Documenting
Software Architecture:

Documenting
Behavior

Felix Bachmann
Len Bass

Paul Clements
David Garlan
James lvers
Reed Little
Robert Nord
Judith Stafford

January 2002

TECHNICAL NOTE
CMU/SEI-2002-TN-001

——=—— (arnegieMellon

——— Software Engineering Institute

Pittsburgh, PA 15213-3890

Documenting
Software Architecture:
Documenting
Behavior

CMU/SEI-2002-TN-001

Felix Bachmann
Len Bass

Paul Clements
David Garlan
James lvers
Reed Little
Robert Nord
Judith Stafford

January 2002

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office

HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

Theideas and findingsin this report should not be construed as an official DoD position. It ispublished in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

P i i,

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

Thiswork is sponsored by the U.S. Department of Defense. The Software Engineering Instituteis a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright © 2002 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL ISFURNISHED ON AN “AS-IS’ BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, ASTO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOESNOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

Thiswork was created in the performance of Federal Government Contract Number F19628-00-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, afederally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit othersto do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our
Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

ADSEract vii
1 IntrodUCHiON ... e 1
2 Beyond StrUCIUIE 2
3 Whereto Document Behavior 3
4 Why Document Behavior? e e 4
4.1 System Analysis 4
4.2 Driving Development Activities e 5

5 What to DOCUMENt 7
5.1 Typesof Communication it 7
5.2 Constraintson Ordering 8
5.3 Clock-Triggered Stimulation i, 8

6 How to Document Behavior: Notations and Languages 9
6.1 Static BehavioralModeling 10
6.1.1 Statecharts 11

6.1.2 ROOMcharts 13

6.1.3 Specification and Description Language (SDL) 13

6.1.4 ZLanguUaget e 16

6.2 Trace-Oriented Representationsouuiunn. 16
6.2.1 Use-CaseDiagramsiuiiiniia... 18

6.2.2 Use-CaseMaps (UCMS)cciiiiiiiinnnnnnnn. 19

6.2.3 Sequence Diagramsiiiiiii 22

6.2.4 Collaboration Diagrams 26

6.2.5 MSCS .. 27

T SUMMAIY ottt e e e e e e e 30
8 For FurtherReading e 31
8.1 UsefulWeb Sites 33
RefereNCeS. . . o 35

CMU/SEI-2002-TN-001

CMU/SEI-2002-TN-001

List of Figures

Figure 1.
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Possible Usage of Different Behavioral Descriptions
Statechart Representation of JavaPhone
Hierarchical Structureinthe SDL oL,
Intra-Process Behavior in an SDL Flowchart.
Example Z Schema. i e e
Use-Case Diagram of JavaPhone.
Sketch of Activities Through Some Components
“Establish Point-to-Point Connection” UCM
Example Sequence Diagram.

Example Sequence Diagram of “Establish Point-to-Point
CONNECHION . . .

Procedural Sequence Diagram of “Establish Point-to-Point
CONNECHION . . .

Example Collaboration Diagram of “Establish Point-to-Point
CoNNEeCtioN”

AnExampleofan MSC.

CMU/SEI-2002-TN-001

CMU/SEI-2002-TN-001

List of Tables

Table 1: Types of Communication. i, 7

Table 2. Features Supported by the Different Representation Techniques . ..

Table 3: URLs to Go to for More Information

CMU/SEI-2002-TN-001

Vi

CMU/SEI-2002-TN-001

Abstract

This report represents another milestone of awork in progress. a comprehensive handbook on
how to produce high-quality documentation for software architectures. The handbook, tenta-
tively titled Documenting Software Architectures, will be published in early 2002 by
Addison-Wesley as part of the Software Engineering Institute (SEI) Series on Software Engi-
neering.

The book isintended to address alack of language-independent guidance about how to capture
an architecture in awritten form that can provide a unified design vision to all of the stake-
holders on a development project.

A central precept of the book isthat documenting an architecture entails two essential steps:
(1) documenting the set of relevant views of that architecture, and then compl eting the picture
by (2) documenting information that transcends any single view. The book’s audience is the
community of practicing architects, apprentice architects, and developers who receive archi-
tectural documentation.

Thistechnical note describes ways to document an important but often overlooked aspect of
software architecture: the behavior of systems, subsystems, and components.

CMU/SEI-2002-TN-001 vii

viii CMU/SEI-2002-TN-001

1 Introduction

This report represents another milestone of awork in progress. a comprehensive handbook on
how to produce high-quality documentation for software architectures. The handbook, tenta-
tively titled Documenting Software Architectures®, will be published in early 2002 by
Addison-Wesley as part of the Software Engineering Institute (SEI) Series on Software Engi-
neering. Since this report is a snapshot of current work, the material described here may
change before the handbook is published.

The book isintended to address alack of language-independent guidance about how to capture
an architecture in awritten form that can provide a unified design vision to all of the stake-
holders on a devel opment project.

A central precept of the book isthat documenting an architecture entails two essential steps: 1)
documenting the set of relevant views of that architecture and then completing the picture by

2) documenting information that transcends any single view. The book’s audience is the com-
munity of practicing architects, apprentice architects, and devel opers who receive architectural
documentation.

Two previous reports laid out our approach and organization for the complete book and pro-
vided self-contained previews of individual chapters. The first provided guidance for one of
the most commonly used architectura views: the layer diagram [Bachmann et al. 00]. The sec-
ond laid out a structure for a comprehensive architecture documentation package [Bachmann
et a. 01].

Thistechnical note describes ways to document an important but often overlooked aspect of
software architecture: the behavior of systems, subsystems, and components.

1. A previous working title was Software Architecture Documentation in Practice.

CMU/SEI-2002-TN-001 1

2 Beyond Structure

The classical approach for architecture documentation, and one which we endorse, is organiz-
ing the architectural documentation as a collection of architectural views. Most people
describe views principally in terms of the structural relationships among the views elements.
However, architecture extends beyond structure. Without taking into account how the ele-
ments behave when connected to each other, there can be no assurance that the system will
work asintended. Achieving such assurances before the system has been fully implemented is
amajor goal of paying attention to its architecture. Element behavior, therefore, is an essential
part of architecture and therefore of architecture documentation.

This report focuses on the value of, and techniques for, documenting behavioral aspects of the
interactions among system elements. Documenting behavior is away to add more semantic
detail to elements and their interactions that have time-related characteristics.

Documenting the behavioral aspects of aview requiresthat a“time line€” of some sort be pro-
vided along with structural information. Structural relationships provide aview of the system
that reflects all potential interactions; few of which will actually be active at any given instant
during system execution. It isthe system behavior that describes how element interactions
may affect one another at any point in time or when in a given system state. Every view can
have an associated description that documents the behavior of the elements and relationships
of that view.

Some system attributes can be analyzed entirely using a system’s structural description. For
example, the existence of anomalies, such as required inputs for which there is no source
available, can be detected in a manner similar to the def-use analysis performed by compilers.
However, reasoning about properties such as a system'’s potential to deadlock or a system’s
ability to complete atask in the required amount of time requires that the architectural descrip-
tion contain information about both the behavior of the elements and constraints on the inter-
actions among them. A behavioral description adds information that reveals

e ordering of interactions among the elements
e opportunities for concurrency
» time dependencies of interactions (at a specific time or after a period of time)

Interaction diagrams or statecharts as defined by the Unified Modeling Language (UML) are
examples of behavioral descriptions.

The remainder of thisreport provides guidance asto what aspects of behavior to document and
how this documentation is used during the earliest phases of system development. In addition,
we provide overviews and pointersto languages, methods, and tools that are available to help
practitioners document system behavior.

2 CMU/SEI-2002-TN-001

3 Where to Document Behavior

Architects document behavior to show how an element behaves when stimulated in a particu-
lar way, or to show how an ensemble of e ements (up to and including the whole system) react
with each other. In an architectural documentation package, behavior can be shown in a num-
ber of places, depending on what exactly is being shown:

* Inaview’s supporting documentation:

- Behavior hasits own section in the element catalog. Here, the behavior of the element
is documented.

- Behavior can be part of an element’s interface documentation. The semantics of a
resource on an element’s interface can include the el ement’s (externally visible)
behavior that occurs as a result of invoking the resource. Or, in the “Usage Guide”
section of an interface document, behavior can be used to explain the effects of a par-
ticular usage, that is, a particular sequence of resources utilized. Finally, the architect
may choose to specify behavior as part of the implementation notesfor an interface, to
constrain the devel opers to implement the interface in a particul ar fashion.

- Behavior can be used to fill in the “Design Background” section, which includes the
results of the analysis. Behavior is often abasis for analysis, and the behaviors that
were used to analyze the system for correctness or other quality attributes can be
recorded here.

» Inthe documentation that applies across views, the rationale for why the architecture satis-
fiesits requirements can include behavioral specifications as part of the architect’s justifi-
cation.

CMU/SEI-2002-TN-001 3

4 Why Document Behavior?

The documentation of system behavior is used for system analysis and for communication
among stakeholders during system-devel opment activities.

