Topics in Interoperability:
System-of-Systems Evolution

David Carney
David Fisher
Patrick Place

March 2005

Integration of Software-Intensive Systems Initiative

Technical Note
CMU/SEI-2005-TN-002 Unlimited distribution subject to the copyright.

Thiswork is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and devel opment center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, ASTO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOESNOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal useis
granted, provided the copyright and “No Warranty” statements are included with al reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

Thiswork was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, afederally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Contents

N o 1= = T T Y
I |18 o Yo [o 1 o] S 1
1.1 Interoperation as a RelationShipcccooooiiiiiiiiiiiiees 1
1.2 Depicting INtErOPEIatiONuuuuuuueiuniiiiiiiiiiiiniiiiieiieneeeeeneeeeeeeeneeeneenenees 2
1.3 Boundaries of Systems and Systems of Systems............ccccoooeeeeiiienninn. 3
1.4 Relationships Implemented by Systems..........ccccoeeviiiiiiiiiiiiiiiie e, 5
2 Notions of Software EVOlUtion ..., 6
2.1 Existing Research on Software Evolutionccccovvviiiiiiiiie e, 6
2.2 Drivers of Software EVOIUtionooooiiiiiiiiiiii e 7
2.3 System Characteristics that Affect Evolution...............cccccceiiiiiiiiiiinnnnns 8
3 Evolution in the Context of Systems of Systems...........ccccooeiiiii. 9
3.1 Motivation for Evolution of a System-of-Systems............ccccccceviiiiinnnns 9
3.2 Locality of the Evolutionary ProCess..........ccccvviieiiiieeeiiieiiiiie e 10
3.3 Outcome Of EVOIULION ... 10
4 Properties of Evolution that Affect Interoperabilityccccooeeeiiiiins 11
T T=T =T Lo = N 13

CMU/SEI-2005-TN-002

CMU/SEI-2005-TN-002

List of Figures

Figure 1: Systems and RelationShips............uuuiuiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 3
Figure 2: Systems and Systems Of SYSteMScccooiiiiiiiii e 4
Figure 3: Evolution and Interoperabilitycccovviiiiiiii i, 11
CMU/SEI-2005-TN-002 ii

CMU/SEI-2005-TN-002

Abstract

This report examines how interoperable systems of systems evolve. It first considers several
ways in which interoperability can be defined and then examines the notion of software
evolution itself. Next, it considers how evolution occurs in interoperable systems of systems
by discussing issues such as the motivation for and outcome of evolution. Finally, it proposes
several properties of evolution that directly affect interoperability—in particular, how
interoperability can be maintained as the individual systems evolve.

Thisreport isthefirst in a series of reports on interoperability. This series will consider the
various properties and attributes of interoperability in an effort to determine how to measure
the ability of a system to interoperate with other systems; predict the resources needed for
successful interoperation; and discover techniques useful to achieving interoperability.

CMU/SEI-2005-TN-002 \Y

Vi

CMU/SEI-2005-TN-002

1 Introduction

The topic of this paper is the evolution of interoperable systems of systems. We begin with a
brief discussion of interoperability in general that sets out several key concepts that underlie
the remainder of the paper.

1.1 Interoperation as a Relationship

The term interoperability has many definitions,; areasonable oneis

The ability of acollection of communicating entities to (a) share specified
information and (b) operate on that information according to a shared
operational semantics [Brownsword 04].

For the purposes of the discussions that follow, we extend the above definition by adding the
notions of purpose (the god for the interoperation) and context (the environment in which the
entities exist). Thisleadsto a definition of interoperability as

The ability of acollection of communicating entities to (a) share specified
information and (b) operate on that information according to a shared
operational semanticsin order to achieve a specified purposein agiven
context.

The essence of interoperation isthat it is arelationship between systems, where systems are
the entities in the above definition. While our focus will be on computer-based systems, the
definition extends to beyond the world of mechanical systems to organizational and other
contexts. To interoperate one system must provide a service' that is used by another. This
cannot be achieved without, at a minimum, communication from the provider to the
consumer of the service. Our focusis the relationship and not the manner of communication.

