
Topics in Interoperability:

System-of-Systems Evolution

David Carney
David Fisher
Patrick Place

March 2005

Integration of Software-Intensive Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-002

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

CMU/SEI-2005-TN-002 i

Contents

Abstract..v

1 Introduction ..1
1.1 Interoperation as a Relationship ..1

1.2 Depicting Interoperation ..2

1.3 Boundaries of Systems and Systems of Systems..................................3

1.4 Relationships Implemented by Systems ..5

2 Notions of Software Evolution ..6
2.1 Existing Research on Software Evolution ..6

2.2 Drivers of Software Evolution ..7

2.3 System Characteristics that Affect Evolution..8

3 Evolution in the Context of Systems of Systems.......................................9
3.1 Motivation for Evolution of a System-of-Systems...................................9

3.2 Locality of the Evolutionary Process..10

3.3 Outcome of Evolution ..10

4 Properties of Evolution that Affect Interoperability 11

References...13

ii CMU/SEI-2005-TN-002

CMU/SEI-2005-TN-002 iii

List of Figures

Figure 1: Systems and Relationships...3

Figure 2: Systems and Systems of Systems ..4

Figure 3: Evolution and Interoperability ... 11

iv CMU/SEI-2005-TN-002

CMU/SEI-2005-TN-002 v

Abstract

This report examines how interoperable systems of systems evolve. It first considers several
ways in which interoperability can be defined and then examines the notion of software
evolution itself. Next, it considers how evolution occurs in interoperable systems of systems
by discussing issues such as the motivation for and outcome of evolution. Finally, it proposes
several properties of evolution that directly affect interoperability—in particular, how
interoperability can be maintained as the individual systems evolve.

This report is the first in a series of reports on interoperability. This series will consider the
various properties and attributes of interoperability in an effort to determine how to measure
the ability of a system to interoperate with other systems; predict the resources needed for
successful interoperation; and discover techniques useful to achieving interoperability.

vi CMU/SEI-2005-TN-002

CMU/SEI-2005-TN-002 1

1 Introduction

The topic of this paper is the evolution of interoperable systems of systems. We begin with a
brief discussion of interoperability in general that sets out several key concepts that underlie
the remainder of the paper.

1.1 Interoperation as a Relationship

The term interoperability has many definitions; a reasonable one is

The ability of a collection of communicating entities to (a) share specified
information and (b) operate on that information according to a shared
operational semantics [Brownsword 04].

For the purposes of the discussions that follow, we extend the above definition by adding the
notions of purpose (the goal for the interoperation) and context (the environment in which the
entities exist). This leads to a definition of interoperability as

The ability of a collection of communicating entities to (a) share specified
information and (b) operate on that information according to a shared
operational semantics in order to achieve a specified purpose in a given
context.

The essence of interoperation is that it is a relationship between systems, where systems are
the entities in the above definition. While our focus will be on computer-based systems, the
definition extends to beyond the world of mechanical systems to organizational and other
contexts. To interoperate one system must provide a service1 that is used by another. This
cannot be achieved without, at a minimum, communication from the provider to the
consumer of the service. Our focus is the relationship and not the manner of communication.

Interoperability relationships necessarily involve communication. Just as in the physical
world a relationship of proximity may not involve interoperability (e.g., the table is close to
the chair), a proximity relationship in the software domain may not involve interoperation.
For instance, the mere fact that two software systems are both installed on a single machine
does not imply that they are interoperable (though they might, of course, be interoperable by
some other relationship).

For the purposes of this report, we do not take a position with regard to the atomicity of
interoperability relationships. We might define the relationship between two entities as being

1 While it seems obvious, it must be stated that provision of service includes the provision of data.

2 CMU/SEI-2005-TN-002

a single relation that contains multiple communications or as a collection of relations where
each relation is a single communication. For now, we allow interoperability relations to be
split or combined as broadly as seems useful within the constraints that each interoperability
relationship involves (1) multiple2 systems (2) service provision and use, and (3) essential
inter-system communication.

An interoperability relationship need not be transitive, commutative, or reflexive. In the first
case, A can provide a service to B, and B can provide a service to C without A providing a
service to C. In the second case, A can provide a service to B without B providing that (or for
that matter any other) service to A. In the third case, A need not be a consumer of its own
services. Note, however, that an interoperability relationship may be transitive, commutative,
or reflexive. For example, in some systems A may provide some service to B and B may
provide the same service to A. In the composition of systems we expect to see many different
kinds of interoperability.