The types of analysis you perform and the extent to which you check the quality attributes of
your system will be based on the type of system that you are developing. It is generally agood
ideato do some type of tradeoff analysis to determine the costs and risks involved with apply-
ing certain types of architectural analysis techniques. For any system it is agood ideato iden-
tify and simulate a set of requirements-based scenarios. If you are developing a safety-critical
system, the application of more expensive, formal analysis techniques (such as model check-
ing) isjustified in order to identify possible design flaws that could lead to safety-related fail-
ures.

4.1 System Analysis

If you have a behavioral description, you can reason about the system’s compl eteness, correct-
ness, and quality attributes.

Once the structure of an architectural view has been identified and the interactions among ele-
ments have been constrained, it istimeto take alook at whether the proposed system is going
to be ableto do its job the way in which it should. Thisis your opportunity to reason about
both the completeness and the correctness of the architecture. It is possible to s mulate the
behavior of the proposed system in order to reason about the architecture’s ability to support
system requirements both in terms of whether it supports the range of functionality that it is
supposed to and also to determine whether it will be able to perform itsfunctionsin away that
is consistent with its requirements.

Documenting system behavior provides support for exploring the quality attributes of asystem
very early in the development process. There are some existing techniques and some still in
development that you can use to predict the architecture’s ability to support the production of a
system that exhibits specific measures related to properties such as aspects of performance,
reliability, and modifiability.

Architecture-based simulation is similar in nature to testing an implementation in that a simu-
lation is based on a specific use of the system under specific conditions and with the expecta-
tion of a certain outcome. Typically, a developer will identify a set of scenarios based on the
system requirements. These scenarios are similar to test casesin that they identify the stimulus
of an activity and the assumptions about the environment in which the system is running, and
describe the expected simulation results. These scenarios are played out against a description
of the system that supports relating system elements and the constraints on their interactions.
The results of “running the architecture” are checked against the expected behavior. A variety
of notations for documenting the results of system simulation are discussed further in

Section 6.2.

4 CMU/SEI-2002-TN-001

Whereas simulation looks at a set of special cases, system-wide techniques for analyzing the
architecture evaluate the overall system. These include analysis techniques for dependence,
deadlock, safety, and schedulability. These technigues require information about the behavior
of the system and its constituent elements in order to compute the property values. The analy-
sis of inter- and intra-element dependencies has many applicationsin the evaluation of system-
guality attributes. Dependence analysis is used as a supporting analysis to help evaluate qual-
ity attributes such as performance and modifiability.

Compositional-reasoning techniques that are available today, and those that being devel oped
in research laboratories, require information about both the internal behavior of system ele-
ments and i nteractions among them. Thisinformation is stated either as a summarization of the
actual behavior of existing elements or as derived requirements that the implemented element
must satisfy in order to assure the validity of analysisresults. In either case you will need to
document internal element behavior in someway if you are to reap the benefits of early system
analysis.

4.2 Driving Development Activities

Behavioral documentation plays a part in architecture’s role as a vehicle for communication
among stakeholders during system-development activities. The activities associated with
architectural documentation produce confidence that the system will be able to achieveits
goals. Many decisions about the structure of the system were made and documented based on
the perspectives of avariety of stakeholdersin the system’s devel opment. The process of
designing the architecture helps the architects to devel op an understanding of the internal
behavior of system elements aswell as an understanding of gross system structure. This under-
standing can be captured in various types of behavioral documentation and later used to more
precisely specify inter-element communication and intra-element behavior.

System decomposition results in the identification of sets of sub-elements and the definition of
both the structure and the interactions among the el ements of agiven set in away that supports
the required behavior of the parent element. In fact, the behavior defined for the parent ele-
ment has important influence on the structure of its decomposition. As an example, consider
an assignment to design a gateway. The responsibility of a gateway is to receive messages
from one protocol and translate them into another protocol, and then to send them out again.
Unfortunately for many protocols, this translation cannot be done message by message. A set
of messages from one protocol may translate into a single message of the other protocol, or the
content of atranslated message may depend on earlier messages received. The specified
behavior for the gateway describes which sequence of messages would lead to atranslated
message and which information needs to be kept in order to produce the appropriate message
content to be sent. This behavior will likely influence the decomposition in away that reflects
the fact that some elements have the responsibility of dealing with specific sequences of
incoming messages and that other elements have the responsibility of storing the required
information.

Implementing a system using a defined architecture is a continuous process of decomposition
in smaller and more detailed elements by defining the system’s structure and behavior until it

CMU/SEI-2002-TN-001 5

is possible to describe the behavior in a programming language. Therefore the behavioral
description of the architecture, as well as the structura description, isimportant input for the
implementation process.

Additionally, you might want to use simulation during the development of the system. Stimu-
lus-oriented diagrams (such as sequence diagrams) offer a notation for documenting the results
of applying scenariosto a set of elements. Such simulation enables devel opers to gain early
confidence that the system under development will actually fulfill its requirements. Simulation
may even convince management that the developers are doing great things. In order to use
simulation, a behavioral description of the system or its parts is required. The scenarios used
for this purpose can later be used to develop test cases to be applied during integration testing.

6 CMU/SEI-2002-TN-001

5 What to Document

As mentioned above, abehavioral description supports exploring the range of possible orders
of interactions, opportunitiesfor concurrency, and time-based interaction dependencies among
system elements. In this section we provide guidance as to what types of things you will want
to document in order to reap these benefits.

The exact nature of what to mode depends on the type of system that is being designed. For
example, if the system is area -time embedded system, you will need to say alot about timing
properties and the ordering of events; whereas, in a banking system you will want to say more
about the sequencing of events (e.g., atomic transactions and roll-back procedures). Initially
you want to talk about the elements and how they interact, rather than the details of how input
dataistransformed into outputs. It may be useful to also say something about the constraints
on the transformational behavior within elements, in as much as that behavior affects the glo-
bal behavior of the system.

At aminimum, you will want to model the stimulation of actions and the transfer of informa-
tion from one element to another. In addition, you may want to model time-related and order-
ing constraints on these interactions. If correct behavior depends on restrictions as to the order
in which actions must occur or as to combinations of actions that must have occurred before a
certain action can be taken, then these things must be documented. The more information that
is available and made explicit about the constraints on interactions, the more precise the analy-
sis of system behavior can be, and the more likely it will be that the implementation exhibits
the same qualities as those predicted during design.

5.1 Types of Communication

Looking at a structural diagram that depicts two interrelated elements, the first questions doc-
umentation users ask are “What does the line interconnecting the elements mean?’ and “Is it
showing the flow of data or control?’ A behavioral diagram provides a place to describe these
aspects of the transfer of information and the stimulation of actions from one element to
another. Table 1 shows examples of these. Datais some kind of structured information that
may be communicated through shared files and objects. One element may stimul ate another to
signal that some task is completed or that a serviceis required. A combination of thetwo is
possible, as is the case when one element stimulates another to deliver data or when informa-
tion is passed in messages or as event parameters.

Table 1: Types of Communication

synchronous asynchronous
data N/A database, shared memory
stimulation |procedure call without data interrupt
parameters
both procedure call, remote procedure |message, events with parameters
call (RPC)

CMU/SEI-2002-TN-001 7

In addition to the above, you may want to describe constraints on the interaction between ele-
mentsin the form of synchronous or asynchronous communication. An RPC is an example of
synchronous communication. The sender and receiver know about each other and synchronize
in order to communicate. Messaging is an example of asynchronous communication. The
sender does not concern itself with the state of the receiver when sending a message or posting
an event. In fact, the sender and receiver may not be aware of the identity of each other. Con-
sider telephone and email as examples of these types of communication. If you make a phone
call to someone, they have to be at their phonein order for it to achieveitsfull purpose. That is
synchronous communication. If you send an email message and go on to other business, per-
haps without concern for a response, then it is asynchronous.

5.2 Constraints on Ordering

In the case of synchronous communication, you probably want to say more than that there is
two-way communication. For instance, you may want to state which element initiated the
communication and which element will terminate it; you may want to say whether the target of
the original message will need to employ the assistance of other elements beforeit can respond
to the original request. Decisions about the level of detail at which you describe a conversation
depend upon which types of information you want to get out of the specification. For instance,
if you areinterested in performance analysis, it isimportant to know that an element will reach
apoint in its calculation where it requires additional input, since the length of the total calcula-
tion depends not only on the internal calculation, but also on the delay associated with waiting
for required inputs.

You will probably want to be more specific about certain aspects of the way an element reacts
to itsinputs. You may want to note whether an element requires all or just some of itsinputsto
be present before it begins calculating. You may want to say whether it can provide intermedi-
ate outputs or only final outputs. If a specific set of events must take place before an element’s
action is enabled, that should be specified, as should the circumstancesin which a set of events
or element interactions will be triggered or the environment in which an output of an element

isuseful. These types of constraints on interactions provide information that is useful for ana-
lyzing the design for functional correctness aswell as for extra, functional properties.