Interoperability relationships necessarily involve communication. Just as in the physical
world arelationship of proximity may not involve interoperability (e.g., thetableis closeto
the chair), a proximity relationship in the software domain may not involve interoperation.
For instance, the mere fact that two software systems are both installed on a single machine
does not imply that they are interoperable (though they might, of course, be interoperable by
some other relationship).

For the purposes of this report, we do not take a position with regard to the atomicity of
interoperability relationships. We might define the relationship between two entities as being

1 Whileit seems obvious, it must be stated that provision of service includes the provision of data.

CMU/SEI-2005-TN-002 1

asingle relation that contains multiple communications or as a collection of relations where
each relation isa single communication. For now, we allow interoperability relations to be
split or combined as broadly as seems useful within the constraints that each interoperability
relationship involves (1) multiple” systems (2) service provision and use, and (3) essential
inter-system communi cation.

An interoperability relationship need not be transitive, commutative, or reflexive. In the first
case, A can provide a service to B, and B can provide a service to C without A providing a
serviceto C. In the second case, A can provide a service to B without B providing that (or for
that matter any other) serviceto A. In the third case, A need not be a consumer of its own
services. Note, however, that an interoperability relationship may be transitive, commutative,
or reflexive. For example, in some systems A may provide some service to B and B may
provide the same service to A. In the composition of systems we expect to see many different
kinds of interoperability.

Software interoperability relationships can be of many possible kinds and degree, and can be
brought about by many different implementation mechanisms. For instance, we can describe
some rel ationshi ps between software systems as “tightly coupled,” and other relationships as
“loose.” We can implement an interoperability relationship by means of capabilities entirely
within the communicating entities (e.g., an agreement to share a common protocol), or the
relationship can be implemented by some other software entity (e.g., arequest broker that
relays messages between systems).

1.2 Depicting Interoperation

Throughout this paper we use the simplest graphical means to represent systems and
relationships. We depict systems simply as ellipses (or circles®), and a relationship between
systems as a straight line that connects the ellipses. In the figure below, there are three
systems (A, B, and C) that have interoperability relationships of some kind.

The notion of relation is easily extended to more than two systems. Such extension does not alter
the fundamental concepts of thisreport.

Thisisformally consistent: acircle is an instance of an ellipse whose major and minor axes are the
same.

2 CMU/SEI-2005-TN-002

System A System B

System C

Figure 1: Systems and Relationships

Aswewill more fully discuss in the next section, we do not attempt graphically to convey
any further information. Thus, the three lines above may represent the same relationship or
may be quite different, and the “closeness’ or “tightness’ of the relationships may be similar
or different for al of the lines. Similarly, the systems represented in the above diagram may
be large or small, trivial or complex; and any or al of the circles may even themselves be
comprised of smaller systems.

1.3 Boundaries of Systems and Systems of Systems

Almost every discussion of interoperability is plagued by one annoying reality: any construct
that we label “asystem” may in fact be composed of several constituent systems, and this
may recursively be true at several levels. In other words, anything that at one level we can
call a“system” may actually internally be a“system of systems,” and any “system of
systems’ may itself be part of some larger “system of { systems of systems},” and so forth.

To illustrate, we imagine some hypothetical data Systems that interoperate in some manner.
These data systems could all be elements (e.g., communication or navigation) of amilitary
aircraft’s avionics system, which together with many other systems (weapons system,
mission management system) compose the total aircraft, which itself can be viewed asa
single system. To continue to even higher levels, the aircraft is an element in alarger system
of systems, since it interoperates with other aircraft and other military unitsin combat. The
process can continue recursively through ever larger systems of systems of systems of
systems.

