and who have in-depth
knowledge of the audit collection mechanism [Ilgun 93]

In addition to the costs associated with maintaining intrusion detection
knowledge bases, there are several risks and limitations associated with
this technology:

• Only known vulnerabilities and attacks are codified in the knowledge
base. The knowledge base of rules is thus always playing “catch-up”
with the intruders [Lunt 93].

• The representation of intrusion scenarios— especially with respect to
state-based approaches— is not intuitive.

For these reasons, RBIDs cannot detect all intrusion attempts.

Like all intrusion detection systems, RBIDs will negatively affect system
performance due to their collecting and processing of audit trail informa-
tion. For example, early prototyping of a real-time RBID system on a
UNIX workstation showed the algorithm was using up to 50% of the avail-
able processor throughput to process and analyze the audit trail [Ilgun
93].

Dependencies Expert systems are an enabler for this technology.

Alternatives Other automated approaches to intrusion detection include statistical-
based approaches (see pg. 357) and approaches based on genetic algo-
rithms. Manual examination of recorded audit data and online monitoring
of access activity by knowledgeable system security personnel are the
only other known alternatives.

Complementary
Technologies

RBID systems can be used in conjunction with statistical-based intrusion
detection systems (see pg. 357) to catch a wider variety of intrusion at-
tempts, and authentication systems can be used to verify user identity.
CMU/SEI-97-HB-001 333

Rule-Based Intrusion Detection
References and
Information
Sources

[Bell 76] Bell, D. E. & LaPadula, L. J. Secure Computer System: Unified Exposi-
tion and Multics Interpretation Rev. 1 (MTR-2997). Bedford, MA: MITRE
Corporation, 1976.

[Denning 87] Denning, Dorothy E., et al. “Views for Multilevel Database Security.”
IEEE Transactions on Software Engineering SE-13, 2 (February 1987):
129-140.

[CSC 83] Computer Security Center. Department of Defense Trusted Computer
System Evaluation Criteria. Fort George G. Meade, MD: DoD Computer
Security Center, 1983.

[Ilgun 93] Ilgun, Koral. “USTAT: A Real-time Intrusion Detection System for UNIX,”
16-28. Proceedings of the 1993 Computer Society Symposium on Re-
search in Security and Privacy. Oakland, California, May 24-26, 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Kemmerer 94] Kemmerer, Richard A. “Computer Security,” 1153-1164. Encyclopedia of
Software Engineering. New York, NY: John Wiley and Sons, 1994.

[Lunt 93] Lunt, Teresa F. “A Survey of Intrusion Detection Techniques.” Comput-
ers and Security 12, 4 (June 1993): 405-418.

[Mukherjee 94] Mukherjee, Biswanath; Heberlein, L. Todd; & Levitt, Karl N. “Network In-
trusion Detection.” IEEE Network 8, 3 (May-June 1994): 26-41.

[Sundaram 96] Sundaram, Aurobindo. An Introduction to Intrusion Detection [online].
Available WWW <URL: http://www.acm.org/crossroads/xrds2-4.html>
(1996).

[Tener 86] Tener, W. T. “Discovery: An Expert System in the Commercial Data Se-
curity Environment.” Computer Security Journal 6, 1 (Summer 1990): 45.

[Vaccarro 89] Vaccarro, H. S. & Liepins, G. E. “Detection of Anomalous Computer Ses-
sion Activity,” 208-209. Proceedings of the IEEE Symposium on Re-

Index
Categories

Name of technology Rule-Based Intrusion Detection

Application category System Security (AP.2.4.3)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security and Protection
(D.4.6), Computer-Communication Networks
Security and Protection (C.2.0), Security and
Protection (K.6.5)
334 CMU/SEI-97-HB-001

Rule-Based Intrusion Detection
search in Security and Privacy. Oakland, California, May 1-3, 1989.
Washington, DC: IEEE Computer Society Press, 1989.

[Ware 79] Ware, W. H. Security Controls for Computer Systems. Santa Monica,
CA: The Rand Corporation, 1979.

Author Mark Gerken, Rome Laboratory
gerken@ai.rl.af.mil

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 335

Rule-Based Intrusion Detection
336 CMU/SEI-97-HB-001

Simple Network Management Protocol
Simple Network Management Protocol ADVANCED

Purpose and
Origin

Simple network management protocol (SNMP) is a network manage-
ment specification developed by the Internet Engineering Task Force
(IETF), a subsidiary group of the IAB (Internet Activities Board) in the late
1980s in order to provide standard, simplified, and extensible manage-
ment of LAN-based internetworking products such as bridges, routers,
and wiring concentrators. [IETF 96, Henderson 1995]. SNMP was de-
signed to reduce the complexity of network management and minimize
the amount of resources required to accommodate it. SNMP provides for
centralized, robust, interoperable management, along with the flexibility
to allow for the management of vendor-specific variables.

Technical Detail The term network management generally includes:1

• network monitoring

• control

• capacity planning

• troubleshooting

SNMP is best suited for network monitoring and capacity planning.
SNMP does not provide even the basic troubleshooting information that
can be obtained from simple network troubleshooting tools.

SNMPv1 is a simple request/response application-layer protocol which
typically uses the User Datagram Protocol(UDP) for data delivery. It is
designed to exchange management information between network man-
agers and network managed systems. A network managed system can
be any type of node residing on a network, such as computers, printers,
and routers. Agents are software modules that run in a network managed
system. An agent has access to information about the managed system.
SNMP is part of the Internet network management architecture that con-
tains: a SNMP manager, SNMP agent(s), and a management informa-
tion base (MIB), which is basically a database of managed objects that
resides on the SNMP agent.

1. This tends to be an SNMP-centric view: An alternative view of network management
is defined by ISO, as part of X.700/FCAPS. That view of network management com-
prehends the following areas: fault management, configuration management, ac-
counting management, performance management, and security management
[X.700 96].
CMU/SEI-97-HB-001 337

Simple Network Management Protocol
Attributes of managed objects may be monitored or set using the follow-
ing operations:

• get an object instance from the agent

• get the next object instance from a table or list from an agents

• set object instances within an agent

• send events (traps) asynchronously to managers

The management application or user can define the relationship between
the manager and the agent. This architecture is shown in Figure 25.

Figure 25: The SNMPv1 Architecture [Lake 96]

By specifying the protocol to be used between the manager and agent,
SNMP allows products from different vendors (and their associated
agents) to be managed by the same SNMP manager. A “proxy function”
is also specified by SNMP to enable communication with non-SNMP de-
vices to accommodate legacy equipment.

Two of SNMP’s main attributes are that [Moorhead 95]

• It is simple to implement, making it easy for a vendor to
accommodate it into its device.

• It does not call for large computational or memory resources from the
devices that do accommodate it.

Network management, as defined by SNMP, is based on two types of ac-
tivities, polling and interrupts. The SNMP manager polls for information
gathered by each of the agents. Each agent has the responsibility of col-
lecting information (e.g., performance statistics) pertaining to the device

SNMP
Management System

SNMP
Managed System

Application

Managed Objects

SNMP Manager

UDP
IP

Link

SNMP Agent

UDP
IP

Link

Communications Network

Management Application

Managed
 Resources

SNMP Managed
Objects

SNMP
Messages

G
et

G
et

-N
ex

t

S
et

G
et

-
R

es
po

ns
e

E
ve

nt

G
et

G
et

-N
ex

tS
et

G
et

-
R

es
po

ns
e

E
ve

nt
338 CMU/SEI-97-HB-001

Simple Network Management Protocol
it resides within and storing that information in the agent’s own manage-
ment information base (MIB). This information is sent to the SNMP man-
ager in response to the manager’s polling.

SNMP interrupts are driven by trap messages generated as a result of
certain device parameters. These parameters can be either generic or
specific to the device vendor information. Enterprise-specific trap mes-
sages are vendor proprietary and generally provide more device-specific
detail.

Usage
Considerations

Neither version of SNMP (SNMPv2 is described in the Maturity section,
pg. 339) does an effective job at helping network managers isolate prob-
lem devices in large, complex networks. It sometimes becomes difficult
for an SNMP manager to determine which network events/alarms are
significant— all are treated equally. SNMPv1 provides information only
on individual devices, not on how the devices work as a system.

The performance impact on the network being managed should be con-
sidered when using the polling scheme that SNMP uses for collecting in-
formation from distributed agents. A higher frequency of polling, which
may be required to manage a network more effectively, will increase the
overhead on a network, possibly resulting in a need for additional net-
working or processor resources. The frequency of polling can be con-
trolled by the SNMP manager, but can be dependent on what kind of
messages (generic or enterprise-specific) a device vendor supports.
Many vendors offer generic trap messages on their devices rather than
enterprise-specific messages, because it is easier and takes less time for
the vendor to implement. Devices that provide only generic trap informa-
tion must be polled frequently in order to obtain the granularity of infor-
mation to manage the device effectively.

Maturity SNMPv1 has been incorporated into many products and management
platforms. It has been deployed by virtually all internetworking ven-
dors—40 as of March 1995. It has been widely adopted for the enterprise
networks and may be the manager of choice for the internetworking are-
na in the future because it is well-suited for managing TCP/IP networks.
Yet it does have limitations, as discussed in Costs and Limitations, pg.
340.
CMU/SEI-97-HB-001 339

Simple Network Management Protocol
The SNMPv2 (SNMP Version 2) specification included the following new
capabilities:

• commands to support the coexistence of multiple/distributed
managers and mid-level managers, increasing the flexibility and
scalability of the network being managed

• enhanced security (known as “Secure SNMP”) by specifying three
layers of security

– encryption based on the Data Encryption Standard

– authentication

– authorization

• improved efficiency of polling over SNMPv1 by allowing bulk
transfers of data. This means that in some cases, using SNMPv2
instead of SNMPv1, network management can be provided over low-
bandwidth, wide-area links.

• support for additional network protocols besides UDP/IP, for
example, OSI, NetWare IPX/SPX and Appletalk [Broadhead 95]

However, SNMPv2 had not reached draft standard status within the IETF
and was supported by few vendors as of May 1995— SNMPv2 has many
unresolved issues. It may take years before SNMPv2 is widely accepted.

Costs and
Limitations

The attractiveness of SNMP is its simplicity and associated relative ease
of implementation. With this comes a price: e.g., the more fine grained
things you want, the less likely it is that they will be available.

SNMP uses the underlying User Datagram Protocol (UDP) for data de-
livery, which does not ensure reliability of data transfer. The loss of data
may or may not be a limitation to a network manager, depending on the
criticality of the information being gathered and the frequency at which
the polling is being performed.

SNMPv1 has minimal security capability. Because SNMPv1 lacks the
control of unauthorized access to critical network devices and systems,
it may be necessary to restrict the use of SNMP management to non-crit-
ical networks. Lack of authentication in SNMPv1 has led many vendors
to not include certain commands, thus reducing extensibility and consis-
tency across managed devices. SNMPv2 addresses these security prob-
lems but is messy and time-consuming to set up and administer (e.g.,
each MIB must be locally set up).

SNMP by itself does not provide any application programs or user inter-
faces in terms of plots, visual displays, and the like. These types of appli-
cations would have to be developed separately.
340 CMU/SEI-97-HB-001

Simple Network Management Protocol
SNMP out-of-the-box can not be used to track information that is con-
tained in application/user level protocols (e.g., radar track message, http,
mail). However these might be accomplished through the use of a exten-
sible (customized) SNMP agent that has user defined MIB.1 It is impor-
tant to note that a specialized or extensible network manager may be
required for use with the customized agents.

There are also concerns about the use of SNMP in the real-time domain
where bounded response, deadlines, and priorities are required.

SNMPv2 is intended to be able to coexist with existing SNMPv1, but in
order to use SNMPv2 as the SNMP manager or to migrate from SNMPv1
to SNMPv2, all SNMPv1 compliant agents must be entirely replaced with
SNMPv2 compliant agents— gateways or bilingual managers and proxy
agents were not available to support the gradual migration as of early-
1995.

1. There is an MIB being developed for http [MIB 96], and the MIB for mail monitoring
is now a proposed standard.

Alternatives Common management information protocol (CMIP) may be a better al-
ternative for large, more complex networks or security-critical networks.

CMIP design is similar to SMNP and was developed to make up for SN-
MP’s shortcomings. However, CMIP takes significantly more system re-
sources than SNMP, is difficult to program, and is designed to run on the
ISO protocol stack. (However, the technology standard used today in
most systems is TCP/IP.)

The biggest feature in CMIP is that tasks can be performed or events can
be triggered based upon the value of a variable or a specific condition.
For example, when a computer can not reach its network fileserver for a
predetermined number of times, an event can be generated to notify the
appropriate personnel. With SNMP, this task would have to be performed
by a user keeping track of failed attempts.
CMU/SEI-97-HB-001 341

Simple Network Management Protocol
References and
Information
Sources

[Broadhead 95] Broadhead, Steve. “SNMP Too Simple for Security?” Secure Computing
(April 1995): 24-29.

[Comer 91] Comer, Douglas. “Internetworking with TCP/IP.” Englewood Cliffs, NJ:
Simon and Schuster, 1991.

[Feit 94] Feit, Sidnie. A Guide to Network Management. New York, NY: McGraw
Hill, 1994.

[Henderson 95] Henderson and Erwin. “SNMP Version 2: Not So Simple.” Business
Communications Review 25, 5 (May 1995): 44-48.

[Herman 94] Herman, James. “Network Computing Inches Forward.” Business Com-
munications Review 24, 5 (May 1994): 45-50.

[IETF 96] Internet Engineering Task Force home page [online]. Available WWW
<URL: http://www.ietf.crni.reston.va.us/> (1996).

[Kapoor 94] Kapoor, K. “SNMP Platforms: What’s Real, What Isn’t.” Data Communi-
cations International 23, 12 (September 1994): 115-18.

[Lake 96] Lake, Craig. Simple Network Management Protocol (SNMP) [online].
Available WWW <URL: http://www.rpm.com/whitepaper/snmp.html>
(1996).

[MIB 96] Development of an MIB for http [online]. Available WWW
<URL: http://http-mib.onramp.net/bof/> (1996).

[Moorhead 95] Moorhead, R.J. & Amirthalingam, K. “SNMP— An Overview of its Merits
and Demerits,” 180-3. Proceedings of the Twenty-Seventh Southeastern
Symposium on System Theory. Starkvill, MS, March 12-14, 1995. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

Index
Categories

Name of technology Simple Network Management Protocol

Application category Protocols (AP.2.2.3), Network Management
(AP.2.2.2)

Quality measures category Maintainability (QM.3.1), Simplicity
(QM.3.2.2), Complexity (QM.3.2.1), Efficiency/
Resource Utilization (QM.2.2), Scalability
(QM.4.3), Security(QM.2.1.5)

Computing reviews category Network Operations (C.2.3), Distributed Sys-
tems (C.2.4)
342 CMU/SEI-97-HB-001

Simple Network Management Protocol
[Phifer 94] Phifer, L.A. “Tearing Down the Wall: Integrating ISO and Internet Man-
agement.” Journal of Network and Systems Management 2, 3 (Septem-
ber 1994): pp. 317-22.

[Rose 94] Rose, Marshall T. The Simple Book: An Introduction to Internet Manage-
ment. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[SNMP 96] Simple Network Management Protocol [online]. Available WWW
<URL: http://www.snmp.com> and
<URL: http://www.snmp.com/snmppages.html> (1996).

[Stallings 93] Stallings, William. SNMP, SNMPv2, and CMIP: The Practical Guide to
Network Management Standards. Reading, MA: Addison-Wesley, 1993.

[Vallillee 96] Vallillee, Tyler. SNMP & CMIP: An Introduction To Network Management
[online]. Available WWW <URL: http://www.inforamp.net/~kjvallil/t/sn-
mp.html> (1996).

[Wellens 96] Wellens, Chris & Auerbach, Karl. “Towards Useful Management” [on-
line].The Quarterly Newsletter of SNMP Technology, Comment, and
Events(sm) 4, 3 (July 1996). Available WWW
<URL: http://simple-times.org/simple-times/issues4-3.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online]. Available
WWW <URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Author Dan Plakosh, SEI
dplakosh@sei.cmu.edu

Cory Vondrak, TRW, Redondo Beach, CA

External
Reviewer(s)

Craig Meyers, SEI

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 343

Simple Network Management Protocol
344 CMU/SEI-97-HB-001

Simplex Architecture
Simplex Architecture COMPLETE

Purpose and
Origin

The Simplex architecture is a system integration and evolution frame-
work that addresses the need to incorporate— incrementally and de-
pendably— new technologies and new COTS components into long life
cycle mission-critical systems, in spite of errors that could be introduced
by the upgrade [Sha 96].

Technical Detail Software is pervasive within the critical systems that form the infrastruc-
ture of modern society, both military and civilian. These systems are of-
ten large and complex and require periodic and extensive upgrading. The
important technical problems include the following:

• Black box testing problem. Highly reliable control systems have
typical Mean-Time-To-Failure (MTTF) requirements on the order of
years and in some cases hundreds of years. However, the MTTF of
a COTS operating system, treated as a black box with both reported
and unknown bugs, is generally established via testing. Due to the
lack of time for prolonged tests, the experimentally-determined MTTF
is often in the range of days, or at best months. To use a COTS
operating system in a system with high reliability requirements, we
must find a way to bridge the reliability gap.

• Vendor driven upgrade problem. COTS components have a short life
cycle (roughly one year.) DoD platforms change at a much slower
rate and typically have longer life cycles (often 25-30 years or more).
This causes the DoD platform to be susceptible to the problem that
occurs when the vendor releases a new version of the COTS
component. The upgrade can either be ignored or incorporated into
the system. Both choices cause difficulties. Ignoring the upgrade will
eventually result in a system which is burdened with unsupported and
obsolete components. If, however, the upgrade is not ignored it is
essentially forcing the DoD platform to change on a schedule
determined by the vendor, not by the developer, maintainer, or
customer. New releases usually add features and fix existing bugs.
In the process they also often introduce new bugs. So upgrading is
risky; a way to manage the risk is needed.

• Upgrade paradox: Existing fault-tolerant computing paradigms are
based on replication and majority voting. The use of these techniques
results in a paradox. If we upgrade only the minority of the replicated
components, they will be out-voted by the majority. There will be no
effect, regardless of the quality of the upgraded software.
Conversely, if we upgrade the majority and make a mistake, the
whole system may fail.

