Requirements Engineering
for Survivable Systems

Nancy R. Mead
September 2003

Networked Systems Survivability

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2003-TN-013

The Software Engineering Institute is a federally funded research and devel opment center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS' BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, ASTO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal useis
granted, provided the copyright and “No Warranty” statements are included with al reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

Thiswork was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Méllon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit othersto do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

ADSTIACT ..t Vii
N = ¥ Ted 1qe] o 1 U1 o Lo [USSP 1
1.1 Definition of Requirements ENGINEEring.........cccceeeeeevveeiiiiiiiieeeeeeeeiiiinnn. 1

1.2 Typical Requirements Engineering ACtiVities.............cooeoiiiieiiiieiieece 2

1.3 The Role of Requirements Managementccoooeeeeeeeeeeiieeeeeeeeeeeeeen 2

2 Requirements for Survivable SyStemscccccciiiiiiiiiiiiiiiis 5
2.1 Survivable Systems Definitioneuuveieiiiiiiiiiiiiiiiiiiiiiiieeeiees 5

2.2 Survivability REQUIFEMENTSuiiiieeiieeeiiiie e 6
2.2.1 System/Survivability Requirements...........ccccccvvvviiiiiiiiiiiiinneenn. 7

2.2.2 Usage/Intrusion ReqUIreMeNtsS...........ccuuuueeiieeeeeeeeiiiiiieseeeeeeeeennns 9

2.2.3 Development ReqQUIrEMENTS.........ccovviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeee 9

2.2.4 Operations REQUIrEMENTScoieeeeiiieeiiiiiiieeeeeeeeeesiieae e e e eeeeanens 10

2.2.5 Evolution REqQUIrEMENES........cooiiiiiiiiiiiiiiiiiieee 10

2.3 Requirements Definition for Essential Servicesccccccvvvvviiiinnnnns 10

2.4 Requirements Definition for Survivability Services.............cccccvvviinnnnns 11
2.4.1 Resistance Service REqQUIrEMENESccovvvvviiiiiiiiiiiiiiiiiieeeen. 11

2.4.2 Recognition Service RequiremMents.........ccceeeeevvveeviviiiieeeeeeeennns 12

2.4.3 Recovery Service ReqUIremMents...........coovvvvviiiiiiiiiiiiiiiiiiieeeee, 12

2.5 SUMMAIY ..o e e e e e 13

3 Methods and Practices that Support Requirements Engineering for

SUMVIVaDIE SYSTEMS ... e 14

3.1 Some existing methods and practiCesccccvvvviiviiiiiiieeeeeeeeeee 14
3.1.1 Misuse and ADUSE CaASEScoiiiieeiiiiiiiiiie e 14
3.1.2 Formal MethodsS.........ccoooiiiiiiiiii, 16
3.1.3 Use of Trees for Modeling and Analysis...........ccccccvvvviiininnnnnn. 17
3.1.4 Software Cost REdUCHIONccovvvviiiiiiiiiiiiiiiiiieeee 21
3.1.5 Requirements REUSEcccovviiiiiiiiiiiiiii 23
3.1.6 RISK ANAIYSIS ..covviiiiiiii e 23
3.1.7 Examples of Security Requirementsccccccevvvvviiiiiiiinnnnnnn. 25

3.2 Selection of Promising Methods and Practices for Security and
Survivability Requirements ENgiNEeringccooovvvvvviiiiiiiiiiiiiiiiiiieeee, 25

CMU/SEI-2003-TN-013

4 Summary and PlanS ..o 27

R LT AT =2 28

ii CMU/SEI-2003-TN-013

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Figure 6:

Figure 7:
Figure 8:
Figure 9:

Figure 10:

Coarse-Grain Requirements Engineering Process........ccccceevveeevveevvinnnnnn. 2
The Requirements Lifecycle ACHVItIESuuuuieiiiiiiiiiiiiiiiiiiiiiiiiiieiiinnene 3
Requirements Definition for Survivable Systems..............cccoeeieei. 7
Integrating Survivability Requirements with System Requirements 8
The Relationship Between Legitimate and Intrusion Usage..................... 9

Abuse Case Diagram for an Internet-Based Information Security

LaBDOTALIONY .. 15
AACK Tre€ EXAmMPIE ... 18
Relevant Fault Tree SYMDOISccooviiiiiiiiiie e 19

Penetration Fault Tree: Using Buffer Overflow in Network Daemons.....20

Relationship Between the SRS, the SDS, and the SORS 22

CMU/SEI-2003-TN-013 iii

CMU/SEI-2003-TN-013

List of Tables

Table 1: Contrast between Use and Abuse Cases..........cccevveeeiiiiiiiiiiiiieeeenenins 15
Table 2: Differences Between Misuse Cases and Security Use Cases................ 15
Table 3: The Access Control USE Case.........ccoovvieiieieiiieeeeeeeeeeeeeeeeeeeee e 16
Table 4: Condition Table Defining the Value of Term tRemLL.............ccccoeiinnnnne 22
Table 5: OUtCOME AIDULES.........uiiiiiiiiiiii e 24

CMU/SEI-2003-TN-013 v

Vi

CMU/SEI-2003-TN-013

Abstract

This report describes the current state of requirements engineering for survivable systems,
that is, systems that are able to complete their mission in atimely manner, even if significant
portions are compromised by attack or accident. Requirements engineering is defined and
requirements engineering activities are described. Survivability requirements are then
explained, and requirements engineering methods that may be suitable for survivable systems
areintroduced. The report concludes with asummary and a plan for future research
opportunitiesin survivable systems requirements engineering.

CMU/SEI-2003-TN-013 vii

viii CMU/SEI-2003-TN-013

1 Background

In this report we will discuss the current state of requirements engineering for survivable
systems. We start with some genera definitions of requirements engineering and a
discussion of requirements engineering activities. Then we introduce some requirements
engineering concepts for survivable systems. We go on to discuss regquirements engineering
methods that may be suitable for survivable systems, both in the high assurance disciplines
and in other areas aswell. We conclude with a summary and plan for future research
opportunitiesin survivable systems requirements engineering.

1.1 Definition of Requirements Engineering

Thayer and Dorfman [Thayer 97] define software requirements engineering as the science
and discipline concerned with establishing and documenting software requirements. They
state that it consists of software requirements elicitation, analysis, specification, verification,
and management. They define software requirements management as “the planning and
controlling of the requirements elicitation, specification, analysis, and verification activities.”
So, they consider requirements management to be part of requirements engineering.

In the Software Engineering Body of Knowledge (SWEBOK) [Sawyer 01], requirements
engineering is described using afour-step process model, including requirements elicitation,
analysis and negotiation, documentation, and validation. An output of this processis the set
of agreed-upon requirements. Reguirements elicitation is described as the first stagein
building an understanding of the problem that the software is required to solve. Requirements
analysis has to do with the process of analyzing requirements to detect and resolve conflicts
among requirements, discover the bounds of the system and how it must interact with its
environment, and elaborate user requirements to software requirements. Requirements
negotiation hasto do with resolving conflicts, such as those that might occur between
stakeholders, or between requirements and resources. Validation is concerned with checks for
omission, conflicting requirements, and ambiguities. This processisillustrated in Figure 1.

CMU/SEI-2003-TN-013 1

Requirements Requirements

Requirements
documentation

Requirements
validation

dicitation analy_si s and
negotiations

User needs — t
Domain information %quremers S
Existing system information ocumen
Regulations
Standards System
etc. document 1
Agreed-upon
requirements

Figure 1: Coarse-Grain Requirements Engineering Process

1.2 Typical Requirements Engineering Activities

Davis describes the requirements (life-cycle) phase in terms of its activities [Davis 93]. The
two major activities are problem analysis and product description. A “seed idea” initiates the
problem-analysis activities, which include delineating constraints, refining constraints,
tradeoffs between conflicting constraints, understanding the problem, and expanding
information. This set of activitiesresultsin arelatively complete understanding of
requirements, which initiates the product-description activities. During product description,
consistency-checking and congealing take place, resulting in a consistent and complete
software requirements specification. Thisisillustrated in Figure 2.