To facilitate our discussion of interoperability, we need to define some level of immediate
interest. To do so we choose one of these many levels as that of “the system” and the next
higher level that of the “system of systems.” The level we chooseis, in a sense, artificial,

CMU/SEI-2005-TN-002 3

since it is only one vantage point within the potentialy large scope of this recursive
sequence. But it is useful to focus discussion and analysis.

Thus, if our concern at the moment is with issues related to low-level data, semantics of data,
and so forth, we could choose the data systems noted above and their interoperability
relationships as our level of interest.

Weillustrate this as follows:

System A System C

-

I nteropera/bi lity
Relationships

e

—_——

System of S/ystems D

Figure 2: Systems and Systems of Systems

Graphically, therefore, we let the three smaller circles above represent the individual data
systems in the hypothetical example described earlier. Each is related to two others by some
interoperability relationship. The three together as arelated unit, that is, the “system of
systems’ is depicted by the large darker oval; this would be the hypothetical avionics system.
The smaller circles may themselves each comprise several systems, and the large oval may
itself be asingle system in some larger context. We temporarily ignore those possibilities and
focus only on the interrelationships between A, B, and C that bring about D. By choosing this
particular vantage point, we are able to consider the precise nature of the three constituent
systems, their interrelationships, and the principles by which the system of systems (D) is
brought about.

At some later time, if our concern liesin some other sphere (e.g., real-time factors relating to
the avionics and weapons systems), then our level of discourse could well be the
interoperability relationships at that level, and so on.

4 CMU/SEI-2005-TN-002

1.4 Relationships Implemented by Systems

A further facilitating deviceis that we use a common vocabulary regardless of the mechanism
by which arelationship isimplemented. For example, we can imagine two systems (A and B)
whose relationship is such that they must communicate data back and forth. Let us further
suppose that the relationship is implemented by some complex communication system. Since
that communication system is, by definition, a system in its own right, it is easy to see that
discussion of such acollection may easily be complicated by two different opinions. One
opinion sees a system of systems of three entities (A, B, and the communication system). The
other opinion sees a system of systems of only two (i.e., by disregarding that the
communication system is a system, and viewing it only as implementing the relationship
between A and B).

We argue that either view is possible, depending on what issues are of immediate interest and
what questions are being asked. For instance, we may be interested in the semantics of shared
data between A and B, and are unconcerned with the manner in which the datais
communicated. In that case, we can rightly consider the communication system simply as the
mechanism that implements the A-B relationship. On the other hand, we may be concerned
with the specific details of how system A |ocates system B, with the significance of timing
constraints and other such gquestions. We might well then consider that the relationships
between system A, system B, and the communication system are all interoperability
relationshipsin their own right.

We now turn to the topic of software evolution and the ways in which interoperating software
systems evolve. Section 2 provides a summary of some major research in software evolution.
Section 3 considers evolution in the context of systems of systems. Section 4 sets forth some

properties of interoperability. Section 5 provides a brief summary of the report.

CMU/SEI-2005-TN-002 5

2 Notions of Software Evolution

Much of the research in software evolution has understandably dealt with evolution of
individual systems, which is somewhat removed from our concern with evolution of systems
of systems. However, it is useful to consider briefly some general ideas about evolution of
independent software systems, since these ideas are no less significant in the context of
evolving systems of systems. This chapter will therefore concentrate on evolution in the
context of single systems, and the following chapter will focus on evolution in the context of
systems of systems.

2.1 EXxisting Research on Software Evolution

Of the numerous definitions of evolution, we posit the following as reasonable:

Evolution isany change in the quality, functionality, or implementation of
the services offered by a system.

Many other definitions can easily be found, and most of them are more or less a paraphrase
of this statement. Some definitions (and hence the attendant research) in thefield is
concerned with software evolution in terms of its processes:

Software evolution is the set of activities, both technical and managerial, that
ensures that software continues to meet organizational and business
objectivesin a cogt effective way [RISE 99].