Collectively, these technical problems present a formidable challenge to
the developers and maintainers of long life cycle systems. The Simplex
CMU/SEI-97-HB-001 345

Simplex Architecture
architecture is a framework for system integration and evolution. It inte-
grates a number of technologies in its middleware service to assist users:

• technologies for integrated availability and reliability management
that allow lower reliability COTS components to be used in systems
demanding a high degree of reliability

• technologies for replacing software modules at runtime without
having to shutdown and restart the system

• technologies that allow the system to maintain the existing level of
performance in spite of potential errors in newly-replaced
components

• technologies for flexible communication that allow components to
dynamically publish and subscribe to needed information [Rajkumar
95]

• technologies for real-time computing (Rate Monotonic Scheduling
(see pg. 313)), so that components can be replaced or modified in
real time, transparently to the applications, while still meeting
deadlines

Figure 26 is a highly simplified view of the data flow in a system using the
Simplex architecture. Suppose Old is legacy software designed to control
the device. Old has known performance characteristics and presumably,
due to long use, is relatively bug free. Suppose New is a new version of
the software with improved performance characteristics, but possibly
also containing bugs since it has not been used extensively before.

Figure 26: Simplex Architecture: Simplified Data Flow

The device under control is sampled at a regular interval by the In-
put/Output module. The data is processed by both Old and New. Instead
of controlling the device directly, both modules send their results to De-
cision which, as long as New is behaving properly, will pass its output on
to Input/Output, which will transmit it to the device. Should Decision de-
cide that New is not behaving correctly, it uses the output from Old in-

Input/
Output

Decision

New

Old
Device
under
control
346 CMU/SEI-97-HB-001

Simplex Architecture
stead. Thus the device will not perform worse than it did before the
upgrade to New occurred. Not shown, for reasons of complexity, is the
module that would actually remove a failed New from the system and al-
low it to be replaced with a corrected version for another try.

Usage
Considerations

The Simplex architecture is most suitable for systems that have high
availability and reliability requirements.

Since the Simplex architecture is relatively immature, pilot studies will be
needed to determine its suitability for any intended application. This
would involve developing a rapid prototype, using the Simplex architec-
ture, of a simplified instance of the intended application.

Maturity The safe, online upgrade of both software and hardware, including COTS
components using the Simplex architecture has been successfully dem-
onstrated in the laboratory. The Simplex architecture is currently being
transitioned into practice via four Department of Defense (DoD) pilot
studies:

1. NSSN (new attack submarine program) A US Navy program whose
goal is the development, demonstration, and transition of a COTS-
based fault-tolerant submarine control system that can be upgraded
inexpensively and dependably.

2. ISC (intelligent shipboard control program). A US Navy program
whose goal is the development of a system for fault-tolerant ship con-
trol and damage control.

3. EDCS (evolutionary design of complex software program). An Air
Force/DARPA program whose goal is to evaluate the possible use of
the Simplex architecture in the context of onboard avionics systems.

4. JSF (joint strike force) program. The goal is to evaluate the use of the
Simplex architecture as a means for migrating legacy software to Ada
95.

Although the Simplex architecture has been designed to reduce the life-
cycle cost of systems, data on its impact on system life-cycle cost is not
available at this time.

Costs and
Limitations

The Simplex architecture is designed to support the evolution of mission-
critical systems that have a high degree of availability or reliability re-
quirements. It will most likely not be suitable for management information
systems (MIS) applications that do not have such requirements. The
Simplex architecture is a COTS component-based system and the up-
front investment is rather modest in the context of mission critical sys-
tems. The architecture requires modern hardware (e.g., Power PC or
Pentium-based systems) and a real-time operating systems (OS) such
CMU/SEI-97-HB-001 347

Simplex Architecture
as POSIX.1b or an Ada runtime environment. However, legacy hardware
and software can be migrated to Simplex architecture incrementally.

Complementary
Technologies

Software and hardware reliability modeling and analysis allow users to
estimate the impact of Simplex architecture on system reliability. System
life-cycle cost estimation techniques will allow users to estimate the cost
impact. Advances in fault-tolerant computing, real-time computing, OS,
and network technologies will help improve the Simplex architecture
since it is a framework that integrates these technologies.

References and
Information
Sources

[Sha 92] Sha, L.; Rajkumar, R.; & Gagliardi, M. A Software Architecture for De-
pendable and Evolvable Industrial Computing Systems (CMU/SEI-95-
TR-005). Pittsburgh, PA: Software Engineering Institute, Carnegie Mel-
lon University, 1995.

[Sha 96] Sha, L.; Rajkumar, R.; & Gagliardi, M. “Evolving Dependable Real Time
Systems,” 335-346. Proceedings of the 1996 IEEE Aerospace Applica-
tions Conference. Aspen, CO, February 3-10, 1996. New York, NY: IEEE
Computer Society Press, 1996.

[Rajkumar 95] Rajkumar, R.; Gagliardi, M.; & Sha, L. “The Real-Time Publisher/Sub-
scriber Inter-Process Communication Model for Distributed Real-Time
Systems: Design and Implementation,” 66-75. The First IEEE Real-Time
Technology and Applications Symposium. Chicago, IL, May 15-17, 1995.
Los Alamitos, CA: IEEE Computer Society Press, 1995.

Author Charles B. Weinstock, SEI
weinstoc@sei.cmu.edu

Lui R. Sha, SEI
lrs@sei.cmu.edu

Index
Categories

Name of Technology Simplex Architecture

Application category Reapply Software Life Cycle (AP.1.9.3), Re-
engineering (AP.1.9.5), Software Architecture
(AP.2.1), Restart/Recovery (AP.2.10)

Quality measures category Availability/Robustness (QM.2.1.1), Reliability
(QM.2.1.2), Safety (QM.2.1.3), Real-time Re-
sponsiveness/Latency (QM.2.2.2), Maintain-
ability (QM.3.1)

Computing reviews category not available
348 CMU/SEI-97-HB-001

Simplex Architecture
External
Reviewer(s)

John Lehoczky, Professor, Statistics Department, CMU

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 349

Simplex Architecture
350 CMU/SEI-97-HB-001

Software Inspections
Software Inspections COMPLETE

Purpose and
Origin

Software inspections are a disciplined engineering practice for detecting
and correcting defects in software artifacts and preventing their leakage
into field operations. Software inspections were introduced at IBM in the
1970s by Michael Fagan, who pioneered their early adoption and later
evolution [Fagan 76, Fagan 86]. By detecting defects early and prevent-
ing their leakage into subsequent activities, the higher cost of later detec-
tion and rework is eliminated; this is essential for reduced cycle time and
lower cost. Software inspections provide value in improving reliability,
availability, and maintainability.

Technical Detail Software inspections are strict and close examinations conducted on
specifications, design, code, test, and other artifacts [Ebenau 94]. The
practice of Software Inspections is composed of four elements: the struc-
tured review process, defined roles of participants, system of checklists,
and forms and reports [O’Neill 88].

1. The structured review process is a systematic procedure integrated
with the activities of the life cycle model. The process is composed of
planning, preparation, entry criteria, conduct, exit criteria, reporting,
and follow-up.

2. Software inspections are a review activity performed by peers playing
the defined roles of moderator, recorder, reviewer, reader, and pro-
ducer. Each role carries with it the specific behaviors, skills, and
knowledge needed to achieve the expert practice of software inspec-
tions [Freedman 90].

3. A system of checklists governs each step in the structured review
process and the review of the product itself, objective by objective.
Process checklists are used as a guide for each activity of the struc-
tured review process. Product checklists house the strongly preferred
indicators that establish the completion criteria for the organization’s
software products. For example, these indicators include complete-
ness, correctness, and style:

– Completeness is based on traceability of the requirements
to the code, which is essential for maintainability.

– Correctness is a process for reasoning about the logic and
relationships of data and operations and is based on the
clear specification of intended function and its faithful
elaboration in code, which is essential for reliability and
availability [Linger 79].

– Style is based on consistency of recording, which is
essential for maintainability.

4. Forms and reports provide uniformity in recording issues at all soft-
ware inspections, reporting the results to management, and building
a database useful in process management.
CMU/SEI-97-HB-001 351

Software Inspections
Savings result from early detection and correction of defects, thus avoid-
ing the increased cost that comes with detection and correction (rework)
later in the life cycle. An undetected defect that escapes detection and
leaks to the next phase will likely cost at least ten times more to detect
and correct than if it is found and fixed in the phase where it is originated.
IBM Rochester, the 1990 winner of the Malcolm Baldrige Award, reported
that defects leaking from code to test cost nine times more to detect and
correct, and defects leaking from test to the field cost thirteen times more
[Lindner 94].

An example may help illustrate why a leaked defect costs more. A code
defect that leaks into testing may require multiple test executions to con-
firm the error and additional executions to obtain debug information.
Once a leaked defect has been detected, the producing programmer
must put aside the task at hand, refocus attention on correcting the defect
and confirming the correction, and then return to the task at hand.

In addition to cost savings, the adopting organization benefits by im-
proved predictability in cost and schedule performance, reduced defects
in the field, increased customer satisfaction, and improved morale
among practitioners.

The return on investment for software inspections is defined as

Net Savings divided by Detection Cost [O’Neill 96], where:

Net Savings is Cost Avoidance less Cost to Repair Now

Detection Cost is the cost of preparation and the cost of conduct
effort (see Costs and Limitations (pg. 354) for further elaboration).

The National Software Quality Experiment [O’Neill 95, O’Neill 96a] re-
veals that the return on investment (Net Savings/Detection Cost) for soft-
ware inspections ranges from four to eight, independent of the context of
usage.

Usage
Considerations

While software inspections originated and evolved in a new development
context, their usefulness in maintenance is now well established. Certain
measurements obtained during software inspections reflect this context
of use. For example, the lines of code inspected per conduct hour range
from 250 to 500 for new development and from 1000 to 1500 for mainte-
nance [O’Neill 95, O’Neill 96a].

The organization adopting software inspections practice seeks to prevent
defect leakage. Following training, the organization can expect to detect
50% of the defects present. It may take twelve to eighteen months to
352 CMU/SEI-97-HB-001

Software Inspections
achieve expert practice, where defect detection is expected to range
from 60% to 90%. IBM reported 83% and ATT reported 92% defect de-
tection resulting from software inspections practice [O’Neill 89].

The adoption of software inspections practice is competency-enhancing
and typically meets little resistance among practitioners.

Maturity The maturity of a technology can be reasoned about in terms of its long-
term, widespread use in a variety of usage domains and its transition
from early adopters through late adopters. Software inspections have
twenty-five years of application and evolution. They are known to deliver
added economic value.

Software inspections are a rigorous form of peer reviews, a key process
area of the SEI Capability Maturity Model1 [Paulk 95, Humphrey 89].
Even though peer reviews are assigned to level 3 in the software process
maturity framework and many organizations limit their software process
improvement agenda to the key process areas for the maturity level they
are seeking to achieve, the population of successful software inspections
adopters ranges from level 1 to 5.

While a level 3 organization is expected to have a more mature software
engineering capability with defined life cycle activities that use software
inspections to verify exit criteria, the early adoption of software inspec-
tions practice stimulates the improvements in software engineering prac-
tice necessary to achieve level 3. In addition, the early adoption of
software inspections brings with it some beneficial side effects, such as
cross pollination of ideas, ability to work together, and team building.

The widespread use and variety of usage domains is best illustrated by
the National Software Quality Experiment [O’Neill 95,96a], which has
been gathering data about software defects and inspections practice. In
this study, thousands of participants from dozens of organizations are
populating the experiment database with thousands of defects of all
types, along with pertinent information needed to pinpoint their root caus-
es. The range of analysis bins identified in the experiment includes soft-
ware process maturity level (1,2), organization type (government,
Department of Defense industry, commercial), product type (embedded,
organic), programming language (old style, modern), and global region
(North America, Pacific Rim).

1. Capability Maturity Model and CMM are service marks of Carnegie Mellon Universi-
ty.
CMU/SEI-97-HB-001 353

Software Inspections
Costs and
Limitations

The rollout and operating costs associated with software inspections in-
clude

• the initial training of practitioners and managers

• the ongoing preparation and conduct of inspection sessions

• the ongoing management and use of measurement data for defect
prevention and return on investment computations

Initial training. To adopt software inspections practice properly, each
participant is trained in the structured review process, roles of partici-
pants, system of process and product checklists, and forms and reports.
The cost to acquire the knowledge, skills, and behaviors is twelve hours
per practitioner [O’Neill 89]. In addition, each manager is trained in the
responsibilities for rolling out the technology and in the interpretation and
use of measurements taken. The management training takes four hours.

Preparation and conduct of inspection sessions. The cost of per-
forming software inspections includes the preparation effort of each par-
ticipant before the session and the conduct effort of participants in the
inspections session. Typically five people participate and each expends
one to two hours of preparation and one to two hours of conduct. This
cost of 10 to 20 hours of total effort per session typically results in the ear-
ly detection of five to ten defects in 250-500 lines of new development
code or 1000-1500 lines of legacy code [O’Neill 95, O’Neill 96a].

Management and use of measurement data. Three steps are involved
in the management and use of measurement data:

1. The software inspections database structure for the organization is
established. The cost to establish a database structure and produce
the basic user macros to operate on the data is two person-months.

2. Measurement results are entered, thus populating the database
structure. The cost to populate the database with measured results is
included in the cost of performing software inspections above, where
the recorder for each inspection session is responsible for entering
the session data into the software inspections database.

3. Operations on the measurement database generate derived metrics
in the form of reports and graphs. The cost to generate reports and
graphs on the derived metrics is one person-day per month.

Dependencies For an organization to obtain the full benefits of software inspections, a
defined process for software product engineering must be in place. This
will permit software inspections to be used in the practice of statistical
process control. In this context, software inspections provide the exit cri-
teria for each life-cycle activity. Furthermore, the completion criteria for
each type of artifact is specified and used in practice.
354 CMU/SEI-97-HB-001

Software Inspections
Alternatives Alternatives include software walkthroughs, a less rigorous form of peer
reviews. Walkthroughs may cost as much as inspections, but they deliver
less. Walkthroughs are producer-led reviews whose results are not re-
corded, thus precluding the application of the statistical process control
practice needed to advance software process maturity.

Complementary
Technologies

Cyclomatic complexity (see pg. 145) can be used to optimize the practice
of software inspections on legacy code during maintenance operations.
In this approach, candidates for inspection are selected (after modules
are rank ordered) from those with the highest complexity ratings, where
the defect density is known to be high.

This legacy code maintenance strategy can be extended by rank order-
ing all modules based upon defects encountered in the past year and by
rank ordering the modules expected to be adapted and perfected in the
coming year. Modules for inspection are then selected based on their
rank ordering in cyclomatic complexity, defect history, and expected re-
work.

References and
Information
Sources

[Ebenau 94] Ebenau, Robert G. & Strauss, Susan H. Software Inspection Process.
New York, NY: McGraw-Hill, 1994.

[Fagan 76] Fagan, M. “Design and Code Inspections to Reduce Errors in Program
Development.” IBM Systems Journal 15, 3 (1976): 182-211.

[Fagan 86] Fagan, M. “Advances in Software Inspections.” IEEE Transactions on
Software Engineering 12, 7 (July 1986): 744-751.

[Freedman 90] Freedman, D.P. & Weinberg, G.M. Handbook of Walkthroughs, Inspec-
tions, and Technical Reviews. New York, NY: Dorset House, 1990.

Index
Categories

Name of technology Software Inspections

Application category Detailed Design (AP.1.3.5), Code (AP.1.4.2),
Unit Testing (AP.1.4.3.4), Component Testing
(AP.1.4.3.5)

Quality measures category Correctness (QM.1.3), Reliability (QM.2.1.2),
Availability (QM.2.1.1), Maintainability
(QM.3.1)

Computing reviews category Program Verification (D.2.4), Testing and De-
bugging (D.2.5)
CMU/SEI-97-HB-001 355

Software Inspections
[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading, MA: Ad-
dison-Wesley, 1989.

[Lindner 94] Lindner, Richard J. & Tudahl, D. “Software Development at a Baldrige
Winner,” 167-180. Proceedings of ELECTRO ‘94. Boston, MA, May 12,
1994. New York, NY: IEEE, 1994.

[Linger 79] Linger, R.C.; Mills, H.D.; & Witt, B.I. Structured Programming: Theory
and Practice. Reading, MA: Addison-Wesley, 1979.

[O’Neill 88] O’Neill, Don & Ingram, Albert L. “Software Inspections Tutorial,” 92-120.
Software Engineering Institute Technical Review 1988. Pittsburgh, PA:
Carnegie Mellon University, Software Engineering Institute, 1988.

[O’Neill 89] O’Neill, Don. Software Inspections Course and Lab. Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 1989.

[O’Neill 92] O’Neill, Don. “Software Inspections: More Than a Hunt for Errors.”
Crosstalk, Journal Of Defense Software Engineering 30 (January 1992):
8-10.

[O’Neill 95] O’Neill, Don. “National Software Quality Experiment: Results 1992-
1995.” Proceedings of the Seventh Annual Software Technology Confer-
ence. Salt Lake City, UT, April 9-14, 1995. Hill Air Force Base, UT: Soft-
ware Technology Support Center, 1995.

[O’Neill 96a] O’Neill, Don. “National Software Quality Experiment: Results 1992-
1996.” Proceedings of the Eighth Annual Software Technology Confer-
ence. Salt Lake City, UT, April 21-26, 1996. Hill Air Force Base, UT: Soft-
ware Technology Support Center, 1996.

[O’Neill 96b] O’Neill, Don. Peer Reviews Key Process Area Handbook. Gaithersburg,
MD: Don O’Neill Consulting, 1996.

[Paulk 95] Paulk, Mark C. The Capability Maturity Model: Guidelines for Improving
the Software Process. Reading, MA: Addison-Wesley Publishing Com-
pany, 1995.

Author Don O’Neill, Don O’ Neill Consulting
ONeillDon@aol.com

External
Reviewer(s)

Alex Elentukh, Fidelity Investments
Rick Linger, SEI
Watts Humphrey, SEI
Joan Weszka, Lockheed Martin

Last Modified 10 Jan 97
356 CMU/SEI-97-HB-001

Statistical-Based Intrusion Detection
Statistical-Based Intrusion Detection ADVANCED

Note We recommend Intrusion Detection, pg. 217, as prerequisite reading for
this technology description.

Purpose and
Origin

Intrusion detection systems (IDS) automate the detection of security vio-
lations through computer processing of system audit information. One
IDS approach, rule-based intrusion detection (RBID) (see pg. 331),
seeks to identify intrusion attempts by matching audit data with known
patterns of intrusive behavior. RBID systems rely on codified rules of
known intrusions to detect intrusive behavior. Intrusion attempts not rep-
resented in an RBID rule base will go undetected by these systems. To
help overcome this limitation, statistical methods have been employed to
identify audit data that may potentially indicate intrusive or abusive be-
havior. Known as statistical-based intrusion detection (SBID) systems,
these systems analyze audit trail data by comparing them to typical or
predicted profiles in an effort to find pending or completed computer se-
curity violations. This emerging technology seeks to increase the avail-
ability of computer systems by automating the detection and elimination
of intrusions.