1.3 The Role of Requirements Management

Let'stake alook at what is meant by requirements management. The Capability Maturity
Model® for Software (SW-CMM®) provides good insight into the meaning of the term. In the
SW-CMM, there are two goalsin the requirements management key process area (KPA):

Goal 1: System requirements allocated to software are controlled to establish a baseline for
software engineering and management use.

® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by
Carnegie Méellon University.

2 CMU/SEI-2003-TN-013

Goal 2: Software plans, products, and activities are kept consistent with the system
requirements all ocated to software [Paulk 94].

the seed idea

\ Delineating constraints

Refining constraints
zﬁlzz Trade-off between conflicting constraints
y Understanding the problem

/ / ¢ \\ Expanding information

A relatively complete understanding of requirements

v ¥/

product
description

Consistency checking
Congealing

aconsistent and complete SRS

Figure 2: The Requirements Life-Cycle Activities

In the SW-CMM Version 2.0 Draft [SEI 97], the Requirements Management KPA was
modified to include three goals:

Goal 1: Repeatable process (RM.GO.01). The activities for managing the allocated
reguirements are institutionalized to support a repeatable process.

Goal 2: Allocated requirements baseline (RM.GO.02). The software project’s baseline of
alocated requirements is established and maintained.

Goal 3: Allocated requirements consistency (RM.GO.03). The software project’s plans,
activities, and work products are kept consistent with the allocated regquirements.

The more recent work on CMM Integration®™ (CMMI®) models has expanded the focus on
requirements engineering and reguirements management.

It is pretty clear from both sets of goals that requirements management focuses on the life-
cycle activities that must take place once the requirements have been established. The steps
involved in establishing the requirements, on the other hand, fall more properly under the
purview of requirements engineering.

M CMM lIntegration is a service mark of Carnegie Mellon University.
® CMMI isregistered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2003-TN-013

In the SWEBOK, requirements management is viewed as an activity that spans the whole life
cycle. It involves change management and maintenance of the requirements in a state that
accurately mirrors the software. The knowledge areas associated with requirements
management are change management, requirements attributes, requirements tracing, and
requirements documentation.

4 CMU/SEI-2003-TN-013

2 Requirements for Survivable Systems

Development of requirements for survivable systems allows us to build on existing
knowledge. The recent series of RHAS [Mead 02, SEI 02] and SREIS[SREIS 02]
workshops provides afocus on requirements for secure and survivable systems. In addition,
thereis an effort underway to recommend modifications to the Capability Maturity Model
Integration (CMMI) models that are aimed at safety and security. In this section we present
some definitional material on survivable systems in general, and more specifically on classes
of survivable systems requirements. This section is extracted from a conference paper
originally co-authored with Richard Linger and Howard Lipson [Linger 98].

2.1 Survivable Systems Definition

Survivability refers to the capability of a system to complete its mission in atimely manner,
even if significant portions are compromised by attack or accident. In particular,
survivability refersto the capability of a system to provide essentia services in the presence
of successful intrusion, and to recover compromised servicesin atimely manner after
intrusion occurs. For example, asurvivable financial network would maintain the integrity
and availability of essential information, such as account and loan data, and services, such as
transaction validation and processing. Integrity would be maintained even if particular nodes
or communication links were incapacitated through intrusion or accident, and would recover
compromised information and servicesin atimely manner. While survivability focuses on
the preservation of mission capabilities, it includesissues of confidentiality and integrity as
well. Because of the value of the CERT® intrusion knowledge base, this work has focused on
attack and compromise by intelligent adversaries.

Experience with network systems has shown that no amount of hardening can guarantee
invulnerability to attack. Despite best efforts, systems will continue to be breached. Thusit
isvita to expand the current view of information systems security to encompass system
behavior that contributes to survivability in spite of intrusions or accidents. Network systems
must be robust in the presence of attack and able to survive attacks that cannot be completely
repelled. The growing societal dependency on networks and the risks associated with their
failure require that survivability be designed into these systems, beginning with effective
survivability requirements analysis and definition.

In today’s network environment, system security is largely dependent on the encryption of
data and isolation through mechanisms such as firewalls. While the firewall approachis
currently practical in alimited fashion, it will become increasingly inadequate to protect
systems from intrusion in the rapidly expanding world of unbounded network computing.

CMU/SEI-2003-TN-013 5

Current systems are characterized by customer owned and controlled computing resources
communicating over unbounded networks. In future systems, most computing resources will
be resident within unbounded network infrastructures and will be controlled by a multitude of
computing and communications service providers. These environments will be so
unbounded as to render ineffective current security approaches, such asfirewalls, that are
based solely onisolation. In such environments, firewalls will be ineffective in detecting
attacks, recovering from attacks, or helping systems survive intrusions and complete their
missionsin spite of malicious activity. Future unbounded systems will aso embody dynamic
architectures, capable of automated, real-time reconfiguration and adaptation in response to
changing requirements and environments.

In summary, survivable network systems embody two essential characteristics. First, they
preserve essential services under intrusion and recover full servicesin atimely manner.
Second, they ensure survivability in environments characterized by unbounded networks and
dynamic architectures. It is often the case that insufficient emphasisis placed on these
survivability issues. Asaresult, the processes and techniques for addressing survivability are
generally inadequate to deal with the threat. Concepts of system survivability provide a
framework for integrating established disciplines of system reliability [Musa 87], saf ety
[Leveson 95], security [Clark 93], and fault tolerance [Mendiratta 96], as well as emerging
disciplines such as dynamic system adaptation, diversification,' and trust maintenance.

2.2 Survivability Requirements

Figure 3 depicts an iterative model for defining survivable system requirements. We
recognize that survivability must address not only requirements for software functionality,
but also requirements for software usage, development, operation, and evolution. Thus, five
specific types of requirements definition are relevant to survivable systems in the model of
Figure 3, as discussed below.

1 From “Systematic Generation of Stochastic Diversity in Survivable System Software,” by R.C.
Linger, currently submitted for publication.

6 CMU/SEI-2003-TN-013

v v

Survivability Survivability
Development Operations
Requirements Requirements
|_ ____________ !
System/ System
A - . e - -
» Survivability » Development/
Requirements Evolution
A \4
Legacy/Acquired
Software, System System —

Y

Operation/

Testing/Evaluation Administration

Usage/
» Intr_usion
Requirements

Usage Model
» Development/ I
Evolution

—————— - — ==

I
I
I
I
I
I
| Burvivability Strategieg
I
I
]
I
I

Survivability
Evolution <
Requirements

Figure 3: Requirements Definition for Survivable Systems

2.2.1 System/Survivability Requirements

In this exposition, the term system requirements refers to traditional user functionsthat a
system must provide. For example, a network management system must provide user
functions for monitoring network operations, adjusting performance parameters, and so forth.
System requirements also include non-functional aspects, such astiming, performance, and
reliability. The term survivability requirements refers to system capabilities for the delivery
of essential servicesin the presence of attacks and intrusions, and recovery of full services.

Figure 4 depicts the integration of survivability requirements with system requirements at
node and network levels. First, survivability requires that system requirements be organized
into essential services and non-essential services, perhaps organized in terms of user
categories or business criticality. Essential services must be maintained even during
successful intrusions; non-essential services are to be recovered after intrusions have been
dealt with. Essential services may be further stratified into a number of levels, each
embodying fewer and more vital services, as afunction of increasing severity and duration of
intrusion. It isalso possible that the set of essential services may vary in a more dynamic
manner, depending on a particular attack scenario and the resulting situation. In this dynamic
case, servicesthat are essential under one scenario may not be essential under another,
resulting in different combinations of essential servicesthat are scenario dependent. Thus,
definitions of requirements for essential services must be augmented with appropriate
survivability requirements. Asshown in Figure 3, survivable systems may also include
legacy and commercia off-the-shelf (COTS) components not originally developed with

CMU/SEI-2003-TN-013 7

survivability as an explicit objective. Such components may provide both essential and non-
essential services and may engender specia functional requirements for isolation and control
through wrappers and filters to help permit safe use in a survivable system environment.

