
SMART: The Service-Oriented
Migration and Reuse Technique

Grace Lewis
Ed Morris
Liam O’Brien
Dennis Smith
Lutz Wrage

September 2005

Integration of Software-Intensive Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-029

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract..v

1 Introduction..1
1.1 Service-Oriented Architecture Definitions ...1
1.2 Migration to SOA ..3
1.3 Legacy Systems and SOA..4

2 The Service-Oriented Migration and Reuse Technique (SMART)6
2.1 Establish Stakeholder Context..8
2.2 Describe Existing Capability ...9
2.3 Describe the SOA State ..10
2.4 Analyze the Gap ... 11
2.5 Develop Migration Strategy ..12

3 Pilot Application of SMART ..14
3.1 Establish Stakeholder Context..14
3.2 Describe Existing Capability ...14
3.3 Describe the SOA State ..16
3.4 Analyze the Gap ...18

3.4.1 Changes to Legacy Components..18
3.4.2 Code Analysis ...20
3.4.3 Architecture Reconstruction..21

3.5 Develop Migration Strategy ..22

4 Conclusions and Next Steps ..24

Appendix SMART Output ...27

References...29

CMU/SEI-2005-TN-029 i

ii CMU/SEI-2005-TN-029

List of Figures

Figure 1: High-Level View of Service-Oriented Architecture 3

Figure 2: SMART Input and Output ... 6

Figure 3: SMART Activities .. 7

Figure 4: Physical View of the Current System ... 15

Figure 5: High-Level Physical View of the Target SOA.. 17

Figure 6: Results of Initial SMART Analysis .. 19

CMU/SEI-2005-TN-029 iii

iv CMU/SEI-2005-TN-029

Abstract

This report describes the Service-Oriented Migration and Reuse Technique (SMART).
SMART is a technique that helps organizations analyze legacy systems to determine whether
their functionality, or subsets of it, can be reasonably exposed as services in a Service-
Oriented Architecture (SOA). Converting legacy components to services allows systems to
remain largely unchanged while exposing functionality to a large number of clients through
well-defined service interfaces. The U.S. Department of Defense (DoD) is adopting this
approach by defining SOAs that include a set of infrastructure common services on which
organizations can build additional domain services or applications. SMART considers the
specific interactions that will be required by the target SOA and any changes that must be
made to the legacy components. An early version of SMART was applied with good success
to assist a DoD organization in evaluating the potential for converting components of an
existing system into services that would run in a new and tightly constrained DoD SOA
environment.

CMU/SEI-2005-TN-029 v

vi CMU/SEI-2005-TN-029

1 Introduction

Today’s business environment, whether commercial, government, or military, is characterized
by rapid change. From the commercial standpoint, traditional bricks-and-mortar retailers are
adapting to the increased competition from online sellers. Manufacturers are responding to
increased competition from low-cost providers. Other firms are divesting to refocus on core
capabilities, or are acquiring to fill gaps in capabilities. From the standpoint of government,
the rapid pace of change is shaking up even the most tradition-rich organizations. For
example, according to U.S. Postmaster General John E. Potter [Potter 05],

…Structural changes in societal and business communications have altered
the economics of our business model over the past four years … First-Class
Mail volume has declined 5.4 percent while advertising mail volume has
grown 6.1 percent (Statement before U.S. House of Representatives
Subcommittee, April 26, 2005).

Competition from email, fax, and online bill paying is eating into core first-class mail
business.

From the DoD perspective, change is constantly required to keep ahead of adversaries whose
own capabilities are enhanced by the “trickle down” of new technologies. The DoD is
likewise forced to adapt to the exigencies of many diverse enemies, operating environments,
and tactics, rather than the single, monolithic (but predictable) adversary of the cold war.

As the business environment changes, so must the accompanying computer systems that
organizations rely on to fulfill their missions. Creating computer systems that can be
assembled efficiently, adapted quickly to changing conditions, and easily maintained across
broad enterprises presents perhaps the greatest set of challenges for the software engineering
community. To do so without abandoning previous investments in software systems seems
almost too good to be true.

With the advent of universal network availability and distributed systems, standards and
technologies that provide better abstractions for code, and new models of interoperability,
many experts believe these challenges can now be met through Service-Oriented
Architectures (SOAs).