Technical Detail SBID systems seek to identify abusive behavior by noting and analyzing
audit data that deviates from a predicted norm. SBID is based on the
premise that intrusions can be detected by inspecting a system’s audit
trail data for unusual activity, and that an intruder’s behavior will be no-
ticeably different than that of a legitimate user. Before unusual activity
can be detected, SBID systems require a characterization of user or sys-
tem activity that is considered “normal.” These characterizations, called
profiles, are typically represented by sequences of events that may be
found in the system’s audit data. Any sequence of system events deviat-
ing from the expected profile by a statistically significant amount is
flagged as an intrusion attempt [Sundaram 96]. The main advantage of
SBID systems is that intrusions can be detected without a priori informa-
tion about the security flaws of a system [Kremmerer 94].

SBID systems typically employ statistical anomaly and rule-based mis-
use models [Mukherjee 94]. System profiles, user profiles, or both may
be used to define expected behavior. User profiles, if used, are specific
to each user and are dynamically maintained. As a user’s behavior
changes over time, so too will his user profile. No such profiles are used
in RBID systems. As is the case with RBID systems, known intrusion sce-
narios can be codified into the rule base of SBID systems.
CMU/SEI-97-HB-001 357

Statistical-Based Intrusion Detection
Interesting variations on this theme include the following:

• Predictive pattern generation, which uses a rule base of user profiles
defined as statistically-weighted event sequences [Teng 90]. This
method of intrusion detection attempts to predict future events based
on events that have already occurred. Advantages of this approach
include its ability to detect misuse as well as intrusions and its ability
to detect and respond quickly to anomalous behavior.

• Connectionist approaches in which neural networks are used to
create and maintain behavior profiles [Lunt 93]. Advantages of neural
approaches include their ability to cope with noisy data and their
ability to adapt to new user communities. Unfortunately, trial and error
is required to train the net, and it is possible for an intruder to train the
net during its learning phase to ignore intrusion attempts [Sundaram
96].

Usage
Considerations

An advantage of SBID systems is that they are able to adaptively learn
the behavior of the users they monitor and are thus potentially more sen-
sitive to intrusion attempts than are humans [Sundaram 96, Lunt 93].
However, SBID systems require the creation and maintenance of us-
er/system profiles. These profiles are sensitive to hardware and software
modifications, and will need to be updated whenever the system or net-
work they used to protect is modified. Additional work is required to de-
termine how statistical user/system profiles should be created and
maintained [Lunt 93].

Maturity Statistical intrusion detection algorithms have been in existence since at
least 1988. Several prototype systems have been developed, including
Haystack [Smaha 88], IDES [Lunt 93], and MIDAS [Mukherjee 94]. MI-
DAS is a deployed real-time SBID that provides security protection for
the National Computer Center’s networked mainframe computer. IDES,
which is deployed at both SRI and FBI locations, is an IDS that combines
SBID with RBID to detect a wider range of intrusion attempts. Another de-
ployed security system containing aspects of SBID technology is AT&T
Bell Lab’s Dragons system which protects their Internet gateway;1 the
Dragons system has succeeded in detecting intrusion attempts ranging
from attempted “guest” logins to forged NFS packets [Mukherjee 94].

1. See http://www.research.att.com for more details.

Costs and
Limitations

In addition to the costs associated with creating audit trails and maintain-
ing user profiles, there are several risks and limitations associated with
SBID technology:

• Because user profiles are updated periodically, it is possible for an
insider to slowly modify his behavior over time until a new behavior
358 CMU/SEI-97-HB-001

Statistical-Based Intrusion Detection
pattern has been established within which an attack can be safely
mounted [Lunt 93].

• Determining an appropriate threshold for “statistically significant
deviations” can be difficult. If the threshold is set too low, anomalous
activities that are not intrusive are flagged as intrusive (false positive).
If the threshold is set too high, anomalous activities that are intrusive
are not flagged as intrusive (false negative).

• Defining user profiles may be difficult, especially for those users with
erratic work schedules/habits.

Like RBID systems, SBID systems will negatively affect throughput be-
cause of to the need to collect and analyze audit data. However, in con-
trast with RBID systems, SBID systems do not always lag behind the
intruders. Detection of anomalous behavior, whether or not it is codified
as a known intrusion attempt, may be sufficient grounds for an SBID sys-
tem to detect an intruder.

Use of this technology requires personnel who are experienced in statis-
tics and intrusion detection techniques and who have in-depth knowl-
edge of audit collection mechanisms.

Dependencies Expert systems are an enabler for this technology.

Alternatives Other approaches to intrusion detection include model-based or rule-
based approaches (see pg. 331), and approaches based on genetic al-
gorithms. Manual examination of recorded audit data and online monitor-
ing of access activity by knowledgeable personnel are the only other
known alternatives.

Complementary
Technologies

Rule-based intrusion detection systems (see pg. 331) can be used in
conjunction with statistical-based intrusion detection systems to catch a
wider variety of intrusion attempts, and user authentication systems can
be used to help verify user identify.

Index
Categories

Name of technology Statistical-Based Intrusion Detection

Application category System Security (AP.2.4.3)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security and Protection
(D.4.6), Computer-Communication Networks
Security and Protection (C.2.0), Security and
Protection (K.6.5)
CMU/SEI-97-HB-001 359

Statistical-Based Intrusion Detection
References and
Information
Sources

[Bell 76] Bell, D. E. & LaPadula, L. J. Secure Computer System: Unified Exposi-
tion and Multics Interpretation Rev. 1 (MTR-2997). Bedford, MA: MITRE
Corp., 1976.

[Kemmerer 94] Kemmerer, Richard A. “Computer Security,” 1153-1164. Encyclopedia of
Software Engineering. New York, NY: John Wiley and Sons, 1994.

[Lunt 93] Lunt, Teresa F. “A Survey of Intrusion Detection Techniques.” Comput-
ers and Security 12, 4 (June 1993): 405-418.

[Mukherjee 94] Mukherjee, Biswanath, L.; Heberlein, Todd; & Levitt, Karl N. “Network In-
trusion Detection.” IEEE Network 8, 3 (May-June 1994): 26-41.

[Smaha 88] Smaha, Stephen E. “Haystack: An Intrusion Detection System,” 37-44.
Proceedings of the Fourth Aerospace Computer Security Applications
Conference. Orlando, Florida, December 12-16, 1988. Washington, DC:
IEEE Computer Society Press, 1989.

[Spafford 88] Spafford, Eugene H. The Internet Worm Program: An Analysis (CSD-TR-
823). West Lafayette, IN: Purdue University, 1988.

[Sundaram 96] Sundaram, Aurobindo. An Introduction to Intrusion Detection [online].
Available WWW <URL:http://www.acm.org/crossroads/xrds2-4/xrds2-4.
html>

[Teng 90] Teng, Henry S.; Chen, Kaihu; & Lu, Stephen C. “Security Audit Trail Anal-
ysis Using Inductively Generated Predictive Rules,” 24-29. Sixth Confer-
ence on Artificial Intelligence Applications. Santa Barbara, CA, May 5-9,
1990. Los Alamitos, CA: IEEE Computer Society Press, 1990.

Author Mark Gerken, Rome Laboratory
gerken@ai.rl.af.mil

Last Modified 10 Jan 97
360 CMU/SEI-97-HB-001

TAFIM Reference Model
TAFIM Reference Model ADVANCED

Note We recommend Reference Models, Architectures, Implementations—
An Overview, pg. 319, as prerequisite reading for this technology.

Purpose and
Origin

The Technical Architectural Framework for Information Management
(TAFIM) reference model was developed by the Defense Information
Systems Agency (DISA) to guide the evolution of Department of Defense
(DoD) systems, including sustaining base, strategic, and tactical sys-
tems, as well as interfaces to weapon systems. Application of the TAFIM
reference model is required on most DoD systems [Paige 93]. TAFIM is
a set of services, standards, design components, and configurations that
are used in design, implementation, and enhancement of information
management system architectures. The intent is that the DoD infrastruc-
ture will have a common architecture that will, over time, be a fully flexible
and interoperable enterprise. Details on the TAFIM model are available
in a seven volume TAFIM document, but are primarily in Volume 3 [TAF-
IM 94].

Technical Detail The TAFIM reference model (Figure 27) describes services (functional-
ity) needed within each of the model’s components. It contains a set of
general principles on how components and component services relate to
each other. This model is designed to enhance transition from legacy ap-
plications to a distributed environment. TAFIM addresses the following
six software components:

1. Application software. Application software consists of mission area
applications and support applications. Mission area applications may
be custom-developed software, commercial-off-the-shelf (COTS)
products, or Non-developmental items (NDI). Support applications
are building blocks for mission area applications. They manage pro-
cessing for the communication environment and can be shared by
multiple mission and support applications. Common COTS support
applications include multimedia, communications, business process-
ing, environment management, database utilities, and engineering
support (analysis, design, modeling, development, and simulation)
capabilities.

2. Application platform. Application platform consists of hardware ser-
vices and software services, including operating system, real-time
monitoring program, and peripheral drivers. Application software
must access platform resources by a request across application pro-
gram interfaces (APIs) (see pg. 79) to ensure integrity and consisten-
cy. A platform service may be realized by a single process shared by
a group of applications, or by a distributed system with portions of an
CMU/SEI-97-HB-001 361

TAFIM Reference Model
application operating on separate processors. Application platform
services include software engineering, user interface, data manage-
ment, data interchange, graphic, network, and operating system ca-
pabilities.

3. Application platform cross-area services. Application platform cross-
area services are services that have a direct effect on the operation
of one or more of the functional areas. Application platform cross-
area services include culturally-related application environments, se-
curity, system administration and distributed computing capabilities.

4. External environment. The external environment supports system
and application interoperability and user and data portability. The ex-
ternal environment interface specifies a complete interface between
the application platform and underlying external environment. The
external environment includes human-computer interaction, informa-
tion services, and communication capabilities.

5. TAFIM application program interface (API).The API is the interface
between an application and a service that resides on a platform. The
API specifies how a service is invoked— without specifying its imple-
mentation— so that the implementation may be changed without
causing a change in the applications that use that API. The API
makes the platform transparent to the application. A platform may be
a single computer or a network of hosts, clients, and servers where
distributed applications are implemented. A service invoked through
an API can reside on the same platform as the requesting application,
on a different platform, or on a remote platform. APIs are defined for
mission and support applications and platform services. APIs are
generally required for platform services such as compilers, window
management, data dictionaries, database management systems,
communication protocols, and system management utilities.

6. TAFIM external environment interface. The TAFIM external environ-
ment interface (which could be considered and API) is between the
application platform and the external environment. This interface al-
lows the exchange of information. It supports system and application
software interoperability. User and data portability are directly provid-
ed by the external environment interface.
362 CMU/SEI-97-HB-001

TAFIM Reference Model
Figure 27: DoD TAFIM Technical Reference Model

Usage
Considerations

The TAFIM reference model is applicable to most information systems,
including sustaining base, strategic, and tactical systems, as well as in-
terfaces to weapon systems [TAFIM 94]. It is mandatory for use on most
DoD programs [Paige 93]. However, systems built using the reference
model have been criticized by Rear Adm. John Gauss, the Interoperabil-
ity Chief at DISA, when speaking on systems in the field in Bosnia: “We
have built a bunch of state-of-the-art, open-systems, TAFIM-compliant
stove-pipes” [Temin 96]. TAFIM-compliant means that the applicable
standards and guidelines are met for the implemented component servic-
es. This suggests that even when complying with the TAFIM reference
model, problems of interoperability are not necessarily resolved. The
Joint Technical Architecture (JTA) provides a set of standards and guide-
lines for C4I systems, specifically in the area of interoperability, that su-
persedes TAFIM Volume 7 [JTA 96].

Application
Software

Application
Platform

Application
Platform
Cross-Area
Services

External
Environment

TAFIM External
Environment
Interfaces

TAFIM APIs

"Mission Area" Applications

Multi-Media
Communi-

cations
Business
Processing

Environment
Management

Database
Utilities

Engineering
Support

Support Applications

Application Platform

Software
Engineering

Services

Languages
& Bindings

CASE
Environment

& Tools

U/I
Services

Graphical

Client/
Server

Object Def
& Mgt

Window
Mgt

Dialogue

Support

Data Mgt
Services

Data

Dictionary/
Directory

DBMS

Data
Interchange

Services

Document

Product Data
Electronic

Data

Graphical
Data

Graphical
Services

Graphical
Object
Mgt

Network
Services

Data Comm

PC Support

Kernel Operations
Operating System Services

Shell and Utilities

i

i

Application
Program

Interfaces
(APIs)

System
Services

Communication

Services
Information

Services
Human/Computer
Interaction Services

UsersInformation
Interchange

Communications

Communication

Services

External
Environment
Interfaces

(EEI)

Information
Services

Human/Computer

Interaction Services

Character Sets
and Data Rep

Cultural Conventions
Natural Language

Support

Authentication

Access Control
Data Integrity

Data Confidentiality

Non-repudationn
Availability

Config Mgt
Perf Mgt
Fault Mgt
Acctg Mgt
Security Mgt

Global Time
Global File

Global Name
Remote Process

Threads
I
n
t
e
r
n
a
t
i
o
n
a
l
i
z
a
t
i
o
n

s
e
r
v
i
c
e
s

S
e
c
u
r
i
t
y

S
e
r
v
i
c
e
s

S
y
s
t
e
m

M
g
t.

S
e
r
v
i
c
e
s

D
i
s
t.

C
o
m
p
u
t
i
n
g

S
e
r
v
i
c
e
s

S
e
c
u
r
i
t
y

S
e
c
u
r
i
t
y

CMU/SEI-97-HB-001 363

TAFIM Reference Model
There are TAFIM-compliant software products available for use when im-
plementing a TAFIM-based architecture in areas such as support appli-
cations, communication services, business process services,
environment management, and engineering services. Additional prod-
ucts exist or are being developed in areas such as user interface, data
management, data interchange, graphics, operating systems, interna-
tionalization, security system management, and distributed computing.

Maturity The latest version of TAFIM, Version 2.0, was published in 1994. DoD or-
ganizations and contractors have been applying this set of guidelines to
current and future information systems. The Defense Information Infra-
structure (DII) Common Operating Environment (COE) (see pg. 155) is
an implementation of TAFIM. This COE is currently being used by the
Global Command and Control System (GCCS) and the Global Combat
Support System (GCSS). The Air Force Theater Battle Management
Core System (TBMCS) is also required to comply with the TAFIM and
use the COE. It may take several years, after multiple new TAFIM-com-
pliant systems are in the field, to determine the effectiveness of the ref-
erence model with respect to achieving a common, flexible, and
interoperable DoD infrastructure.

Costs and
Limitations

The TAFIM reference model does not fully specify components and com-
ponent connections [Clements 96]. It does not dictate the specific com-
ponents for implementation. (No reference model prescribes
implementation solutions.) TAFIM does provide the guidance necessary
to improve commonality among DoD information technical architectures.

One contractor has found that there is no cost difference in using the
TAFIM reference model (as compared to any other reference model)
when designing and implementing a software architecture. This is based
on the fact that application of a reference model is part of the standard
design and implementation practice.

Dependencies The TAFIM reference model is dependent on the evolution of component
and service standards that apply specifically to software; it may be affect-
ed by computer platforms and network hardware as well.

Alternatives Under conditions where the TAFIM reference model is not required, an
alternative model would be the Reference Model for Frameworks of Soft-
ware Engineering Environments (known as the ECMA model [ECMA 93])
that is promoted in Europe and used commercially and worldwide. Com-
mercially-available Hewlett-Packard products use this model [HP 96].
Another alternative would be the Common Object Request Broker Archi-
tecture (CORBA) if the design called for object-oriented infrastructure
(see pg. 107).
364 CMU/SEI-97-HB-001

TAFIM Reference Model
Complementary
Technologies

Open systems (see pg. 135) would be a complementary technology to
TAFIM because work done in open system supports the TAFIM goals of
achieving interoperable systems.

References and
Information
Sources

[Clements 96] Clements, P. & Northrop, L. Software Architecture: An Executive Over-
view (CMU/SEI-96-TR-003). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 1996.

[ECMA 93] Reference Model for Frameworks of Software Engineering Environments
3rd Edition (NIST Special Publication 500-211/ECMA TR/55). Prepared
jointly by NIST and ECMA. Washington, DC: U.S. Government Printing
Office, 1993.

[HP 96] Integrated Solutions Catalog for the SoftBench Product Family. Palo Al-
to, CA: Hewlett-Packard, 1993.

[JTA 96] Joint Technical Architecture [online]. Available WWW <URL: http://www.
itsi.disa.miil.jta/html> (1996).

[Paige 93] Paige, Emmett. Selection of Migration Systems ASD (C3I) Memoran-
dum. Washington, DC: Department of Defense, November 12, 1993.

[TAFIM 94] U.S. Department Of Defense. Technical Architecture Framework For In-
formation Management (TAFIM) Volumes 1-8, Version 2.0. Reston, VA:
DISA Center for Architecture, 1994. Also available [online] WWW <URL:
http://www.jcdbs.itsi.disa.mil:8000/ces/tafim> (1996).

[Temin 96] Temin, Thomas, ed. “Mishmash at Work (DoD Systems in Bosnia are not
Interoperable).” Government Computer News 15, 7 (April 1996): 28.

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

Peter Garrabrant, GTE
Tricia Oberndorf, SEI

Index
Categories

Name of technology TAFIM Reference Model

Application category Software Architecture Models (AP.2.1.1), Dis-
tributed Computing (AP.2.1.2)

Quality measures category Maintainability (QM.3.1), Interoperability
(QM.4.1)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Design (D.2.10)
CMU/SEI-97-HB-001 365

TAFIM Reference Model
Last Modified 10 Jan 97
366 CMU/SEI-97-HB-001

Three Tier Software Architectures
Three Tier Software Architectures COMPLETE

Note We recommend Client/Server Software Architectures, pg. 101, as pre-
requisite reading for this technology description.

Purpose and
Origin

The three tier software architecture emerged in the 1990s to overcome
the limitations of the two tier architecture (see pg. 381). The third tier
(middle tier server) is between the user interface (client) and the data
management (server) components. This middle tier provides process
management where business logic and rules are executed and can ac-
commodate hundreds of users (as compared to only 100 users with the
two tier architecture) by providing functions such as queuing, application
execution, and database staging. The three tier architecture is used
when an effective distributed client/server design is needed that provides
(when compared to the two tier) increased performance, flexibility, main-
tainability, reusability, and scalability, while hiding the complexity of dis-
tributed processing from the user. For detailed information on three tier
architectures see Schussel and Eckerson. Schussel provides a graphical
history of the evolution of client/server architectures [Schussel 96, Eck-
erson 95].