Second, Figure 4 shows that survivability itself imposes new types of reguirements on
systems for resistance to, recognition of, and in particular, recovery from intrusions and
compromises [Ellison 97]. These survivability requirements are supported by a variety of
exigting and emerging survivability strategies, as noted in Figure 1 and discussed in more
detail below. Finally, Figure 2 depicts emergent behavior requirements at the network level.
These requirements are characterized as“ emergent” because they result from the collective
behavior of node services communicating across the network, without benefit of centralized
control or information. These requirements deal with the survivability of overall network
capabilities, such as capabilities to route messages between critical sets of nodes regardless of
how intrusions may damage or compromise network topology.

We envision survivable systems as being capabl e of adapting their behavior, function, and
resource allocation in response to intrusions. When necessary, for example, functions and
resources devoted to non-essential services could be reallocated to the delivery of essential
services and intrusion resistance, recognition, and recovery. Requirements for such systems
must specify the behavior for adaptation and reconfiguration in response to intrusions.

Network Level
Emergent Behavior
Requirements:

Node Level Node Level
System Survivability
Requirements: Requirements:

Survivability
Services:

Resistance
Recognition
Recovery

Essential
Functional
Services

Non-Essential
Functional
Services

Figure 4: Integrating Survivability Requirements with System Requirements

Systems can exhibit large variationsin survivability requirements. Small local hetworks may
have few or even no essential services, with acceptable manual recovery times measured in
hours. Large-scale networks of networks may be required to maintain a core set of essential
services, with automated intrusion detection and recovery times measured in minutes.
Embedded command and control systems may require essential servicesto be maintained in
real time, with recovery periods measured in milliseconds. The attainment and maintenance

8 CMU/SEI-2003-TN-013

of survivability consumes resourcesin system development, operation, and evolution.
Survivability requirements for a system should be based on the costs and risks to an
organization associated with loss of essential services.

2.2.2 Usage/lntrusion Requirements

Survivable system testing must demonstrate the performance of essential and non-essentia
system services, aswell asthe survivability of essential services under intrusion. Because
system performance in testing (and operation) depends totally on the usage to whichitis
subjected, an effective approach to survivable system testing is based on usage scenarios
derived from usage models [Mills 92, Trammell 95].

Usage models are devel oped from usage requirements, which specify |egitimate usage
environments and all possible usage scenarios. Usage requirements for essential and non-
essential services must be defined in parallel with system and survivability requirements.
Furthermore, intrusion usage must be treated on a par with legitimate usage, and intrusion
requirements, which specify intrusion usage environments and all possible scenarios of
intrusion use, must be defined aswell. In this approach, intrusion usage is modeled in
conjunction with the legitimate use of system services. Figure 5 depicts the relationship
between legitimate and intrusion usage. Intruders may engage in usage scenarios beyond
legitimate scenarios, but may also employ legitimate usage for purposes of intrusion if they
become privileged to do so.

Intrusion Usage

Legitimate
Usage of
Non-Essential
Functional
Services

Legitimate
Usage of
Essential
Functional
Services

Figure 5: The Relationship Between Legitimate and Intrusion Usage

2.2.3 Development Requirements

Survivability places stringent requirements on system devel opment and testing practices.
Software errors can have a devastating effect on system survivability and provide ready
opportunities for intruder exploitation. Sound engineering practices are required to create
survivable software. We assert the following five principles, four technical and one
organizational, as exampl e requirements for survivable system devel opment and testing
practices:

CMU/SEI-2003-TN-013

e precise specification of required functionsin all possible circumstances of use
e correctness verification of implementations with respect to function specifications

o specification of function usage in al possible circumstances of use, including intruder
usage
e testing and certification based on function usage and statistical methods

e establishment of permanent readiness teams for system monitoring, adaptation, and
evolution

Sound engineering practices are required to deal with legacy and COTS software components
aswell.

2.2.4 Operations Requirements

Survivability places demands on the requirements for system operation and administration to
define and administer survivability policies, monitor system usage, respond to intrusions, and
evolve system functions as hecessary to ensure survivability as usage environments and
intrusion patterns change over time.

2.2.5 Evolution Requirements

System evolution is an inevitable necessity to respond to user requirements for new functions
and increasing intruder knowledge of system behavior and structure. In particular,
survivability requires that system capabilities evolve more rapidly than intruder knowledge to
prevent the accumulation of information about invariant system behavior and structure
needed to achieve successful penetration and exploitation.

2.3 Requirements Definition for Essential Services

The preceding discussion distinguishes between essential and non-essential services. At the
highest level, each system requirement needs to be examined to determine whether it
corresponds to an essential service. The set of essential services must form aviable
subsystem relative to the original system. In the event that levels of essential services are
required, the set of services provided at each level must be examined for completeness and
coherence. As noted above, the set of essential services could vary in a more dynamic way,
depending on particular scenarios or situations. In addition, requirements must be defined for
transitioning to and from essential service modes.

In distinguishing essential and non-essential services, all the usual requirements definition
processes and methods can be applied. Elicitation techniques such as those described in
Software Requirements Engineering [Thayer 97] can help to identify essential services and a
tradeoff and cost/benefit analysis can help to determine appropriate sets of services that

10 CMU/SEI-2003-TN-013

sufficiently address business survivability risks and vulnerabilities. Provisionsfor the
traceability of survivability requirements through design and code must be established, and
special test cases would be required aswell. As noted above, the simulation of intrusion
through intruder usage scenarios would be included in the testing strategy.

2.4 Requirements Definition for Survivability Services

Penetration, exploration, and exploitation create a spiral of increasing intruder authority and
an ever-widening circle of compromise. For example, penetration at the user level is
typically employed as a means to explore for root-level vulnerabilities. User-level
authorization is then employed to exploit those vulnerabilities to achieve root-level
penetration. Furthermore, a compromise of the weakest host in a networked system allows
that host to be used as a stepping-stone to comprise other more protected hosts.

Requirements definitions for resistance, recognition, and recovery services embody selected
survivability strategiesto deal with these phases of intrusion. Some strategies, such as
firewalls, are the product of extensive research and development and are used extensively in
current bounded networks. The following new strategies are emerging as necessary
responses to the unique challenges of unbounded networks.

2.4.1 Resistance Service Requirements

Resistance refers to the capability of a system to deter attacks. Thus, resistance isimportant
in the penetration and exploration phases of an attack, prior to the point where actual
exploitation occurs. Current strategies for resistance include the use of firewalls,
authentication, and encryption. Diversification is an example of astrategy that will likely
become important in future unbounded networks.

Diversification requirements must define a planned variation in survivable system function,
structure, and organi zation, together with ameans for achieving it. Diversificationis
intended to create a“moving target” to intruders and to render ineffective the accumulation of
system knowledge as an intrusion strategy. Diversification also eliminatesintrusion
opportunities associated with multiple nodes that execute identical software and thus exhibit
identical vulnerabilities. Such systems offer tempting economies of scale to intruders, since
all nodes can be penetrated once one node has. Diversification requirements can include a
variation in programs, retained data, and network routing and communication. For example,
systematic means can be defined to randomize software programs while preserving
functionality.?

2 From “ Systematic Generation of Stochastic Diversity in Survivable System Software” by R. C.
Linger, currently submitted for publication.

CMU/SEI-2003-TN-013 11

2.4.2 Recognition Service Requirements

Recognition refers to the capability to recognize attacks or to recognize the probing that may
precede attacks. The ability to react or adapt in the face of intrusion is central to the capacity
of a system to survive an attack that cannot be completely repelled. Reaction or adaptation is
impossi ble without some form of recognition, and thus recognition is essentia in all three
phases of attack.

A substantial body of research and development existsin thisarea. Current strategies for
attack recognition include not only state-of-the-art work in intrusion detection, but also more
mundane but neverthel ess effective techniques of logging and frequent auditing, aswell as
follow-up investigations of reports generated by ordinary error-detection mechanisms. There
are two types of advanced intrusion-detection techniques: anomaly detection and pattern
recognition. Anomaly detection is based on models of normal user behavior. These models
are often established through the statistical analysis of usage patterns. Deviations from
normal usage patterns are flagged as suspicious. Pattern recognition is based on models of
intruder behavior. User activity that matches a known pattern of intruder behavior raises an
alarm.