Software interoperability relationships can be of many possible kinds and degree, and can be
brought about by many different implementation mechanisms. For instance, we can describe
some relationships between software systems as “tightly coupled,” and other relationships as
“loose.” We can implement an interoperability relationship by means of capabilities entirely
within the communicating entities (e.g., an agreement to share a common protocol), or the
relationship can be implemented by some other software entity (e.g., a request broker that
relays messages between systems).

1.2 Depicting Interoperation

Throughout this paper we use the simplest graphical means to represent systems and
relationships. We depict systems simply as ellipses (or circles3), and a relationship between
systems as a straight line that connects the ellipses. In the figure below, there are three
systems (A, B, and C) that have interoperability relationships of some kind.

2 The notion of relation is easily extended to more than two systems. Such extension does not alter

the fundamental concepts of this report.
3 This is formally consistent: a circle is an instance of an ellipse whose major and minor axes are the

same.

CMU/SEI-2005-TN-002 3

Figure 1: Systems and Relationships

As we will more fully discuss in the next section, we do not attempt graphically to convey
any further information. Thus, the three lines above may represent the same relationship or
may be quite different, and the “closeness” or “tightness” of the relationships may be similar
or different for all of the lines. Similarly, the systems represented in the above diagram may
be large or small, trivial or complex; and any or all of the circles may even themselves be
comprised of smaller systems.

1.3 Boundaries of Systems and Systems of Systems

Almost every discussion of interoperability is plagued by one annoying reality: any construct
that we label “a system” may in fact be composed of several constituent systems, and this
may recursively be true at several levels. In other words, anything that at one level we can
call a “system” may actually internally be a “system of systems,” and any “system of
systems” may itself be part of some larger “system of {systems of systems},” and so forth.

To illustrate, we imagine some hypothetical data systems that interoperate in some manner.
These data systems could all be elements (e.g., communication or navigation) of a military
aircraft’s avionics system, which together with many other systems (weapons system,
mission management system) compose the total aircraft, which itself can be viewed as a
single system. To continue to even higher levels, the aircraft is an element in a larger system
of systems, since it interoperates with other aircraft and other military units in combat. The
process can continue recursively through ever larger systems of systems of systems of
systems.

To facilitate our discussion of interoperability, we need to define some level of immediate
interest. To do so we choose one of these many levels as that of “the system” and the next
higher level that of the “system of systems.” The level we choose is, in a sense, artificial,

 System A
 System B

System C

4 CMU/SEI-2005-TN-002

since it is only one vantage point within the potentially large scope of this recursive
sequence. But it is useful to focus discussion and analysis.

Thus, if our concern at the moment is with issues related to low-level data, semantics of data,
and so forth, we could choose the data systems noted above and their interoperability
relationships as our level of interest.

We illustrate this as follows:

Figure 2: Systems and Systems of Systems

Graphically, therefore, we let the three smaller circles above represent the individual data
systems in the hypothetical example described earlier. Each is related to two others by some
interoperability relationship. The three together as a related unit, that is, the “system of
systems” is depicted by the large darker oval; this would be the hypothetical avionics system.
The smaller circles may themselves each comprise several systems, and the large oval may
itself be a single system in some larger context. We temporarily ignore those possibilities and
focus only on the interrelationships between A, B, and C that bring about D. By choosing this
particular vantage point, we are able to consider the precise nature of the three constituent
systems, their interrelationships, and the principles by which the system of systems (D) is
brought about.

At some later time, if our concern lies in some other sphere (e.g., real-time factors relating to
the avionics and weapons systems), then our level of discourse could well be the
interoperability relationships at that level, and so on.

 System A

System B

System C

Interoperability
Relationships

System of Systems D

CMU/SEI-2005-TN-002 5

1.4 Relationships Implemented by Systems

A further facilitating device is that we use a common vocabulary regardless of the mechanism
by which a relationship is implemented. For example, we can imagine two systems (A and B)
whose relationship is such that they must communicate data back and forth. Let us further
suppose that the relationship is implemented by some complex communication system. Since
that communication system is, by definition, a system in its own right, it is easy to see that
discussion of such a collection may easily be complicated by two different opinions. One
opinion sees a system of systems of three entities (A, B, and the communication system). The
other opinion sees a system of systems of only two (i.e., by disregarding that the
communication system is a system, and viewing it only as implementing the relationship
between A and B).