Technical Detail A three tier distributed client/server architecture (as shown in Figure 28)
includes a user system interface top tier where user services (such as
session, text input, dialog, and display management) reside.

Figure 28: Three tier distributed client/server architecture depic-
tion [Louis 95]

The middle tier provides process management services (such as process
development, process enactment, process monitoring, and process re-
sourcing) that are shared by multiple applications. The third tier provides
database management functionality and is dedicated to data and file ser-

Three Tiers

User System Interface

Process Management

Database Management

CMU/SEI-97-HB-001 367

Three Tier Software Architectures
vices that can be optimized without using any proprietary database man-
agement system languages. The data management component ensures
that the data is consistent throughout the distributed environment
through the use of features such as data locking, consistency, and repli-
cation. It should be noted that connectivity between tiers can be dynam-
ically changed depending upon the user’s request for data and services.

The middle tier server (also referred to as the application server) im-
proves performance, flexibility, maintainability, reusability, and scalability
by centralizing process logic. Centralized process logic makes adminis-
tration and change management easier by localizing system functionality
so that changes must only be written once and placed on the middle tier
server to be available throughout the systems. With other architectural
designs, a change to a function (service) would need to be written into
every application [Eckerson 95].

In addition, the middle process management tier controls transactions
and asynchronous queuing to ensure reliable completion of transactions
[Schussel 96]. The middle tier manages distributed database integrity by
the two phase commit process (see pg. 151). It provides access to re-
sources based on names instead of locations, and thereby improves
scalability and flexibility as system components are added or moved
[Edelstein 95].

It should be noted that recently, mainframes have been combined as
servers in distributed architectures to provide massive storage and im-
prove security (see pg. 227).

Usage
Considerations

Three tier architectures are used in commercial and military distributed
client/server environments in which shared resources, such as heteroge-
neous databases and processing rules, are required [Edelstein 95]. The
three tier architecture will support hundreds of users, making it more
scalable than the two tier architecture (see pg. 381) [Schussel 96].

Three tier architectures facilitate software development because each
tier can be built and executed on a separate platform, thus making it eas-
ier to organize the implementation. Also, three tier architectures readily
allow different tiers to be developed in different languages, such as a
graphical user interface language for the top tier; C, C++, SmallTalk, Ba-
sic, Ada 83 (see pg. 61), or Ada 95 (see pg. 67) for the middle tier; and
SQL for much of the database tier [Edelstein 95].

Migrating a legacy system to a three tier architecture can be done in a
manner that is low-risk and cost-effective. This is done by maintaining the
old database and process management rules so that the old and new
368 CMU/SEI-97-HB-001

Three Tier Software Architectures
systems will run side by side until each application and data element or
object is moved to the new design. This migration might require rebuild-
ing legacy applications with new sets of tools and purchasing additional
server platforms and service tools, such as transaction monitors (see pg.
373) and message-oriented middleware (see pg. 247). The benefit is that
three tier architectures hide the complexity of deploying and supporting
underlying services and network communications.

Maturity Three tier architectures have been used successfully since the early
1990s on thousands of systems of various types throughout the Depart-
ment of Defense (DoD) and in commercial industry, where distributed in-
formation computing in a heterogeneous environment is required. An Air
Force system that is evolving from a legacy architecture to a three tier ar-
chitecture is Theater Battle Management Core System (TBMCS).

Costs and
Limitations

Building three tier architectures is complex work. Programming tools that
support the design and deployment of three tier architectures do not yet
provide all of the desired services needed to support a distributed com-
puting environment.

A potential problem in designing three tier architectures is that separation
of user interface logic, process management logic, and data logic is not
always obvious. Some process management logic may appear on all
three tiers. The placement of a particular function on a tier should be
based on criteria such as the following [Edelstein 95]:

• ease of development and testing

• ease of administration

• scalability of servers

• performance (including both processing and network load)

Dependencies Database management systems must conform to X/Open systems stan-
dards and XA Transaction protocols to ensure distributed database in-
tegrity when implementing a heterogeneous database two phase
commit.

Alternatives Two tier client server architectures (see pg. 381) are appropriate alterna-
tives to the three tier architectures under the following circumstances:

• when the number of users is expect to be less than 100

• for non-real-time information processing in non-complex systems
that requires minimal operator intervention

Distributed/collaborative enterprise computing (see pg. 163) is seen as a
viable alternative, particularly if object-oriented technology on an enter-
CMU/SEI-97-HB-001 369

Three Tier Software Architectures
prise-wide scale is desired. An enterprise-wide design is comprised of
numerous smaller systems or subsystems.

Complementary
Technologies

Complementary technologies to three tier architectures are object-orient-
ed design (to implement decomposable applications) (see pg. 283), three
tier client/server architecture tools, and database two phase commit pro-
cessing (see pg. 151).

References and
Information
Sources

[Dickman 95] Dickman, A. “Two-Tier Versus Three-Tier Apps.” Informationweek 553
(November 13, 1995): 74-80.

[Eckerson 95] Eckerson, Wayne W. “Three Tier Client/Server Architecture: Achieving
Scalability, Performance, and Efficiency in Client Server Applications.”
Open Information Systems 10, 1 (January 1995): 3(20).

[Edelstein 95] Edelstein, Herb. “Unraveling Client Server Architectures.” DBMS 7, 5
(May 1994): 34(7).

[Gallaugher 96] Gallaugher, J. & Ramanathan, S. “Choosing a Client/Server Architecture.
A Comparison of Two-Tier and Three-Tier Systems.” Information Sys-
tems Management Magazine 13, 2 (Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW <URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. “Interoperable Object Models for
Large Scale Distributed Systems,” 152+32. Proceedings. International
Seminar on Client/Server Computing. La Hulpe, Belgium, October 30-31,
1995. London, UK: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future [online].
Available WWW <URL: http://www.dciexpo.com/geos/> (1995).

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

Index
Categories

Name of technology Three Tier Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Maintainability (QM.3.1), Scalability (QM.4.3),
Reusability (QM.4.4), Reliability (QM.2.1.2)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Design (D.2.10)
370 CMU/SEI-97-HB-001

Three Tier Software Architectures
External
Reviewer(s)

Paul Clements, SEI
Frank Rogers, GTE

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 371

Three Tier Software Architectures
372 CMU/SEI-97-HB-001

Transaction Processing Monitor Technology
Transaction Processing Monitor Technology ADVANCED

Note We recommend Client/Server Software Architectures, pg. 101, as pre-
requisite reading for this technology description.

Purpose and
Origin

Transaction processing (TP) monitor technology provides the distributed
client/server environment the capacity to efficiently and reliably develop,
run, and manage transaction applications.

TP monitor technology controls transaction applications and performs
business logic/rules computations and database updates. TP monitor
technology emerged 25 years ago when Atlantic Power and Light creat-
ed an online support environment to share concurrently applications ser-
vices and information resources with the batch and time sharing
operating systems environment. TP monitor technology is used in data
management, network access, security systems, delivery order process-
ing, airline reservations, and customer service. Use of TP monitor tech-
nology is a cost-effective alternative to upgrading database management
systems or platform resources to provide this same functionality. Dick-
man and Hudson provide more details on TP monitor technology [Dick-
man 95, Hudson 94].

Technical Detail TP monitor technology is software that is also referred to as middleware
(see pg. 251). It can provide application services to thousands of clients
in a distributed client/server environment. TP monitor technology does
this by multiplexing client transaction requests (by type) onto a controlled
number of processing routines that support particular services. These
events are depicted in Figure 29.

Figure 29: Transaction Processing Monitor Technology

Tranaction
Processing

Monitor

Client

Client

Client

Client

Client

Client

Client

Clientv

Client

Client

Client

Client

Client

Client

Database
Server

Client transaction type requests

Processing Routines
CMU/SEI-97-HB-001 373

Transaction Processing Monitor Technology
Clients are bound, serviced, and released using stateless servers that
minimize overhead. The database sees only the controlled set of pro-
cessing routines as clients [Dickman 95, Hudson 94].

TP monitor technology maps numerous client requests through applica-
tion services routines to improve system performance. The TP monitor
technology (located as a server) can also take the application transitions
logic from the client. This reduces the number of upgrades required by
these client platforms. In addition, TP monitor technology includes nu-
merous management features, such as restarting failed processes, dy-
namic load balancing, and enforcing consistency of distributed data. TP
monitor technology is easily scalable by adding more servers to meet
growing numbers of users [Dickman 95, Hudson 94].

TP monitor technology is independent of the database architecture. It
supports flexible and robust business modeling and encourages modu-
lar, reusable procedures. TP monitor designs allow application program
interfaces (APIs) (see pg. 79) to support components such as heteroge-
neous client libraries, databases and resource managers, and peer-level
application systems. TP monitor technology supports architecture flexi-
bility because each component in a distributed system is comprised of
products that are designed to meet specific functionality, such as graph-
ical user interface builders and database engines [Dickman 95, Hudson
94].

Usage
Considerations

Within distributed client/server systems, each client that is supported
adds overhead to system resources (such as memory). Responsiveness
is improved and system resource overhead is reduced by using TP mon-
itor technology to multiplex many clients onto a much smaller set of ap-
plication service routines. TP monitor technology provides a highly active
system that includes services for delivery order processing, terminal and
forms management, data management, network access, authorization,
and security.

TP monitor technology supports a number of program-to-program com-
munication models, such as store-and-forward, asynchronous, remote
procedure call (RPC) (see pg. 323), and conversational. This improves
interactions among application components. TP monitor technology pro-
vides the ability to construct complex business applications from modu-
lar, well-defined functional components. Because this technology is well-
known and well-defined it should reduce program risk and associated
costs [Dickman 95, Hudson 94].

Maturity TP monitor technology has been used successfully in the field for 25
years. TP monitor technology is used for delivery order processing, hotel
374 CMU/SEI-97-HB-001

Transaction Processing Monitor Technology
and airline reservations, electronic fund transfers, security trading, and
manufacturing resource planning and control. It improves batch and
time-sharing application effectiveness by creating online support to share
application services and information resources [Dickman 95, Hudson
94].

Costs and
Limitations

TP monitor technology makes database processing cost-effective for on-
line applications. Spending relatively little money on TP monitor technol-
ogy can result in significant savings compared to the resources required
to improve database or platform resources to provide the same function-
ality [Dickman 95].

A limitation to TP technology is that the implementation code is usually
written in a lower-level language (such as COBOL), and is not yet widely
available in the popular visual toolsets [Shussel 96].

Alternatives A variation of TP monitor technology is session based technology. In the
TP monitor technology, transactions from the client are treated as mes-
sages. In the session based technology, a single server provides both
database and transaction services. In session based technology, the
server must be aware of clients in advance to maintain each client’s pro-
cessing thread. The session server must constantly send messages to
the client (even when work is not being done in the client) to ensure that
the client is still alive. Session based architectures are not as scalable be-
cause of the adverse effect on network performance as the number of cli-
ents grow.

Another alternative to TP monitor technology is remote data access
(RDA). The RDA centers the application in a client computer, communi-
cating with back-end database servers. Clients can be network-intensive,
but scalability is limited.

A third alternative to TP monitor technology is the database server ap-
proach, which provides functions (usually specific to the database) and
is architecturally locked to the specific database system [Dickman 95,
Hudson 94].

Complementary
Technologies

Complementary technologies include mainframe client/server software
architectures (see pg. 227) and three tier software architectures (see pg.
367); in both cases the TP monitor technology could server as the middle
tier.
CMU/SEI-97-HB-001 375

Transaction Processing Monitor Technology
References and
Information
Sources

[Dickman 95] Dickman, A. “Two-Tier Versus Three-Tier Apps.” Informationweek 553
(November 1995): 74-80.

[Framework 96] Framework for Complex Client/Server Computing [online]. Available
WWW <URL: http://www.mch.sni.dc/public/mr/01+p2/tpmon.htm>
(1996).

[Hudson 94] Hudson, D. & Johnson, J. Client-Server Goes Business Critical. Dennis,
MA: The Standish Group International, 1994.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future [online].
Available WWW <URL: http://www.dciexpo.com/geos/> (1995).

[TP 96] TP Lite vs. TP Heavy [online]. Available WWW <URL: http://www.byte.
com/art/9504/sec11/art4.htm> (1996).

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

External
Reviewer(s)

David Altieri, GTE

Last Modified 10 Jan 97

Index
Categories

Name of technology Transaction Processing Monitor Technology

Application category Client/Server (AP.2.1.2.1), Client/Server Com-
munication (AP.2.2.1)

Quality measures category Efficiency/ Resource Utilization (QM.2.2), Re-
usability (QM.4.4), Maintainability (QM.3.1)

Computing reviews category Distributed Systems (C.2.4)
376 CMU/SEI-97-HB-001

Trusted Operating Systems
Trusted Operating Systems ADVANCED

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

Trusted operating systems provide the basic security mechanisms and
services that allow a computer system to protect, distinguish, and sepa-
rate classified data. Trusted operating systems have been developed
since the early 1980s and began to receive National Security Agency
(NSA) evaluation in 1984.

Technical Detail Trusted operating systems lower the security risk of implementing a sys-
tem that processes classified data. Trusted operating systems implement
security policies and accountability mechanisms in an operating system
package. A security policy is the rules and practices that determine how
sensitive information is managed, protected, and distributed [Abrams
95]. Accountability mechanisms are the means of identifying and tracing
who has had access to what data on the system so they can be held ac-
countable for their actions.

Trusted operating systems are evaluated by the NSA National Computer
Security Center (NCSC) against a series of six requirements-level class-
es listed in the table below. C1 systems have basic capabilities. A1 sys-
tems provide the most capability. The higher the rating level is, the wider
the range of classified data is that may be processed.

The table below shows the NCSC Evaluation Criteria Classes.

A low level (C1 and C2) system provides limited discretionary access
controls and identification and authentication mechanisms. Discretionary
access controls identify who can have access to system data based on
the need to know. Mandatory access controls identify who or what pro-
cess can have access to data based on the requester having formal

Class Title Number of Approved
Operating Systems in this
Class [TPEP 96]

A1 Verified Design 0

B3 Security Domains 1

B2 Structured Protection 1

B1 Labeled Security Protection 7

C2 Controlled Access Protection 5

C1 Discretionary Security Protection No Longer Evaluated
CMU/SEI-97-HB-001 377

Trusted Operating Systems
clearance for the security level of the data. A low-level system is used
when the system only needs to be protected against human error and it
is unlikely that a malicious user can gain access to the system.

A higher level (B2, B3, and A1) system provides complete mandatory
and discretionary access control, thorough security identification of data
devices, rigid control of transfer of data and access to devices, and com-
plete auditing of access to the system and data. These higher level sys-
tems are used when the system must be protected against a malicious
user’s abuse of authority, direct probing, and human error [Abrams 95].

The portion of the trusted operating system that grants requesters ac-
cess to data and records the action is frequently called the reference
monitor because it refers to an authorization database to determine if ac-
cess should be granted. Higher level trusted operating systems are used
in MLS hosts and compartmented mode workstations (see Computer
System Security— an Overview, pg. 129, for overview information).

Usage
Considerations

Trusted operating systems must be used to implement multi-level secu-
rity systems and to build security guards that allow systems of different
security levels to be connected to exchange data. Use of a trusted oper-
ating system may be the only way that a system can be networked with
other high security systems. Trusted operating systems may be required
if a C4I system processes intelligence data and provides data to war
fighters. Department of Defense (DoD) security regulations define what
evaluation criteria must be satisfied for a multi-level system based on the
lowest and highest classification of the data in a system and the clear-
ance level of the users of the system. Using an NCSC-evaluated system
reduces accreditation cost and risk. The security officer identified as the
Designated Approving Authority (DAA) for secure computer systems has
the responsibility and authority to review and approve the systems to pro-
cess classified information. The DAA will require analysis and tests of the
system to assure that it will operate securely. The DAA can accept the
NCSC evaluation of a system rather than generating the data. For a B3
or A1 system, that can represent a savings of 1 to 2 years in schedule
and the operating system will provide a proven set of functions.

Maturity This technology has been implemented by several vendors for commer-
cial-off-the-shelf (COTS) use in secure systems. As of September 1996,
the NCSC Evaluated Product List indicated that fourteen operating sys-
tems have been evaluated as level C2, B1,B2, and B3 systems in the last
three years [TPEP 96]. The number of operating systems evaluated by
class (excluding evaluations of updated versions of operating systems)
is included in the table on page 377. Use of one of the approved trusted
378 CMU/SEI-97-HB-001

Trusted Operating Systems
operating systems can result in substantial cost and schedule reductions
for a system development effort and provide assurance that the system
can be operated securely.

Costs and
Limitations

The heavy access control and accounting associated with high security
systems can affect system performance; as such, higher performance
processors, I/O, and interfaces may be required. Trusted operating sys-
tems have unique interfaces and operating controls that require special
security knowledge to use and operate. Frequently COTS products that
operate satisfactorily with a standard operating system must be replaced
or augmented to operate with a trusted operating system.

Dependencies Trusted operating systems at B2 and above enable the development of
system interoperability for systems at different security levels and allow
applications to perform data fusion. They are dependent on a trusted
computing base that provides secure data paths and protected memory.

References and
Information
Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Se-
curity An Integrated Collection of Essays. Los Alamitos, CA: IEEE Com-
puter Society Press, 1995.

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics. Sebas-
topol, CA: O’Reilly & Associates, 1991.

[TPEP 96] Trusted Product Evaluation Program Evaluated Product List [online].
Available WWW <URL: http://www.radium.ncsc.mil/tpep/index.html>
(1996).

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System
and Network Security. Boca Raton, FL: CRC Press, 1996.

Author Tom Mills, Loral
TMILLS@ccs.lmco.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Trusted Operating Systems

Application category Trusted Operating Systems (AP.2.4.1)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating System Security and Protection
(D.4.6), Computer-Communications Network
Security Protection (C.2.0)
CMU/SEI-97-HB-001 379

Trusted Operating Systems
380 CMU/SEI-97-HB-001

Two Tier Software Architectures
Two Tier Software Architectures COMPLETE

Note We recommend Client/Server Software Architectures, pg. 101, as pre-
requisite reading for this technology description.

Purpose and
Origin

Two tier software architectures were developed in the 1980s from the file
server software architecture design. The two tier architecture is intended
to improve usability by supporting a forms-based, user-friendly interface.
The two tier architecture improves scalability by accommodating up to
100 users (file server architectures only accommodate a dozen users),
and improves flexibility by allowing data to be shared, usually within a ho-
mogeneous environment [Schussel 96]. The two tier architecture re-
quires minimal operator intervention, and is frequently used in non-
complex, non-time critical information processing systems. Detailed
readings on two tier architectures can be found in Schussel and Edel-
stein [Schussel 96, Edelstein 94].