The requirements for future survivable networks will likely employ additional strategies,
such as self-awareness, trust maintenance, and black-box reporting. Self-awareness refersto
the establishment of a high-level semantic model of the computations that a component or
system is executing or has been asked to execute. A system or component that “ understands’
what it is being asked to do isin a position to refuse those actions that would be dangerous,
compromise a security policy, or adversely impact the delivery of minimum essentia
services. By trust maintenance, we refer to arequirement for periodic queries among the
components of a system (e.g., among the nodes in a network) to continually test and validate
trust relationships. The detection of intrusion signs would trigger an immediate test of trust
relationships. Black-box reporting refers to a dump of system information that could be
retrieved from a crashed system or component for analysis by the rest of the system to
determine the cause of the crash (e.g., design error or specific intrusion type), and thereby
prevent other components from suffering the same fate.

In summary, a survivable system design must include explicit requirements for attack
recognition. These requirements will ensure the use of one or more of the strategies
described above, through the specification of architectural features, automated tools, and
manual processes. Since intruder techniques are constantly advancing, it is essential that
recognition requirements be subject to frequent review and continuous improvement.

2.4.3 Recovery Service Requirements

Recovery refersto a system'’s ability to restore services after an intrusion has occurred and to
improve its capability to resist or recognize future intrusion attempts. Recovery also
contributes to a system’s ability to maintain essential services during intrusion.

12 CMU/SEI-2003-TN-013

The requirements for recoverability are what most clearly distinguish survivable systems
from merely secure systems. Traditional computer security leadsto the design of systems
that rely almost entirely on hardening (i.e., resistance) for the protection of system resources
and services. Once security is breached, damage may soon follow with little to stand in the
way. As stated earlier, the ability of a survivable system to react or adapt in the face of an
activeintrusion is central to the capacity of a system to survive an attack that cannot be
completely repelled. Thus, recovery is crucial during the exploration and exploitation phases
of intrusion.

Recovery strategies in use today include the replication of critical information and services,
the use of fault-tolerant designs, and a variety of backup systems for hardware and software,
including maintaining master copies of critical software in isolation from the network.
Future recovery strategies will most certainly include dynamic system adaptation, which will
not only help a system recover from a current attack, but also permanently improve a
system’s ability to resist, recognize, and recover from future intrusion attempts. For
example, arecoverability requirement for a survivable system may include infrastructure
support for the capacity to inoculate the entire system against newly discovered security
vulnerabilities, through the automated distribution and application of security fixesto all
network elements. Similarly, recoverability requirements may specify that intrusion-
detection rule sets are to be updated in atimely manner, in response to reports of known
intruder activity from an authoritative source of security information, such asthe CERT
Coordination Center.

In summary, explicit requirements for recovery are crucia for the design of a survivable
system. Recovery requirements make adaptability an integral part of asystem’'sdesign. As
was the case for resistance and recognition regquirements, the constant evolution of intruder
techniques makes it essential that recovery requirements be subject to frequent review and
continuous improvement.

2.5 Summary

In this section we have discussed some definitional work towards identifying and classifying
survivable systems requirements. We have also identified strategies that can assist in
identifying survivable systems requirements, and which ultimately result in systems that are
more survivable. There have been other general approaches to requirements engineering for
security requirements that are also worth reading about [Firesmith 03b]. In addition, our life-
cycle research emphasi zes the importance of survivability requirements engineering [Mead
01].

CMU/SEI-2003-TN-013 13

3 Methods and Practices that Support Requirements

Engineering for Survivable Systems

There has been a significant amount of work on methods to support requirements for
survivable systems. In this section, we sketch out some of these methods. Thiswill alow us
to build on existing work, and to select promising methods for experimentation.

3.1 Some existing methods and practices

3.1.1 Misuse and Abuse Cases

A security “misuse” case [Alexander 03, Sindre 00, Sindre 02] avariation on a use caseg, is
used to describe a scenario from the point of view of the attacker. Since use cases have
proven useful in documenting normal use scenarios, they can also be used to document
intruder usage scenarios, and ultimately used to identify security requirements or security use
cases [Firesmith 03a]. A similar concept has been described as an “abuse” case [McDermott
01, McDermott 99].

One obvious application of amisuse caseisin diciting requirements. Since use cases are
used successfully for éiciting requirements, it follows that misuse cases can be used to
identify potential threats and to elicit security requirements. In this application, the
traditional user interaction with the system is diagrammed simultaneously with the hogtile
user’'sinteractions. An example of thisis shown in Figure 6 [Alexander 03].

14 CMU/SEI-2003-TN-013

Malicious
Student

Nazgul

Script
Kiddie

Capture lab host

Figure 6: Abuse Case Diagram for an Internet-Based Information Security

Laboratory

Alternatively, abuse cases tend to show the “abuse” side of the system, in contrast to
traditional use cases. The contrast between use and abuse casesis shownin Table 1

[McDermott 99].

Table 1: Contrast between Use and Abuse Cases

Use Case

Abuse Case

o A complete transaction between one or more
actors and a system

o UML-based use case diagrams
o Typically described using natural language

e A family of complete transactions between one
or more actors and a system that resultsin harm

e UML-based use case diagrams

e Typically described using natural language. A
tree/DAG diagram may also be used.
e Potentially one family member for each kind of

privilege abuse and for each component that
might be exploited

¢ Includes a description of the range of security
privileges that may be abused

¢ Includes a description of the harm that results
from an abuse case

Using these concepts, Firesmith devel ops tabular examples of security use cases. Hisown
version of the differences between security use cases and misuse casesis shown in Table 2. A
complete exampleis shown in Table 3 [Firesmith 034)].

Table 2: Differences Between Misuse Cases and Security Use Cases

Misuse Cases Security Use Cases
Usage Analyze and specify security threats | Analyze and specify security
requirements
Success Criteria Misuser succeeds Application succeeds

CMU/SEI-2003-TN-013

15

Produced By Security team Security team

Used By Security team Reguirements team

External Actors Misuser, user User

Driven By Asset vulnerability analysis Misuse cases
Threat analysis

3.1.2 Formal Methods

Formal methods are typically used in specification and verification of secure and survivable
systems. From alife-cycle viewpoint, the specification typicaly represents either formal
requirements or aformal step between informal requirements and design.

Some of the methods are applied to security standards, such as the Common Criteriaand IP
Security Protocol (IPSec). Organizationa objectives are translated into the specification of
all relevant security functionsin a planned system. The subset of specificationsto be
implemented isidentified and further assessment or risk analysis takes place [Leiwo 994].

Table 3: The Access Control Use Case

Use Case: Access Control

Use Case Path: Attempted Spoofing Using Valid User | dentity

Security Threat:
The system authenticates and authorizes the misuser asif the misuser were avalid user.

Preconditions:
1) The misuser has avalid means of user identification.
2) The misuser has an invalid means of user identification.

System Requirements

Misuser Interactions - -
System Interactions System Actions

The system shall request the
misuser’s means of identification
and authentication.

The misuser providesavalid
means of user identity but an
invalid means of user
authentication.

1) The system shall misidentify
the misuser as avalid user.

2) The system shall not
authenticate and authorize the
misuser.

The system shall reject the
misuser by canceling the
transaction.

Postconditions:

1) The system shall not have allowed the misuser to steal the user’s means of authentication.
2) The system shall not have authenticated the misuser as a valid user.

3) The system shall not have authorized the misuser to perform any transaction that requires
authentication.

4) The system shall have recorded the access control failure.

16 CMU/SEI-2003-TN-013

The Common Criteria are used during the second or evaluation phase. The Kruger-Eloff
process, based on the Common Criteria, is used for evaluation of information security.
Another effort [Fu 01] contributes to correctness and conflict resolution of PSec security
policy. This method allows definition of a high-level security requirement that can be used to
detect conflicts among IPSec policies, and also aids in automation of the policy specification
process for |PSec policies. Another method focuses more generally on information security
policy specification [Ortalo 98]. A formal specification language is described, and in acase
study the method is applied to the description of security requirements for a medium-size
banking organization. This method provides flexibility and expression so as to correspond to
specific organizational needs.