Other research focuses more on the pragmatic, searching for tools and techniques:

Software systems need to evolve continuously to cope with the ever-
changing software requirements. Today, this is more than ever the case.
Nevertheless, existing tools designed to provide support for evolution issues
arefar fromideal. They aretypically developed in an ad-hoc fashion, making
them not generally applicable, not scalable, or difficult to integrate with other
tools. The goal of this research network is to come to a consistent set of
formally founded techniques and associated tools to support software

devel opers with the common problems they encounter when developing
large and complex software systems [Scientific 01].

Some view evolution as largely synonymous with “maintenance” (e.g., seen in such phrases
as “ Software Evolution, a.k.a Maintenance”). lan Sommerville, in his* Software
Engineering” 6" ed., takes a more nuanced position [Sommerville 00]. For Sommerville,

6 CMU/SEI-2005-TN-002

evolution is the broader concept, of which maintenance is one possible strategy (others being
architectural transformation and re-engineering).

Of considerable importance are the eight “laws of software evolution,” originally described
by Lehman several decades ago, and now the foundation of the Feedback, Evolution, and
Software Technology (FEAST) project [Lehman 00]. Lehman states these rules in terms of
systems that are actively used and embedded in areal world domain. Such systems are
judged by the results that they deliver and by user satisfaction; they are not judged in terms of
how well they meet awell defined set of requirements.

For our purposes, the most relevant of Lehman’s laws are the first and sixth laws:

1. Systems must be continually adapted else they become progressively less satisfactory.

6. Thefunctional content of systems must be continually increased to maintain user
satisfaction over their lifetime.

2.2 Drivers of Software Evolution

Lehman’sfirst law suggeststhat for areal-world system, evolution is unavoidable. Theforce
of thislaw has grown sinceitsfirst formulation and is increasingly apparent today, when we
witness near-breakneck rates of change in the software domain. Since any modern software
system has numerous connections with its environment, including other systems with which
it communicates or depends, no system can survive such rapid environmental change without
evolving correspondingly.

We suggest three broad categories of factors that drive evolution. Evolution of a system must
occur in response to

e changing needs of its users

e theimproved effectiveness of adversaries such as hackers or intruders (which reflects the
present tendenciesin society and technology)*

e changing technology

The “changing needs of users’ can be of various kinds. Chief among them are those related to
marketplace forces: the kinds and numbers of users may change; user expectations may grow
in response to competitive services, or user expectations may grow in response to advancesin
technology. In addition, however, there are needs invisible to users, but that may still drive
system evolution. For instance, a system’s creators may better understand the need to
introduce a new, low-level infrastructure technology, and may evolve the system accordingly.

Thereis plentiful evidence that “changing technology” can drive software evolution. (Note
that the technology in question may or may not be specifically in the software domain.)

* The notion that adversaries become more effective may be thought of as a special case of changing

needs of a system’s users. It is generally assumed that one of the user needs, even if unstated, is
that a system will survive adversaria efforts, regardless of the nature of those efforts.

CMU/SEI-2005-TN-002 7

Whatever their domain, however, the changes that drive software evolution may sometimes
occur to improve quality or cost of services, or may simply satisfy previously unmet needs.
Another driver in this category is the need to replace end-of-life technol ogies and to keep
pace with competitive services.

Finally, evolution in the face of improved effectiveness of adversariesisfast becoming a
dominant challenge for al software practitioners. We consider “adversaries’ in the widest
sense, from creators of virusesto hackers launching “denial of service” attacksto the
ubiquitous spammers: al are in some manner adversarial forces that drive evolution of
software systems from their present vulnerable state. And since these adversaries themselves
evolve, our systems must keep pace. These adversaries gain greater understanding of current
vulnerabilities and exploit advances in technology. As software literacy continuesto spread
throughout different cultures and nations, the kinds and numbers of adversaries themselves
change and evolve. Findly, economic drivers can be as strong as technologica drivers: as
some software systems become more and more successful, thisin itself magnifies their
attractiveness and value as a target.

