Rapid Adjudication of Static Analysis Meta-Alerts During Continuous Integration (Cl)

Problem

Manual adjudication of static analysis meta-alerts
requires too much effort in short Cl build and PR-
approval time frames to address many (if any) of them.
This problem is technically challenging. Developing a new
static analysis to precisely match flaws in different version
of Java or C++ code requires language-specific algorithms,
and the matching must be fast to work in a CI/CD system.
Also, when cascading is imprecise, mis-labeled data worsens
classifier performance, and no effective systems exist that
use automated classifiers for multiple static analysis tools in
a Cl system.

Solution

The solution involves (1) a system that supports classification
integrated with Cl, and builds on the SCAIFE APl and
implementation we developed for an extensible architecture
that supports classification, and (2) precise cascading
algorithms for C++ code.

We (1) designed a model for integrated SCAIFE-CI systems,
including SCAIFE changes, performance measures, and
new classifier features; (2) implemented parts of the design
(collaborators tested and reviewed subsequent versions);
(3) performed an experiment using diff-based (imprecise)
cascading and generated data for comparison to precise
cascading. Future plans are to develop a precise cascading
algorithm, improve classifiers, and fully integrate them.

ct Goal

Classificationalgorithm development for Cl systems, that

precisely and with high recall, classifies at
least as many manually-adjudicated meta-

alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),
and

the rest as Indeterminate (1)

To overcome barriers to using
automated classifiers during
Cl, we designed a system

that enables classification to
be used in Cl builds, including
cascading adjudications.
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Registration-Orchestration Module
» Generates registration tokens
* Provides authentication and basic
authentication for other services
« Enables data and state coordination per
Cl Build between SCAIFE and the Cl server

DataHub Module

« Stores tool and alert information

« Stores test suite meta-data and
meta-alert determinations
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mappings
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Prioritization Module

« Stores and evaluates
prioritization formulas
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Statistics Module
« Creates, runs, and stores classifiers
« Stores adaptive heuristic algorithms
» Stores automated hyperparameter

FY20 Code and API Artifacts

* (Sep 2020) SCAIFE System v 1.2.2 is released with significant
CI-SCAIFE integration progress; it includes five APIs, an
HTML manual, SCALe, and the rest of the software system.
(collaborators)

* (Sep 2020) SCALe is released for SCALe v. r.6.2.2.2.A. (public)
* (Sep 2020) Five SCAIFE APIs are released. (collaborators,
public)

* (Jul 2020) SCAIFE System v 1.1.1 is released with APl modules
and SCALe automation for CI-SCAIFE integration; the system
includes separable SCALe v. r.6.1.1.1.A, five APIs, and an
HTML manual. (collaborators)

* (Mar 2020) SCAIFE System v 1.0.0 is released with containers
for CI-SCAIFE integration; the system includes a SCALe
separable module, new APIs, and an HTML manual.
(collaborators)

* (Feb 2020) SCAIFE APl v 0.0.9-beta is published.
(collaborators, GitHub)

* (Oct 2019) SCAIFE System Beta VM v 2.1 is released with a
bill of materials. (collaborators)

FY20 Additional Artifacts
* (Sep 2020) Diff-based cascading experiment artifacts are
produced.

* (Sep 2020) A SCAIFE/SCALe HTML manual is released for
SCALe v r.7.0.0.0.A. (public, collaborators)

* (Jul 2020) “How to Instantiate SCAIFE API Calls” manual is
released. (public)

* (Apr 2020) “Open Dataset RC_Data for Classifier Research” is
published. (public)

* (Mar 2020) “How to Test and Review the SCAIFE System v
1.0.0 Release” manual is published. (collaborators)

* (Feb 2020) “SCAIFE API Version 0.0.9-Beta: Reviewer
Roadmap” manual is published. (collaborators)

The team developed progressive versions of (1) a design
for Cl-classifier (CI-SCAIFE) integration and (2) an API

— NEW+Updated | optimization algorithms L !
” API Calls definition. The team also implemented a system for
’ ’ — _ modular classification with features to enable CI-
- S SEaniE e integration and to measure performance.
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