One study focuses on security policies based on known potential secrets [Biskup 01]. Inthis
study, security requirements are explicitly defined and formally made comparable with
requirements for policies based on secrecy. An evaluation strategy based on lying is adapted
to the framework and formally proven to meet the security requirements. Weak conditions
for the functiona equivalence of lying and refusal are identified, with respect to the
information learned from answers to queries, along with the user’s assumed initial
knowledge. As an example for the dynamic approach based on lies, the authors study
whether users can determine which query answers arereliable. A variant of the refusal-based
approach is analyzed and compared with the lying approach.

The B forma method is used specifically to support the design and validation of the
transaction mechanism for smart card applications. The mathematical proofs provide
confidence that the design of the transaction mechanism satisfies the security requirements
[Sabatier 99].

Aninteresting contribution is amodel that focuses on modeling the organization in which
information security is developed [Leiwo 99b]. The organization is described in layers of
abstraction. In addition, a notation for expressing security requirements is described, under a
framework of harmonization functions and merging of requirements. A case study that
focuses on the security requirements for sharing of patient data among hospitals and medical
practitionersis described.

3.1.3 Use of Trees for Modeling and Analysis

Several approaches depend on the use of trees for modeling survivability requirements.
Attack trees can be used in requirements elicitation [Ellison 03, Moore 01] and fault trees
have been used in requirements analysis [Helmer 02, Kienzle 99].

The notion of attack trees as a method for modeling attacks has been described extensively in
the literature [Schneier 00]. The work by Ellison and Moore [Ellison 03, Moore 01] explores

CMU/SEI-2003-TN-013 17

the use of attack treesin development of intrusion scenarios, which can then be used to
identify requirements. A small attack tree example is shown in Figure 7.

Although aimed initially at architectural analysis, it is easy to see how attack trees can also be
used to help answer the survivability questions:

e How can we detect an attacker during an attempted attack or after a successful attack?
e How can we recover from any compromise?
¢ How can we adapt the system so that the intrusion cannot happen again?

Fault trees use a set of special symbolsto depict intrusions. The symbols used in the paper
by Helmer et al. areillustrated in Figure 8. Fault trees are used for modeling intrusions and
intrusion steps, such as penetration using buffer overflow, illustrated in Figure 9.

Open Safe

: Install
P'CleOCk Learn Combo Cut Opsn Safe Improperly
|

Find Written
Combo Get Combo

| From Target

Threaten
|

Blackmail

Eavesdrop

Bribe

P = Possible
| =Impossible

and

Listen to
Conversation
P

Get Target to
State Combo
I

Figure 7: Attack Tree Example

18

CMU/SEI-2003-TN-013

Rectangle indicates an event to be
analyzed further.

House is used for events that
normally occur in the system. It
represents the continued operation
of the component.

Diamond is used for non-primal
events that are not developed further
for lack of information or insufficient
consequences.

Oval indicates a condition. It defines
the state of the system that permits a
fault sequence to occur. It may be
normal or result from failures.

Figure 8: Relevant Fault Tree Symbols

Circle represents a basic fault event
or primary failure of a component. It
requires no further development.

AND gate indicates that all input
events are required to cause the
output event.

OR gate indicates that one or more of
the input events is required to
produce the output event.

Triangle (in SAPHIRE) is a link to
another tree.

CMU/SEI-2003-TN-013

19

3711100dd13s

suowaeq YI0MIBN Ul MOJUBAQ Jajing Buisn 9811 1ne4 uonenausad :6 ainbi4

[epooyjieys Areuigl amo va
[Buiphue] sSvd ‘(snowdeue|dy) ¥3asn -ed

-11071dX3 d.14-NONV O3X3-3LIS-LI0TdX3 3d0O-d1d4-NONV :QﬂYo_/+Am_o_h.vo\o: J3x3 3LIS ‘zad
[apoojiays snoidiew] sSSvd ‘dy 43sn “1a
()apnooudiss 'Zo
(€T-0002-vD) 0aX3 LIS 'TO
MOJLISA0 JaNg uowaep |rew 4yl ‘89
MOJLIBAO0 JaNg uowaep snieis SHN preisadl /9
vd ed cd 1a MOJ}BA0 Ja}Ng uowaep Junow S4N punow-adl '9g
| i | | Salljigesau|nA MOJLIBAQ Jajing dd1ld 's9
MOJLIBAQ Jayng uowaed sweN aNig ‘v9
MOJJBA0 JaNg uowaeq Jajuld aul Asjexieg ‘g
aiiikele FETES oaxg-aLis MOJLSA0 JaNg uowaep Juale Jajsuel) lew [rewpuas 'zg
MOJLBAQ Jayng uowaed 4Od ‘T4
uoireyiojdxa AljigelauinA MOJUBAQ Jayng uowsed 19N TV
[40) 10
1 |
advni aivis A1NNOW adi4 Q3InvN adl JIVWANIs adod
8d JAS| 9d Gd 45| ed c¢d 1d

|
>>O._u_m_m_>0.n_n_1_m.zo_>_m_<n_..rm_z

v

CMU/SEI-2003-TN-013

20

Once fault trees have been used to model intrusions, they can also be used to help identify
requirements for intrusion detection systems, as described in the paper. Alternatively, fault
tree analysis can be used to identify other security and survivability requirements, once the
fault trees have been used to model intrusion behavior. Formal use of fault trees suggests the
possibility of formal analysis, which could be a great advantage in developing a set of
consistent and compl ete requirements.

The Methodically Organized Argument Tree (MOAT) methodology [Kienzle 98] has
integrated existing techniques into arisk-driven process model. An argument tree
incorporates the desired property, formal proofs, informal reasoning, assumptions, axioms,
lemmas, and component proofs, thus providing a framework for analysis. Tree construction
follows a sequence of steps that incorporates the following processes. Initialization,
Justification, Order of Analysis, Decomposition into Subgoals, Decomposition into
Alternatives, Refinement, Backtracking, Termination Criteria, and Assessment.

3.1.4 Software Cost Reduction

Software Cost Reduction (SCR) isaformal method based on atabular representation of
specifications, and analysis of the requirements for complex systems. It wasoriginally

devel oped to document the behavior of the A-7E aircraft [Heninger 78, Heninger 80], and has
been augmented with atool suite and applied to many complex and safety-critical systems
[Bharadwaj 03, Heitmeyer 96, Heitmeyer 00]. Figure 10 shows the relationship between the
System Requirements Specification (SRS), the System Design Specification (SDS), and the
Software Requirements Specification (SoRS).

CMU/SEI-2003-TN-013 21

NAT

/ sensors =\

System Design input
Specification vars.

System Req.
Specification

SYSTEM —

v

REO

SOFTWARE

/1\

actuators

output
vars.

Software Req. Input Device | M
Specification Interf. Module

Device-Independ.
Module

C. | Output Device

"1 Interf. Module

D_IN

REQ

D_OuT

v

v

Figure 10: Relationship Between the SRS, the SDS, and the SORS

This decomposition is commonly used in many large DoD and other government systems.
The SCR notation is used for specification. According to Heitmeyer and Bharadwaj,

“To specify the required system behavior in apractical and efficient manner,
the SCR method uses terms and mode classes. A termisan auxiliary
variable that helps keep the specification concise. A mode classis a special
case of aterm, whose values are modes. Each mode defines an equivalence
class of system states, useful in specifying the required system behavior. In
SCR specifications, we often use prefixesin variable name. In SCR
specifications, we often use the following prefixes in variable names: “m” to
indicate monitored variables, “t” for terms, “mc” for mode classes, “c” for
controlled variables, “i” for input variables and “0” for output variables.

“Conditions and events are important constructsin SCR specifications. A
condition is a predicate defined on one or more state variables (a state
variable isamonitored or controlled variable, a mode class, or aterm). An
event occurs when a state variable changes value.”