1.1 Service-Oriented Architecture Definitions
At the core of an SOA is a service. A service is a coarse-grained, discoverable, and self-
contained software entity that interacts with applications and other services through a loosely
coupled, often asynchronous, message-based communication model [Brown 02].

CMU/SEI-2005-TN-029 1

Several of the terms used in this definition require further explanation:

• Coarse-grained refers to the tendency of services to provide significant business process
capability, as opposed to low-level business functions. While nothing prevents an
organization from implementing low-level functions as services, concerns such as
efficiency and performance normally make such an approach impractical.

• Discoverable refers to the fact that services can somehow be located and their interfaces
understood. This is often misinterpreted as requiring dynamic (runtime) discovery, but
such is not the case and mechanisms for discovery may exist to support the programmer
in identifying services prior to runtime.

• Self-contained refers to capabilities that do not require context or state information of
other services, nor do they maintain state from one request to another.

• Loose coupling refers to a design principle whereby modules have few, well-known
dependencies, and interfaces to the module are defined to be as independent as possible
from the implementation of the module. This allows modules to be independently
deployed, and encourages the construction of applications that make no assumptions
about service implementation beyond the characteristics present in the well-defined,
published service interfaces. Ideally, the service implementation can change without
affecting service users so long as the service interface is unchanged.

An SOA is a collection of services with well-defined interfaces and a shared communications
model. A system or application is designed and implemented to make use of these services.
This developed capability may itself provide services within the overall SOA. Figure 1
provides a high-level view of an SOA that presents several options for incorporating services:

1. Service interfaces are added to existing enterprise information systems for applications
to use, while these systems remain unchanged for internal users.

2. Service-specific code is written to provide functionality for applications to use.

3. Services written by third parties and deployed elsewhere are used within applications.

2 CMU/SEI-2005-TN-029

Internet
Communications and Common Service Infrastrucure

Service A Service B

Application Application

`

Application

Enterprise Information
System

Service C

Service-Specific
Code

Internal Users

External
System

Service D

Figure 1: High-Level View of Service-Oriented Architecture

The most common form of SOA is that of Web services in which all of the following apply:
(1) service interfaces are described using Web Services Description Language (WSDL), (2)
payload is transmitted using Simple Object Access Protocol (SOAP) over Hypertext Transfer
Protocol (HTTP), (3) Universal Description, Discovery and Integration (UDDI) is optionally
used as the directory service [Lewis 05]. However, WSDL, SOAP, and HTTP are not the only
foundation on which an SOA can be built. Other technologies such as CORBA and IBM’s
Websphere can be used as part of the messaging backbone of an SOA. The DoD is
incorporating proprietary technologies to develop SOAs that function in its highly secure and
demanding environments.

1.2 Migration to SOA
Momentum is growing within business, government, and defense communities to migrate
software systems toward SOA. It is easy to see why the SOA topic is “hot,” since proponents
suggest a long list of advantages:

• simple standards that define the available interfaces and structure of data that is conveyed
across those interfaces

• platform and language-independent interfaces based on these standards, which allow
applications to invoke services operating on any device supporting the SOA regardless of
the hardware platform, operating system, or implementation language

CMU/SEI-2005-TN-029 3

• clear separation of service interface from implementation, thus allowing many service
upgrades to occur without impact on service users

• message-oriented communication allowing distribution across a wide area

• loose coupling between services, minimizing interdependencies and facilitating reuse

• mechanisms for discovery of services available and for establishing connections with
services

Clearly, the hallmark of SOA is flexibility. Computing platforms and languages can vary;
services can be accessed across a network via simple, well-defined interfaces, and
(presumably) without concern for side effects resulting from dependencies between services.
This allows applications to use (or be composed of) services efficiently and effectively.

However, migration to SOA is neither easy nor automatic, particularly when the SOA will
execute within a tightly constrained environment. Consideration must be given to all three
parts of the SOA identified in Figure 1:

• The Communications and Common Service Infrastructure Provider must identify the
network and communications protocols and standards to be employed. He or she must
also determine what additional SOA infrastructure capabilities are necessary and provide
them as common services (e.g., service registry, service orchestration mechanisms).

• The Application Designer must develop application-specific code and locate/select
appropriate services to be used by the application, or develop code to invoke mechanisms
to select services. He or she is concerned with whether services invoked by the
application meet a full range of capability, quality of service, and efficiency of use
expectations.

• The Service Provider must identify a needed service, and modify or develop service code
to provide a useful capability to the widest range of applications possible.