5.3 Clock-Triggered Stimulation

If activities are specified to take place at specific times or after certain intervals of time, some
notion of time will need to be introduced into your documentation. Using two types of clocks
is helpful for this purpose. One clock measures calendar time to whatever precision isrequired
for the type of system under construction. This clock allows you to specify that certain things
areto happen at certain times of the day or month. For instance, you may want to specify some
behavior differently for weekends and holidays. The other clock countstics or some other, per-
haps more precisely specified, measure of time. This clock allows you to specify periodic
actions, for example, directions to check every five minutes and determine how many people
arelogged on to the system. Whileit is clearly possible to compute one clock from the other, it
is simpler to use both mechanisms when creating your architectural documentation, since
these are two different ways of thinking about time.

8 CMU/SEI-2002-TN-001

6 How to Document Behavior: Notations and
Languages

Any notation that supports documenting system behavior must include constructs for describ-
ing sequences of interactions. Since a sequence is an ordering in time, it should be possible to
show time-based dependencies. Sequences of interactions are displayed as a set of stimuli and
the triggered activities ordered into a sequence by some means (e.g., aline, numbering, order-
ing, from top to bottom). Examples of stimuli are the passage of time and the arrival of an
event. Examples of activities are compute and wait. Notation that showstime as a point (e.g.,
time-out) and time as an interval (e.g., wait for 10 seconds) are normally also provided. Asa
description of behavior implicitly refersto structure and uses structure, the structural elements
can be part of the notation. Therefore in most behavior documentation, you can find represen-
tations of

e gimulusand activity
e ordering of interactions
e structural elements with some relationships to which the behavior maps

Two different groups of behavioral documentation are available, and the notations to support
the documentation of behavior tend to fall into one of two corresponding camps:

» static views. One type of documentation, often state based, shows the complete behavior
of astructural element or set of elements. Thisis referred to as a static view of behavior,
becauseit is possible to infer all possible traces through a system given this type of docu-
mentation. Static behavioral documentation supports the description of aternatives and
repetitions to provide the opportunity of following different paths through a system
depending on runtime values. With this type of documentation, it is possible to infer the
behavior of the elementsin any possible case (arrival of any possible stimulus). Therefore,
this type of documentation should be chosen when a complete behavior description is
required, asis the case for performing a simulation or when applying static-analysis tech-
niques.

» traces. Another type of documentation shows traces (e.g., interaction diagrams) through
the structural elements. Those traces are only complete with regard to what happensin a
system in case a specific stimulus arrives. Trace descriptions are by no means complete
behavioral descriptions of a system. On the other hand, the union of all possible traces
would generate a complete behavioral description. Trace descriptions are easier to design
and to communicate because they have a narrow focus. Consequently, if the goal isto
understand the system or to analyze a difficult situation that the system has to deal with, a
trace-oriented description for the behavior isthefirst choice.

There are many notations available for both types of behavioral documentation. The differ-
ences between these methods lay in the emphasis that is put on certain aspects of the behavior
(stimulus, activity, ordering, elements). There is also a difference in how much detail can be
described. In areal-time environment where the timing behavior isimportant, you might want
to describe not only the ordering of stimuli/activity in time but aso the amount of time con-

CMU/SEI-2002-TN-001 9

sumed by an activity. This could be done, for example, by having textural annotations on
activities or by having an underlying “time grid.”

In the sections that follow, we provide cursory overviews of several notations within each of
these categories. The discussions are intended to provide aflavor of the particular notations
and to motivate their use. There are many ways in which the diagrams we present in this sec-
tion may be used together to support the design process. One possible set of representations
that uses the strengths of several different notations for describing activities during the design
process of a system is shown in Figure 1. Functional requirements are represented as use
cases, which help to clarify the understanding of the requirements and the system boundaries.
Use-case maps (UCMs) describe how the use cases work their way through the elements of a
system and are used as the basis for defining the messages between the elements, using one of
the message-interaction diagrams such as sequence diagrams, collaboration diagrams, or mes-
sage-sequence charts (M SCs). Once the message interface between the elementsis well under-
stood, a static behavioral model may be used to describe the internal behavior of the elements.
This model might be a state-based formalism (such as a statechart, ROOMchart, or SDL flow-
chart) or aformalism based on pre- and post-conditions (such as the Z language).

Son S B R B

Use Cases Use-Case Maps Interaction Statecharts
Diagrams

1
AliE

Figure 1: Possible Usage of Different Behavioral Descriptions

6.1 Static Behavioral Modeling

Static behavioral modeling shows the complete behavior of a structural element or set of ele-
ments. It ispossibleto infer al of the possible traces through a system given this type of docu-
mentation. The state-machine formalism is a good candidate for representing the behavior of
architectural elements, because each state is an abstraction of al the possible histories that
could lead to that state. Oncein a state, it doesn’t matter how the system got there, only that it
isthere; it will react to the occurrence of agiven event in the same way regardless of the sys-
tem’s particular history at the time the event occurs. Notations are available that allow you also
to describe the internal behavior of elementsin terms of finite state machines and element-to-
element interactions in terms of interprocess communication of various types. These nota-
tions allow you to overlay a structural description of the system’s elements with constraints on
the interactions and timed reactions to both internal and environmental stimuli.

In this section we describe two state-based notations: statecharts, which are extensions to the
basic notion of finite state machines, and ROOM charts, which further extend the notion to
address the needs of object-oriented descriptions of the behavior of real-time systems. We also
describe the Specification and Description Language (SDL) and the Z language.

10 CMU/SEI-2002-TN-001

Although other notations are available, we have chosen these because they allow usto
describe the basic concepts of documenting behavior in formsthat capture the essence of what
you wish to convey to system stakeholders. They are also used as base representations in the
tools that you are most likely to encounter. Each notation has been incorporated into one or
more development environments that allow you to design, simulate, and analyze your system
early in the development process.

6.1.1 Statecharts

A statechart is aformalism that was developed by David Harel in the 1980s for describing
reactive systems. Statecharts are powerful graphical notations that allow you to trace the
behavior of your system given specific inputs. Statecharts add a number of useful extensions
to traditional state diagrams, such asthe nesting of states and orthogonal regions (AND states).
These provide the expressive power to model abstraction and concurrency.

A limitation of finite-state-machine representations is that there is no notion of depth. State-
charts extend the finite-state-machine formalism to support the description of the transforma-
tions within a state in terms of nested states. The outer state is called the superstate and inner
states are referred to as substates. When the superstate is entered, all substates are initiated at
their respective default start state, and they remain active until the superstate is exited. A state
runs when all entry conditions are fulfilled. The behavior of any substate can be expanded if
desired. Substates can be related either by sequence (i.e., one state |eads to another depending
on the occurrence of events) or by concurrency (i.e., states are in orthogonal regions and are
activated upon entry to the superstate).

Statecharts have their limitations. Several simplifying assumptions are incorporated into the
statechart model. Among these is the assumption that al transitions take zero time. This
allows aset of transitions within a substate to replace asingle transition at the superstate level.
As an example, the transition from entering a state to exiting it is taken to be zero. However if
we expanded the state, we might see that there are several transitions within it. Clearly each
transition takestime, but thisfact is abstracted away in statecharts. Additionally, statechartsdo
not provide any built-in support for modeling protocols; state transitions are instantaneous and
reliable. These simplifying assumptions allow you to record and analyze your system before
many design decisions are made. However as you refine your knowledge of the system, you
will want to create more precise descriptions.

The exampl e statechart shown in Figure 2 illustrates the states that some of the JavaPhone™
objects (Call, Connection, and Terminal Connection) can be in when a phone connection is
established and disconnected. This statechart contains important states and transitions but is by
no means compl ete.

™ Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

CMU/SEI-2002-TN-001 11

/ Java Telephony Application Program Interflbce (JTAPD) \

(call create))i (Connection ~gse) h
idle]
| idle
Call.connect()/
'y _Connection.create() “Provider places call”/
active TC.create()
—
Connection.disconnected v
—Y TC.active
inactive
—
L) TC.dropped
(Terminal N
Connection “Phone busy”/
(TC) dropped

“Phonerings’/
y ringing

disconnect()/

disconnected
disconnect()/

disconnected

\ 2

Key: Syntax for event/action names:
name State name() : method call
name :event

“name”’ : event from
telephony integration platform

event/action Transition
—>

Figure 2. Statechart Representation of JavaPhone

Sequence is represented by a single-headed arrow leading from the source state to the target
state and is annotated with a pair consisting of the possibly parameterized event that causes the
transformation, separated by a slash from any events generated along with the state transition.
Thus a transformation sets in motion the change in state of one system element and the triggering
of transformations in others. Concurrency is represented by grouping sets of states into a super-
state, where the states are separated by dotted lines and where there are no arcs between the
states.

Here, the JavaPhone superstate contains the substates: Call, Connection, and Terminal Connec-
tion. The default start for each substate is depicted by an arrow that has no source state. At the
beginning, Callis in the idle state. As soon as the connect() event arrives, a Connection is created,
which transitions into the idle state. From there commands are exchanged with the telecommuni-
cation platform and Terminal Connections are created. Terminal Connections receive events from
the telecommunication platform, which lead to state changes. Those changes trigger state chang-
es in the Connection, which in turn trigger state changes in the Call.