Technical Detail Two tier architectures consist of three components distributed in two lay-
ers: client (requester of services) and server (provider of services). The
three components are

1. User System Interface (such as session, text input, dialog, and dis-
play management services)

2. Processing Management (such as process development, process
enactment, process monitoring, and process resource services)

3. Database Management (such as data and file services)

The two tier design allocates the user system interface exclusively to the
client. It places database management on the server and splits the pro-
cessing management between client and server, creating two layers. Fig-
ure 30 depicts the two tier software architecture.

Figure 30: Two Tier Client Server Architecture Design [Louis 95]

In general, the user system interface client invokes services from the da-
tabase management server. In many two tier designs, most of the appli-

Two Tiers

User System Interface
+ Some Processing

Database Management
+ Some Processing

 Management

Management
CMU/SEI-97-HB-001 381

Two Tier Software Architectures
cation portion of processing is in the client environment. The database
management server usually provides the portion of the processing relat-
ed to accessing data (often implemented in store procedures). Clients
commonly communicate with the server through SQL statements or a
call-level interface. It should be noted that connectivity between tiers can
be dynamically changed depending upon the user’s request for data and
services.

As compared to the file server software architecture (that also supports
distributed systems), the two tier architecture improves flexibility and
scalability by allocating the two tiers over the computer network. The two
tier improves usability (compared to the file sever software architecture)
because it makes it easier to provide a customized user system interface.

It is possible for a server to function as a client to a different server— in
a hierarchical client/server architecture. This is known as a chained two
tier architecture design.

Usage
Considerations

Two tier software architectures are used extensively in non-time critical
information processing where management and operations of the system
are not complex. This design is used frequently in decision support sys-
tems where the transaction load is light. Two tier software architectures
require minimal operator intervention. The two tier architecture works
well in relatively homogeneous environments with processing rules (busi-
ness rules) that do not change very often and when workgroup size is ex-
pected to be fewer than 100 users, such as in small businesses.

Maturity Two tier client/server architectures have been built and fielded since the
middle to late 1980s. The design is well known and used throughout in-
dustry. Two tier architecture development was enhanced by fourth gen-
eration languages.

Costs and
Limitations

Scalability. The two tier design will scale-up to service 100 users on a
network. It appears that beyond this number of users, the performance
capacity is exceeded. This is because the client and server exchange
“keep alive” messages continuously, even when no work is being done,
thereby saturating the network [Schussel 96].

Implementing business logic in stored procedures can limit scalability be-
cause as more application logic is moved to the database management
server, the need for processing power grows. Each client uses the server
to execute some part of its application code, and this will ultimately re-
duce the number of users that can be accommodated.
382 CMU/SEI-97-HB-001

Two Tier Software Architectures
Interoperability. The two tier architecture limits interoperability by using
stored procedures to implement complex processing logic (such as man-
aging distributed database integrity) because stored procedures are nor-
mally implemented using a commercial database management system’s
proprietary language. This means that to change or interoperate with
more than one type of database management system, applications may
need to be rewritten. Moreover, database management system’s propri-
etary languages are generally not as capable as standard programming
languages in that they do not provide a robust programming environment
with testing and debugging, version control, and library management ca-
pabilities.

System administration and configuration. Two tier architectures can
be difficult to administer and maintain because when applications reside
on the client, every upgrade must be delivered, installed, and tested on
each client. The typical lack of uniformity in the client configurations and
lack of control over subsequent configuration changes increase adminis-
trative workload.

Batch jobs. The two tiered architecture is not effective running batch
programs. The client is typically tied up until the batch job finishes, even
if the job executes on the server; thus, the batch job and client users are
negatively affected [Edelstein 94].

Dependencies Developing a two tier client/server architecture following an object-orient-
ed methodology would be dependent on the CORBA standards for de-
sign implementation. See Common Object Request Broker Architecture,
pg. 107.

Alternatives Possible alternatives for two tier client server architectures are

• the three-tier architecture (see pg. 367) if there is a requirement to
accommodate greater than 100 users

• distributed/collaborative architectures (see pg. 163) if there is a
requirement to design on an enterprise-wide scale. An enterprise-
wide design is comprised of numerous smaller systems or
subsystems.

When preparing a two tier architecture for possible migration to an alter-
native three tier architecture, the following five steps will make the tran-
sition less costly and of lower risk [Dickman 95]:

1. Eliminate application diversity by ensuring a common, cross-hard-
ware library and development tools.

2. Develop smaller, more comparable service elements, and allow ac-
cess through clearly-defined interfaces.
CMU/SEI-97-HB-001 383

Two Tier Software Architectures
3. Use an Interface Definition Language (IDL) to model service interfac-
es and build applications using header files generated when com-
piled.

4. Place service elements into separate directories or files in the source
code.

5. Increase flexibility in distributed functionality by inserting service ele-
ments into Dynamic Linked Libraries (DLLs) so that they do not need
to be complied into programs.

Complementary
Technologies

Complementary technologies for two tier architectures are CASE (com-
puter-aided software engineering) tools because they facilitate two tier
architecture development, and open systems (see pg. 135) because they
facilitate developing architectures that improve scalability and flexibility.

References and
Information
Sources

[Dickman 95] Dickman, A. “Two-Tier Versus Three-Tier Apps.” Informationweek 553
(November 1995): 74-80.

[Edelstein 94] Edelstein, Herb. “Unraveling Client Server Architectures.” DBMS 7, 5
(May 1994): 34(7).

[Gallaugher 96] Gallaugher, J. & Ramanathan, S. “Choosing a Client/Server Architecture.
A Comparison of Two-Tier and Three-Tier Systems.” Information Sys-
tems Management Magazine 13, 2 (Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW <URL: http://www.softis.is > (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. “Interoperable Object Models for
Large Scale Distributed Systems,” 152+32. Proceedings. International
Seminar on Client/Server Computing. La Hulpe, Belgium, October 30-31,
1995. London, UK: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server: Past, Present and Future [online].
Available WWW <URL: http://www.dciexpo.com/geos/> (1996).

Author Darleen Sadoski, GTE
sadoski.darleen@mail.ndhm.gtegsc.com

Index
Categories

Name of technology Two Tier Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Usability (QM.2.3), Maintainability (QM.3.1),
Scalability (QM.4.3)

Computing reviews category Distributed Systems (C.2.4), Software Engi-
neering Design (D.2.10)
384 CMU/SEI-97-HB-001

Two Tier Software Architectures
External
Reviewer(s)

Paul Clements, SEI
Frank Rogers, GTE

Last Modified 10 Jan 97
CMU/SEI-97-HB-001 385

Two Tier Software Architectures
386 CMU/SEI-97-HB-001

Virus Detection
Virus Detection ADVANCED

Note We recommend Computer System Security— an Overview, pg. 129, as
prerequisite reading for this technology description.

Purpose and
Origin

Technologies for Computer System Security in C4I Systems (see pg.
129) introduced virus detection software as one of the system security
mechanisms included in Intranets used to support C4I systems. Viruses
are malicious segments of code, inserted into legitimate programs, that
execute when the legitimate program is executed. The primary charac-
teristic of a virus is that it replicates itself when it is executed and inserts
the replica into another program which will replicate the virus again when
it executes. A computer is said to be infected if it contains a virus. Detect-
ing that a computer is infected is the process of virus detection. Viruses
have existed since the early 1980s and programs to detect them have
been developed since then [Denning 90].

Technical Detail Since viruses are executable code, they are written for a particular pro-
cessor. They have been written for mainframes, for UNIX machines, and
for personal computers (IBM PC compatibles and Apple Macintoshes).
By far the most viruses have been developed to attack 80x86-based IBM
PC compatible computers. By 1996, there have been over 2000 kinds of
viruses developed that attack IBM PC compatible computers. The IBM
PC compatible is a frequent target of viruses because there are so many
of that type of computer in use and the operating system (DOS and Win-
dows) has no provision to prevent code from being modified. A few virus-
es, written using word processing or spreadsheet macros, infect any
processor that runs the word processor or spreadsheet program that can
interpret those macros. There were some early, much publicized, viruses
on UNIX machines, but they are rare. The 1988 Morris Worm was an ear-
ly example of malicious code that attacked UNIX machines [Spafford 88].
Viruses are hard to write because they require detailed knowledge of
how the operating system works; there are much easier ways to damage
or copy information on a UNIX computer. There have been a few main-
frame viruses but they are also rare because mainframe operating sys-
tems make it difficult for a program to gain access to and modify other
programs.

Within some viruses is a portion of code called the payload. The payload
is designed to do something malicious such as corrupt files, display a
message on the screen, or prevent the computer from booting. When the
virus executes or at some future execution after a trigger condition has
been met, the virus will execute the payload. A favorite trigger condition
is the occurrence of a particular date, such as Friday the 13th. A virus still
CMU/SEI-97-HB-001 387

Virus Detection
causes harm, even if it does not contain a payload, by consuming pro-
cessor and storage resources as it replicates itself.

The two general types of PC viruses are boot-record infectors and pro-
gram file infectors. The type is determined by where the virus code copy
is written when it is replicated.

Boot-record infectors, also called system infectors, infect the boot
records on hard disks and floppy disks. When the system is booted, they
are loaded into memory. They may execute and replicate themselves ev-
ery time a disk is loaded. Once a hard disk boot record is infected the vi-
rus will be loaded into memory each time the system is booted from the
hard disk.

The program file infectors attach their replicas to program file (.EXE or
.COM files) hosts on disk whenever the virus is executed. When the host
is executed the virus replicates itself again. When the virus is added to a
file it makes the file larger. In order to not cause an obvious growth in a
file, viruses include a signature pattern in the copy that it can recognize
so that it will not add to a file again if the virus is there already.

There are three basic types of virus detection software:

• virus scanner

• activity monitor

• change detection

Virus scanner software looks for the virus signature in memory or in pro-
gram files and looks for code in the boot record that is not boot code.
Once suspicious code is found, a message is displayed to the operator
that the system is infected. Some virus scanners have the capability to
remove viruses as well as to detect them.

Activity monitors are memory resident programs that watch for suspi-
cious activity such as a program other than the operating system trying
to format disks, delete an executable file, or change the file allocation ta-
ble on a disk. They also may look for programs trying to go memory res-
ident, scanning for other program files, or trying to modify their own code
[Slade 96].

Change detection software scans the executable program files in the
system before a system is used and records vital statistics about each
program, such as program file length or a calculated CRC or checksum.
After the system is in operation, the change detection software periodi-
388 CMU/SEI-97-HB-001

Virus Detection
cally scans the program files looking for changes compared to the pre-
stored data. These changes could have been caused by a virus.

Usage
Considerations

Virus scanners are executed periodically, when the system is started up,
or whenever a disk is initially put into the system. When new software
(commercial, freeware, or downloaded) is added to the system, it should
be checked with a virus scanner before the new software is executed to
identify known viruses if they are present. Although virus scanners are
very useful in finding known viruses they will not detect new kinds of vi-
ruses. They therefore must be updated frequently to include the “signa-
tures” of new viruses.

Activity monitors are more likely to find new types of viruses than virus
scanners since activity monitors are not limited to finding a known bit pat-
tern in memory or on disk. Activity monitors have considerable perfor-
mance overhead since they must be constantly scanning for unusual
activity. Activity monitors also must be incorporated into software change
processes so that its baseline of “correct” software files can be main-
tained.

Of the three types of virus detection software, change detection software
has the best chance of detecting current and future virus types but is
most likely to produce false alarms [Slade 96]. The database for change
detection software must be updated every time system files or execut-
able program files are updated. This adds maintenance overhead to the
system if the system is frequently modified.

Maturity More than 100 virus detection products are listed on the National Institute
of Standards and Technology (NIST) list of products reviewed [NIST 96].
Most of those products are virus scanners. Virus scanners are also the
most rapidly changing as they must be updated to check for new virus
“signatures” as new viruses are identified. The challenge to virus detec-
tion product vendors is in the constant race to keep up with the host of
smart computer hackers and malicious software developers creating new
strains of viruses.

Costs and
Limitations

Effective use of virus detection software requires system administrators

familiar with virus types and their mode of attack, the operation of the vi-

rus detection software, the ability to evaluate the virus detection program

output, and the ability to recognize a true attack versus a false alarm.

This requires knowledge of the system and its normal operation, training

in the use of the virus detection software, and frequent retraining as the

virus detection software is routinely updated.
CMU/SEI-97-HB-001 389

Virus Detection
References and
Information
Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Se-
curity An Integrated Collection of Essays. Los Alamitos, CA: IEEE Com-
puter Society Press, 1995.

[Denning 90] Denning, Peter J. Computers Under Attack Intruders, Worms and Virus-
es. New York, NY: ACM Press, 1990.

[Garfinkel 96] Garfinkel, Simson & Spafford, Gene. Practical UNIX and Internet Securi-
ty Second Edition. Sebastopol, CA: O’Reilly & Associates, 1996.

[NIST 96] Virus Information product review [online]. National Institute of Standards
and Technology (NIST) Computer Security Resource Clearinghouse.
Available WWW <URL: http://csrc.ncsl.nist.gov/virus/virusrevws/>
(1996).

[Russel 91] Russel, Deborah & Gangemi, G.T., Sr. Computer Security Basics. Se-
bastopol, CA: O’Reilly & Associates, 1991.

[Slade 96] Slade, Robert. Reviewing Anti-virus Products [online]. Available WWW
<URL: http://csrs.ncsl.nist.gov/virus/guidance.sla> (1996).

[Spafford 88] Spafford, Eugene H. The Internet Worm: An Analysis (CSD-TR-823).
West Lafayette, IN: Purdue University, 1988.

Author Tom Mills, Loral
TMILLS@ccs.lmco.com

Last Modified 10 Jan 97

Index
Categories

Name of technology Virus Detection

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5), Denial of Service
(QM.2.1.4.1.3)

Computing reviews category Operating Systems Security and Protection
(D.4.6), Security and Protection (K.6.5)
390 CMU/SEI-97-HB-001

References

[ARC 96] Laforme, Deborah & Stropky, Maria E. An Automated Mechanism for
Effectively Applying Domain Engineering in Reuse Activities [online]. Avail-
able WWW <URL: http://arc_www2.belvoir.army.mil/htmldocs/
arc/da_papers/applying_domain_engineering.htm> (1996).

[Barbacci 95] Barbacci, Mario; Klein, Mark H.; Longstaff, Thomas H. & Weinstock,
Charles B. Quality Attributes (CMU/SEI-95-TR-021). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 1995.

[Boehm 78] Boehm, Barry W.; Brown, John R.; Kaspar, Hans; Lipow, Myron; MacLeod,
Gordon J. & Merritt, Michael J. Characteristics of Software Quality. New
York, NY: North-Holland Publishing Company, 1978.

[Clements 96] Clements, Paul C. & Northrop, Linda M. Software Architecture: An
Executive Overview (CMU/SEI-96-TR-003). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 1996.

[Deutsch 88] Deutsch, Michael S. & Willis, Ronald R. Software Quality Engineering: A
Total Technical and Management Approach. Englewood Cliffs, NJ: Pren-
tice-Hall, 1988.

[DoD 91] Department of Defense. Software Technology Strategy. DRAFT: Decem-
ber, 1991.

[Evans 87] Evans, Michael W. & Marciniak, John. Software Quality Assurance and
Management. New York, NY: John Wiley & Sons, Inc., 1987.

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements Traceability. Lon-
don, England: Imperial College, Department of Computing, 1995.
CMU/SEI-97-HB-001 391

[IEEE 87] IEEE Std 1002-1987. IEEE Standard Taxonomy for Software Engineering
Standards. New York, NY: Institute of Electrical and Electronics Engineers,
1987.

[IEEE 90] Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries, New
York, NY: 1990.

[IEEE 91] IEEE Std 1074-1991. IEEE Standard for Developing Life Cycle Processes.
New York, NY: Institute of Electrical and Electronics Engineers, 1991.

[ITS 96] Letter-by-Letter Listing [online]. Available WWW <URL: http:
//www.its.bldrdoc.gov/fs-1037/dir-001/_0064.htm> (1996).

[McDaniel 94] McDaniel, George, ed. IBM Dictionary of Computing. New York, NY:
McGraw-Hill, Inc., 1994.

[McGill 96] The Software Agents Mailing List FAQ [online]. Available WWW <URL:ht-
tp://www.ee.mcgill.ca/~belmarc/agent_faq.html> (1996).

[Poore 96] Poore, Jesse. Re: Definition for Statistical Testing [email to Gary Haines],
[online]. Available email: ghaines@spacecom.af.mil (October 2, 1996).

[SEI 96] What is Model Based Software Engineering (MBSE)? [online]. Available
WWW <URL: http://www.sei.cmu.edu/technology/mbse/is.html> (1996).

[Toronto 95] comp.human-factors faq WWW page [online]. Available WWW <URL: ht-
tp://www/dgp.toronto.edu/people/ematias/faq/G/G-1.html> (1995).

[Webster 87] Webster's Ninth New Collegiate Dictionary. Springfield, MA: Merriam-Web-
ster Inc., 1987.
392 CMU/SEI-97-HB-001

Glossary

Abstractness the degree to which a system or component performs only the necessary
functions relevant to a particular purpose.

Acceptance
testing

formal testing conducted to determine whether or not a system satisfies
its acceptance criteria and to enable the customer to determine whether
or not to accept the system [IEEE 90].

Accessibility 1. (Denial of Service) the degree to which the software system protects
system functions or service from being denied to the user

2. (Reusability) the degree to which a software system or component fa-
cilitates the selective use of its components [Boehm 78].

Accountability the ability of a system to keep track of who or what accessed and/or
made changes to the system.

Accuracy a quantitative measure of the magnitude of error [IEEE 90].

Acquisition
cycle time

the period of time that starts when a system is conceived and ends when
the product meets its initial operational capability.

Adaptability the ease with which software satisfies differing system constraints and
user needs [Evans 87].

Adaptive
maintenance

software maintenance performed to make a computer program usable in
a changed environment [IEEE 90].

Adaptive
measures

a category of quality measures that address how easily a system can
evolve or migrate.

Agent a piece of software which acts to accomplish tasks on behalf of its user
[McGill 96].

Anonymity the degree to which a software system or component allows for or sup-
ports anonymous transactions.

Application
program
interface

a formalized set of software calls and routines that can be referenced by
an application program in order to access supporting system or network
services [ITS 96].

Architectural
design

the process of defining a collection of hardware and software compo-
nents and their interfaces to establish the framework for the development
of a computer system [IEEE 90].

Artificial
intelligence

a subfield within computer science concerned with developing technolo-
gy to enable computers to solve problems (or assist humans in solving
CMU/SEI-97-HB-001 393

problems) using explicit representations of knowledge and reasoning
methods employing that knowledge [DoD 91].

