
Original
Executable

Analyst

Fuzzing

Path Finder Rewriter

1

2

3

4

1

2

3

4

Starting vertex

Target vertex

Informs

Selected Path

Function
Summaries

Weakest
Preconditions

.exe

Rewritten
Executable

.exe

Dynamic Analysis

Understanding the conditions that
cause an executable to follow specific
paths help DoD analysts identify
vulnerabilities and understand
malware behavior.
We aim to automate understanding
the conditions required to cause an
executable to reach a specific point in
a control flow graph. This could test a
specific feature in a piece of malware or
establish whether it is possible to reach
a vulnerable condition in software. This
mitigates a tedious manual process.

For more information about Pharos

Automated Executable Path Finding and Rewriting Process

We’re partnering with Dr. Arie
Gurfinkel at the University
of Waterloo to apply source
code reachability techniques
to executables.
Property Directed Reachability (PDR)
has proven to be an effective technique
for static analysis of source code
reachability. Dr. Gurfinkel maintains
a PDR implementation as part of
Microsoft’s open source SMT solver Z3.

This work is partially supported by the
Office of Naval Research (ONR).

There are potentially an infinite
number of execution paths
that we must search over. To
cope with that complexity, we
need multiple approaches.
To date we’ve implemented
two path-finding algorithms
with different performance and
accuracy tradeoffs. We believe
that combining the approaches
will yield improved performance
compared to either in isolation.

A binary rewriter can then create a
new binary file that always follows the
desired path when executed.

Automated variable name recovery through large-scale
data mining and statistical analysis.
Reverse engineers often read decompiled code to
understand the behavior of an executable. Modern
decompilers do not attempt to recover meaningful variable
names, and instead synthesize names such as v12. In this
project, we use statistical techniques to learn appropriate
variable names.

Current results. We evaluated our approach by comparing
the variable names recovered by our system with the
original variable names in the source code. When our
system recovers exactly the same variable name, we call it
an exact match. We also measure approximate matches,
which occur when our system recovers an abbreviation that
consists of at least half the characters of the original. For
example, an approximate match would be recovering buf for
the original variable name of buffer.

https://github.com/sei-cmu/pharos

cp = buf;
(void)asxTab(level + 1);
for (n = asnContents(asn, buf, 512); n > 0; n--)
{
 printf(� %02X �, *(cp++));
}

v14 = &v15;
asxTab(a2 + 1);
for (v13 = asnContents(a1, &v15, 512LL); v13 > 0; --v13)
{
 v9 = (unsignedchar*)(v14++);
 printf(� %02X �, *v9);
}

Decompiled C Code with Synthetic Names

Decompiled C Code with Recovered Names

83.8%

12.7%

3.5%

Exact match with
source code

Approximate match
with source code

Not similar to
source code

Automatically Understanding Executables
Reducing the cost of manual executable analysis for vulnerability discovery and malware analysis

Distribution Statement A: Approved for Public Release;� Distribution is Unlimited

P4
Pharos Team | cfc@cert.org

Research Review 2018

Automatically Understanding Executables
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other
documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1127

	Blank Page