12 CMU/SEI-2002-TN-001

6.1.2 ROOMcharts

Real -time obj ect-oriented modeling (ROOM) is an approach to devel oping software that is
particularly designed to support the use of abject-oriented design techniquesto aid in the
development of real-time systems that are driven by scheduling demands. Because ROOM s
an object-oriented approach, it supports the use of data abstraction, encapsulation, and inherit-
ance. The primary objectsin ROOM descriptions are actors that communicate by exchanging
messages. The behavior associated with an actor is documented as a hierarchical state machine
and isincorporated into a ROOMchart.

A ROOMchart isagraphical notation that is a close cousin to the statechart. The conceptsin
ROOMcharts are very close to commonly used, object-oriented constructs, thus allowing a
smooth transition from the high-level design associated with an architectural description down
to the detailed description of the system’simplementation. The desire to include thisfeatureis
one of the reasons that statecharts were not incorporated directly into ROOM. The developers
of ROOM wanted to support describing the details of protocols and scheduling. Supplement-
ing statecharts in thisway made it necessary to exclude other features. The most notable exclu-
sionisdirect support for documenting composite AND states. The lack of this feature does not
preclude the representation of orthogonality however. Other features of ROOM can be used to
achieve the same goal but with more effort required. One additional feature offered in ROOM
is support for the modeling of major concepts associated with object-oriented languages such
as inheritance and encapsulation. Behavioral inheritance is also included; thus all features of
behavior can be inherited among related actor classes.

The developers of ROOM were particularly interested in providing away to support devel op-
ing asystem in pieces at various levels of detail at the sametime. The ROOM modeling envi-
ronment supports execution of the model and thereby supports simulation of the architecture.
Executable ROOMcharts run on avirtual machine provided by the ROOM environment. The
virtual machine provides a set of predefined services; others can be defined by users. Among
the predefined, interdependent services are timing, processing, and communication services.
The timing service supports both types of time mentioned in “Clock-Triggered Stimulation”
on page 8.

This capability to create more precise descriptions required more effort from the modeler and
made it necessary to trade off some of the expressive power of statecharts.

6.1.3 Specification and Description Language (SDL)

The SDL is an object-oriented, formal language that was defined by the International Tele-
communication Union (ITU). Thislanguage is intended for the specification of complex,
event-driven, real-time, and interactive applications involving many concurrent activities that
communicate using discrete signals. The most common application isin the telephony area.

The accessible SDL can be used in an environment that is constructed of tools that support the
documentation, analysis, and generation of systems. Its desigh was driven by the requirements

CMU/SEI-2002-TN-001 13

of developing communication systems; thus it will be particularly useful to you if that is the
type of system you are developing. The strength of the SDL isin describing what happens
within a system. If the focus is on the interaction between systems, a message-oriented repre-
sentation such asan MSC is more suitable. SDL specifications are often used in combination
with M SCs (discussed later in this report) to explore the behavioral properties of a system.

The SDL uses afinite-state-machine formalism at its core to model behavior. The notation
focuses on the transition between states rather than the states themselves, aswas the casein
statecharts and ROOM charts. Constructs for describing the hierarchical structure and the inter-
element behavior enhance the capability for modeling large-scale systems.

Inthe SDL, structure is described in terms of a hierarchy of blocksthat is eventually refined
into sets of processes as shown in Figure 3. The flow of data and stimulation among blocks

JTAPI
SIGNAL
Connect, disconnect, “provider places call”,
“phone busy”, “phone rings’, active, dropped,
ringing, disconnected
[“provider
i laces call”
connect Call < [i sconnected] Connection P

[disconnect i
[disconnect]

, [active]
Termina [dropped]
connection [I’i ngi ng]

4 [“phone busy”]
[“phonerings’]

Key: |:| Block —» Channel

o Process [name] Signal

Figure 3: Hierarchical Structure in the SDL

The structure of a system is decomposed into a hierarchy of named blocks. Blocks are
composed of either blocks or processes, but not combinations of both.

and processes is described as signals that travel over named channdls. Sgnals are the means of
communication between blocks and processes. Communication is asynchronous and specified
textually as an annotation attached to a communication channel. Signals are visible to other
blocks/processes at lower levels in the hierarchy, rather than enclosing blocks or other blocks
at the same level.

14 CMU/SEI-2002-TN-001

Theinternal behavior of aprocessis described in the finite-state-machine formalism using the
flowchart notation. Processes run concurrently and independently; concurrent processes have
no knowledge of each other’s state. Processes can be instantiated at start-up or while the sys-
tem isrunning. The SDL provides arich set of flowchart symbols, afew of which are used in
Figure 4 to describe a simple process that checks a user ID for validity.

Terminal Connection (TC)

originating
terminal 2

no
Request
connection
phone Key:
rings C] Start
) State
[< Incoming signa

> Outgoing signal
<> Decision
[1 Action

Figure 4. Intra-Process Behavior in an SDL Flowchart

The various shapes represent specific aspects of behavior including changing states,
receiving input and sending output, making decisions, and so on, and the arrows rep-
resent the flow from one activity to the next in the direction of the arrow.

The SDL supports user-defined data types and provides several predefined types (integer, real,
natural, Boolean, character, charstring, Pld, duration, and time) that have expected meanings.
Variables, user-defined data types, and constant data values can be declared.

The hierarchy of blocks provides a structural view of the system, while the flow among the
blocks and processes combined with process flowcharts describes system behavior. Once these
aspects have been documented, it is possible to simulate the system and observe control and
data flow through the system as signals pass from block to block and into processes where
they move through the flowchart representation of process behavior. This type of simulation
allows you to visibly check how your system will react to various stimuli.

CMU/SEI-2002-TN-001 15

6.1.4 ZlLanguage

Z, pronounced “zed,” is a mathematical language based on predicate logic and set theory. The
goal for the Z language wasthat it be arigorously defined language that would support the for-
mal description of a system’s abstract properties. The Z language focuses on data and its trans-
formations. Systems are specified as sets of schemas. Schemas are combined using the schema
calculus to create a complete behavior. The schema calculus allows type checking. Tools are
available for performing type checking as well as other types of behavioral analysis.

Schemas allow the designer and other users of the specification to focus concern on one small
aspect of the system at atime. Simplicity is achieved by breaking a problem into small pieces
that can be reasoned about in isolation. A schemais a description of some unit of functionality
in terms of a set of variables and the pre- and post-conditions of the system state associated
with those variables. This allows agreat deal of design freedom in that behavior is specified
independently of how tasks are performed. The Z language supports a compositional approach
to devel opment and thereby provides the benefit of increased tractability when designing large
systems. The Z language is particularly useful when you desire to prove properties based on
the specification, asis the case when building safety-critical systems. In addition, an array of
commercial toolsis available to support developing systems based on the Z language. These
are some of the reasonsthat many practitioners who are experienced in the use of the language
consider it to be an inval uable tool. However, because it includes alarge set of symbolsand its
expressions are written in terms of predicatelogic, it is difficult for some designersto warm up
toit.

The ScheduleClass schema shown in Figure 5 defines what it means to add a class to a sched-
ule and provides only the flavor of aZ schema. There are many other constructs available for
specifying more complex types of relationships. A description of the schema calculusis
beyond the scope of this presentation as are the details of Z type checking and other aspects of
the specification language. As mentioned earlier, there are many references available if you
areinterestedinusing Z.

6.2 Trace-Oriented Representations

Trace-oriented representations consist of sequences of activities or interactions that describe
the system’s response to a specific stimulus. They document the trace of activities through a
system described in terms of its structural elements and their interactions. Although it is con-
ceivable to describe al possible tracesthrough a set of elementsto generate the equivalent of a
static behavior description, it is not the intention of trace-oriented views to do so. Thiswould
reduce the benefit of being readily comprehensible due to the resultant loss of focus.

Different techniques emphasize different aspects of behavior:

» Message-oriented techniques focus on describing the message exchange between
instances. They show sequences of messages and possibly time dependencies. The basic
assumption hereisthat you will be able to understand and/or build an element if you

16 CMU/SEI-2002-TN-001

~ ScheduleClass

DSchedule
class?. CLASS NAME
time?: TIME

class? O scheduled

scheduled’ = scheduled [{ class? Etime?}

Figure 5. Example Z Schema

The lines above the center horizontal line are variable definitions. The letter D signifies the
fact that a schema named Schedule exists and that all of its variables are available to
ScheduleClass. The variable names that end in a question mark (?) are input variables. The
text below the center horizontal line first gives pre-conditions for an operation and then
states the promised results of the transformation. The single quotation mark (') attached to
the word scheduled indicates that the variable it is attached to will be transformed into the
result of the expression on the right side of the equals sign (=). In this case the class will be
added to the schedule and will be associated with the specified time.

understand which messages arrive at this element and what the reactionsin terms of out-
going messages have to be. Internal features of the element(s) are hidden.

» Component-oriented techniques focus on describing which behavioral features an element
hasto have in order to accommodate the system in performing its functions. This normally
focuses on describing how the interfaces of the elementsinteract with each other in order
to fulfill the system’s functional requirements. Sequences of interactions can be shown,
and internal features of the element(s) are hidden.

