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Dynamic Analysis

Understanding the conditions that 
cause an executable to follow specific 
paths help DoD analysts identify 
vulnerabilities and understand 
malware behavior.
We aim to automate understanding 
the conditions required to cause an 
executable to reach a specific point in 
a control flow graph.  This could test a 
specific feature in a piece of malware or 
establish whether it is possible to reach 
a vulnerable condition in software.  This 
mitigates a tedious manual process.

For more information about Pharos

Automated Executable Path Finding and Rewriting Process

We’re partnering with Dr. Arie 
Gurfinkel at the University 
of Waterloo to apply source 
code reachability techniques 
to executables.
Property Directed Reachability (PDR) 
has proven to be an effective technique 
for static analysis of source code 
reachability. Dr. Gurfinkel maintains 
a PDR implementation as part of 
Microsoft’s open source SMT solver Z3.

This work is partially supported by the 
Office of Naval Research (ONR). 

There are potentially an infinite 
number of execution paths 
that we must search over.  To 
cope with that complexity, we 
need multiple approaches.
To date we’ve implemented 
two path-finding algorithms 
with different performance and 
accuracy tradeoffs. We believe 
that combining the approaches 
will yield improved performance 
compared to either in isolation.

A binary rewriter can then create a 
new binary file that always follows the 
desired path when executed.

Automated variable name recovery through large-scale 
data mining and statistical analysis. 
Reverse engineers often read decompiled code to 
understand the behavior of an executable. Modern 
decompilers do not attempt to recover meaningful variable 
names, and instead synthesize names such as v12.  In this 
project, we use statistical techniques to learn appropriate 
variable names.

Current results. We evaluated our approach by comparing 
the variable names recovered by our system with the 
original variable names in the source code.  When our 
system recovers exactly the same variable name, we call it 
an exact match.  We also measure approximate matches, 
which occur when our system recovers an abbreviation that 
consists of at least half the characters of the original.  For 
example, an approximate match would be recovering buf for 
the original variable name of buffer.

https://github.com/sei-cmu/pharos

cp = buf;
(void)asxTab(level + 1);
for (n = asnContents(asn, buf, 512); n > 0; n--)
{
 printf(� %02X �, *(cp++));
}

v14 = &v15;
asxTab(a2 + 1);
for (v13 = asnContents(a1, &v15, 512LL); v13 > 0; --v13)
{
 v9 = (unsignedchar*)(v14++);
 printf(� %02X �, *v9);
}

Decompiled C Code with Synthetic Names

Decompiled C Code with Recovered Names
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