
RESEARCH REVIEW 2019

To overcome cost and data
barriers, we prototyped a
modular architecture that
enables the rapid adoption
of automated classifiers
for static analysis alerts.

Problem
Static analysis alerts for security-related
code flaws require too much manual
effort to triage efficiently. Organizations
are reluctant to fully adopt automated
alert classifier technology because of
barriers, including high cost, lack of
expertise, and shortage of labeled data.

Solution
Develop an extensible architecture that
supports classification and advanced
prioritization, and builds on a novel test-
suite-data method we developed.

• We developed a model and code
intended to enable organizations
to quickly start using classifiers and
advanced prioritization by making API
calls from their alert auditing tools.

• We implemented a prototype of
the model.

• We developed adaptive heuristics for
classifiers to adapt as they learn from
test suite and natural program data.

Approach
• Design the architecture.
• Develop an API definition.
• Implement a prototype system.
• Develop adaptive heuristics and

test them with datasets that
combine test-suite and real-world
(e.g., DoD) data.

• Test the architecture and prototype
with collaborators.

Dr. Lori Flynn| lflynn@sei.cmu.edu
Ebonie McNeil, Derek Leung, Matt Sisk, David Svoboda

Distribution Statement A: Approved for Public Release;�
Distribution Is Unlimited

P2

Statistics Module
• Creates, runs, and

stores classifiers
• Stores adaptive

heuristic algorithms
• Stores automated

hyperparameter
optimization algorithms

DataHub Module
• Stores tool and

alert information
• Stores test suite

metadata and alert
determinations

• Generates speculative
mappings

Registration Module
• Generates registration

tokens
• Provides authentication

Registration Module
• Stores local projects
• Displays project and

alert data

Prioritization Module
• Stores and evaluates

prioritization formulas

User
Interface

API Calls API Calls

API Calls

API Calls

• SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator
tools

• Single static analysis
tools

Source Code Analysis
Integrated Framework
Environment (SCAIFE)

Any static analysis tool can
instantiate APIs to become
a UI Module. For example

SCAIFE Architecture

FY19 Artifacts
Code and Test Results
• Beta SCAIFE prototype VM (v1, v2) released to

collaborators (August & September 2019)

• API definitions (0.0.2-0.0.5) YAML publication
(GitHub + SCAIFE VM)

• SCALe v3 and v4: tool released with new features
for collaborators to generate data

• SCALe DevOps improvements for research
transitionability

• SCALe v.r.4.*: released to collaborators with
features for SCAIFE integration (August &
September 2019)

• Code developed for prototype

• Adaptive heuristics

Publications
• SCAIFE API Definition and Prototype

-- Manual: How to Review & Test the Beta SCAIFE
(v1, v2) VM (August & September 2019)

-- SEI blog post: An Application Programming
Interface for Classifying and Prioritizing Static
Analysis Alerts (July 2019)

-- SEI whitepaper: SCAIFE API Definition Beta
Version 0.0.2 for Developers (June 2019)

-- SEI technical report: Integration of Automated
Static Analysis Alert Classification and
Prioritization with Auditing Tools (May 2019)

-- SEI blog post: SCALe v3: Automated
Classification and Advanced Prioritization of
Static Analysis Alerts (December 2018)

-- SwACon paper: Introduction to Source Code
Analysis Laboratory (SCALe) (November 2018)

-- SEI webinar: How can I use new features in
the CERT SCALe tool to improve how my team
audits static analysis alerts? (November 2018)

• Classifier Development Research

-- Presentation: Automating Static Analysis Alert
Handling with Machine Learning: 2016-2018
(October 2018)

-- Four in-progress papers addressing precise
mapping, architecture for rapid alert
classification, test suites for classifier training
data, and API development

Project members developed (1) an architecture,
(2) an API definition, and (3) a prototype system
for static analysis alert classification and advanced
alert prioritization.

Rapid Construction of Accurate Automatic Alert Handling System

Codebases

Analyzer

Analyzer

Analyzer

Alert

Today

Problem: too many alerts
Solution: automate handling

Project Goal

0

10000

20000

30000

40000

50000

TP FP Susp

3,147

11,772

48,690

0

10000

20000

30000

40000

50000

e-TP e-FP I

12,076

45,172

6,361

Architecture that classi�es alerts
using auto-labeled and organization-
audited data, that accurately
classi�es most of the alerts as:
Expected True Positive (e-TP) or
Expected False Positive (e-FP)
and the rest as
Indeterminate (I)

02_Rapid_Construction_of_an_Accurate_Automatic_Alert_Handling_System_Poster_6.indd 1 10/10/19 4:27 PM

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1027

	Blank Page