» Activity-oriented techniques focus on describing which activities have to be performed in
order to achieve the purpose of the system. The assumption here is that in order to under-
stand what asystem (or element) does (or will do), you need to understand the sequence of
activitiesthat it entails. Activity-oriented representations may not even show the elements
performing those activities. However, it is assumed that there is some means outside of
this specific representation technique that allows the assignment of the described activities
to elements.

» Flow-oriented techniques focus on describing the sequencing of responsibilities of ele-
ments for a specific scenario or trace. Thisis useful in understanding concurrency and
synchronization.

Now, let'slook closer at some of the popular, trace-oriented, representation techniques. We
will discuss message-oriented techniques (such as sequence diagrams and MSCs) aswell as
component-oriented techniques (such as collaboration diagrams and a special version of
sequence diagrams, the procedura sequence diagram). In addition we show an example of an
activity-oriented representation, which is a use-case diagram, and a flow-oriented representa-
tion, whichisaUCM.

CMU/SEI-2002-TN-001 17

6.2.1 Use-Case Diagrams

Use-case diagrams show how users interact with use cases and how the latter are interrelated.

The purpose of a use case isto define a piece of an element’s behavior such as a system or its
parts as a sequence of activities, without regard to the internal structure of the element. There-
fore, a use-case diagram is an activity-oriented representation.

Each use case specifies a service that the element provides to its users (i.e., a specific way of
using the element). The service, which isinitiated by a user, is a complete sequence of interac-
tions between the users and the element as well as the responses performed by the element (as
these responses are perceived from outside of the element). Use cases by themselves cannot be
decomposed, but each element of a system can have a use case that specifies its behavior.
Therefore, a complete set of use cases for the children elements of a system decomposition
builds the basis for the use cases of the parent element.

Use-case diagrams focus on creating a behavioral description that specifies requirementsin a
more concise way. These diagrams do not really focus on assigning behavior or stimuli to
structural elements, although that can be done using other methods such as sequence or collab-
oration diagrams. Additionally, use-case diagrams do not have a means to document concur-
rency, although the underlying assumption is that all use cases can be performed
independently.

Figure 6 shows an example of a use-case diagram. Thetop portion shows how phoneterminals
interact with the “ Establish Point-to-Point Connection” use case. Since phone terminals are
external to the specified element, they are represented by actors. An actor is a set of roles that
external entities assume when interacting with use cases. There may be associations between
use cases and actors, meaning that the instances of the use case and the actor communicate
with each other. A use-case instance isinitiated by a message from an instance of an actor. As
aresponse, the use-case instance performs a sequence of actions as specified by the use case.
These actions may include communicating with actor instances besides the initiating one.

Figure 6 also illustrates how use cases can have relationships with each other. An extend rela-
tionship defines that instances of a use case may be extended with some additional behavior
defined in an extending use case. An extension point references one location or a collection of
locationsin a use case where the latter may be extended. A generalization relationship
between use cases implies that the child use case contains all the sequences of behavior and
extension points that are defined in the parent use case, and that it participatesin dl the rela
tionships of the parent use case. The child use case may a so define new behavior sequences,
as well as add behavior into and specialize the existing behavior of the inherited ones. An
include relationship between two use cases means that the behavior defined in the target use
caseisincluded at one location in the sequence of behavior that is performed by an instance of
the base use case.

Normally ause caseisdescribed in plain text, but other techniques (such as sequence diagrams
or statecharts) can be attached to a use case to describe its behavior in amore formal way.

18 CMU/SEI-2002-TN-001

6.2.2 Use-Case Maps (UCMs)

The UCM notation was developed at Carleton University by Professor Buhr and his team, and
it has been used for describing and understanding a wide range of applications since 1992.
UCM s concentrate on visualizing execution paths through a set of elements and provide a
bird's-eye, path-centric view of system functionalities. UCMs allow dynamic behavior and
structures to be represented and evaluated, and improve the reusability level of scenarios. The
fairly intuitive notation of UCMs is very useful to communicate how a system works (or is
supposed to work), without getting lost in too much detail.

Terminal 2
(Calleg)
communicates

Point-to-Point
Connection

communicates

Termina 1

(Caller) <<extend>>

Terminal 3
(Callee)
Call forwarding

Figure 6: Use-Case Diagram of JavaPhone

UCMs can be derived from informal requirements or from use casesif they are available. The
responsibilities for each actor need to be stated in or inferred from these requirements. For
illustration purposes, separate UCMs can be created for individual system functionalities or
even for individual scenarios. However, the strength of this notation resides mainly in the inte-
gration of scenarios. Therefore, UCMs can be used to illustrate concurrency, such as resource-
consumption problems (multiple paths using one element) or possible deadlock situations (two
paths in opposite directions through at least two of the same elements).

If you ever followed adiscussion of developers who are concerned mainly about concurrency
to answer questions like, “Does a component need to be locked?’ or “Isthere a potential for
deadlock?’, you may have seen them drawing pictures like the one shown in Figure 7. This
type of notation builds the basis for UCMs.

The basic idea of UCMsi s captured by the phrase causal paths cutting across organizational
structures. This means that execution paths describe how elements are ordered according to
the responsibilitiesthey carry out. These paths represent scenarios that intend to bridge the gap
between functional requirements and a detailed design.The realization of thisidea produces a

CMU/SEI-2002-TN-001 19

scalable, lightweight notation, while at the same time covering complexity in an integrated and
manageabl e fashion. The UCM notation aimsto link behavior and structure in an explicit and
visual way.

Figure 7. Sketch of Activities Through Some Components

Like the other representations, UCMs show instances of structural elements. In addition,
UCMs have anotation for the “ containment” of those elements and thus show atype of rela-
tionship that is normally shown in structural descriptions. By doing this, UCMs are easy to
understand; it is easy to describe how sub-€lements contribute to the system behavior.

When an execution path (aline) enters an element (abox), it states that now this element does
its part to achieve the system’s functionality. A responsibility assigned to the path within the
element’s box definesit as aresponsibility of this element. The example UCM shown in Fig-
ure 8 shows the flow of activities through the el ements of a JavaPhone application when a
Point-to-Point Connection is established.

The notation includes a means to represent the decomposition of execution paths. Thisfeature
allows step-by-step understanding of more and more details of the system. The example
includes a decomposition shown by the diamond-shaped symbol. The “ Callee service” decom-
position is shown in the little UCMSs. In this specific case, decomposition is also used to show
possible variations. Callee service cannot only be decomposed into abasic call, it also can be
decomposed so that the feature “Call forwarding” is added.

The notation for UCMs aso includes symbols: for timers (and time-outs); for using data con-
tainers; for the interaction between execution paths such as abort; for goals, which are very
useful when describing agent-oriented components; and many more.

20 CMU/SEI-2002-TN-001

Root
Call Call established Connection

4 N I R7 \\

Designati
connect R1 /S
o—

aN Callegfservice
Source // \
\ /
%
N p
Terminal Connection
connected(T1) /f e \\
/\
ringing(T2 R5
ringi ng(T3I))’is J
| 7aY
passive(TS)I VALY
answer(T2) R4)))
(= \ X
Callee service: Basic call R1: Establish Connection
Connection)]
/ \\ Designation R2: Alert designation
addresses R3: Connect to source
Start R2 | R4: Set terminal active
— A | S :
R5: Connect to designation terminal
R6: Set terminal passive
\ / R7: Connect to designation
Callee service: Call forwarding Key:
Connection

/ \\ Use-Case Map

Designati . .
ol oes Object (replicated)

Start R8 R2 |

B
o— 74 7a | 0—| Path with start and end

AND fork
K / RE .
« 7 Stub(dynamic)

Figure 8: “Establish Point-to-Point Connection” UCM

Execution paths are represented as sets of wiggly lines. Execution paths have a beginning
(large dot) and an end (bold straight line). Execution paths can split to show concurrent
activities, can have alternative ways, or can join together again. The responsibilities as-
signed to a path are shown as annotated little crosses on that path. Decomposition and
variation are shown as a diamond-shaped symbol in the parent UCM, that has incoming
and outgoing execution paths. An assigned child UCM shows what happens in more de-
tail.

CMU/SEI-2002-TN-001

6.2.3 Sequence Diagrams

Sequence diagrams document a sequence of stimuli exchanges. A sequence diagram presents a
collaboration in terms of instances of elements defined in the structural description with a
superimposed interaction and shows that interaction arranged in atime sequence. In particular,
a sequence diagram shows the instances participating in the interaction. A sequence diagram
has two dimensions:

1. Thevertica dimension representstime.
2. Thehorizontal dimension represents different objects.

In asequence diagram, associations among the objects are not shown. There is no significance
to the horizontal ordering of the objects.

Seguence diagrams support the depiction of dependent interactions nicely, which means that
they show which stimulus follows another stimulus. Sequence diagrams are not very explicit
in showing concurrency. There might be the assumption that the different sequences of inter-
action shown in different diagrams actually can be performed independently of each other. If
that is the intention when documenting behavior using sequence diagrams, it should be docu-
mented somewhere. It definitely is not documented within a sequence diagram, which shows
instances as concurrent units; they run in parallel. However, no assumptions can be made
about ordering or concurrency when a sequence diagram depicts an instance sending messages
a the “same time’ to different instances or conversely receiving multiple stimuli at the “same
time.”

