Problem

Static analysis alerts for security-related
code flaws require too much manual
effort to triage efficiently. Organizations
are reluctant to fully adopt automated
alert classifier technology because of
barriers, including high cost, lack of
expertise, and shortage of labeled data.

Solution

Develop an extensible architecture that
supports classification and advanced
prioritization, and builds on a novel test-
suite-data method we developed.

» We developed a model and code
intended to enable organizations
to quickly start using classifiers and
advanced prioritization by making API
calls from their alert auditing tools.

» We implemented a prototype of
the model.

« We developed adaptive heuristics for
classifiers to adapt as they learn from
test suite and natural program data.

Approach
* Design the architecture.

» Develop an API definition.
» Implement a prototype system.

» Develop adaptive heuristics and
test them with datasets that
combine test-suite and real-world
(e.g., DoD) data.

 Test the architecture and prototype
with collaborators.

Problem: too many alerts ! 50000

Solution: automate handling &
00000
Toda
Codebases y :||: D 00000
000
ooooo
11,772
ooooo
v 0
TP FP Susp
TR —— -
v
=
ooooo
45,172

Project Goal

Architecture that classifies alerts
using auto-labeled and organization-
audited data, that accurately
classifies most of the alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP)
and the rest as

Indeterminate (I)

e-TP  e-FP

Source Code Analysis

Integrated Framework

Environment (SCAIFE)

To overcome cost and data
barriers, we prototyped a
modular architecture that
enables the rapid adoption
of automated classifiers
for static analysis alerts.

SCAIFE Architecture

Any static analysis tool can
instantiate APIs to become
a Ul Module. For example

« SCALe * Other aggregator
+ DHS SWAMP tools
« CCDC C5ISR SWAT

+ Single static analysis
tools

» Stores local projects

Registration Module

» Generates registration
tokens

* Provides authentication

DataHub Module

* Stores tool and
alert information

* Displays project and
alert data

Registration Module

User

Interface

API Calls

— API Calls

API Calls —

Prioritization Module

« Stores and evaluates
prioritization formulas

Statistics Module

» Creates, runs, and

» Stores test suite
metadata and alert
determinations

« Generates speculative
mappings

stores classifiers

» Stores adaptive
— API Calls -

» Stores automated
hyperparameter

heuristic algorithms

optimization algorithms

Rapid Construction of Accurate Automatic Alert Handling System

FY19 Artifacts

Code and Test Results

Beta SCAIFE prototype VM (v1, v2) released to
collaborators (August & September 2019)

API definitions (0.0.2-0.0.5) YAML publication
(GitHub + SCAIFE VM)

SCALe v3 and v4: tool released with new features

for collaborators to generate data

SCALe DevOps improvements for research
transitionability

SCALe v.r.4.*: released to collaborators with
features for SCAIFE integration (August &
September 2019)

Code developed for prototype

Adaptive heuristics

Publications

SCAIFE API Definition and Prototype

- Manual; How to Review & Test the Beta SCAIFE

(v1, v2) VM (August & September 2019)
- SEl blog post: An Application Programming

Interface for Classifying and Prioritizing Static

Analysis Alerts (July 2019)

- SEl whitepaper: SCAIFE API Definition Beta
Version 0.0.2 for Developers (June 2019)

- SEl technical report: Integration of Automated

Static Analysis Alert Classification and
Prioritization with Auditing Tools (May 2019)

- SEl blog post: SCALe v3: Automated
Classification and Advanced Prioritization of
Static Analysis Alerts (December 2018)

- SWACon paper: Introduction to Source Code

Analysis Laboratory (SCALe) (November 2018)

- SEl webinar: How can | use new features in

the CERT SCALe tool to improve how my team
audits static analysis alerts? (November 2018)

Classifier Development Research

- Presentation: Automating Static Analysis Alert

Handling with Machine Learning: 2016-2018
(October 2018)

- Four in-progress papers addressing precise
mapping, architecture for rapid alert

classification, test suites for classifier training
data, and APl development

Project members developed (1) an architecture,
(2) an API definition, and (3) a prototype system
for static analysis alert classification and advanced
alert prioritization.

Carnegie Mellon University
Software Engineering Institute

02_Rapid_Construction_of_an_Accurate_Automatic_Alert_Handling_System_Poster_6.indd 1

Dr. Lori Flynn| Iflynn@sei.cmu.edu

Ebonie McNeil, Derek Leung, Matt Sisk, David Svoboda

Distribution Statement A: Approved for Public Release;
Distribution Is Unlimited

P2

10/10/19 4:27 PM



Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1027



	Blank Page