Auditable the degree to which a software system records information concerning
transactions performed against the system.

Availability the degree to which a system or component is operational and accessi-
ble when required for use [IEEE 90].

Capacity a measure of the amount of work a system can perform [Barbacci 95].

Code the transforming of logic and data from design specifications (design de-
scriptions) into a programming language [IEEE 90].

Commonality the degree to which standards are used to achieve interoperability.

Communication
software

software concerned with the representation, transfer, interpretation, and
processing of data among computer systems or networks. The meaning
assigned to the data must be preserved during these operations.

Compactness the degree to which a system or component makes efficient use of its
data storage space- occupies a small volume.

Compatibility the ability of two or more systems or components to perform their re-
quired functions while sharing the same hardware or software environ-
ment [IEEE 90].

Completeness the degree to which all the parts of a software system or component are
present and each of its parts is fully specified and developed [Boehm 78].

Complexity 1. (Apparent) the degree to which a system or component has a design
or implementation that is difficult to understand and verify [IEEE 90].

2. (Inherent) the degree of complication of a system or system compo-
nent, determined by such factors as the number and intricacy of in-
terfaces, the number and intricacy of conditional branches, the de-
gree of nesting, and the types of data structures [Evans 87].

Component
testing

testing of individual hardware or software components or groups of relat-
ed components [IEEE 90].

Concept phase the initial phase of a software development project, in which the user
needs are described and evaluated through documentation (for example,
statement of needs, advance planning report, project initiation memo,
feasibility studies, system definition, documentation, regulations, proce-
dures, or policies relevant to the project) [IEEE 90].

Conciseness the degree to which a software system or component has no excessive
information present.
394 CMU/SEI-97-HB-001

Confidentiality the nonoccurrence of the unauthorized disclosure of information [Barbac-
ci 95].

Consistency the degree of uniformity, standardization, and freedom from contradiction
among the documents or parts of a system or component [IEEE 90].

Corrective
maintenance

maintenance performed to correct faults in hardware or software [IEEE
90].

Correctness the degree to which a system or component is free from faults in its spec-
ification, design, and implementation [IEEE 90].

Cost estimation the process of estimating the “costs” associated with software develop-
ment projects, to include the effort, time, and labor required.

Cost of
maintenance

the overall cost of maintaining a computer system to include the costs as-
sociated with personnel, training, maintenance control, hardware and
software maintenance, and requirements growth.

Cost of
operation

the overall cost of operating a computer system to include the costs as-
sociated with personnel, training, and system operations.

Cost of
ownership

the overall cost of a computer system to an organization to include the
costs associated with operating and maintaining the system, and the life-
time of operational use of the system

Data
management

the function that provides access to data, performs or monitors the stor-
age of data, and controls input/output operations [McDaniel 94].

Data
management
security

the protection of data from unauthorized (accidental or intentional) mod-
ification, destruction, or disclosure [ITS 96].

Data recording to register all or selected activities of a computer system. Can include
both external and internal activity.

Data reduction any technique used to transform data from raw data into a more useful
form of data. For example, grouping, summing, or averaging related data
[IEEE 90].

Database 1. a collection of logically related data stored together in one or more
computerized files. Note: Each data item is identified by one or more
keys [IEEE 90].

2. an electronic repository of information accessible via a query lan-
guage interface [DoD 91].

Database
administration

the responsibility for the definition, operation, protection, performance,
and recovery of a database [IEEE 90].
CMU/SEI-97-HB-001 395

Database
design

the process of developing a database that will meet a user’s require-
ments. The activity includes three separate but dependent steps: con-
ceptual database design, logical database design, and physical
database design [IEEE 91].

Denial of service the degree to which a software system or component prevents the inter-
ference or disruption of system services to the user.

Dependability that property of a computer system such that reliance can justifiably be
placed on the service it delivers [Barbacci 95].

Design phase the period of time in the software life cycle during which the designs for
architecture, software components, interfaces, and data are created,
documented, and verified to satisfy requirements [IEEE 90].

Detailed design the process of refining and expanding the preliminary design of a system
or component to the extent that the design is sufficiently complete to be
implemented [IEEE 90].

Distributed
computing

a computer system in which several interconnected computers share the
computing tasks assigned to the system [IEEE 90].

Domain analysis the activity that determines the common requirements within a domain
for the purpose of identifying reuse opportunities among the systems in
the domain. It builds a domain architectural model representing the com-
monalities and differences in requirements within the domain (problem
space) [ARC 96].

Domain design the activity that takes the results of domain analysis to identify and gen-
eralize solutions for those common requirements in the form of a Do-
main-Specific Software Architecture (DSSA). It focuses on the problem
space, not just on a particular system’s requirements, to design a solu-
tion (solution space) [ARC 96].

Domain
engineering

the process of analysis, specification and implementation of software as-
sets in a domain which are used in the development of multiple software
products [SEI 96]. The three main activities of domain engineering are:
domain analysis, domain design, and domain implementation [ARC 96].

Domain
implementation

the activity that realizes the reuse opportunities identified during domain
analysis and design in the form of common requirements and design so-
lutions, respectively. It facilitates the integration of those reusable assets
into a particular application [ARC 96].

Effectiveness the degree to which a system’s features and capabilities meet the user’s
needs.
396 CMU/SEI-97-HB-001

Efficiency the degree to which a system or component performs its designated
functions with minimum consumption of resources (CPU, Memory, I/O,
Peripherals, Networks) [IEEE 90].

Error handling the function of a computer system or component that identifies and re-
sponds to user or system errors to maintain normal or at the very least
degraded operations.

Error proneness the degree to which a system may allow the user to intentionally or unin-
tentionally introduce errors into or misuse the system.

Error tolerance the ability of a system or component to continue normal operation despite
the presence of erroneous inputs [IEEE 90].

Evolvability the ease with which a system or component can be modified to take ad-
vantage of new software or hardware technologies.

Expandability see Extendability [IEEE 90].

Extendability the ease with which a system or component can be modified to increase
its storage or functional capacity [IEEE 90].

Fail safe pertaining to a system or component that automatically places itself in a
safe operating mode in the event of a failure [IEEE 90].

Fail soft pertaining to a system or component that continues to provide partial op-
erational capability in the event of certain failures [IEEE 90].

Fault an incorrect step, process, or data definition in a computer program
[IEEE 90].

Fault tolerance the ability of a system or component to continue normal operation despite
the presence of hardware or software faults [IEEE 90].

Fidelity the degree of similarity between a model and the system properties being
modeled [IEEE 90].

Flexibility the ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifical-
ly designed [IEEE 90].

Functional
scope

the range or scope to which a system component is capable of being ap-
plied.

Functional
testing

testing that ignores the internal mechanism of a system or component
and focuses solely on the outputs generated in response to selected in-
puts and execution conditions. Synonym: black-box testing [IEEE 90].
CMU/SEI-97-HB-001 397

Generality the degree to which a system or component performs a broad range of
functions [IEEE 90].

Graphics methods and techniques for converting data to or from graphic display
via computers [McDaniel 94].

Hardware
maintenance

the cost associated with the process of retaining a hardware system or
component in, or restoring it to, a state in which it can perform its required
functions.

Human
Computer
Interaction

a subfield within computer science concerned with the design, evalua-
tion, and implementation of interactive computing systems for human use
and with the study of major phenomena surrounding them [Toronto 95].

Human
engineering

the extent to which a software product fulfills its purpose without wasting
user’s time and energy or degrading their morale [Boehm 78].

Implementation
phase

the period of time in the software life cycle during which a software prod-
uct is created from design documentation and debugged [IEEE 90].

Incompleteness the degree to which all the parts of a software system or component are
not present and each of its parts is not fully specified or developed.

Information
Security

the concepts, techniques, technical measures, and administrative mea-
sures used to protect information assets from deliberate or inadvertent
unauthorized acquisition, damage, disclosure, manipulation, modifica-
tion, loss, or use [McDaniel 94].

Installation and
checkout phase

the period of time in the software life cycle during which a software prod-
uct is integrated into its operational environment and tested in this envi-
ronment to ensure it performs as required [IEEE 90].

Integration
testing

testing in which software components, hardware components, or both
are combined and tested to evaluate the interaction between them [IEEE
90].

Integrity the degree to which a system or component prevents unauthorized ac-
cess to, or modification of, computer programs or data [IEEE 90].

Interfaces
design

the activity concerned with the interfaces of the software system con-
tained in the software requirements and software interface requirements
documentation. Consolidates the interface descriptions into a single in-
terface description of the software system [IEEE 91].

Interface
testing

testing conducted to evaluate whether systems or components pass data
and control correctly to one another [IEEE 90].
398 CMU/SEI-97-HB-001

Interoperability the ability of two or more systems or components to exchange informa-
tion and to use the information that has been exchanged [IEEE 90].

Latency the length of time it takes to respond to an event [Barbacci 95].

Lifetime of
operational
capability

the total period of time in a system’s life that it is operational and meeting
the user’s needs.

Maintainability The ease with which a software system or component can be modified to
correct faults, improve performance, or other attributes, or adapt to a
changed environment [IEEE 90].

Maintenance
control

the cost of planning and scheduling hardware preventive maintenance,
and software maintenance and upgrades, managing the hardware and
software baselines, and providing response for hardware corrective
maintenance.

Maintenance
measures

a category of quality measures that address how easily a system can be
repaired or changed.

Maintenance
personnel

the number of personnel needed to maintain all aspects of a computer
system, including the support personnel and facilities needed to support
that activity.

Manufacturing
phase

the period of time in the software life cycle during which the basic version
of a software product is adapted to a specified set of operational environ-
ments and is distributed to a customer base [IEEE 90].

Model an approximation, representation, or idealization of selected aspects of
the structure, behavior, operation, or other characteristics of a real-world
process, concept, or system. Note: Models may have other models as
components [IEEE 90].

Modifiability the degree to which a system or component facilitates the incorporation
of changes, once the nature of the desired change has been determined
[Boehm 78].

Necessity of
characteristics

the degree to which all of the necessary features and capabilities are
present in the software system

Need
satisfaction
measures

a category of quality measures that address how well a system meets the
user’s needs and requirements.

Network
management

the execution of the set of functions required for controlling, planning, al-
locating, deploying, coordinating, and monitoring the resources of a com-
puter network [ITS 96].
CMU/SEI-97-HB-001 399

Openness the degree to which a system or component complies with standards.

Operability the ease of operating the software [Deutsch 88].

Operational
testing

testing conducted to evaluate a system or component in its operational
environment [IEEE 90].

Operations and
maintenance
phase

the period of time in the software life cycle during which a software prod-
uct is employed in its operational environment, monitored for satisfactory
performance, and modified as necessary to correct problems or to re-
spond to changing requirements [IEEE 90].

Operations
personnel

the number of personnel needed to operate all aspects of a computer
system, including the support personnel and facilities needed to support
that activity.

Operations
system

the cost of environmentals, communication, licenses, expendables, and
documentation maintenance for an operational system.

Organizational
measures

a category of quality measures that address how costly a system is to op-
erate and maintain.

Parallel
computing

a computer system in which interconnected processors perform concur-
rent or simultaneous execution of two or more processes [McDaniel 94].

Perfective
maintenance

software maintenance performed to improve the performance, maintain-
ability, or other attributes of a computer program [IEEE 90].

Performance
measures

a category of quality measures that address how well a system functions.

Performance
testing

testing conducted to evaluate the compliance of a system or component
with specified performance requirements [IEEE 90].

Portability The ease with which a system or component can be transferred from one
hardware or software environment to another [IEEE 90].

Productivity the quality or state of being productive [Webster 87].

Protocol a set of conventions that govern the interaction of processes, devices,
and other components within a system [IEEE 90].

Provably correct the ability to mathematically verify the correctness of a system or compo-
nent.

Qualification
phase

the period of time in the software life cycle during which it is determined
whether a system or component is suitable for operational use.
400 CMU/SEI-97-HB-001

Qualification
testing

testing conducted to determine whether a system or component is suit-
able for operational use [IEEE 90].

Quality measure a software feature or characteristic used to assess the quality of a system
or component.

Readability the degree to which a system’s functions and those of its component
statements can be easily discerned by reading the associated source
code.

Real-time
responsiveness

the ability of a system or component to respond to an inquiry or demand
within a prescribed time frame.

Recovery the restoration of a system, program, database, or other system resource
to a prior state following a failure or externally caused disaster; for exam-
ple, the restoration of a database to a point at which processing can be
resumed following a system failure [IEEE 90].

Reengineering rebuilding a software system or component to suit some new purpose;
for example to work on a different platform, to switch to another lan-
guage, to make it more maintainable.

Regression
testing

selective retesting of a system or component to verify that modifications
have not caused unintended effects and that the system or component
still complies with its specified requirements [IEEE 90].

Reliability the ability of a system or component to perform its required functions un-
der stated conditions for a specified period of time [IEEE 90].

Requirements
engineering

involves all life-cycle activities devoted to identification of user require-
ments, analysis of the requirements to derive additional requirements,
documentation of the requirements as a specification, and validation of
the documented requirements against user needs, as well as processes
that support these activities [DoD 91].

Requirements
growth

the rate at which the requirements change for an operational system. The
rate can be positive or negative.

Requirements
phase

the period of time in the software life cycle during which the requirements
for a software product are defined and documented [IEEE 90].

Requirements
tracing

describing and following the life of a requirement in both forwards and
backwards direction (i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and through periods
of ongoing refinement and iteration in any of these phases) [Gotel 95].
CMU/SEI-97-HB-001 401

Resource
utilization

the percentage of time a resource (CPU, Memory, I/O, Peripheral, Net-
work) is busy [Barbacci 95].

Responsive-
ness

the degree to which a software system or component has incorporated
the user’s requirements.

Restart to cause a computer program to resume execution after a failure, using
status and results recorded at a checkpoint [IEEE 90].

Retirement
phase

the period of time in the software life cycle during which support for a soft-
ware product is terminated [IEEE 90].

Reusability the degree to which a software module or other work product can be used
in more than one computing program or software system [IEEE 90].

Reverse
engineering

the process of analyzing a system’s code, documentation, and behavior
to identify its current components and their dependencies to extract and
create system abstractions and design information. The subject system
is not altered; however, additional knowledge about the system is pro-
duced.

Robustness the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environment conditions [IEEE 90].

Safety a measure of the absence of unsafe software conditions. The absence of
catastrophic consequences to the environment [Barbacci 95].

Scalability the ease with which a system or component can be modified to fit the
problem area.

Security the ability of a system to manage, protect, and distribute sensitive infor-
mation.

Select or
develop
algorithms

the activity concerned with selecting or developing a procedural repre-
sentation of the functions in the software requirements documentation
for each software component and data structure. The algorithms shall
completely satisfy the applicable functional and/or mathematical speci-
fications [IEEE 91].

Self-
descriptiveness

the degree to which a system or component contains enough information
to explain its objectives and properties. [IEEE 90].

Simplicity the degree to which a system or component has a design and implemen-
tation that is straightforward and easy to understand [IEEE 90].
402 CMU/SEI-97-HB-001

Software
architecture

the structure of the components of a program/system, their interrelation-
ships, and principles and guidelines governing their design and evolution
over time [Clements 96].

Software
change cycle
time

the period of time that starts when a new system requirement is identified
and ends when the requirement has been incorporated into the system
and delivered for operational use

Software
life cycle

the period of time that begins when a software product is conceived and
ends when the software is no longer available for use. The life cycle typ-
ically includes a concept phase, requirements phase, design phase, im-
plementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and sometimes, retirement phase.
These phases may overlap or be performed iteratively, depending on the
software development approach used [IEEE 90].

Software
maintenance

the cost associated with modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment.

Software
migration and
evolution

see Adaptive maintenance.

Software
upgrade and
technology
insertion

see Perfective maintenance.

Speed the rate at which a software system or component performs its functions.

Statistical
testing

employing statistical science to evaluate a system or component. Used
to demonstrate a system’s fitness for use, to predict the reliability of a
system in an operational environment, to efficiently allocate testing re-
sources, to predict the amount of testing required after a system change,
to qualify components for reuse, and to identify when enough testing has
been accomplished [Poore 96].

Structural
testing

testing that takes into account the internal mechanism of a system or
component. Types include branch testing, path testing, statement test-
ing. Synonym: white-box testing [IEEE 90].

Structuredness the degree to which a system or component possesses a definite pat-
tern of organization of its interdependent parts [Boehm 78].

Sufficiency of
characteristics

the degree to which the features and capabilities of a software system
adequately meet the user’s needs.
CMU/SEI-97-HB-001 403

Survivability the degree to which essential functions are still available even though
some part of the system is down [Deutsch 88].

System
allocation

mapping the required functions to software and hardware. This activity is
the bridge between concept exploration and the definition of software re-
quirements [IEEE 91].

System
analysis and
optimization

a systematic investigation of a real or planned system to determine the
information requirements and processes of the system and how these
relate to each other and to any other system, and to make improve-
ments to the system where possible.

System security a system function that restricts the use of objects to certain users
[McDaniel 94].

System testing testing conducted on a complete, integrated system to evaluate the sys-
tem’s compliance with its specified requirements [IEEE 90].

Taxonomy a scheme that partitions a body of knowledge and defines the relation-
ships among the pieces. It is used for classifying and understanding the
body of knowledge [IEEE 90].

Test an activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or component [IEEE 90].

Test drivers software modules used to invoke a module(s) under test and, often, pro-
vide test inputs, control and monitor execution, and report test results
[IEEE 90].

Test phase the period of time in the software life cycle during which the components
of a software product are evaluated and integrated, and the software
product is evaluated to determine whether or not requirements have
been satisfied [IEEE 90].

Test tools computer programs used in the testing of a system, a component of the
system, or its documentation. Examples include monitor, test case gen-
erator, timing analyzer [IEEE 90].

Testability the degree to which a system or component facilitates the establishment
of test criteria and the performance of tests to determine whether those
criteria have been met [IEEE 90]. Note: Not only is testability a measure-
ment for software, it can also apply to the testing scheme.

Testing the process of operating a system or component under specified condi-
tions, observing or recording the results, and making an evaluation of
some aspect of the system or component [IEEE 90].
404 CMU/SEI-97-HB-001

Throughput the amount of work that can be performed by a computer system or com-
ponent in a given period of time [IEEE 90].

Traceability the degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one anoth-
er [IEEE 90].

Training Provisions to learn how to develop, maintain, or use the software system.

Trouble report
analysis

the methodical investigation of a reported operational system deficiency
to determine what, if any, corrective action needs to be taken.

Trustworthiness the degree to which a system or component avoids compromising, cor-
rupting, or delaying sensitive information.