We argue that either view is possible, depending on what issues are of immediate interest and
what questions are being asked. For instance, we may be interested in the semantics of shared
data between A and B, and are unconcerned with the manner in which the data is
communicated. In that case, we can rightly consider the communication system simply as the
mechanism that implements the A-B relationship. On the other hand, we may be concerned
with the specific details of how system A locates system B, with the significance of timing
constraints and other such questions. We might well then consider that the relationships
between system A, system B, and the communication system are all interoperability
relationships in their own right.

We now turn to the topic of software evolution and the ways in which interoperating software
systems evolve. Section 2 provides a summary of some major research in software evolution.
Section 3 considers evolution in the context of systems of systems. Section 4 sets forth some
properties of interoperability. Section 5 provides a brief summary of the report.

6 CMU/SEI-2005-TN-002

2 Notions of Software Evolution

Much of the research in software evolution has understandably dealt with evolution of
individual systems, which is somewhat removed from our concern with evolution of systems
of systems. However, it is useful to consider briefly some general ideas about evolution of
independent software systems, since these ideas are no less significant in the context of
evolving systems of systems. This chapter will therefore concentrate on evolution in the
context of single systems, and the following chapter will focus on evolution in the context of
systems of systems.

2.1 Existing Research on Software Evolution

Of the numerous definitions of evolution, we posit the following as reasonable:

Evolution is any change in the quality, functionality, or implementation of
the services offered by a system.

Many other definitions can easily be found, and most of them are more or less a paraphrase
of this statement. Some definitions (and hence the attendant research) in the field is
concerned with software evolution in terms of its processes:

Software evolution is the set of activities, both technical and managerial, that
ensures that software continues to meet organizational and business
objectives in a cost effective way [RISE 99].

Other research focuses more on the pragmatic, searching for tools and techniques:

Software systems need to evolve continuously to cope with the ever-
changing software requirements. Today, this is more than ever the case.
Nevertheless, existing tools designed to provide support for evolution issues
are far from ideal. They are typically developed in an ad-hoc fashion, making
them not generally applicable, not scalable, or difficult to integrate with other
tools. The goal of this research network is to come to a consistent set of
formally founded techniques and associated tools to support software
developers with the common problems they encounter when developing
large and complex software systems [Scientific 01].

Some view evolution as largely synonymous with “maintenance” (e.g., seen in such phrases
as “Software Evolution, a.k.a Maintenance”). Ian Sommerville, in his “Software
Engineering” 6th ed., takes a more nuanced position [Sommerville 00]. For Sommerville,

CMU/SEI-2005-TN-002 7

evolution is the broader concept, of which maintenance is one possible strategy (others being
architectural transformation and re-engineering).

Of considerable importance are the eight “laws of software evolution,” originally described
by Lehman several decades ago, and now the foundation of the Feedback, Evolution, and
Software Technology (FEAST) project [Lehman 00]. Lehman states these rules in terms of
systems that are actively used and embedded in a real world domain. Such systems are
judged by the results that they deliver and by user satisfaction; they are not judged in terms of
how well they meet a well defined set of requirements.

For our purposes, the most relevant of Lehman’s laws are the first and sixth laws:

1. Systems must be continually adapted else they become progressively less satisfactory.

6. The functional content of systems must be continually increased to maintain user
satisfaction over their lifetime.

2.2 Drivers of Software Evolution

Lehman’s first law suggests that for a real-world system, evolution is unavoidable. The force
of this law has grown since its first formulation and is increasingly apparent today, when we
witness near-breakneck rates of change in the software domain. Since any modern software
system has numerous connections with its environment, including other systems with which
it communicates or depends, no system can survive such rapid environmental change without
evolving correspondingly.

We suggest three broad categories of factors that drive evolution. Evolution of a system must
occur in response to

• changing needs of its users

• the improved effectiveness of adversaries such as hackers or intruders (which reflects the
present tendencies in society and technology)4

• changing technology

The “changing needs of users” can be of various kinds. Chief among them are those related to
marketplace forces: the kinds and numbers of users may change; user expectations may grow
in response to competitive services; or user expectations may grow in response to advances in
technology. In addition, however, there are needs invisible to users, but that may still drive
system evolution. For instance, a system’s creators may better understand the need to
introduce a new, low-level infrastructure technology, and may evolve the system accordingly.

