RESEARCH REVIEW 2020

Untangling the Knot

Enabling Rapid Software Evolution

Problem

To quickly deliver new capabilities and
take advantage of new technologies, DoD
needs the ability to efficiently restructure
software for common scenarios like:

* migrating a capability to the cloud
* harvesting software for reuse
* containerizing software

One recent anecdote estimates the effort
to isolate a capability from the platform at
14,000 staff hours just for development.

Solution

Create an automated assistant that
rapidly refactors software to support
software isolation goals that enable
software evolution.

* Allows users to specify project-
specific goals.

+ Uses genetic algorithms to recommend
refactorings.

+ Navigates multiple, competing objectives.

Intended Outcomes (FY19-21)

+ Refactoring recommendations
outperform those based only on quality
metrics, reducing problematic couplings
by at least 75%.

» Our automation reduces the time to
restructure software to 1/3 of the time
compared to manual effort.

Read more about our vision:

J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried,

Next Generation Automated Software Evolution:
Refactoring at Scale. 2020. 28th Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE '20). ACM,
Virtual Event, USA.

Automated refactoring can improve the
structure of existing software in 1/3 of the
time it takes to manually refactor.

Best solution:
Fitness = 33

Step 1: MovestaticProperty (Duplicati.Server.Strings.Progran.PortablenodeConmandDe-
scription, Duplicati.Server.Progran)

Step 2: MoveClass (Duplicati.Library.AutoUpdater.AutoUpdateSettings)

Step 3: MoveClass (Duplicati.Library.Utility.WorkerThread<>)

Specify a goal

Automated analysis identifies

all problematic couplings

2040 Problematic Couplings

Step 4: Movelnterface (Duplicati.Server.Serialization.Interface.ISchedule) 4

Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)

Step 6: Movelnterface (Duplicati.Server.Serialization.Interface.ISetting)

Step 7: MoveClass (Duplicati.Server.Strings.Program)

Step 8: MoveClass (Duplicati.Server.Database.Backup)

Step 9: MoveClass (Duplicati.Library.localization.Short.LC)

Step 10: MoveClass (Duplicati.Server.Database.Notification)

Step 11: MoveClass (Duplicati.Server.WebServer.IndexHtmlHandler)

Step 12: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)

Step 13: MoveClass (Duplicati.Server.Database.TempFile)

Step 14: MoveClass (Duplicati.Server.WebServer.BodyWriter)

Step 15: MoveClass (Duplicati.library.Interface.CommandlLineArgument)

Step 16: MovelInterface (Duplicati.library.Interface.ICommandLineArgument)

Step 17: MoveClass (Duplicati.Server.EventPollNotify)

Step 18: MoveClass (Duplicati.library.Utility.Utility)

Step 19: MoveClass (Duplicati.Library.Common.Platform)

Step 20: MoveClass (Duplicati.Server.liveControls)

Step 21: MoveClass (Duplicati.Library.Interface.Strings.DataTypes)

Step 22: MoveClass (Duplicati.library.Utility.Strings.Utility)

Step 23: Movelnterface (Duplicati.Server.Serialization.Interface.IFilter)

Step 24: Movelnterface (Duplicati.library.localization.ILocalizationService)

Step 25: MoveClass (Duplicati.Server.Database.Schedule)

Step 26: Movelnterface (Duplicati.Server.WebServer.RESTMethods.IRESTMethodPOST)

Step 27: MoveClass (Duplicati.library.Utility.Sizeparser)

Step 28: MoveStaticMethod (Duplicati.library.Utility.Strings.Sizeparser.Invalidsizeval-

ueError, Duplicati.Library.Utility.Sizeparser)

Step 29: MoveStaticMethod (Duplicati.lLibrary.Utility.Timeparser.ParseTimeSpan,

Duplicati.Server. Database. Connection)

Step 3@: MoveClass (Duplicati.Library.Interface.UserInformationException)

Step 31: MoveClass (Duplicati.Library.Interface.Strings.CommandLineArgument)

Step 32: MoveClass (Duplicati.Server.UpdatePollThread)

Step 33: MoveClass (Duplicati.library.AutoUpdater.UpdateInfo)

Step 34: MoveClass (Duplicati.Server.Strings.Server)
on.

By Relation Type By Target Type
» Inherits Class
Calls ke
334
Event
8
Writes Method
434 334

Reads J

1046

Analysis reduces

to unique targets

Uses Type
eB) Property J

1335

Select Objectives
* minimize problematic couplings
* minimize code changes

* maximize code quality

Unique

Target Type PC Count Targets
Class 363 15
Event 8 1
Method 334 51
Property 1335 77
2040 144

Out of 1M+ SLOC, changes

.
.
6000 -'.
)
s Select a solution that
L . addresses your context
S
s t
g =
. <
4000 . . .
50 100 150 B0 400

200 20 300
Problematic Couplings

should focus on only 24 classes

Prototype uses a multi-objective genetic algorithm to

generate a set of Pareto optimal solutions (recommendations)

Our prototype can help with
common evolution scenarios:

Scenario
Gather data to assess the difficulty associated with
project-specific goals as input to funding decisions.

Maturity
Available now (TRL 4)

Expected Results

Enumeration of problematic couplings, their
locations, and types potentially impacted by
proposed change as data to inform cost estimates.

Scenario
Compare the difficulty of different refactoring
approaches.

Maturity
Available now (TRL 4)

Expected Results

Enumeration of problematic couplings, their
locations, and types potentially impacted by
proposed change as data

to inform cost estimates.

Scenario
Automatically refactor software to isolate
software and speed its evolution.

Maturity
Ready for pilot application in 3-6 months

Expected Results
Recommended refactorings that enable the
proposed change address multiple criteria.

Contact us at info@sei.cmu.edu if you
are interested in partnering with us.

Carnegie Mellon University
Software Engineering Institute

James Ivers, Ipek Ozkaya, Robert Nord, Chris Seifried

Mario Benitez, Jared Frank, Carly Jones, Andrew Kotov, Reed Little, Craig Mazzotta, Scott Pavetti, Jeff Yackley

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A8

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other external and/or commercial
use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.
DM20-0856

Carnegie Mellon UniVel‘Sity James Ivers, Ipek Ozkaya, Robert Nord, Chris Seifried Distribution Statement A: Approved for Public Release;

Distribution is Unlimited
Software Engmeermg Institute Mario Benitez, Jared Frank, Carly Jones, Andrew Kotov, Reed Little, Craig Mazzotta, Scott Pavetti, Jeff Yackley a8

