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Automatically Unaderstanding Executables

Reducing the cost of manual executable analysis for vulnerability discovery and malware analysis

Automated Executable Path Finding and Rewriting Process
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Understanding the conditions that
cause an executable to follow specific
paths help DoD analysts identify
vulnerabilities and understand
malware behavior.

We aim to automate understanding

the conditions required to cause an
executable to reach a specific pointin

a control flow graph. This could test a
specific feature in a piece of malware or
establish whether it is possible to reach
a vulnerable condition in software. This
mitigates a tedious manual process.

For more information about Pharos

https://github.com/sei-cmu/pharos ad
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There are potentially an infinite
number of execution paths
that we must search over. To
cope with that complexity, we
need multiple approaches.

To date we've implemented

two path-finding algorithms
with different performance and
accuracy tradeoffs. We believe
that combining the approaches
will yield improved performance
compared to either in isolation.

A binary rewriter can then create a
new binary file that always follows the
desired path when executed.
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We're partnering with Dr. Arie
Gurfinkel at the University

of Waterloo to apply source
code reachability techniques
to executables.

Property Directed Reachability (PDR)
has proven to be an effective technique
for static analysis of source code
reachability. Dr. Gurfinkel maintains

a PDR implementation as part of
Microsoft's open source SMT solver Z3.

This work is partially supported by the
Office of Naval Research (ONR).

Automated variable name recovery through large-scale
data mining and statistical analysis.

Reverse engineers often read decompiled code to
understand the behavior of an executable. Modern
decompilers do not attempt to recover meaningful variable
names, and instead synthesize names such as v12. In this
project, we use statistical techniques to learn appropriate
variable names.

Decompiled C Code with Synthetic Names

vld = &vl15;
asxTab(a2 + 1);
for (v13 = asnContents(al,

{

v9 = (unsignedchar*) (v14++);

printf(™ %$02X 7, *v9);

}
Decompiled C Code with Recovered Names

&v1l5, 5121LL); v13 > 0; --v13)

cp = buf;
(void)asxTab(level + 1);
for (n = asnContents(asn, buf,
{

printf(“ %02X ”,

}

512); n > 0;

*(cptt));

Current results. We evaluated our approach by comparing
the variable names recovered by our system with the
original variable names in the source code. When our
system recovers exactly the same variable name, we call it
an exact match. We also measure approximate matches,
which occur when our system recovers an abbreviation that
consists of at least half the characters of the original. For
example, an approximate match would be recovering buf for
the original variable name of buffer.
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