2.3 System Characteristics that Affect Evolution

To fully understand the evolution of software systems, we need to understand that there are
certain characteristics of a system that might promote evolution, and other characteristics that
might hinder it. (Note that in all cases, we are concerned only with systems that operate in the
physical world and are subject to marketplace and other comparable forces; these are the
same systems addressed by Lehman’slaws.)

There are many such characteristics, more than we can list here. However, for many of these
characterigtics, there appears to be a natural tension between stability and flexibility, and
between promoting and hindering evolution. In other words, many characteristics of a system
that are desirable from the viewpoint of having a static, stable system are precisely those that
hinder evolution, and vice-versa. Thus,

e themore interconnectionsin a system, the more that system is stable and resistant to
change

o the moreinterconnectionsin a system, the more that systemis brittle and easy to break
during change

However, stability is only one characteristic that is antagonistic to evolution. For example,

o the more optimized a system, the higher its performance
e themore optimized a system, the lower its ability to evolve
In the following sections, we shall consider these and other characteristics of systems and

system evolution in the context of interoperability, and will suggest a number of system-of-
system characteristics that either promote or hinder evolution.

8 CMU/SEI-2005-TN-002

3 Evolution in the Context of Systems of Systems

When systems are related by some interoperability relationship, al of the evolutionary issues
described in the previous chapter remain true for each system. In addition, however, another
dimension appears, namely, the evolution of the system of systems, which includes, but is
also digtinct from, the individual systems' evolution. It is the interoperability relationship on
which we concentrate, since its evolution is of primary significance to us.

We examine the evolution of systems of systems by considering the following questions:

e Why does the system of systems evolve?
e Which parts of it evolve?

e \What changes are brought about (i.e., what is the difference between the “before” and
“after” states)?

The first question concerns the motivation for evolution, the second concernsthe locality of
the evolutionary process, and the third concerns its outcome. These questions are not truly
independent; they simply reflect dightly different ways to consider system-of -systems
evolution. We discuss each in turn.

3.1 Motivation for Evolution of a System-of-Systems

In general, the motivation for evolution of a system of systemsincludes all of the possible
motivations as for individual systems: Lehman'’s laws, particularly thefirst (i.e., that systems
must continually evolve) are no less true when multiple systems are interoperating.

Thus, the individual systems (the ellipsesin our smple diagrams) will periodically change
and evolve for various reasons. For instance, new releases of COTS components may occur.
Or the number of systems within the system of systems may vary as new systems are
introduced and old systems are retired. As such events occur, the interoperability
relationships necessarily evolve to accommodate them. Thus, thiskind of evolution is termed
preservative. The goal is preservation, but the system of systemsis otherwise unchanged in
terms of its functioning, the mission it fulfils, and its general shape and architecture. Note
that the ‘preservation’ on which we focus is that of the interoperability relationship itself.

By contrast, some evolution is adaptive. Thus, there may arise some new or different mission
that the system of systems must fulfill, which requires new, different functionality, or addition
of new or different relationships between existing systems, or addition of new systems. We
also include those evolutions that occur when relationships or component systems are
removed, since these are also forms of adaptive evolution. Once again, the entity of interest
that is adapting is the interoperability relationship.

CMU/SEI-2005-TN-002 9

3.2 Locality of the Evolutionary Process

Assuming that some set of systemsisinteroperable, we posit that there are different locales
that could be the primary location of any evolutionary process. In other words, evolution
might be principally an event for asingle systemin itself, or principally in one or more
individual relationships, or could be equally spread throughout the entire aggregate system of
systems. Note that we are only pointing out a primary locale of some evolutionary event; we
believe that evolution of any element in asystem of systemswill likely necessitate at |east
some evolutionary activity in other elements.

