
RESEARCH REVIEW 2020

Problem
Manual adjudication of static analysis meta-alerts 
requires too much effort in short CI build and PR-
approval time frames to address many (if any) of them. 
This problem is technically challenging. Developing a new 
static analysis to precisely match flaws in different version 
of Java or C++ code requires language-specific algorithms, 
and the matching must be fast to work in a CI/CD system. 
Also, when cascading is imprecise, mis-labeled data worsens 
classifier performance, and no effective systems exist that 
use automated classifiers for multiple static analysis tools in 
a CI system.

Solution
The solution involves (1) a system that supports classification 
integrated with CI, and builds on the SCAIFE API and 
implementation we developed for an extensible architecture 
that supports classification, and (2) precise cascading 
algorithms for C++ code.

We (1) designed a model for integrated SCAIFE-CI systems, 
including SCAIFE changes, performance measures, and 
new classifier features; (2) implemented parts of the design 
(collaborators tested and reviewed subsequent versions); 
(3) performed an experiment using diff-based (imprecise) 
cascading and generated data for comparison to precise 
cascading. Future plans are to develop a precise cascading 
algorithm, improve classifiers, and fully integrate them.
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FY20 Code and API Artifacts 
•	(Sep 2020) SCAIFE System v 1.2.2 is released with significant 

CI-SCAIFE integration progress; it includes five APIs, an 
HTML manual, SCALe, and the rest of the software system. 
(collaborators)

•	(Sep 2020) SCALe is released for SCALe v. r.6.2.2.2.A. (public)
•	(Sep 2020) Five SCAIFE APIs are released. (collaborators, 

public)
•	( Jul 2020) SCAIFE System v 1.1.1 is released with API modules 

and SCALe automation for CI-SCAIFE integration; the system 
includes separable SCALe v. r.6.1.1.1.A, five APIs, and an 
HTML manual. (collaborators)

•	(Mar 2020) SCAIFE System v 1.0.0 is released with containers 
for CI-SCAIFE integration; the system includes a SCALe 
separable module, new APIs, and an HTML manual. 
(collaborators)

•	(Feb 2020) SCAIFE API v 0.0.9-beta is published. 
(collaborators, GitHub) 

•	(Oct 2019) SCAIFE System Beta VM v 2.1 is released with a 
bill of materials. (collaborators)

FY20 Additional Artifacts 
•	(Sep 2020) Diff-based cascading experiment artifacts are 

produced.
•	(Sep 2020) A SCAIFE/SCALe HTML manual is released for 

SCALe v r.7.0.0.0.A. (public, collaborators) 
•	( Jul 2020) “How to Instantiate SCAIFE API Calls” manual is 

released. (public)
•	(Apr 2020) “Open Dataset RC_Data for Classifier Research” is 

published. (public)
•	(Mar 2020) “How to Test and Review the SCAIFE System v 

1.0.0 Release” manual is published. (collaborators)
•	(Feb 2020) “SCAIFE API Version 0.0.9-Beta: Reviewer 

Roadmap” manual is published. (collaborators)

The team developed progressive versions of (1) a design 
for CI-classifier (CI-SCAIFE) integration and (2) an API 
definition. The team also implemented a system for 
modular classification with features to enable CI-
integration and to measure performance. 

Statistics Module
• Creates, runs, and stores classifiers
• Stores adaptive heuristic algorithms
• Stores automated hyperparameter 
 optimization algorithms

DataHub Module
• Stores tool and alert information
• Stores test suite meta-data and 
 meta-alert determinations
• Generates speculative 
 mappings

Continuous Integration
(CI) Server

Registration-Orchestration Module
• Generates registration tokens
• Provides authentication and basic 
authentication for other services
• Enables data and state coordination per 
 CI Build between SCAIFE and the CI server

UI ModuleModifications for CI-SCAIFE integration
• Uploads tool output warnings
• Stores local projects
• Displays project and alert data

Prioritization Module
• Stores and evaluates 
 prioritization formulas
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Any static analysis tool can 
instantiate APIs to become 
a UI Module. For example

• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis tools

User
Interface

To overcome barriers to using 
automated classifiers during 
CI, we designed a system  
that enables classification to 
be used in CI builds, including 
cascading adjudications.
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