
RESEARCH REVIEW 2020

Problem
Manual adjudication of static analysis meta-alerts
requires too much effort in short CI build and PR-
approval time frames to address many (if any) of them.
This problem is technically challenging. Developing a new
static analysis to precisely match flaws in different version
of Java or C++ code requires language-specific algorithms,
and the matching must be fast to work in a CI/CD system.
Also, when cascading is imprecise, mis-labeled data worsens
classifier performance, and no effective systems exist that
use automated classifiers for multiple static analysis tools in
a CI system.

Solution
The solution involves (1) a system that supports classification
integrated with CI, and builds on the SCAIFE API and
implementation we developed for an extensible architecture
that supports classification, and (2) precise cascading
algorithms for C++ code.

We (1) designed a model for integrated SCAIFE-CI systems,
including SCAIFE changes, performance measures, and
new classifier features; (2) implemented parts of the design
(collaborators tested and reviewed subsequent versions);
(3) performed an experiment using diff-based (imprecise)
cascading and generated data for comparison to precise
cascading. Future plans are to develop a precise cascading
algorithm, improve classifiers, and fully integrate them.

Dr. Lori Flynn
Ebonie McNeil, Matt Sisk, David Svoboda, Hasan Yasar, Joseph Yankel, David Shepard, and Shane Ficorilli

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

P13

Rapid Adjudication of Static Analysis Meta-Alerts During Continuous Integration (CI)

FY20 Code and API Artifacts
•	(Sep 2020) SCAIFE System v 1.2.2 is released with significant

CI-SCAIFE integration progress; it includes five APIs, an
HTML manual, SCALe, and the rest of the software system.
(collaborators)

•	(Sep 2020) SCALe is released for SCALe v. r.6.2.2.2.A. (public)
•	(Sep 2020) Five SCAIFE APIs are released. (collaborators,

public)
•	(Jul 2020) SCAIFE System v 1.1.1 is released with API modules

and SCALe automation for CI-SCAIFE integration; the system
includes separable SCALe v. r.6.1.1.1.A, five APIs, and an
HTML manual. (collaborators)

•	(Mar 2020) SCAIFE System v 1.0.0 is released with containers
for CI-SCAIFE integration; the system includes a SCALe
separable module, new APIs, and an HTML manual.
(collaborators)

•	(Feb 2020) SCAIFE API v 0.0.9-beta is published.
(collaborators, GitHub)

•	(Oct 2019) SCAIFE System Beta VM v 2.1 is released with a
bill of materials. (collaborators)

FY20 Additional Artifacts
•	(Sep 2020) Diff-based cascading experiment artifacts are

produced.
•	(Sep 2020) A SCAIFE/SCALe HTML manual is released for

SCALe v r.7.0.0.0.A. (public, collaborators)
•	(Jul 2020) “How to Instantiate SCAIFE API Calls” manual is

released. (public)
•	(Apr 2020) “Open Dataset RC_Data for Classifier Research” is

published. (public)
•	(Mar 2020) “How to Test and Review the SCAIFE System v

1.0.0 Release” manual is published. (collaborators)
•	(Feb 2020) “SCAIFE API Version 0.0.9-Beta: Reviewer

Roadmap” manual is published. (collaborators)

The team developed progressive versions of (1) a design
for CI-classifier (CI-SCAIFE) integration and (2) an API
definition. The team also implemented a system for
modular classification with features to enable CI-
integration and to measure performance.

Statistics Module
• Creates, runs, and stores classifiers
• Stores adaptive heuristic algorithms
• Stores automated hyperparameter
 optimization algorithms

DataHub Module
• Stores tool and alert information
• Stores test suite meta-data and
 meta-alert determinations
• Generates speculative
 mappings

Continuous Integration
(CI) Server

Registration-Orchestration Module
• Generates registration tokens
• Provides authentication and basic
authentication for other services
• Enables data and state coordination per
 CI Build between SCAIFE and the CI server

UI ModuleModifications for CI-SCAIFE integration
• Uploads tool output warnings
• Stores local projects
• Displays project and alert data

Prioritization Module
• Stores and evaluates
 prioritization formulas

NEW+Updated
API Calls

NEW
API Calls

NEW
API Calls

NEW
API Calls

NEW+Updated
API Calls

API Calls

NEW
API Calls

NEW+Updated
API Calls

Any static analysis tool can
instantiate APIs to become
a UI Module. For example

• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis tools

User
Interface

To overcome barriers to using
automated classifiers during
CI, we designed a system
that enables classification to
be used in CI builds, including
cascading adjudications.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.
DM20-0841