3.3 Outcome of Evolution

There are three potentia outcomes for an evolutionary event:

e Theevolution produces a new system of systems that largely resemblesthe original. This
occurs through normal modernization practices, COTS updates, keeping pace with
technology, and so forth.

e Theevolution produces a significant expansion from the original, generally in numbers
of systems and relationships. This may occur through change of mission, when new
functionality becomes necessary. This may also occur as aresult of rearchitecting, as
when two large, complex interoperating systems are broken into severa smaller
interoperating systems. While such rearchitecting does not necessarily involve significant
expansion of functionality, it certainly expands the number of relationshipsin the overall
system.

e Theevolution produces a significant contraction from the original. Thisis reverse of the
previous type, and could occur for comparable reasons. Thus, a changed mission could
provoke areduction in functionality, or a decision could be made to collapse several
small independent systems into a smaller number of large systems.

These are abstract distinctions, and real-world situations will seldom have a precise fit with
them. But they are useful in that they provide aframework to reason about how
interoperability relationships evolve, what promotes their successful evolution, and what
hindersit.

10 CMU/SEI-2005-TN-002

4 Properties of Evolution that Affect Interoperability

There are many properties of either evolution or interoperability that could be considered
separately. For our purposes, it isonly properties of both that concern us. Figure 3 denotes
this: the properties of evolution are the left circle and properties of interoperability are the
right circle. Our concernis only those propertiesin the circles intersection that apply to
both.®

Evolution Interoperability

Figure 3: Evolution and Interoperability

Given that individual systems must evolve, maintenance of their interoperability relationships
is essential to fulfillment of the overall purpose or mission. Below we list eight properties of
evolution and interoperability that affect how that maintenance will be achieved. We state
these propertiesin terms of their effect (i.e., either to facilitate or to hinder) the maintenance
of interoperability as a system of systems evolves.®

1. Relative stability of the components. It islikely that different systems will evolve at
different rates. However, if individual systems are relatively stable, that isto say that
there is some synchronization of changes among the systems, then thereis an increased
likelihood that interoperability will be maintained.

2. Existence of agreementsregarding the evolution between systems affected by the
changes. The more that owners of systems can make local agreements with respect to
change, the more likely local interoperability relationships will be preserved. This tends
toward, but does not guarantee, preservation of global interoperability. Where there are

By symmetry, if the goal were to define evolution, then the intersection defines those properties of
interoperability that affect evolution.

Inthislist of properties, ‘local’ refersto activity either within an individual system or to asingle
relationship. Global refers beyond a single system or relationships, most often to the system of
systems as awhole.

CMU/SEI-2005-TN-002 11

few or no local agreements concerning change in any one system, every other system
will be forced to react to change rather than harmonize with it.

3. Thenumber of interoperability relationshipsin the system of systems. The greater
the aggregate number of relationships, the harder it isfor any one system to evolve
without requiring evolution in many other systems. A large number of relationships
requires greater coordination than when there are fewer relationships.

4. Thenumber and complexity of interoper ations affected by the change. Given that
any system may be involved in more than one interoperability relationship, it follows
that the greater the number of relationships affected by a change, the harder it will beto
maintain global interoperability.

5. Coordination of communication among systems. As systems evolve thereisa
reasonabl e probability that the rates at which they interoperate will vary. However, the
more closdly coordinated the communication ratesin any local interoperability
relationship, the more effective the relationship will be. Thus, coordinating rates of
communication is an aspect of maintaining interoperation.

6. Commonality of purpose among component systems. Our definition of
interoperability used the notion that systems interoperate in order to achieve some
purpose. Hence, the more closely each system is aligned with that purpose, the more
willing the system’s owners will be to accommodate changes. For example, if a service
provided by system A is peripheral to the purpose of system B, then changesin A that
decrease local interoperability between A and B will tend to be ignored, and B will look
for some other provider of the service. Note that thisistrue regardiess of the diversity of
these components.

7. Theability to assesstrust in theface of change. A key aspect of interoperability is the
need for one system to establish trust’ in another. Indeed, not only must trust be
established but aso must be constantly re-evaluated. Such re-evaluation is particularly
necessary with every evolution of atrusted system.