A component-oriented style of sequence diagram is the procedura sequence diagram. This
style of diagram focuses on the interface interactions of elements and is more suitable to show
concurrency, because it has some means to show flow control, such as decisions and loops.

22 CMU/SEI-2002-TN-001

Figure 9 shows an example sequence diagram.

Figure 9:

——» 0b2:C2

Example Sequence Diagram

Instances have a “lifeline” drawn as a vertical line along the time axis. A lifeline can exist
to describe that the particular instance already exists (e.g., instance ob1l of type C1). A
lifeline can begin and end to show the creation and destruction of an instance, for ex-
ample, instance ob2 of type C2. The lifeline starts at the box that shows the instance
and ends at the big X. The arrow labelled op() depicts the message that creates the in-
stance. A stimulus is shown as a horizontal arrow. The direction of the arrow defines the
producer (start of the arrow) and the consumer (end of the arrow) of the stimulus. A stim-
ulus can have a name, which describes the stimulus, and can map to a function (oper-
ation) of the instance that receives the stimulus. A stimulus can be drawn as a dotted
line. In that case it describes a return of control to the sender of a stimulus. Different
notations for arrows are used to represent different properties of stimuli. There are no-
tations that distinguish between synchronous and asynchronous communication and
timer stimuli, and between periodic and aperiodic events.

Usually only time sequences are important, but in real-time applications, the time axis could
be an actual metric.

CMU/SEI-2002-TN-001

23

Figure 10 shows an example sequence diagram.

Application Call
connect(create() |Originating
Connection
create() | Destinating
Connection
create() [Terminal 1
Connection
create() [Termina 2
Connection
create() [Terminal 3
active Connection
connected ri ng| ng
ringing
alerting
answer()
active
passive()
connected

Figure 10: Example Sequence Diagram of “Establish Point-to-Point Connection”

The lifeline is shown as a vertical line to indicate the period in which the instance is active.
The vertical ordering of stimuli shows the ordering in time. Vertical distances between stimuli
may describe time duration in the sense that a greater distance stands for a longer time.

24

CMU/SEI-2002-TN-001

Figure 11 shows an example of a procedural sequence diagram.

Application Call

connect() create() |Originating
Connection
create()| Destinating
Connection
create[Terminal 1
Connection
[for all terminal] create()._| Terminal 2..n
|| Connection
[orignating] active
]Lnot originating] ringing//
1 ringin
N WL ging | |
answer()
| R active __
passive()

connected || |[for all otherjterminal] passive()

Figure 11: Procedural Sequence Diagram of “Establish Point-to-Point Connection”

An arrow (solid line) maps into a stimulus triggering a synchronous action, which is normally
a function or method call. A “focus of control” (thin boxes over the lifeline of an instance) is
added in this diagram style to show that some computation is done by the instance. The ar-
rowhead pointing to a focus of control activates this function. Alternative execution paths as
shown for the “Originating Connection” instance as well as possible parallel execution paths
as shown for the “passive()” function of the “Destinating Connection” instance can be rep-
resented. Arrows with dotted lines represent asynchronous events that trigger activities in
the instance to which the arrowhead points.

Although now aricher notation is available, not all possible concurrency can be shown in this
style of sequence diagram. For example, the function of the instance “ Destinating Connection”
triggered by the event “active” could spawn concurrent threads that executes the “passive()”
function of the same instance in parallel. The diagram is not specific at this point. The way it
shows the behavior would alow for parallel as well as sequential execution.

A constraint language (such asthe Object Constraint Language [OCL] described by the Object
Management Group [OMG 01]) can be used in order to add more precise definitions of condi-

CMU/SEI-2002-TN-001 25

tions like guard or iteration conditions. OCL statements can be attached to the arrow and
become recurrence values of the action attached to the stimulus. A return arrow departing the
end of the focus of control mapsinto a stimulusthat (re)activates the sender of the predecessor
stimulus.

6.2.4 Collaboration Diagrams

Collaboration diagrams are component oriented. They show the relationships among the inter-
faces (normally call interfaces) of instances and are better for understanding all of the effects
on agiven instance and for procedural design. In particular, a collaboration diagram showsthe
instances participating in an interaction that exchange stimuli to accomplish a purpose.
Instances shown in a collaboration diagram are those of elements described in the accompany-
ing structural representation and show the aspects of the structural elements that are affected
by the interaction. In fact, an instance shown in the collaboration diagram may represent only
parts of the according structural element.

Collaboration diagrams are very useful when the task is to verify that a structure design can
fulfill the functional requirements. They are not very useful if the understanding of concurrent
actionsisimportant, for example in a performance analysis.

For example in the structura description, there might be an element that stands for a bank
account. In a collaboration diagram that shows what happens in a banking system if auser
withdraws some money, only the money-manipulating aspect of a bank account is required
and shown. In addition to this, the structural description about a bank account may also
include maintenance features such as changing the address of this account’s owner. The behav-
ior of this feature is not important when describing the behavior of awithdrawal. However,
there might be another collaboration diagram that describes the behavior of the bank system
when an owner’s address needs to be changed. In both diagrams, instances of a bank account
will be shown, but both instances only show the particular aspects that are important for the
specific diagram.

A collaboration diagram also shows the relationships among the instances, called links. Links
show the important aspects of the relationships between those structural instances. Links
between the same instances in different collaboration diagrams can show different aspects of
relationships between the according structural elements. Links between instances have no
direction. A link only states that the connected instances can interact with each other. If amore
accurate definition is required, additional representational elements (perhaps atextual descrip-
tion) have to be introduced.

Seguence diagrams and collaboration diagrams express similar information. Some people pre-
fer the sequence diagram because it shows time sequences explicitly, making it easy to see the
order in which things occur. (Collaboration diagrams indicate sequencing using numbers.)
Other people prefer the collaboration diagram because it shows element relationships, making
it easy to see how elements are statically connected. (Sequence diagrams do not show these
relationships.) Figure 12 shows an example of a collaboration diagram.

26 CMU/SEI-2002-TN-001

1: connect()
:Application —» :Call
1.1a create()
11a1.1.1: 41
connected connected #1.1b: create()
1.1b.1.1.1: - -
alerting
Originating Destinating
:Connection :Connection
1.1b.1a create() 5 - 4 1.1b.1b: create()
11211 actived | y1.1a1: create() Liblal possiveQl 11b.1b.1:
ingi o
gng M 2.1: active rnging
Terminall Terminal2 Terminal3
:Terminal Connection :Terminal Connection :Terminal Connection
2. answer()f

Figure 12: Example Collaboration Diagram of “Establish Point-to-Point Connection”

The sequence of stimuli are shown as little arrows attached to a link between the instances.
The direction of the arrow defines the sender and receiver of the stimulus. Special types of
arrows (such as half-headed arrows) can be used to depict different kinds of communica-
tion such as asynchronous, synchronous, and time-out. Sequence numbers can be added
to stimuli to show which stimulus follows which. Sub-numbering can be used to show nest-
ed stimuli and/or parallelism. For example, the stimulus with a sequence number 1.1a is
the first stimulus sent as a result of receiving stimulus number 1. The letter a at the end
means that there is another stimulus (1.1b) that can be performed in parallel. This number-
ing scheme may be useful for showing sequences and parallelism, but it tends to make a
diagram unreadable.

6.2.5 MSCs

An MSC is a message-oriented representation that contains the description of the asynchro-
nous communication between instances. Simple M SCs amost look like sequence diagrams,
but they have a more specific definition and aricher notation. The main area of application for
MSCsis as an overview specification of the communication behavior among interacting sys-
tems, in particular telecommunication switching systems.

MSCs may be used for: requirement specification, simulation, and validation; test-case speci-
fication; and the documentation of systems. They provide a description of traces through the
system in the form of amessage flow. A big advantage of MSCsisthat in addition to graphical
representations, they have a textual specification language defined for them. Thisallows a

CMU/SEI-2002-TN-001 27

more formalized specification with the ability to generate test cases that test an implementa-
tion against the specification.

M SCs can often be seen in conjunction with the SDL. Both the SDL and the MSC language
were defined and standardized by the ITU. While MSCs, as shown, focus to represent the mes-
sage exchange between instances (systems, processes, etc.), the SDL was defined to describe
what happens (or should happen) in a system or process. In that respect MSCs and SDL charts
complement each other.

Though MSCslook similar to sequence diagrams, they are used for different purposes. A
sequence diagram shows which parties are involved and how, and is system centricin that it is
used to track a scenario through the system. MSCs are element centric, focusing on the ele-
ment and how it interacts with its environment without regard to the identity of other elements.

The most fundamental language constructs of M SCs are instances and messages describing
communication events. The example shown in Figure 13 shows how a JavaPhone application
interacts with the JavaPhone layer in order to establish a Point-to-Point Connection. In an

M SC, communication with outside elements is shown by message flow to and from the frame
that marksthe system environment. The example also shows descriptions of actions (Alert and
Establish Connection) as well as the setting and resetting of atimer.