Understandabil-
ity

the degree to which the purpose of the system or component is clear to
the evaluator [Boehm 78].

Unit testing testing of individual hardware or software units or groups of related units
[IEEE 90].

Upgradeability see Evolvability.

Usability the ease with which a user can learn to operate, prepare inputs for, and
interpret outputs of a system or component [IEEE 90].

User interface an interface that enables information to be passed between a human
user and hardware or software components of a computer system [IEEE
90].

Verifiability the relative effort to verify the specified software operation and perfor-
mance [Evans 87].

Vulnerability the degree to which a software system or component is open to unautho-
rized access, change, or disclosure of information and is susceptible to
interference or disruption of system services.
CMU/SEI-97-HB-001 405

406 CMU/SEI-97-HB-001

Appendix A Submitting Information for
Subsequent Editions

The goal of the project team is that this document be current, and continually reflect the latest
information. However, with all the technologies that exist, and all the circumstances in which
they can be applied, this is a daunting task, requiring significant resources. The situation is
further exacerbated because many of the technology areas we have written about are state-
of-the-practice technologies which are in very high demand and with great visibility to the tech-
nical community— many are also changing at breakneck speed. Potentially, some technology
descriptions may be outdated in a few months.

The readers/users of this document can play a significant role in keeping the document current
(and expanding it) by

1. Submitting complete descriptions/writeups of technologies not currently in the
document (see pages 45-50 for guidelines for submissions). Note: we are not
looking for submissions that could be construed as advocacy pieces; please
provide supporting documentation.

2. Providing additional information about technologies already included in the
document. For example, we are interested in expanding the experience base
and knowing about results, both good and bad, of using the various technol-
ogies, particularly if there are citable references available. Another example
of additional information would be new releases of actual and defacto indus-
try standards.

3. Providing critiques pointing out where information in a technology description
may be incorrect.

Please send all email submissions to: str@SEI.CMU.EDU

Please send surface mail submissions to:

Software Technology Review
c/o Robert Rosenstein
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
CMU/SEI-97-HB-001 407

408 CMU/SEI-97-HB-001

Appendix B User Feedback
The project team is also interested in knowing how the document helped you accomplish your
job (similarly, if the document was not helpful, tell us why, along with suggestions for improve-
ment). If you feel that the document helped you, we would appreciate the following informa-
tion:

• In what context were you using the document (please include names of
projects/programs/efforts and type of application domain; these names will
be kept confidential)?

• What section helped you (please be specific)?

• Precisely how did the document help you?

• What is your job title (maintainer, user, developer, acquirer, etc.)?

Please send all email submissions to: str@SEI.CMU.EDU

Please send surface mail submissions to:

Software Technology Review
c/o Robert Rosenstein
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
CMU/SEI-97-HB-001 409

410 CMU/SEI-97-HB-001

Appendix C Scenarios of Use

Scenario Development
We developed a set of exemplar questions that we feel our target audiences ask or get asked
when in the process of selecting software technologies or planning technology insertions. To
each question, we applied a template which helped us analyze and develop a scenario. These
scenarios give you, the reader, a demonstration of the document’s utility. The template con-
sists of the following questions:

1. Who (i.e, which audience category) would ask this question?

2. Why would they ask this question?

3. How do you use this document to answer or address the question?

4. What further analysis may be required?

The following section contains the scenarios that we developed. The types of scenarios can
be defined as:

1. Software technology specific with an acquisition flavor.

2. Quality measures or Application taxonomy category specific.

3. Long-term, system evolution specific with incorporation of a new software
concept.
CMU/SEI-97-HB-001 411

Scenarios
1. The Air Force acquisition community distributed a Request for Proposal (RFP) for a
new mobile command center that could perform integrated theater and strategic mis-
sile defense. For the software development portion of the proposal, a defense contrac-
tor plans to use the Cleanroom Software Engineering process. What is Cleanroom?

Who would ask: Systems Program Manager

Why would they ask: They have not heard of this development process, so they need to get
more information about it in order to properly evaluate the proposal.

How to use this document: The document contains a technology description on Cleanroom
Software Engineering. The reader can find it by using the Keyword Index. This would be the
first place to start.

Further analysis needed: After reading the description, more questions may arise. Certainly
“high-quality software with certified reliability” is extremely desirable for the new system, but
“What other organizations have used this development process and what kind of problems did
they run into, and what do they consider the strengths of the process to be?” The technology
description lists several project experiences using Cleanroom. The reader can use the refer-
ences associated with the examples to help find answers to the questions above. In addition,
looking at any of the noted references, especially the “checked” references, may provide leads
to more Cleanroom experiences as well as providing more detailed information about Clean-
room.

Another question may be, “How do we get training on Cleanroom, how will training get accom-
plished for the maintenance organization, and more importantly, how large of an impact or
change is this to the maintenance organization and how they currently do business?” The two
sections in the Cleanroom description that will help here are “Usage Considerations” and
“Costs and Limitations.” Unfortunately, the document can not fully address these questions.
They are valid questions, asked due to information that the technology description provided,
but they are context specific and items that the acquisition organization will have to take into
account when evaluating the proposal.

“Are there any alternatives to Cleanroom and are there any other technologies required to sup-
port Cleanroom?” may also be asked. This question is addressed under the Dependent, Alter-
native, and Complementary Technologies sections of the description. No alternative or
dependent technologies are mentioned in the description. Using object-oriented (OO) meth-
ods with Cleanroom is noted as providing additional benefits. The evaluator of the proposal
notices that the contractor did not mention anything about object-oriented methods. The eval-
uator may want to ask the contractor to address how object-oriented methods will be integrat-
ed with the process, or if the contractor decided not to pursue OO, why?

If the acquisition community and the contractor worked from the same knowledge baseline
(i.e., they both used and referenced the C4 Software Technology Reference Guide), then
412 CMU/SEI-97-HB-001

many of the questions above could have been addressed in the proposal. The contractor
would have known exactly what the evaluator would use as a technical resource and could
address the issues and explain how the contractor planned on addressing those issues. Time
in the evaluation process might have been saved.

Even though the document may not give the evaluator the context specific information that is
needed, it certainly provides a good basic understanding of Cleanroom and multiple other in-
formation resources to pursue.

2. The CMAS (Cheyenne Mountain Air Station) Message Processor (CMP) is coming on-
line in 1998. What can we do to ensure that this system is maintainable for several
years?

Who would ask: Developer, Systems Program Manager, Maintainer

Why would they ask: Maintenance is a high-cost problem with the current operational sys-
tems. Maintenance for a new system is usually the last thing to be thought of and little ad-
vanced planning is accomplished.

How to use this document: Some first questions that arise regarding this issue might be,
"What are some of the issues regarding software maintenance, and what technologies are out
there that we can incorporate to improve software maintainability?" The first place to begin in
the document would be to use the Keyword Index. The reader could look up words such as
"maintenance" and "maintainability". As with any software technology subject, review these
entries for a technology description that may be an overiew of the topic. In this case, there ex-
ists an overview description called "Maintenance of Operational Systems-- An Overview".
This description provides a framework for the maintenance and reengineering technologies in
the document and provides cross-reference pointers to maintenance related technology de-
scriptions. It is recommended to also check for a "Note" section at the beginning of any tech-
nology description that the reader may read. In this case, this description points to some
recommended concurrent readings. For the most part, this section usually points to prerequi-
site readings. Both of the questions above can be addressed by looking at this one descrip-
tion.

Going back to the Keyword Index, the reader could find out on which pages the keywords
"maintenance" and "maintainability" appear. Referencing these pages may lead the reader to
applicable technology descriptions. In addition, the reader will notice that the "maintainability"
is a category in the Quality Measures taxonomy (QM.3.1), and that "maintenance, corrective",
"maintenance, adaptive" and "maintenance, perfective" are categories in the Application tax-
onomy, AP.1.9.3.1, AP.1.9.3.2, and AP.1.9.3.3 respectively.

If the reader turns to either the graphical or the textual-based representation of the Quality
Measures taxonomy and looks up "Maintainability" (QM.3.1), "Understandability" (QM.3.2) will
be found as a related category, with both being subcategories to "Maintenance Measures". By
looking under QM.3.1 and QM.3.2 in the taxonomy-based directory, the reader will find numer-
CMU/SEI-97-HB-001 413

ous technologies that influence these measures. The same can be done by looking up cor-
rective, adaptive, and perfective maintenance in the Application taxonomy. The reader will
notice that these categories exist under the "Operations and Maintenance Phase" under which
its five major subcategories (AP.1.9.1 - AP.1.9.5) are all legitimate to look at for relevant tech-
nologies. This should get the reader well on the way to addressing both questions.

Further analysis needed: After reading the various technology descriptions, other questions
may arise, “Can these technologies be applied to CMP, and what are the costs/benefits/limi-
tations that we can expect from incorporating these technologies?” The two sections in tech-
nology descriptions that will help here are “Usage Considerations” and “Costs and
Limitations.” Also, referencing any of the noted experiences or references at the end of a de-
scription will provide further detailed information. Unfortunately, the document can not fully ad-
dress these questions. They are context specific and items that an organization will have to
take into account when addressing the maintenance issue.

Note: The third scenario is still under development. The material here will provide intent as to
our direction.

3. How do we migrate Granite Sentry (GS) Final Operational Capability (FOC) to an open
systems environment?

Who would ask: Systems Program Manager, Maintainer, User

Why would they ask: A new mandate exists that requires systems to be open. GS FOC can
be put on that migration path since it has not yet been delivered.

How to use this document: Some first questions in attacking this issue might be, “What does
open systems mean, what are the risks involved, and how do we get there?” The document
has a technology description on COTS and Open Systems which specifically addresses the
first 2 questions stated above. The reader can find it by using the Keyword Index. The third
question is context specific to the GS system and the Cheyenne Mountain community. As
such, the document can not prescribe a specific path. But where possible, the reader will find
references in the description to experiences in migrating to open systems.

Further analysis needed: Some questions that may arise after reading the initial description
might be, “What standards exist, what do these standards apply to, what standard(s) do we
follow?” The open systems technology description has pointers to standards that are con-
tained in the document and references to where other standards may be found. This address-
es the first question. Then, the reader can follow those pointers and read the technology
descriptions on various standards. The technology descriptions will help address the second
question. The third question is again context specific to the Cheyenne Mountain community,
and most likely the Air Force community.

Another question that may arise is, “What technologies are out there that we can take advan-
tage of in making GS open?” The open systems technology description or even the technology
descriptions on standards may have pointers and/or references to other software technolo-
414 CMU/SEI-97-HB-001

gies. The reader can follow the pointers and look up the references. A better way may be to
use the Quality Measures taxonomy. In the taxonomy, the measures that are usually associ-
ated with open systems (interoperability, openness, portability, compatibility) can be found un-
der QM.4, Adaptive Measures. By looking under these measures, such as Interoperability
(QM.4.1) or Portability (QM.4.2), in the taxonomy-based directory, the reader can find technol-
ogies that influence those measures. These technologies may be candidates for the Chey-
enne Mountain community to take advantage of.

More may be found to address this issue by following 2 other information paths. First, at the
end of each technology description are references to documents or Web pages which will pro-
vide the reader with more detailed information. Checkmarks appear by the key references that
the reader may want to start with. Second, the reader can examine the Index Categories sec-
tion towards the end of each description. This section identifies where the particular technol-
ogy has been indexed into the two taxonomies and where literature concerning the technology
has been categorized by the ACM’s Computing Classification System.

Even though the document does not prescribe what to do in order to make a system maintain-
able, it does provide background on what some of the maintenance issues are and provides
some possible software technology solutions. Enough information should be here that evalu-
ations and tradeoffs on how to proceed with CMP can be accomplished.
CMU/SEI-97-HB-001 415

416 CMU/SEI-97-HB-001

Keyword Index

A
abstraction 275

abstractness (QM.4.4.1.x) 393

acceptance testing (AP.1.8.2.2) 393

accessibility (QM.2.1.4.1.3.x), (QM.4.4.1.x)
 393

accountability (QM.2.1.4.2) 393

accuracy (QM.2.1.2.1) 151, 393

acquisition cycle time 393

Ada 83 61, 67

Ada 95 63, 67, 110, 112, 315

adaptability (QM.3.1.x) 393

adaptive maintenance (AP.1.9.3.2) 393

adaptive measures (QM.4) 393

ADL. see architecture description languages

adoption plan 52

agents (AP.2.8) 393

algorithm formalization 73

American National Standards Institute 61

anonymity (QM.2.1.4.1.2.x) 393

ANSI. see American National Standards Institute

aperiodic task/process 315

API. see application programming interfaces

applets 221

application engineering 173

application program interfaces (AP.2.7) 79, 139,
222, 248, 251, 393

private 157
public 157

application server 368

applications

event-driven 248

architectural design (AP.1.3.1) 393

architecture 83, 96

description languages 83, 255
modeling 186
reference models and implementations, an

overview 319

argument-based design rationale capture methods
for requirements tracing 91

artificial intelligence 393

asynchronous

processing 169

auditable (QM.2.1.4.2.1) 394

automatic programming 73

availability (QM.2.1.1) 217, 351, 357, 394

B
backfiring 197

Bang measure 196

binary large objects 280

black-box testing (AP.1.4.3.4.x)

BLOBs. see binary large objects

Bowles metrics 148

box structure method 95

browsers 130, 221

Microsoft Explorer 223
Netscape Navigator 223

C
C 61, 110, 112, 168, 222

C++ 61, 110, 112, 164, 222

C4I systems 129

Capability Maturity Model 98, 303, 353

capacity (QM.2.2.1) 394

CASE tools 224

cell

in distributed computing 169

Cleanroom software engineering 95, 276, 285

client 381

client/server (AP.2.1.2.1) 167, 169, 221, 227, 247,
291, 323

communication (AP.2.2.1) 26
software architectures 101

CMM. see Capability Maturity Model

Coad-Yourdon 276

COCOMO. see constructive cost model

code (AP.1.4.2) 394

analyzers (AP.1.4.3.4.x) 22
complexity 209
entropy 241
generator 205

COE. see Common Operating Environment

commercial-off-the-shelf 79, 119, 135

integration 79

commercial-type product 136

commit phase 152
CMU/SEI-97-HB-001 417

Common Object Request Broker Architecture 104,
107, 163, 170, 251, 292

compliance 293
implementations 293

Common Operating Environment 155, 364

architecture 155
compliance levels 159–160

bootstrap compliance level four 159
full COE compliance level eight 160
intermediate COE compliance level six 159
interoperability compliance level seven 159
minimal COE compliance level five 159
network compliance level two 159
standards compliance level one 159

component segments 156
Information Server 160
Software Repository System 160

commonality (QM.4.1.2.x) 174, 394

communication software (AP.2.2) 394

compactness (QM.2.2.x) 394

compartmented mode workstations 130, 378

compatibility (QM.4.1.1) 201, 394

compiler (AP.1.4.2.3) 61, 67, 221

completeness (QM.1.3.1) 327, 394

complexity (QM.3.2.1) 209, 247, 323, 337, 394

analysis 242
apparent (QM.3.2.1.x)
inherent (QM.3.2.1.x)

compliance (standalone) 111, 159–160

component

adaptation 119, 121
assembly 119, 122
selection and evaluation 119, 120
testing (AP.1.4.3.5) 394

component-based software development/COTS
integration 119

component-based software engineering 123

computational complexity 209

computer system security— an overview 129

concept phase (AP.1.1) 394

conciseness (QM.3.2.4.x) 394

concurrent engineering 96

confidentiality (QM.2.1.4.1.2) 217, 395

conformance 140

connected graph 146

connectivity software 251
418
consistency (QM.1.3.2) 73, 327, 395

constructive cost model 197

context analysis 185

CORBA. see Common Object Request Broker
Architecture

corrective maintenance (AP.1.9.3.1) 395

correctness (QM.1.3) 96, 395

cost estimation (AP.1.3.7) 195

cost of maintenance (QM.5.1.2) 395

cost of operation (QM.5.1.1) 395

cost of ownership (QM.5.1) 395

COTS and open systems 135

COTS. see commercial-off-the-shelf

cycle time 95

cyclomatic complexity 145

D
data

analyzers (AP.1.4.3.4.x)
complexity 149
exchange 291
integrity 151, 310
management (AP.2.6.1) 395
management security (AP.2.4.2) 395
mining 227
recording (AP.2.9) 395
reduction (AP.2.9) 395
sharing 79
visualization 201
warehouses 227

database (AP.2.6) 201, 395

administration (AP.1.9.1) 395
design (AP.1.3.2) 396
management 367, 381
management system 261
server 375
two phase commit 151
utilities (AP.1.4.2.2)

DBMS. See database management system

debugger (AP.1.4.2.4)

decision support systems 382

defect

detection 351
leakage 351
management 303
prevention 95
CMU/SEI-97-HB-001

Defense Information Infrastructure Common
Operating Environment. see Common
Operating Environment

Defense Information Systems Agency 143, 361

denial of service (QM.2.1.4.1.3) 396

Department of Defense systems

evolution of 361

dependability (QM.2.1) 313, 396

design 96

architectural(AP.1.3.1)
complexity 149
database (AP.1.3.2)
decision

history 181
decisions 181
detailed (AP.1.3.5)
interface(AP.1.3.3)
phase (AP.1.3) 396
rationale 91, 181, 329

capture 91
history 91

detailed design (AP.1.3.5) 396

development phase 96, 238

digital signatures 131, 309

DII COE. see Defense Information Infrastructure
Common Operating Environment

directory services 168

DISA. see Defense Information Systems Agency

diskless support 168

distributed

business models 163
client/server architecture 367
computing(AP.2.1.2) 396
database system 151
environment 361
system 167, 291, 323

services 251

distributed/collaborative enterprise architectures
104, 163

Distributed Computing Environment 115, 167, 251

domain 173

analysis 98, 173, 174, 185, 297, 396
design 396
engineering (AP.1.2.4) 173, 297, 396
implementation 396
modeling 185, 297

domain engineering and domain analysis— an
overview 173

dynamic binding 287

E
early operational phase 238

effectiveness (QM.1.1) 396

efficiency (QM.2.2) 73, 373, 397

electronic encryption key distribution cryptography
131

end-to-end encryption 131

engineering function points 195, 212

entropy 241

error

handling (AP.2.11) 397
proneness (QM.2.3.1) 397
tolerance (QM.2.1.1.x) 397

essential complexity 148

estimating 303

event-driven applications 248

evolution/replacement phase 238

evolvability (QM.3.1.x) 397

expandability (QM.3.1.x) 397

extendability (QM.3.1.x) 337, 397

F
fail safe (QM.2.1.1.x) 397

fail soft (QM.2.1.1.x) 397

FARs. see Federal Acquisition Regulations

FASA. see Federal Acquisition Streamlining Acts

fault 397

fault tolerance (QM.2.1.1.x) 397

feature analysis 185

feature points 196

feature-based design rationale capture method for
requirements tracing 181

feature-oriented domain analysis 185

Federal Acquisition Regulations 136

Federal Acquisition Streamlining Acts 141

fidelity (QM.2.4) 397

file systems 168

support for 325

file transfer 79

firewalls 130, 191

proxies, and 191
CMU/SEI-97-HB-001 419

fixed priority 313

flexibility (QM.3.1.x) 61, 67, 101, 119, 163, 167,
221, 227, 247, 323, 337, 361, 367, 374, 381,
397