Table 4 is an example of an SCR table.

Table 4: Condition Table Defining the Value of Term tRemLL

Mode Class = mcStatus

Trac.

Mode | Condition

22

CMU/SEI-2003-TN-013

unoccupied |true false FM3
occupied mindoorLL > tCurrentLSVal mindoorLL <tCurrentLSVal FM1
temp_empty | mindoorLL > tCurrentL SVal mindoorLL <tCurrentLSVal FM1,

OR tOverride AND NOT tOverride FM6
tRemLL 0 tCurrentLSVal — mindoorLL |FM1

For survivable systems that require a rigorous specification method, SCR would seemto be a
goaod choice. It isprobably not as useful in the early requirements stages, for example during
elicitation, and may have the most utility in the specification activity that tends to occur
between requirements and design activities.

3.1.5 Requirements Reuse

The promise of requirements reuse is attractive in the information security area. Many
organizations don't really know how to get started in identifying and specifying security
requirements, so theidea of alibrary of reusable security requirementsis very appealing. An
initial approach has been described [Toval 02] and follow-on work isin progress. The
approach describes a possible scheme for a reuse repository and case study examples.

3.1.6 Risk Analysis

One of the challengesin survivable systems has been development of quantitative methods of
assessing risk. Since many organizations are unaware of attacks on their systems, how can
they quantify the risk associated with them? When there is awareness of attacks, it is
typically the virus or worm attacks, scanning, denial-of-service, or other attacks that are easy
to measure using tools. Sophisticated attacks are seldom detected, so how can their risk be
guantified? Without quantifiable risk analysis, how can requirements be developed in a
sensible way to address those risks?

A number of risk analysis methods are currently in use or development. The OCTAVE
method [Alberts 03] provides aframework for survivability risk analysis, but is fairly general
when it comes to requirements. Recent work on multi-attribute risk assessment [Butler 02]
and on arisk-centric decision process [Feather 03] provides some promise in addressing the
risk analysis problem.

OCTAVE risk evaluation has three phases and eight processes. The phasesare

e Phase 1: Build Asset-Based Threat Profiles
e Phase 2: Identify Infrastructure Vulnerabilities

e Phase 3: Develop Security Strategy and Plans

The eight processes are

CMU/SEI-2003-TN-013 23

o FElicitation workshop for senior managers

o Elicitation workshop for operational managers

o FElicitation workshop for general staff, information technology staff
e Creating threat profiles

e |dentifying key components

e Evaluating selected components

e Conducting therisk analysis

o Developing a protection strategy

The OCTAVE process provides a very thorough risk analysis of existing systems. By and
large, the organization provides the resources for this process, with training and assistance
from external facilitators. Itisamajor investment for the organization and provides for
ongoing risk analysis. Requirements are not a major focus of the method, which is geared
towards large operationa systems.

In multi-attribute risk assessment, a security manager’s experienceis used to estimate and
then prioritize security risks and the associated security requirements. Case studies suggest
that security managers do acredible job of assessing existing risks, based on data associated
with actual and predicted attacks. This dataisthen used to help to quantify the possible
negative outcomes, such aslost productivity or public reputation, and using a weighting
scheme, priorities are associated to these risks. An example of these outcome attributes
[Butler 02] isshown in Table 5.

Table 5: Outcome Attributes

OutcomeAttribute | Rank | Assessed Preference | Weight
Lost Productivity 1 100 42
Public Reputation 2 80 33
Regulatory Penalties| 3 40 A7
Lost Revenue 4 20 .08

Therisks correspond to threats, which in turn drive risk mitigation strategies that are
embodied in security requirements. The method requires arelatively small level of effort on
the part of the assessor, and has been used in case studies with several organizations.
Security managers provide data and participate in interviews as part of the assessment
activity.

24 CMU/SEI-2003-TN-013

In risk-centric decision processes® [Feather 03], athree-day workshop is conducted to
identify risks and their mitigation strategies and to decide which mitigation strategies to
pursue. On thefirst day, objectives, risks, and impacts are identified. On the second day,
mitigation strategies and the corresponding reductionsin risk are identified. On the third day,
decision-making is made on which mitigations to perform, which objectives to discard, and
the resources needed to support the strategies. Getting the right set of participants to identify
all of these elementsis key, and the ability to come to adecision in arelatively short timeisa
significant benefit. A tool (DDP) is provided to support the decision process (see
http://ddptool .jpl.nasa.gov).

Another approach suggests devel oping requirements based on two dimensions: “determining
information security concern percentages’ and “the impact of events and the impact on
services, products and processes’ [Gerber 01]. The concerns are confidentiality, integrity,
availability, auditability, and authenticity. The impacts resulting from a security incident are
considered in the second dimension. Examples are given. In this approach, it is suggested
that risk analysisis ho longer adequate to determine the required level of information
security.

3.1.7 Examples of Security Requirements

There are anumber of papersin the literature that have provided examples of security
requirements. Some of these have been discussed in the previous sections. However, there
are others that don't quite fit the earlier discussion, but are neverthel ess noteworthy. We
include some of these here. These papers tend to provide security requirements examples for
specific domains. These include the domains of ATM network security [Leitold 99],

el ectronic commerce security [Labuschagne 00], security requirements for e-business
processes [Knorr 01], security requirements for management systems using mobile agents
[Reiser 00], mediation [Biskup 99], and support for multi-level secure and real-time
databases [Son 98].

3.2 Selection of Promising Methods and Practices for Security
and Survivability Requirements Engineering

In our work with acquirers of systems and with practitioners, we find that many organizations
do not have a good awareness of security and survivability requirements. They do not
identify them during requirements devel opment, so the question of anaysis, specification,
and verification isamoot point. We therefore fedl that elicitation is a good place to start our
quest for survivable requirements engineering. Misuse/abuse cases, security use cases, and
attack trees show some promise for this purpose. In addition, techniques such as structured
interviews, focus groups, and prioritization techniques will play arole.

® Feather, M. S. & Cornford, S. L. “Quantitative Risk-Based Requirements Reasoning.” To appear in
Requirements Engineering (Springer-Verlag) in 2003.

CMU/SEI-2003-TN-013 25

The earlier work in partitioning survivable requirements into classes of requirements should
prove useful in breaking down the problem. We also believe that formal specification
methods such as model checking and SCR will play arole, leading to formal design methods
such as flow-service-quality (FSQ) [Linger 02, Linger 03] and the associated function
extraction methodology (FX).

26 CMU/SEI-2003-TN-013

4 Summary and Plans

Although we have discussed many potentially useful techniques, our discussion is not
exhaustive. We hope that future reports will document additional interesting and useful
techniques that are already available. In addition, much research remainsto be donein this
area. While many of the methods seem promising for survivable system requirements, an
integrated methodol ogy that covers all survivable system requirements needs (from
elicitation to anaysis, specification, and validation, incorporating requirements management)
does not exist at present. Many of the methods that are used in different requirements
activities need to be tested on survivable systems problems as well. Of course, in any
survivable system, there is the question of scale. Large, unbounded systems need
methodological and tool support that goes beyond small research artifacts.

Our plan isto test selected methodol ogies as a proof-of-concept on survivable systems
projects, and to refine promising methods as aresult. An adjunct activity isto use these
building blocks to develop an end-to-end process for survivable system requirements
engineering. Since many operational systems problems are traceable to requirements
problems, we hope to enable development of systems that are more survivable by
successfully using requirements engineering methods in their development.

CMU/SEI-2003-TN-013 27

References

[Alberts 03]

[Alexander 03]

[Bharadwaj 03]

[Biskup 99]

[Biskup 01]

[Butler 02]

[Clark 93]

[Davis 93]

Alberts, C. & Dorofee, A. Managing Information Security Risks: The
OCTAVE Approach. New York: Addison Wesley, 2003.

Alexander, I. “Misuse Cases; Use Cases with Hostile Intent.” |EEE
Software 20, 1 (January-February 2003): 58-66.