28 CMU/SEI-2002-TN-001

The complete M SC language has primitives for local actions, timers (set, reset, and time-out),
process creation, process stop, and so forth. Furthermore M SCs have a means to show decom-
position and so can be used to construct modular specifications.

JavaPhone
Application JavaPhone
some action connect()
connected
Alert
aerting
T
answer()
Establish
connection
connected
[] []

Figure 13: An Example of an MSC

Instances are shown as a box with a vertical line. The message flow is presented by ar-
rows, which may be horizontal, or with a downward slope with respect to the direction of
the arrow to indicate the flow of time. In addition, the horizontal arrow lines may be bent
to admit message crossing. The head of the message arrow indicates message con-
sumption, while the opposite end indicates message sending. Along each instance axis,
a total ordering of the described communication events is assumed. Events of different
instances are ordered only via messages, since a message must be sent before it is con-
sumed. Within an MSC, the system environment is graphically represented by a frame,
which forms the boundary of the diagram. Communication arrows to and from the frame
show message exchange with elements outside the scope of the diagram.

CMU/SEI-2002-TN-001 29

7 Summary

Table 2 summarizes the mgjor features of the notations described in this report.

Table 2: Features Supported by the Different Representation Techniques

Notation Class Focus Stimulus Activity Component Timing
C_ollaboranon Trace | Component + - + -
diagram

MSC Trace Message + + 0 0
Procedural

sequence Trace | Component + + + +
diagram

ROOMchart Static State + 0 - +
SDL Static Transition 0 + - 0
S_equence Trace Message + 0 + +
diagram

Statechart Static State + 0 - 0
UCM Trace Flow 0 0 + -
Use Case Trace Activity 0 0 - -
Z Static Activity - + - -

+ (plus sign) Means that the representation fully supports this feature

0 (zero) Means that the feature is somehow supported by the representation, yet there
are other representations that are more appropriate if the understanding of a design
depends on this feature

- (minus sign) Means that the representation does not or only very weakly supports a
feature

30 CMU/SEI-2002-TN-001

8 For Further Reading

A rich source for behavior descriptions can be found in the UML definition that is publicly
available from the OMG. On the OMG Web site, you can find definitions, descriptions, and
examples of sequence and collaboration diagrams as well as example use cases and statecharts
[OMG]. Severa books also explain the UML and its usage in detail. Two seminal books that
are valuable references are The Unified Modeling Language User Guide [Booch et al. 99b]
and The Unified Software Development Process [Booch et al. 994].

Books that serve as practical guides for using both ROOM charts and statecharts include Real-
Time Object-Oriented Modeling [Selic et al. 94] and Modeling Reactive Systems With Sate-
charts: The Satemate Approach [Harel & Politi 98]. ROOM has been incorporated into Ratio-
nal UML tools.

M SCs, especially when combined with SDL diagrams, are broadly used by the telecommuni-
cation industry. Both languages are standardized by the ITU. On the ITU Web site, you can
find all the references to resources (such as documentation and tool vendors) that you'll need
to understand and use MSCs and the SDL [ITU]. Additional information and pointersto
events, tools, and papers can be found at the SDL Forum Society’s Web site [SDL]. This soci-
ety currently recommends SDL Formal Object-Oriented Language for Communicating Sys-
tems [Ellsberger et al. 97] asthe best practical guideto using SDL.

Many books have been written about use cases. The book from lvar Jacobson that started the
whol e use-case discussion, Object-Oriented Software Engineering: A Case-Driven Approach
[Jacobson 92], can serve as a starting point to understanding what was originally meant by use
cases and their underlying concepts.

UCMsare till being researched, but thereisauser group that triesto show the value of UCMs
by applying the method to several projects. You can find interesting information at this user
group’s Web site [UCM User Group], including a free download of the book Use Case Maps
for Object-Oriented Systems[Buhr & Casselman 96] and access to a free tool that supports
UCMs.

The Z language was originally developed at Oxford University in the late 70s and has been
extended by anumber of groups since then. A large number of support toolsto help create and
analyze specifications have been devel oped by various groups and are available freely over the
internet. A great resource for information and pointersis the Web archive,
<http://www.afm.sbu.ac.uk/z>. There are a number of books that are available through most
bookstores to help you use the Z language. The Z Notation: A Reference Manual, 2nd Ed.
[Spivey 884] provides agood referencein terms of a standard set of features.

Other notations are emerging but not widely used. Some are domain specific like MetaH, and
others are more general like Rapide. Rapide has been designed to support the development of
large, perhaps distributed, component-based systems [Augustin et al. 95]. Rapide descriptions
are stated in atextual format that can be trandated into a box-and-arrow diagram of a set of

CMU/SEI-2002-TN-001 31

connected components. System descriptions are composed of type specifications for compo-
nent interfaces and architecture specifications for permissible connections among a system’s
components. Rapide is an event-based simulation language that provides support for the
dynamic addition and deletion of pre-declared components based on the observation of speci-
fied patterns of events during the system’s execution.

The Rapidetool set includes agraphical design environment that allows a designer to describe
and simulate a system. The result of a Rapide simulation isa POSET, a partially ordered set of
events that forms a trace of the system’s execution. The simulation and analysis tool s support
exploring the correctness and completeness of the architecture. Rapide supports the use of two
clocks and synchronous as well as asynchronous communication. A good tutorial along with
other information and manuals associated with Rapide are available from the Rapide Web site
[Rapide]. Other publications containing information on specific aspects of Rapide arelisted in
“References’ on page 35 [Augustin et al. 95, Luckham & Vera 95, Perrochon & Mann 99].

MetaH was designed specifically to support the development of real-time, fault-tolerant sys-
tems. Its primary emphasisis on avionics applications, although it has also been used to
describe avariety of system types. MetaH can be used in combination with ControlH, whichis
used to document and analyze hardware systems. When those two are used in combination, the
system supports the analysis of stability, performance, robustness, schedulability, reliability,
and security.

The style of specification isiterative, beginning with partial specifications based on system
requirements and continuing to lower levels of refinement in the form of source objects.
MetaH has capabilities that support the hierarchical specification of both software and hard-
ware components, and the automatic generation of the “glue code” to combine predefined soft-
ware and hardware components into a complete application. A user manual, instructions for
obtaining an evaluation copy of the tool for use on Windows NT version 4.0, and other associ-
ated information about MetaH is available at the MetaH Web site [Honeywell]. Honeywell
also has a document on its Web site that describes both ControlH and MetaH in terms of their
relationship to domain-specific software architecture [Vestal 94]. Additional publications
about MetaH?2 are listed in “ References’ on page 35 [Colbert et al. 00, Feiler et al. 00, Honey-
well 00].

Architecture description languages (ADLs) have been developed within the research commu-
nity to support the description, in textual form, of both the structure and the behavior of soft-
ware systems. Stafford and Wolf discuss ADLs and provide atable containing references to
and brief descriptions of several languages [Stafford & Wolf 01].

2. Another publication which is not publicly available is “Software Portability Gains Realized with
MetaH, an Avionics Architecture Description Language,” from the Digital Avionics Systems Con-
ference. This conference was held in St. Louis, Missouri on October 23-29, 1999. You can obtain
this document from the author, Bruce A. Lewis.

32 CMU/SEI-2002-TN-001

8.1 Useful Web Sites

Table 3 lists the URLs you can access on the Web if you need more information about the

components discussed in this document.

Table 3: URLSs to Go to for More Information

For information on:

See this Web site:

collaboration diagrams

<http://www.omg.org/uml|>

MetaH

<http://www.htc.honeywell.com/metah>
<http://www.htc.honeywell.com/projects/dssa/dssa_tools
/dssa_tools_mhch.html>

MSCs

<http://www.itu.int/home/index.htm|>
<http://www.sdl-forum.org>

Rapide

<http://pavg.stanford.edu/rapide>
<http://pavg.stanford.edu/rapide/examples/teaching/dtp
/index.htm|>

SDL

<http://www.sdl-forum.org>
<http://www.itu.int/home/index.htm|>

sequence diagrams

<http://www.omg.org/uml|>

statecharts <http://www.itu.int/home/index.htm|>
UCMs <http://www.usecasemaps.org>
z <http://spivey.oriel.ox.ac.uk/~mike/zrm>

<http://www.afm.sbu.ac.uk/z/>

CMU/SEI-2002-TN-001

33

34

CMU/SEI-2002-TN-001

References

[Augustin et al. 95]

[Bass et al. 98]

[Bachmann et al. 01]

[Bachmann et al. 00]

[Booch et al. 99a]

[Booch et al. 99b]

[Buhr & Casselman
96]

Augustin, L. M.; Luckham, D. C.; Kenney, J. J.; Mann, W.; &
Vera, D. Bryan. “ Specification and Analysis of System Architec-
ture Using Rapide.” Transactions on Software Engineering 21, 4
(April 1995): 336-355.

Bass, L.; Clements, P; & Kazman, R. Software Architecturein
Practice. Reading, MA: Addison-Wesley, 1998.