FODA. see feature-oriented domain analysis

FORTEZZA 132

function call 323

function point analysis 195

function points

early and easy 195

functional scope (QM.4.4.1) 397

functional size measurement 195

functional testing (AP.1.4.3.4.x) 397

functionality analysis 243

fundamental distributed services 168

Futurebus+ 315

G
garbage collection 222

GCCS. see Global Command and Control System

GCSS. see Global Combat Support System

generality (QM.4.4.1.x) 398

Global Combat Support System 157, 364

Global Command and Control System 157, 364

graphic tools for legacy database migration 201

graphical user interface 205

builders 205, 221

graphics (AP.2.3.2) 398

GUI builders. See graphical user interface builders

H
Halstead complexity measures 148, 196, 209

hardware maintenance 398

hardware-software co-design (AP.1.3.1.x)

Henry metrics 148

heterogeneous databases 368

homogeneous environments 382

human computer interaction (AP.2.3) 398

human engineering 398

hybrid automata 215

I
IDTs. see interface development tools

IFPUG. see International Function Point User
Group
420
implementation phase (AP.1.4) 398

implementations

overview of 319

incompleteness (QM.1.3.1) 398

incremental development 95

independence 168

information

analysis 186
hiding 287
security (AP.2.4) 398
warfare 217, 331, 357

inheritance 287

installation and checkout phase (AP.1.8) 398

integration testing (AP.1.5.3.2) 398

integrity (QM.2.1.4.1.1) 168, 217, 398

interface

definition language 110
design (AP.1.3.3) 398
design language 170
development tools 205
specification 138
standards 135, 138
testing (AP.1.5.3.3) 398

International Function Point User Group 195

International Standards Organization 61, 196

standards 168

Internet 191, 221, 293

standards 168

interoperability (QM.4.1) 61, 67, 79, 101, 155, 167,
221, 247, 251, 323, 337, 361, 399

Intranet 129, 191, 293

intrusion detection 130, 217
model-based 331
rule-based 331
statistical-based 357

ISO. see International Standards Organization

J
Jacobson 276

Java 69, 113, 164, 221, 293

Joint Technical Architecture 160

JTA. see Joint Technical Architecture

K
Kafura metrics 148

kernel COE 157
CMU/SEI-97-HB-001

L
latency (QM.2.2.2) 399

legacy systems 141, 170, 175

lifetime of operational capability 399

Ligier metrics 148

lines of code 197

metrics 212

LOC. see lines of code

M
MAC. see message authentication code

Macintosh 223

mainframe server software architectures 227

maintainability (QM.3.1) 61, 67, 145, 173, 185,
202, 231, 255, 275, 279, 283, 287, 297, 351,
367, 399

maintainability index technique for measuring
program maintainability 231

maintenance

adaptive (AP.1.9.3.2) 393
control 399
corrective (AP.1.9.3.1) 395
costs 237
documentation 240
measures 399
metric 209
perfective (AP.1.9.3.3) 400
personnel 399

maintenance of operational systems— an overview
237

management information base 339

manufacturing phase (AP.1.7) 399

mature operational phase 238

mature systems 237

McCabe’s complexity 145

message authentication code 309

message delivery 79

message digest function 310

message-oriented middleware 247, 252, 325

metrics 145

Halstead 148, 196, 209
Henry 148
Kafura 148
McCabe 145
Troy 148
Zweben 148

MIB. see management information base

middle tier server 367

middleware 79, 247, 251, 291, 325, 373

migration

to Java 223

minimal operator intervention 381, 382

MISSI. see Multilevel Information Systems Security
Initiative

MLS Host 130

MLS Operating System 130

MLS. See multi-level security

models (AP.2.1.1) 399

modifiability (QM.3.1.x) 79, 96, 399

Module Interconnection Languages 255

module-level development 304

MOM. see message-oriented middleware

Morris Worm 387

Motif 205

motivation 52

Multilevel Information Systems Security Initiative
132

multi-level secure

database management schemes 130, 261
guard 130
one way guard with random acknowledgement

267
systems 129

multi-level security 261, 377

multiplexing client transaction requests 373

N
NDI. see non-developmental items

necessity of characteristics (QM.1.1.1) 399

need satisfaction measures 399

network 79, 167

architecture 251
hardware 168
management (AP.2.2.2) 337
manager 249
overhead 168
performance of 325
protocols 340

interface to 325
security 191

non-developmental items 137

nonrepudiation in network communications 269
CMU/SEI-97-HB-001 421

O
object activation 291

Object Linking and Embedding/Component Object
Model 104, 164, 170, 251, 271, 293

Object Management Architecture 107

Object Management Group 107, 165

object model 275, 279

object orientation 292

object-oriented 98, 170, 222, 324

analysis 275
database 279
design 283
programming 61, 67
programming language 287
systems 248

object request broker 104, 107, 163, 252, 291

objects 275, 291

ODM. see organization domain modeling

OLE/COM. see Object Linking and
Embedding/Component Object Model

one way guards 130

OOA. see object-oriented analysis

OOD. see object-oriented design

OODB. see object-oriented database

OOPLs. see object-oriented programming
languages

open systems 79, 135, 229

cost 138
cots, and 135
interconnect standards 168

openness (QM.4.1.2) 400

operability (QM.2.3.2) 400

operational analysis 186

operational testing (AP.1.8.2.1) 400

operations

personnel 400
system 400

operations and maintenance phase (AP.1.9) 400

opportunistic reuse 174

ORB. see object request broker

organization domain modeling 297

organizational measures 400

overview of reference models, architectures,
implementations 319
422
P
parallel computing (AP.2.1.3) 400

payload 387

peer reviews 353

perfective maintenance (AP.1.9.3.3) 400

performance 202, 313, 367

measures 400
testing (AP.1.5.3.5) 400

periodic task/process 314

persistent

data 279
objects 279

Personal Software Process 303

for module-level development 303

piecewise reengineering 243

pilot project 97

pilot testing 55

plug-and-play 135

polymorphism 287

portability (QM.4.2) 61, 67, 155, 167, 201, 221,
400

POSIX 315

pre-delivery phase 238

prepare phase 152

priority inheritance 314

priority inversion 314

process management services 367

processing management 381

product line 121

productivity (QM.5.2) 195, 275, 400

rates 195

profiles 357

programming language (AP.1.4.2.1) 221

proprietary interfaces 142

protocols (AP.2.2.3) 139, 338, 400

support of 248

provably correct (QM.1.3.4) 400

proxies 130, 191

PSP. see Personal Software Process

public key cryptography 131, 311

public key digital signatures 309

Q
qualification phase (AP.1.6) 400
CMU/SEI-97-HB-001

qualification testing (AP.1.6.1) 401

quality 95

quality measures 119, 303, 401

queuing theory 316

R
rate monotonic analysis 313

rate monotonic scheduling 313

rationale capture 91, 181

RBID. see rule-based intrusion detection

RDA. see remote data access

readability (QM.3.2.4) 401

real-time 313

applications 223
responsiveness (QM.2.2.2) 401
systems 143, 313

recovery (AP.2.10) 401

reengineering (AP.1.9.5) 147, 201, 205, 239, 401

reference models

overview of 319

regression testing (AP.1.5.3.4) 401

reliability (QM.2.1.2) 61, 67, 95, 163, 351, 373,
401

remote data access 375

remote method invocation 293

remote procedure call 79, 168, 248, 252, 323, 374

requirements

cross referencing 327
engineering (AP.1.2.2) 401
growth (QM.5.1.2.6) 401
phase (AP.1.2) 401
tracing (AP.1.2.3) 239, 327, 401

requirements-to-code (AP.1.2.3.1)

requirements-to-documentation (AP.1.2.3.2)

resource utilization (QM.2.2) 402

responsiveness (QM.1.2) 402

restart (AP.2.10) 402

restructuring 239

retirement phase (AP.1.10) 402

retrievability (QM.4.4.2)

reusability (QM.4.4) 61, 68, 83, 155, 173, 181,
185, 227, 275, 283, 297, 367, 374, 402

reuse 119, 255

reverse engineering (AP.1.9.4) 239, 402

design recovery 243

REVIC. see revised intermediate COCOMO

revised intermediate COCOMO 197

risk analysis 147

RMA. see rate monotonic analysis

RMI. see remote method invocation

robustness (QM.2.1.1) 402

RPC. see remote procedure call

rule-based intrusion detection 331

Rumbaugh 276

runtime environment 156

S
safety (QM.2.1.3) 402

scalability (QM.4.3) 163, 168, 227, 340, 367, 381,
402

schedulability analysis 314

scheduling 313

security (QM.2.1.5) 168, 191, 218, 221, 261, 309,
340, 377, 402

security services 168

segments 156

select or develop algorithms 402

self-descriptiveness (QM.3.2.4.x) 402

server 381

session based technology 375

sharing services 168

Shlaer-Mellor 276

simple network management protocol 337
non-SNMP devices 338
secure SNMP 340

Simplex architecture 345

simplicity (QM.3.2.2) 337, 402

skill development 54

Smalltalk 110, 112, 164

software

architecture (AP.2.1) 403
change cycle time 403
complexity 239
engineering 303
engineering tools 205
entropy 241
generation 73
inspections 351
life cycle 95, 403
maintainability 239
CMU/SEI-97-HB-001 423

maintenance (QM.5.1.2.5) 403
metrics 145
migration and evolution (AP.1.9.3.2) 403
process improvement 303
productivity 195
synthesis 73
upgrade and technology insertion (AP.1.9.3.3)

403

Software Technology for Adaptable Reliable
Systems 97, 297, 299–300

speed (QM.2.2.x) 403

SQL. see standard query language

standard query language 79

STARS. see Software Technology for Adaptable
Reliable Systems

static metrics 145

statistical quality control 95

statistical testing (AP.1.5.3.5.x) 95, 403

statistical-based intrusion detection 357

structural complexity 145

structural testing (AP.1.4.3.4.x)

structuredness (QM.3.2.3) 403

sufficiency of characteristics (QM.1.1.2) 403

support requirements 195

survivability (QM.2.1.4.1.4) 404

synchronous mechanism 248, 323

synchronous processing 169

system

administrators 168
allocation (AP.1.2.1) 404
analysis and optimization (AP.1.3.6) 404
availability 96
change costs 195
evolution 119, 122
integration 119
lifecycle 238
migration 201
security (AP.2.4.3) 404
testing (AP.1.5.3.1) 404

system engineering 173

systematic reuse 174, 297

T
TAFIM 155

Application Program Interface 362
External Environment Interface 362
424
reference model 361

tasks 313

taxonomy 404

TCP/IP networks 339

technology adoption 51

technology transfer 51

test (AP.1.4.3) 404

drivers (AP.1.4.3.2), (AP.1.5.1) 404
generation 244
optimization 244
phase (AP.1.5) 404
planning 147
tools (AP.1.4.3.3), (AP.1.5.2) 404

testability (QM.1.4.1) 404

testing (AP.1.5.3) 404

acceptance (AP.1.8.2.2) 393
black-box (AP.1.4.3.4.x)
component (AP.1.4.3.5) 394
functional (AP.1.4.3.4.x) 397
integration (AP.1.5.3.2) 398
interface (AP.1.5.3.3) 398
operational (AP.1.8.2.1) 400
performance(AP.1.5.3.5) 400
qualification (AP.1.6.1) 401
regression (AP.1.5.3.4) 401
statistical (AP.1.5.3.5.x) 95, 403
structural (AP.1.4.3.4.x)
system (AP.1.5.3.1) 404
unit (AP.1.4.3.4) 405
white-box (AP.1.4.3.4.x)

threads 169, 314

services 168

three tier

architecture 227, 367
client/server 247
software architectures 367
with application server 104
with message server 104
with ORB architecture 104

throughput (QM.2.2.3) 218, 405

time services 168

TP Heavy 103

TP Lite 103

TP monitor. see transaction processing monitor
technology

traceability (QM.1.3.3) 327, 405
CMU/SEI-97-HB-001

training (QM.5.1.1.2), (QM.5.1.2.2) 405

transaction applications 373

transaction processing monitor technology 103,
252, 373

translation 234, 239

restructuring/ modularizing 244

transport software 168

trouble report analysis (AP.1.9.2) 405

Troy metrics 148

trusted operating systems (AP.2.4.1) 261, 377

trustworthiness (QM.2.1.4) 309, 405

two life cycle model 173

two phase commit technology 151

two tier

architecture 227
software architectures 381

U
UDP. see user datagram protocol

UIL. see user interface language

UIMS. see user interface management system

understandability (QM.3.2) 83, 96, 173, 201, 255,
297, 405

unit testing (AP.1.4.3.4) 405

UNIX 223, 228

upgradeability (QM.3.1.x) 405

usability (QM.2.3) 101, 173, 205, 381, 405

usage design 53

user datagram protocol 340

user interfaces (AP.2.3.1) 405

development tools 205
language 205
management system 205

user services 367

user system interface 381

user-friendly interface 381

V
validation suite

Ada 61, 68

variability 174

vendor-driven upgrades 124

verifiability (QM.1.4) 96, 405

VHDL. see VHSIC Hardware Description Language

VHSIC Hardware Description Language 87

virtual machine 221

virus 387

virus detection 130, 387

visualization tool 201

vulnerability (QM.2.1.4.1) 405

W
walkthroughs 355

white-box testing (AP.1.4.3.4.x)

widgets 205

Windows 223

workstation compliance level three 159

World Wide Web 191, 221

Z
Zweben metrics 148
CMU/SEI-97-HB-001 425

426
 CMU/SEI-97-HB-001

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/AXS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-97-HB-001 n/a

 C4 Software Technology Reference Guide— A Prototype

 January 10, 1997 435

software technology, C4I, software reference, C4I systems, software tech-
nology reference guide, taxonomies

J. Foreman, J. Gross, R. Rosenstein, D. Fisher, K. Brune, et al
19. ABSTRACT (continue on reverse if necessary and identify by block number)

The Air Force acquisition community tasked the Software Engineering Institute (SEI) to create a ref-
erence document that would provide the Air Force with a better understanding of software technolo-
gies. This knowledge will allow the Air Force to systematically plan the research and development
(R&D) and technology insertion required to meet current and future Air Force needs, from the
upgrade and evolution of current systems to the development of new systems.

The initial release of the Software Technology Reference Guide is a prototype to provide initial capa-
bility, show the feasibility, and examine the usability of such a document. This prototype generally em-
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/AXS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

(please turn over)

ABSTRACT — continued from page one, block 19
phasizes software technology of importance to the C4I (command, control, communications,
computers, and intelligence) domain. This emphasis on C4I neither narrowed nor broadened the
scope of the document; it did, however, provide guidance in seeking out requirements and technol-
ogies. It served as a reminder that this work is concerned with complex, large-scale, distributed,
real-time, software-intensive, embedded systems in which reliability, availability, safety, security,
performance, maintainability, and cost are major concerns.

	Table of Contents
	Foreword to the First Edition
	1 Introduction
	1.1 Background
	1.1.1 Scope
	1.1.2 Vision
	1.1.3 Goal
	1.1.4 Limitations/Caveats
	1.1.5 Target Audiences

	1.2 Using the Document

	2 Taxonomies
	2.1 Overview and Purpose
	2.1.1 General Taxonomy Structure
	2.1.2 Using the Taxonomies

	2.2 Application Taxonomy
	2.2.1 Introduction
	2.2.2 Graphical Representation
	2.2.3 Textual Representation
	2.2.4 Taxonomy-Based Directory to Technology Descr...

	2.3 Quality Measures Taxonomy
	2.3.1 Introduction
	2.3.2 Graphical Representation
	2.3.3 Textual Representation
	2.3.4 Taxonomy-Based Directory to Technology Descr...

	3 Technology Descriptions
	3.1 Defining Software Technology
	3.2 Technology Categories
	3.3 Template for Technology Descriptions
	3.4 The Technology Adoption Challenge
	3.5 Alphabetical List of Technology Descriptions

	Individual Technology Descriptions
	Ada 83
	Ada 95
	Algorithm Formalization
	Application Programming Interface
	Architecture Description Languages
	Argument-Based Design Rationale Capture Methods fo...
	Cleanroom Software Engineering
	Client/Server Software Architectures
	Common Object Request Broker Architecture
	Component-Based Software Development/ COTS Integra...
	Computer System Security— an Overview
	COTS and Open Systems
	Cyclomatic Complexity
	Database Two Phase Commit
	Defense Information Infrastructure Common Operatin...
	Distributed/Collaborative Enterprise Architectures...
	Distributed Computing Environment
	Domain Engineering and Domain Analysis
	Feature-Based Design Rationale Capture Method for ...
	Feature-Oriented Domain Analysis
	Firewalls and Proxies
	Function Point Analysis
	Graphic Tools for Legacy Database Migration
	Graphical User Interface Builders
	Halstead Complexity Measures
	Hybrid Automata
	Intrusion Detection
	Java
	Mainframe Server Software Architectures
	Maintainability Index Technique for Measuring Prog...
	Maintenance of Operational Systems— an Overview
	Message-Oriented Middleware Technology
	Middleware
	Module Interconnection Languages
	Multi-Level Secure Database Management Schemes
	Multi-Level Secure One Way Guard with Random Ackno...
	Nonrepudiation in Network Communications
	Object Linking and Embedding/Component Object Mode...
	Object-Oriented Analysis
	Object-Oriented Database
	Object-Oriented Design
	Object-Oriented Programming Languages
	Object Request Broker
	Organization Domain Modeling
	Personal Software Process for Module-Level Develop...
	Public Key Digital Signatures
	Rate Monotonic Analysis
	Reference Models, Architectures, Implementations— ...
	Remote Procedure Call
	Requirements Tracing
	Rule-Based Intrusion Detection
	Simple Network Management Protocol
	Simplex Architecture
	Software Inspections
	Statistical-Based Intrusion Detection
	TAFIM Reference Model
	Three Tier Software Architectures
	Transaction Processing Monitor Technology
	Trusted Operating Systems
	Two Tier Software Architectures
	Virus Detection

	References
	Appendix A Submitting Information for Appendix A S...
	Appendix B User Feedback
	Appendix C Scenarios of Use
	Keyword Index