There is plentiful evidence that “changing technology” can drive software evolution. (Note
that the technology in question may or may not be specifically in the software domain.)

4 The notion that adversaries become more effective may be thought of as a special case of changing

 needs of a system’s users. It is generally assumed that one of the user needs, even if unstated, is
 that a system will survive adversarial efforts, regardless of the nature of those efforts.

8 CMU/SEI-2005-TN-002

Whatever their domain, however, the changes that drive software evolution may sometimes
occur to improve quality or cost of services, or may simply satisfy previously unmet needs.
Another driver in this category is the need to replace end-of-life technologies and to keep
pace with competitive services.

Finally, evolution in the face of improved effectiveness of adversaries is fast becoming a
dominant challenge for all software practitioners. We consider “adversaries” in the widest
sense, from creators of viruses to hackers launching “denial of service” attacks to the
ubiquitous spammers: all are in some manner adversarial forces that drive evolution of
software systems from their present vulnerable state. And since these adversaries themselves
evolve, our systems must keep pace. These adversaries gain greater understanding of current
vulnerabilities and exploit advances in technology. As software literacy continues to spread
throughout different cultures and nations, the kinds and numbers of adversaries themselves
change and evolve. Finally, economic drivers can be as strong as technological drivers: as
some software systems become more and more successful, this in itself magnifies their
attractiveness and value as a target.

2.3 System Characteristics that Affect Evolution

To fully understand the evolution of software systems, we need to understand that there are
certain characteristics of a system that might promote evolution, and other characteristics that
might hinder it. (Note that in all cases, we are concerned only with systems that operate in the
physical world and are subject to marketplace and other comparable forces; these are the
same systems addressed by Lehman’s laws.)

There are many such characteristics, more than we can list here. However, for many of these
characteristics, there appears to be a natural tension between stability and flexibility, and
between promoting and hindering evolution. In other words, many characteristics of a system
that are desirable from the viewpoint of having a static, stable system are precisely those that
hinder evolution, and vice-versa. Thus,

• the more interconnections in a system, the more that system is stable and resistant to
change

• the more interconnections in a system, the more that system is brittle and easy to break
during change

However, stability is only one characteristic that is antagonistic to evolution. For example,

• the more optimized a system, the higher its performance

• the more optimized a system, the lower its ability to evolve

In the following sections, we shall consider these and other characteristics of systems and
system evolution in the context of interoperability, and will suggest a number of system-of-
system characteristics that either promote or hinder evolution.

CMU/SEI-2005-TN-002 9

3 Evolution in the Context of Systems of Systems

When systems are related by some interoperability relationship, all of the evolutionary issues
described in the previous chapter remain true for each system. In addition, however, another
dimension appears, namely, the evolution of the system of systems, which includes, but is
also distinct from, the individual systems’ evolution. It is the interoperability relationship on
which we concentrate, since its evolution is of primary significance to us.

We examine the evolution of systems of systems by considering the following questions:

• Why does the system of systems evolve?

• Which parts of it evolve?

• What changes are brought about (i.e., what is the difference between the “before” and
“after” states)?

The first question concerns the motivation for evolution, the second concerns the locality of
the evolutionary process, and the third concerns its outcome. These questions are not truly
independent; they simply reflect slightly different ways to consider system-of-systems
evolution. We discuss each in turn.

3.1 Motivation for Evolution of a System-of-Systems

In general, the motivation for evolution of a system of systems includes all of the possible
motivations as for individual systems: Lehman’s laws, particularly the first (i.e., that systems
must continually evolve) are no less true when multiple systems are interoperating.

Thus, the individual systems (the ellipses in our simple diagrams) will periodically change
and evolve for various reasons. For instance, new releases of COTS components may occur.
Or the number of systems within the system of systems may vary as new systems are
introduced and old systems are retired. As such events occur, the interoperability
relationships necessarily evolve to accommodate them. Thus, this kind of evolution is termed
preservative. The goal is preservation, but the system of systems is otherwise unchanged in
terms of its functioning, the mission it fulfils, and its general shape and architecture. Note
that the ‘preservation’ on which we focus is that of the interoperability relationship itself.