Bharadwagj, R. “How to Fake a Rational Design Process Using the
SCR Method,” 3-4. SEHAS 03 International Workshop on Software
Engineering for High Assurance Systems. Portland, OR, May 9-10,
2003. Pittsburgh, PA: Carnegie Melon University, Software
Engineering Institute, 2003.

<http://www.sel .cmu.edu/community/sehas-workshop/bharadwaj/>.

Biskup, J.; Flegel, U.; & Karabulut, Y. “ Secure Mediations:
Requirements and Design,” 127-140. Database Security Xl1: Satus
and Prospects. Edited by S. Jgodia. Twelfth International Working
Conference on Database Security, Chalkidiki, Greece, July 15-17,
1998. Norwell, MA: Kluwer Academic Publishers, 1999 (ISBN
0792384881).

Biskup, J. & Bonatti, P. A. “Lying Versus Refusal for Known Potential
Secrets.” Data and Knowledge Engineering 38 (2001): 199-222.

Butler, S. A. & Fischbeck, P. “Multi-Attribute Risk Assessment.”
SREIS 2002, Second Symposium on Requirements Engineering for
Information Security, Raleigh, NC, October 16, 2002, published by
CERIAS, Purdue University, Lafayette, IN.

Clark, R. K.; Greenberg, I. B.; Boucher, P. K.; Lund, T. F.; Neumann,
P.G; Wells, D. M.; & Jenson, E. D. “Effects of Multilevel Security on
Real-time Applications,” 120-129. Proceedings of the 9th Annual
Computer Security Applications Conference. Orlando, FL, December
6-10, 1993. Los Alamitos, CA: |IEEE Computer Society Press, 1993.

Davis, Alan. Software Requirements: Objects, Functions, & Sates.
Englewood Cliffs, N.J: Prentice-Hall Inc., 1993.

28

CMU/SEI-2003-TN-013

[Ellison 97]

[Ellison 03]

[Feather 03]

[Firesmith 03a]

[Firesmith 03b]

[Fu 01]

[Gerber 01]

[Heitmeyer 00]

Ellison, R. J.; Fisher, D.; Linger, R. C.; Lipson, H. F; Longstaff, T.; &
Mead, N. R. Survivable Network Systems: An Emerging Discipline
(CMU/SEI-97-TR-013, ADA341963). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997.
<http://www.sel .cmu.edu/publications/documents/97.reports/97tr013
/97tr013abstract.html>.

Ellison, R. J. & Moore, A. P. Trustworthy Refinement Through
Intrusion-Aware Design (CMU/SEI-2003-TR-002). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sel .cmu.edu/publications/documents/03.reports
/03tr002.html>.

Feather, M. S. “ A Risk-Centric Decision Process.” Software
Engineering for High Assurance Systems (SEHAS) 2003, Portland,
OR, May 9-10, 2003. <http://www.sei .cmu.edu/community
/sehas-workshop/feather/>.

Firesmith, D. G, “Security Use Cases.” Journal of Object Technology
2, 3 (May-June 2003): 53-64.
<http://www.jot.fm/issues/issue 2003 _05/column6>.

Firesmith, D. G. “Engineering Security Reguirements.” Journal of
Object Technology 2, 1 (January-February 2003): 53-68.
<http://www.jot.fm/issues/issue 2003 _01/column6>.

Fu, Z.; Wu, S. F.; Huang, J.; Loh, K.; Gong, F.; Baldine, I.; & Xu, C.
“I1PSec/VPN Security Policy: Correctness, Conflict Detection and
Resolution,” 39-56. Policies for Distributed Systems and Networks.
Edited by M. Sloman, J. Lobo, and E. C. Lupu. Proceedings of the
International Workshop, POLICY 2001, Bristol, UK, Jan. 29-31, 2001.
Berlin, Germany: Springer-Verlag, 2001 (ISBN 3540416102; Lecture
Notesin Computer Science Vol. 1995).

Gerber, M.; von Solms, R.; & Overbeek, P. “Formalizing Information
Security Requirements.” Information Management and Computer
Security 9, 1 (2001): 32-37.

Heitmeyer, C. & Bharadwaj, R. “ Applying the SCR Requirements
Method to the Light Control Case Study.” Journal of Universal
Computer Science 6, 7 (2000): 650-678.

CMU/SEI-2003-TN-013

29

[Heitmeyer 96]

[Helmer 02]

[Heninger 78]

[Heninger 80]

[Kienzle 98]

[Knorr 01]

[Labuschagne 00]

Heitmeyer, C.; Jeffords, R. D.; & Labaw, B.G. “ Automated
Consistency Checking of Requirements Specifications.” ACM
Transactions on Software Engineering and Methodology 5, 3 (April-
June 1996): 231-261.

Helmer, G; Wong, J.; Slagell, M.; Honavar, V.; Miller, L.; & Lutz, R.
“ A Software Fault Tree Approach to Requirements Analysis of an
Intrusion Detection System.” Requirements Engineering 7, 4
(December 2002): 207-220.

Heninger, K.; Parnas, D. L.; Shore, J. E.; & Kallander, J. W. “ Software
Requirements for the A-7E Aircraft.” Technical Report 3876.
Washington, D.C.: Naval Research Laboratory, 1978.

Heninger, K. L. “ Specifying Software Requirements for Complex
Systems: New Techniques and their Application.” |EEE Transactions
on Software Engineering SE-6, 1 (January 1980): 2-13.

Kienzle, D. M. & WuIf, W. A. “ A Practical Approach to Security
Assessment,” 5-16. Proceedings of the 1998 Wbrkshop on New
Security Paradigms. Charlottesville, VA, Sept. 22-26, 1998. New
York, NY: ACM, 1998 (ISBN 0897919866).

Knorr, K. & Rohrig, S. “Security Requirements of E-Business
Processes,” 73-86. Towards the E-Society: E-Commerce, E-Business,
and E-Government. Edited by B. Schmid, K. Stanoevska-Slabeva, and
V. Tschammer. First IFIP Conference on E-Commerce, E-Business, E-
Government, Zurich, Switzerland, Oct. 4-5, 2001. Norwell, MA:
Kluwer Academic Publishers, 2001 (ISBN 0792375297).

Labuschagne, L. “A Framework for Electronic Commerce, Security,”
441-50. Information Security for Global Information Infrastructures.
Edited by S. Qing and J. H. P. Eloff. Fifteenth Annual Working
Conference on Information Security, Beijing, China, Aug. 22-24,
2000. Norwell, MA: Kluwer Academic Publishers, 2000 (ISBN
0792379144).

[Leitold 99] Leitold, H. & Posch, R. “ATM Network Security: Requirements,
Approaches, Standards, and the SCAN Solution,” 191-204.
Intelligence in Networks, SMARTNET ' 99. Pathumthani, Thailand,
Nov. 22-26, 1999. Boston, MA: Kluwer Academic Publishers, 1999.

30 CMU/SEI-2003-TN-013

[Leiwo 994a]

[Leiwo 99Db]

[Leveson 95]

[Linger 98]

[Linger 02]

[Linger 03]

[McDermott 99]

[McDermott 01]

Leiwo, J. “A Mechanism for Deriving Specifications of Security
Functions in the CC Framework,” 416-425. 10" International
Workshop on Database and Expert Systems Applications. Florence,
Italy, Sept. 1-3, 1999. Berlin, Germany: Springer-Verlag, 1999.

Leiwo, J.; Gamage, C.; & Zheng, Y. “Organizational Modeling for
Efficient Specification of Information Security Requirements,” 247-
260. Advances in Databases and Information Systems: Third East
European Conference, ADBIS 99. Maribor, Slovenia, Sept. 13-16,
1999. Berlin, Germany: Springer-Verlag, 1999 (Lecture Notesin
Computer Science Vol. 1691).

Leveson, N. G Safeware: System Safety and Computers. Reading,
MA: Addison-Wedl ey, 1995.

Linger, R. C.; Mead, N. R.; &Lipson, H. F. “Requirements Definition
for Survivable Systems,” 14-23. Third International Conference on
Requirements Engineering. Colorado Springs, CO, April 6-10, 1998.
LosAlamitos, CA: IEEE Computer Society, 1998.