8. Adaptability of components. Given the notion that all systems are continually evolving
and that the context for those systems is also evolving, it follows that each system must
be continually adapting to its new context. For example, if a system is adaptable with
respect to different communication rates, then it islikely that the interoperability
relationships will be preserved even though the competition for communication
resources changes.

" Thisis particularly true when communication is machine-to-machine. While trust isreally a

concept based on human interaction it is clear that some facsimile of trust must be developed for
machine to machine interaction. As an example, one aspect of trust could be whether or not the data
just received from some other system is the most recent valid instance of the data. More will be
written about properties of trust in afuture technical note.

12 CMU/SEI-2005-TN-002

References

URLs are valid as of the publication date of this document.

[Brownsword 04]

[Hearnden 04]

[FEAST 01]

[Lehman 00]

[RISE 99]

[Scientific 01]

[Sommerville 00]

Brownsword, L et. a. Current Perspectives on Interoperability
(CMU/SEI-2004-TR-009). Pittsburgh, PA: Software Engineering
Institute, 2004.

http://Aww.sal.cmu.edw/publi cations/documents/04.reports/04tr009.html

Hearnden, D. “ Software Evolution with the Model-Driven
Architecture.” http://www.itee.ug.edu.au/ ~hearnden
|_deltaware/ConfirmationSeminar.ppt (2004).

Feedback, Evolution and Software Technology (FEAST) Project.
London, UK: Imperia College, Department of Computing.
http://www.doc.ic.ac.uk/~mml/feast2/index.html (2001).

Lehman, M. Rules and Tools for Software Evolution Planning and
Management. London, UK: Department of Computing Imperial
College, 2000.
http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611_2.pdf

Research Institute in Software Evolution (RISE). Durham, UK:
Dept of Computer Science, University of Durham.
http://www.dur.ac.uk/CSM/ (1999).

Scientific Research Network, Foundations of Software Evolution,
Flanders, Belgium. http://prog.vub.ac.be/FFSE/network.html
(2001).

Sommerville, |. Software Engineering, 6™ ed. London, UK: Pearson
Education, 1982, 2000.
http://www.comp.lancs.ac.uk/computing/resources/lanS/ SE6/index.html

CMU/SEI-2005-TN-002

13

http://www.sei.cmu.edu/publications/documents/04.reports/04tr009.html
http://www.itee.uq.edu.au/
http://www.doc.ic.ac.uk/~mml/feast2/index.html
http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611_2.pdf
http://www.dur.ac.uk/CSM/
http://prog.vub.ac.be/FFSE/network.html
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/index.html

14

CMU/SEI-2005-TN-002

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) March 2005 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Topics in Interoperability: System-of-systems Evolution F19628-00-C-0003

6. AUTHOR(S)
David Carney, David Fisher, Patrick Place

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-002

SPONSORING/MONITORING AGENCY
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
HQ ESC/XPK

5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

This report examines how interoperable systems of systems evolve. It first considers several ways in which
interoperability can be defined and then examines the notion of software evolution itself. Next, it considers
how evolution occurs in interoperable systems of systems by discussing issues such as the motivation for and
outcome of evolution. Finally, it proposes several properties of evolution that directly affect interoperability—in
particular, how interoperability can be maintained as the individual systems evolve.

This report is the first in a series of reports on interoperability. This series will consider the various properties
and attributes of interoperability in an effort to determine how to measure the ability of a system to
interoperate with other systems; predict the resources needed for successful interoperation; and discover
techniques useful to achieving interoperability.

15. NUMBER OF PAGES
23

14. SUBJECT TERMS

Interoperability, systems of systems, system evolution, interoperability
measurement

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF | 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Topics in Interoperability: System-of-Systems Evolution
	Contents
	List of Figures
	Abstract
	1 Introduction
	2 Notions of Software Evolution
	3 Evolution in the Context of Systems of Systems
	4 Properties of Evolution that Affect Interoperability
	References