By contrast, some evolution is adaptive. Thus, there may arise some new or different mission
that the system of systems must fulfill, which requires new, different functionality, or addition
of new or different relationships between existing systems, or addition of new systems. We
also include those evolutions that occur when relationships or component systems are
removed, since these are also forms of adaptive evolution. Once again, the entity of interest
that is adapting is the interoperability relationship.

10 CMU/SEI-2005-TN-002

3.2 Locality of the Evolutionary Process

Assuming that some set of systems is interoperable, we posit that there are different locales
that could be the primary location of any evolutionary process. In other words, evolution
might be principally an event for a single system in itself, or principally in one or more
individual relationships, or could be equally spread throughout the entire aggregate system of
systems. Note that we are only pointing out a primary locale of some evolutionary event; we
believe that evolution of any element in a system of systems will likely necessitate at least
some evolutionary activity in other elements.

3.3 Outcome of Evolution

There are three potential outcomes for an evolutionary event:

• The evolution produces a new system of systems that largely resembles the original. This
occurs through normal modernization practices, COTS updates, keeping pace with
technology, and so forth.

• The evolution produces a significant expansion from the original, generally in numbers
of systems and relationships. This may occur through change of mission, when new
functionality becomes necessary. This may also occur as a result of rearchitecting, as
when two large, complex interoperating systems are broken into several smaller
interoperating systems. While such rearchitecting does not necessarily involve significant
expansion of functionality, it certainly expands the number of relationships in the overall
system.

• The evolution produces a significant contraction from the original. This is reverse of the
previous type, and could occur for comparable reasons. Thus, a changed mission could
provoke a reduction in functionality, or a decision could be made to collapse several
small independent systems into a smaller number of large systems.

These are abstract distinctions, and real-world situations will seldom have a precise fit with
them. But they are useful in that they provide a framework to reason about how
interoperability relationships evolve, what promotes their successful evolution, and what
hinders it.

CMU/SEI-2005-TN-002 11

4 Properties of Evolution that Affect Interoperability

There are many properties of either evolution or interoperability that could be considered
separately. For our purposes, it is only properties of both that concern us. Figure 3 denotes
this: the properties of evolution are the left circle and properties of interoperability are the
right circle. Our concern is only those properties in the circles’ intersection that apply to
both.5

Evolution Interoperability

Figure 3: Evolution and Interoperability

Given that individual systems must evolve, maintenance of their interoperability relationships
is essential to fulfillment of the overall purpose or mission. Below we list eight properties of
evolution and interoperability that affect how that maintenance will be achieved. We state
these properties in terms of their effect (i.e., either to facilitate or to hinder) the maintenance
of interoperability as a system of systems evolves.6

1. Relative stability of the components. It is likely that different systems will evolve at
different rates. However, if individual systems are relatively stable, that is to say that
there is some synchronization of changes among the systems, then there is an increased
likelihood that interoperability will be maintained.

2. Existence of agreements regarding the evolution between systems affected by the
changes. The more that owners of systems can make local agreements with respect to
change, the more likely local interoperability relationships will be preserved. This tends
toward, but does not guarantee, preservation of global interoperability. Where there are

5 By symmetry, if the goal were to define evolution, then the intersection defines those properties of

interoperability that affect evolution.
6 In this list of properties, ‘local’ refers to activity either within an individual system or to a single

relationship. Global refers beyond a single system or relationships, most often to the system of
systems as a whole.

12 CMU/SEI-2005-TN-002

few or no local agreements concerning change in any one system, every other system
will be forced to react to change rather than harmonize with it.

3. The number of interoperability relationships in the system of systems. The greater
the aggregate number of relationships, the harder it is for any one system to evolve
without requiring evolution in many other systems. A large number of relationships
requires greater coordination than when there are fewer relationships.

4. The number and complexity of interoperations affected by the change. Given that
any system may be involved in more than one interoperability relationship, it follows
that the greater the number of relationships affected by a change, the harder it will be to
maintain global interoperability.

5. Coordination of communication among systems. As systems evolve there is a
reasonable probability that the rates at which they interoperate will vary. However, the
more closely coordinated the communication rates in any local interoperability
relationship, the more effective the relationship will be. Thus, coordinating rates of
communication is an aspect of maintaining interoperation.