Linger, R. C.; Walton, G; Pleszkoch, M. G; & Hevner, A. R. “Flow-
Service-Quality (FSQ) Requirements Engineering for High Assurance
Systems.” <http://www.cert.org/archive/pdf/FSQengineeringRHAS-
02paper.pdf> (2002).

Linger, R. C. Applying Flow-Service-Quality (FSQ) Engineering
Foundations to Automated Calculation of Program Behavior
(CMU/SEI-2003-TN-003, ADA412025). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tn003.html>.

McDermott, J. & Fox, C. “Using Abuse Case Models for Security
Requirements Analysis,” 55-64. Proceedings 15" Annual Computer
Security Applications Conference. Scottsdale, AZ, Dec. 6-10, 1999.
LosAlamitos, CA: IEEE Computer Society Press, 1999.

McDermott, J. “ Abuse-Case-Based Assurance Arguments,” 366-374.
Proceedings 17" Annual Computer Security Applications Conference.
New Orleans, LA, Dec. 10-14, 2001. LosAlamitos, CA: IEEE
Computer Society Press, 2001.

CMU/SEI-2003-TN-013

31

[Mead 01]

[Mead 02]

[Mendiratta 96]

[Mills 92]

[Moore 01]

[Musa 87]

[Ortalo 98]

[Paulk 94]

Mead, N. R.; Linger, R. C.; McHugh, J.; & Lipson, H. F. “Managing
Software Development for Survivable Systems.” Annals of Software
Engineering 11 (2001): 45-78.

Mead, N. R. “ Survivability Requirements: How Can We Assess Them
Versus Other Requirements for High Assurance Systems,” 65-68.
International WWorkshop on Requirements for High Assurance Systems,
Essen, Germany, Sept. 9, 2002. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2002.

Mendiratta, V. B. “ Assessing the Reliability |mpacts of Software
Fault-Tolerance Mechanisms,” 99-103. Proceedings of the 7th
International Symposium on Software Reliability Engineering. White
Plains, NY, Oct. 30-Nov. 2, 1996. New York, NY: IEEE Computer
Society Press, 1996.

Mills, H. D. “Certifying the Correctness of Software,” 373-381.
Proceedings of the 25th Hawaii International Conference on System
Sciences, Vol. 2. Kauai, Hawaii, Jan. 7-10, 1992. Los Alamitos, CA:
IEEE Computer Society Press, 1992.

Moore, A. P; Ellison, R. J; & Linger, R. C. Attack Modeling for
Information Security and Survivability (CMU/SEI-2001-TN-001,
ADA388771). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mdllon University, 2001. <http://www.sei.cmu.edu
/publications/documents/01.reports/01tn001.html >.

Musa, J. D.; lannino, A.; & Okumoto, K. Software Reliability:
Measurement, Prediction, and Application. New York, NY: McGraw-
Hill, 1987.

Ortalo, R. “A Flexible Methods for Information System Security
Policy Specification,” 67-84. 5" European Symposium on Research in
Computer Security — Proceedings. Louvain-la-Neuve, Belgium, Sept.
16-18. Berlin, Germany: Springer-Verlag, 1998. (Lecture Notesin
Computer Science Vol. 1485.)

Paulk, M. C.; Weber, C. V.; Curtis, B.; & Chrissis, M. B. The
Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, Reading, MA, 1994.

32

CMU/SEI-2003-TN-013

[Reiser 00]

[Sabatier 99]

[Sawyer 01]

[Schneier 00]

[SEI 97]

[SEI 02]

[Sindre 00]

[Sindre 02]

Reiser, H. & Vogt, G. “ Security Requirements for Management
Systems using Mobile Agents,” 160-165. Proceedings | SCC2000—
Fifth IEEE Symposium on Computers and Communications. Edited by
S. Tohme and M. Ulema. Antibes, France, July 4-7, 2000. Los
Alamitos, CA: IEEE Computer Society, 2000 (ISBN 0769507220).

Sabatier, D. & Lartigue, P. “The Use of the B Formal Method for the
Design and Validation of the Transaction Mechanism for Smart Card
Applications,” 348-368. FM "99: World Congress on Formal Methods,
\ol. |. Toulouse, France, Sept. 20-24, 1999. Berlin, Germany:
Springer-Verlag, 1999. (Lecture Notesin Computer Science Vol.
1708.)

Sawyer, P. & Kotonya, G Ch. 2, “ Software Requirements,” 9-34.
Guide to the Software Engineering Body of Knowledge, Trial Version
1.00 (SWEBOK). LosAlamitos, CA: IEEE Computer Society, 2001.
<http://www.swebok.org/>.

Schneier, B. Secrets and Lies: Digital Security in a Networked World.
New York, NY: John Wiley & Sons, 2000.

Software Engineering Institute. “Requirements Management —
Software Capability Maturity Model (SW-CMM) V2.0 Draft.”
<http://www.sei.cmu.edu/cmmy/draft-c/c21rgm.html> (1997).

Software Engineering Institute. International WWorkshop on
Requirements for High Assurance Systems, Essen, Germany,
September 9, 2002. Pittsburgh, PA: Software Engineering Institute,
Carnegie Mdlon University, 2002.

Sindre, G & Opdahl, A. “Eliciting Security Requirements by Misuse
Cases,” 120-130. Proceedings of TOOLS Pacific 2000. Sydney,
Australia, Nov. 20-23, 2000. LosAlamitos, CA: IEEE Computer
Society Press, 2000.

Sindre, G; Opdahl, S.; & Brevik, G “ Generalization/Specialization as
a Structuring Mechanism for Misuse Cases’, SREIS 2002, Second
Symposium on Requirements Engineering for Information Security,
Raleigh, NC, Oct. 16, 2002, CERIAS, Purdue University, Lafayette,
IN.

CMU/SEI-2003-TN-013

33

[Son 98]

[SREIS 02]

[Toval 02]

[Thayer 97]

[Trammell 95]

Son, S. H. & Chaney, C. “ Supporting the Requirements for Multi-
Level Secure and Real-Time Databases in Distributed Environments,”
73-91. IFIP'98. Vienna, Austria, Aug. 31-Sept. 4, 1998. Chapman &
Hall, 1998.

Second Symposium on Requirements Engineering for Information
Security, Raleigh, NC, October 16, 2002, CERIAS, Purdue University,
Lafayette, IN.

Toval, A.; Nicolas, J.; Moros, B.; & Garcia, F. “Requirements Reuse
for Improving Systems Security: A Practitioner’s Approach”
Requirements Engineering 6, 4 (January 2002): 205-219.

Thayer, R. & Dorfman, M. Software Requirements Engineering, 2nd
ed. LosAlamitos, CA: IEEE Computer Society Press, 1997 (ISBN 0-
8186-7738-4).

Trammell, C. J. “ Quantifying the Reliability of Software: Statistical
Testing Based on a Usage Model,” 208-218. Proceedings of the
Second |EEE International Symposium on Software Engineering
Sandards. Montred, Quebec, Canada, August 21-25, 1995. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

34

CMU/SEI-2003-TN-013

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) September 2003 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Requirements Engineering for Survivable Systems F19628-00-C-0003

6. AUTHOR(S)
Nancy R. Mead

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2003-TN-013
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESCIXPK REPORT NUMBER
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes the current state of requirements engineering for survivable systems, that is, systems
that are able to complete their mission in a timely manner, even if significant portions are compromised by
attack or accident. Requirements engineering is defined and requirements engineering activities are
described. Survivability requirements are then explained, and requirements engineering methods that may be
suitable for survivable systems are introduced. The report concludes with a summary and a plan for future

research opportunities in survivable systems requirements engineering.

14. SUBJECT TERMS 15. NUMBER OF PAGES
requirements engineering, survivable systems, survivability 42
requirements, misuse cases, abuse cases, formal methods, attack
trees, fault trees, Software Cost Reduction, requirements reuse, risk
analysis
16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF | 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT uL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Requirements Engineering for Survivable Systems
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Background
	2 Requirements for Survivable Systems
	3 Methods and Practices that Support Requirements Engineering for Survivable Systems
	4 Summary and Plans
	References

