Rapid Adjudication of Static Analysis Meta-Alerts During Continuous Integration (Cl)

Problem

Manual adjudication of static analysis meta-alerts
requires too much effort in short Cl build and PR-
approval time frames to address many (if any) of them.
This problem is technically challenging. Developing a new
static analysis to precisely match flaws in different version
of Java or C++ code requires language-specific algorithms,
and the matching must be fast to work in a CI/CD system.
Also, when cascading is imprecise, mis-labeled data worsens
classifier performance, and no effective systems exist that
use automated classifiers for multiple static analysis tools in
a Cl system.

Solution

The solution involves (1) a system that supports classification
integrated with Cl, and builds on the SCAIFE APl and
implementation we developed for an extensible architecture
that supports classification, and (2) precise cascading
algorithms for C++ code.

We (1) designed a model for integrated SCAIFE-CI systems,
including SCAIFE changes, performance measures, and
new classifier features; (2) implemented parts of the design
(collaborators tested and reviewed subsequent versions);
(3) performed an experiment using diff-based (imprecise)
cascading and generated data for comparison to precise
cascading. Future plans are to develop a precise cascading
algorithm, improve classifiers, and fully integrate them.

ct Goal

Classificationalgorithm development for Cl systems, that

precisely and with high recall, classifies at
least as many manually-adjudicated meta-

alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),
and

the rest as Indeterminate (1)

To overcome barriers to using
automated classifiers during
Cl, we designed a system

that enables classification to
be used in Cl builds, including
cascading adjudications.

Any static analysis tool can * SEI SCALe
instantiate APIs to become

a Ul Module. For example

Ul Module
+ Uploads tool output warnings
» Stores local projects

Modifications for CI-SCAIFE integration

NEW+Updated

* DHS SWAMP
* CCDC C5ISR SWAT

Interface

* Other aggregator tools
* Single static analysis tools

API Calls

API Calls

+ Displays project and alert data

1
1
NEW
API Calls
1
Registration-Orchestration Module
» Generates registration tokens
* Provides authentication and basic
authentication for other services
« Enables data and state coordination per
Cl Build between SCAIFE and the Cl server

DataHub Module

« Stores tool and alert information

« Stores test suite meta-data and
meta-alert determinations

« Generates speculative

mappings

__ NEW _
API Calls

_ NEW __
API Calls

Continuous Integration ___ NEW _
(Cl) Server API Calls

Prioritization Module

« Stores and evaluates
prioritization formulas

NEW+Updated
API Calls

Statistics Module
« Creates, runs, and stores classifiers
« Stores adaptive heuristic algorithms
» Stores automated hyperparameter

FY20 Code and API Artifacts

* (Sep 2020) SCAIFE System v 1.2.2 is released with significant
CI-SCAIFE integration progress; it includes five APIs, an
HTML manual, SCALe, and the rest of the software system.
(collaborators)

* (Sep 2020) SCALe is released for SCALe v. r.6.2.2.2.A. (public)
* (Sep 2020) Five SCAIFE APIs are released. (collaborators,
public)

* (Jul 2020) SCAIFE System v 1.1.1 is released with APl modules
and SCALe automation for CI-SCAIFE integration; the system
includes separable SCALe v. r.6.1.1.1.A, five APIs, and an
HTML manual. (collaborators)

* (Mar 2020) SCAIFE System v 1.0.0 is released with containers
for CI-SCAIFE integration; the system includes a SCALe
separable module, new APIs, and an HTML manual.
(collaborators)

* (Feb 2020) SCAIFE APl v 0.0.9-beta is published.
(collaborators, GitHub)

* (Oct 2019) SCAIFE System Beta VM v 2.1 is released with a
bill of materials. (collaborators)

FY20 Additional Artifacts
* (Sep 2020) Diff-based cascading experiment artifacts are
produced.

* (Sep 2020) A SCAIFE/SCALe HTML manual is released for
SCALe v r.7.0.0.0.A. (public, collaborators)

* (Jul 2020) “How to Instantiate SCAIFE API Calls” manual is
released. (public)

* (Apr 2020) “Open Dataset RC_Data for Classifier Research” is
published. (public)

* (Mar 2020) “How to Test and Review the SCAIFE System v
1.0.0 Release” manual is published. (collaborators)

* (Feb 2020) “SCAIFE API Version 0.0.9-Beta: Reviewer
Roadmap” manual is published. (collaborators)

The team developed progressive versions of (1) a design
for Cl-classifier (CI-SCAIFE) integration and (2) an API

— NEW+Updated | optimization algorithms L !
” API Calls definition. The team also implemented a system for
’ ’ — _ modular classification with features to enable CI-
- S SEaniE e integration and to measure performance.
Carnegie MellonUniversity Dr. Lori Flynn Distribution Statement A: Appl;w‘;i::;ﬁ{yg:?suaﬁﬁﬁisgz

Software Engineering Institute

Ebonie McNeil, Matt Sisk, David Svoboda, Hasan Yasar, Joseph Yankel, David Shepard, and Shane Ficorilli

P13

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should

not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM20-0841

Carnegie Mellon University
Software Engineering Institute