6. Commonality of purpose among component systems. Our definition of
interoperability used the notion that systems interoperate in order to achieve some
purpose. Hence, the more closely each system is aligned with that purpose, the more
willing the system’s owners will be to accommodate changes. For example, if a service
provided by system A is peripheral to the purpose of system B, then changes in A that
decrease local interoperability between A and B will tend to be ignored, and B will look
for some other provider of the service. Note that this is true regardless of the diversity of
these components.

7. The ability to assess trust in the face of change. A key aspect of interoperability is the
need for one system to establish trust7 in another. Indeed, not only must trust be
established but also must be constantly re-evaluated. Such re-evaluation is particularly
necessary with every evolution of a trusted system.

8. Adaptability of components. Given the notion that all systems are continually evolving
and that the context for those systems is also evolving, it follows that each system must
be continually adapting to its new context. For example, if a system is adaptable with
respect to different communication rates, then it is likely that the interoperability
relationships will be preserved even though the competition for communication
resources changes.

7 This is particularly true when communication is machine-to-machine. While trust is really a

concept based on human interaction it is clear that some facsimile of trust must be developed for
machine to machine interaction. As an example, one aspect of trust could be whether or not the data
just received from some other system is the most recent valid instance of the data. More will be
written about properties of trust in a future technical note.

CMU/SEI-2005-TN-002 13

References

URLs are valid as of the publication date of this document.

[Brownsword 04] Brownsword, L et. al. Current Perspectives on Interoperability
(CMU/SEI-2004-TR-009). Pittsburgh, PA: Software Engineering
Institute, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tr009.html

[Hearnden 04] Hearnden, D. “Software Evolution with the Model-Driven
Architecture.” http://www.itee.uq.edu.au/ ~hearnden
/_deltaware/ConfirmationSeminar.ppt (2004).

[FEAST 01] Feedback, Evolution and Software Technology (FEAST) Project.
London, UK: Imperial College, Department of Computing.
http://www.doc.ic.ac.uk/~mml/feast2/index.html (2001).

[Lehman 00] Lehman, M. Rules and Tools for Software Evolution Planning and
Management. London, UK: Department of Computing Imperial
College, 2000.
http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611_2.pdf

[RISE 99] Research Institute in Software Evolution (RISE). Durham, UK:
Dept of Computer Science, University of Durham.
http://www.dur.ac.uk/CSM/ (1999).

[Scientific 01] Scientific Research Network, Foundations of Software Evolution,
Flanders, Belgium. http://prog.vub.ac.be/FFSE/network.html
(2001).

[Sommerville 00] Sommerville, I. Software Engineering, 6th ed. London, UK: Pearson
Education, 1982, 2000.
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/index.html

http://www.sei.cmu.edu/publications/documents/04.reports/04tr009.html
http://www.itee.uq.edu.au/
http://www.doc.ic.ac.uk/~mml/feast2/index.html
http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611_2.pdf
http://www.dur.ac.uk/CSM/
http://prog.vub.ac.be/FFSE/network.html
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/index.html

14 CMU/SEI-2005-TN-002

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2005

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Topics in Interoperability: System-of-systems Evolution

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

David Carney, David Fisher, Patrick Place
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report examines how interoperable systems of systems evolve. It first considers several ways in which
interoperability can be defined and then examines the notion of software evolution itself. Next, it considers
how evolution occurs in interoperable systems of systems by discussing issues such as the motivation for and
outcome of evolution. Finally, it proposes several properties of evolution that directly affect interoperability—in
particular, how interoperability can be maintained as the individual systems evolve.

This report is the first in a series of reports on interoperability. This series will consider the various properties
and attributes of interoperability in an effort to determine how to measure the ability of a system to
interoperate with other systems; predict the resources needed for successful interoperation; and discover
techniques useful to achieving interoperability.

14. SUBJECT TERMS

Interoperability, systems of systems, system evolution, interoperability
measurement

15. NUMBER OF PAGES

23

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Topics in Interoperability: System-of-Systems Evolution
	Contents
	List of Figures
	Abstract
	1 Introduction
	2 Notions of Software Evolution
	3 Evolution in the Context of Systems of Systems
	4 Properties of Evolution that Affect Interoperability
	References