Bachmann, F.; Bass, L.; Clements, P; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Organization of Documentation Package (CMU/SEI-2001-TN-
010). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2001. <http://www.sei.cmu.edu/publications
/documents/01.reports/01tn010.html>.

Bachmann, F; Bass, L.; Carriere, J.; Clements, P; Garlan, D.;
Ivers, J.; Nord, R.; & Little, R. Software Architecture Documenta-
tionin Practice: Documenting Architectural Layers (CMU/SEI-
2000-SR-004, ADA377988). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2000.

<http://www.sei .cmu.edu/publications/documents/00.reports
/00sr004.html>.

Booch, G.; Jacobson, |.; & Rumbaugh, J. The Unified Software
Development Process. Reading, MA: Addison-Wesley, 1999.

Booch, G.; Jacobson, I.; & Rumbaugh, J. The Unified Modeling
Language User Guide. Reading, MA: Addison-Wesley, 1999.

Buhr, R. J. A. & Cassdlman, R. S. Use Case Maps for Object-
Oriented Systems. Upper Saddle River, NJ: Prentice Hall, 1996.

CMU/SEI-2002-TN-001

35

[Colbert et al. 00]

[Ellsberger et al. 97]

[Feiler et al. 00]

[Harel & Politi 98]

[Harel 87]

[Honeywell 00]

[Honeywell]

[ITU]

[Jacobson 92]

[Kazman & Klein 99]

Colbert, E.; Lewis, B.; & Vestal, S. “Developing Evolvable,
Embedded, Time-Critical Systemswith MetaH,” 447-456. Pro-
ceedings of the 34th International Conference on Technology of
Object-Oriented Languages and Systems. Santa Barbara, Califor-
nia, July 30 - August 4, 2000. Los Alamitos, CA: IEEE Computer
Society, 2000.

Ellsberger, J.; Hogrefe, D.; & Sarma, A. SDL: Formal Object-
Oriented Language for Communicating Systems. New York, NY:
Prentice Hall Europe, 1997.

Feiler, P; Lewis, B.; & Vestal, S. Improving Predictability in
Embedded, Real-Time Systems (CM U/SEI-2000-SR-011,
ADA387262). Pittsburgh, PA: Software Engineering I nstitute,
Carnegie Médlon University, 2000. <http://www.sei.cmu.edu
/publications/documents/00.reports/00srO11.html>.

Harel, D. & Politi, M. Modeling Reactive Systems with Sate-
charts: The Satemate Approach. New York, NY: McGraw-Hill,
1998.

Harel, D. “ Statecharts: A Visual Formalism for Complex Sys-
tems.” Science of Computer Programming 8, 3 (June 1987): 231-
274,

Honeywell Laboratories. MetaH User’s Guide [onlin€].
<http://www.htc.honeywell.com/metah/uguide.pdf> (2000).

Honeywell Laboratories, MetaH Evaluation and Support Site.
<http://www.htc.honeywell.com/metah>.

International Telecommunication Union. <http://www.itu.int
/home/index.html>.

Jacobson, |. Object-Oriented Software Engineering: A Case-
Driven Approach. Reading, MA: Addison-Wesley, 1992.

Kazman, R. & Klein, M. Attribute-Based Architectural Syles
(CMU/SEI-99-TR-022, ADA371802). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1999.
<http://www.sei.cmu.edu/publications/documents/99.reports
/99tr022/99tr022abstract.htmi >.

36

CMU/SEI-2002-TN-001

[Luckham & Vera 95]

[OMG]

[OMG 01]

[Perrochon & Mann
99]

[Rapide]

[Rosenberg & Scott
99]

[SDL]

[Selic et al. 94]

[Sowmya & Ramesh
98]

[Spitznagel & Garlan

98]

[Spivey 884]

[Spivey 88Db]

Luckham, D. C. & Vera, J. “An Event-Based Architecture Defini-
tion Language.” Transactions on Software Engineering 21, 9
(September 1995): 717-734.

Object Management Group. <http://www.omg.org/uml>.

Object Management Group. OMG Unified Modeling Language
Specification Version 1.4 (draft) [onling].
<http://www.omg.org/docs/ad/01-02-13.pdf> (2001).

Perrochon, L. & Mann, W. “Inferred Designs.” |EEE Software
16, 5 (September/October 1999): 46-51.

The Stanford Rapide Project. <http://pavg.stanford.edu/rapide>.

Rosenberg, D. & Scott, K. Use-Case-Driven Object Modeling
with UML: A Practical Approach. Reading, MA: Addison-Wes-
ley, 1999.

SDL Forum Saociety. <http://www.sdl-forum.org>.

Sdic, B.; Gullekson, G; & Ward, P. T. Real-Time Object-
Oriented Modeling. New York, NY: John Wiley, 1994.

Sowmya, A. & Ramesh, S. “ Extending Statecharts with Temporal
Logic.” Transactions on Software Engineering 24, 3 (March
1998): 216-231.

Spitznagel, B. & Garlan, D. “Architecture-Based Performance
Analysis,” 146-151. Proceedings of the 1998 Conference on Soft-
ware Engineering and Knowledge Engineering. San Francisco,
California, June 18-20, 1998. Skokie, IL: Knowledge Systems
Institute, 1998.

Spivey, J. M. The Z Notation: A Reference Manual [onling].
<http://spivey.oriel.ox.ac.uk/~mike/zrm> (1988).

Spivey, J. M. Understanding Z: A Specification Language and Its
Formal Semantics. New York, NY: Cambridge University Press,
1988.

CMU/SEI-2002-TN-001

37

[Stafford & Wolf 01]

[Stafford & Wolf 00]

[UCM User Group]

[Vestal 94]

Stafford, J. A. & Wolf, A. L. Ch. 20, “ Software Architecture,”
371-387. Component-Based Software Engineering: Putting the
Pieces Together. Heineman, G. T. & Councill, W. T., eds. Boston,
MA: Addison-Wesley, 2001.

Stafford, J. A. & Wolf, A. L. “ Annotating Components to Support
Component-Based Static Analyses of Software Systems’ [CD-
ROM]. Proceedings of the Grace Hopper Celebration of Women
in Computing Conference 2000. Hyannis, Massachusetts, Sep-
tember 14-16, 2000. Palo Alto, CA: Institute for Women in Tech-
nology, 2000. Also published as report CU-CS-896-99 [onling].
Boulder, CO: University of Colorado, Department of Computer
Science, 1999. <http://www.cs.colorado.edu/department
/publications/reports/Judith_A. Stafford.html>.

Use-Case Maps User Group. <http://www.usecasemaps.org>.
Vestal, S. “Mappings Between ControlH and MetaH” [onling].

<http://www.htc.honeywell.com:80/projects/dssa/dssa_tools
/dssa_tools mhch.html> (1994).

38

CMU/SEI-2002-TN-001

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final
January 2002
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

. . . . C — F19628-00-C-0003
Documenting Software Architecture: Documenting Behavior

6. AUTHOR(S)

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James lvers,
Reed Little, Robert Nord, Judith Stafford

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University
Pittsburgh, PA 15213 CMU/SEI-2002-TN-001
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/XPK AGENCY REPORT NUMBER

5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT 12.b DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (maximum 200 words)

This report represents another milestone of a work in progress: a comprehensive handbook on how to

produce high-quality documentation for software architectures. The handbook, tentatively titted Documenting

Software Architectures, will be published in early 2002 by Addison-Wesley as part of the Software
Engineering Institute (SEI) Series on Software Engineering.

The book is intended to address a lack of language-independent guidance about how to capture an
architecture in a written form that can provide a unified design vision to all of the stakeholders on a
development project.

A central precept of the book is that documenting an architecture entails two essential steps: 1) documenting
the set of relevant views of that architecture and then completing the picture by 2) documenting information

that transcends any single view. The book’s audience is the community of practicing architects, apprentice
architects, and developers who receive architectural documentation.

This technical note describes ways to document an important but often overlooked aspect of software
architecture: the behavior of systems, subsystems, and components.

14. SUBJECT TERMS 15. NUMBER OF PAGES
software architecture, documentation, architectural views, Z, statechart, 50
SDL, behavior 16. PRICE CODE

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION |[19. SECURITY 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED OF ABSTRACT uL

UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Documenting Software Architecture: Documenting Behavior
	Contents
	Figures
	Tables
	Abstract
	1 Introduction
	2 Beyond Structure
	3 Where to Document Behavior
	4 Why Document Behavior?
	4.1 System Analysis
	4.2 Driving Development Activities

	5 What to Document
	5.1 Types of Communication
	5.2 Constraints on Ordering
	5.3 Clock-Triggered Stimulation

	6 How to Document Behavior: Notations and Languages
	6.1 Static Behavioral Modeling
	6.1.1 Statecharts
	6.1.2 ROOMcharts
	6.1.3 Specification and Description Language (SDL)
	6.1.4 Z Language

	6.2 Trace-Oriented Representations
	6.2.1 Use-Case Diagrams
	6.2.2 Use-Case Maps (UCMs)
	6.2.3 Sequence Diagrams
	6.2.4 Collaboration Diagrams
	6.2.5 MSCs

	7 Summary
	8 For Further Reading
	8.1 Useful Web Sites

	References