1.3 Legacy Systems and SOA
SOAs also offer the promise of enabling existing legacy systems to expose their functionality
as services, without making significant changes to the legacy systems themselves. This is one
of the most attractive features of SOA to many organizations that do not wish—and cannot
afford—to walk away from their investment in legacy systems or redevelop the same
capabilities as services from scratch.

Enabling a legacy system to interact within an SOA, such as a Web services architecture, is
sometimes relatively straightforward—this is a primary attraction to the approach for many
businesses. Web service interfaces are set up to receive SOAP messages, parse their content,
invoke legacy code, and optionally wrap the results as a SOAP message to be returned to the
sender. Many modern development environments provide tools to help in this process, and
commercial organizations are rapidly employing these environments to expose their business
processes to the world.

4 CMU/SEI-2005-TN-029

However, characteristics of legacy systems, such as age, language, and architecture, as well
as of the target SOA, can complicate the task. This is particularly the case during migration to
highly demanding and proprietary SOAs such as those being proposed for many DoD
systems. In these cases, it may not be immediately obvious how best to use legacy code—or
even whether to use it. DoD (and similar) migrations to SOAs will likely rely less on semi-
automated migration, and more on careful analysis of the feasibility and magnitude of the
effort involved.

Migration to SOA, although promising, will be a daunting challenge for organizations like
the DoD. The size of such organizations, the number of distinct groups involved, the diversity
of the software, and the overall scope of the effort conspire to destroy consistency and
introduce complexity to the migration effort. What the DoD and similar organizations need is
a systematic process that addresses a wide range of considerations in order to achieve
consistent results in making decisions regarding which legacy components should migrate to
provide services within an SOA, and how that migration should occur.

This report focuses on assisting the large group of maintainers of legacy applications that are
trying to determine whether their components can be retrofitted to provide services within an
SOA. Section 2 outlines a process developed at the Software Engineering Institute (SEI) for
evaluating legacy components for their potential to become services in an SOA. Section 3
discusses the pilot application of this process on an actual project. Section 4 provides
conclusions and discusses next steps.

CMU/SEI-2005-TN-029 5

2 The Service-Oriented Migration and Reuse Technique

(SMART)

The Service-Oriented Migration and Reuse Technique (SMART) was developed to assist
organizations in analyzing legacy capabilities for use as services in an SOA. SMART was
derived from the Options Analysis for Reengineering (OAR) method developed at the SEI
that was successfully used to support analysis of reuse potential for legacy components
[Bergey 02].

SMART gathers a wide range of information about legacy components, the target SOA, and
potential services to produce a service migration strategy as its primary product. However,
SMART also produces other outputs that are useful to an organization whether or not it
decides on migration. SMART input (from documentation and interviews) and output are
depicted in Figure 2.

Figure 2: SMART Input and Output

SMART consists of five major activities, each divided into several tasks. The activities and
generalized process and information flows of SMART are depicted in Figure 3. However, the
number of artifacts considered, the time required, and the specific activities of a given
application of SMART depend on previous activities and expectations of the requesting
organization. For example, if the requesting organization has specific legacy components in
mind for migration, SMART activities will be focused on those components.

Information for the first three activities (on the left) is gathered during an initial orientation
meeting and through several additional meetings between the SMART team and the
organization tasked with the migration activities. During these meetings, the SMART team

6 CMU/SEI-2005-TN-029

assesses stakeholder needs, identifies the SOA vision, and elicits a high-level description of
the architecture and other features of the legacy system (as listed in Figure 2). Available
documentation is gathered for the legacy system in general, for legacy components that may
be transitioned to services (if previously identified), and for the target SOA. In some cases,
the target SOA may not be complete, so SOA documentation may describe a future state.

Information-gathering activities for the first three activities are directed by the Service
Migration Interview Guide (SMIG). The SMIG contains questions that directly address the
gap between the existing and target architecture, design, and code, as well as questions
concerning issues that must be addressed in service migration efforts. Use of the SMIG
assures broad and consistent coverage of the factors that influence the cost, effort, and risk
involved in migration to services.

It is not necessary for the team to complete all data gathering during these initial activities.
Additional opportunities are provided during the Analysis activity.

Figure 3: SMART Activities

SMART is not strictly sequential. The order in which the activities are performed can vary.
For example, it may be convenient to elicit information about the target SOA prior to learning
about the existing components. In addition, information gained during any SMART activity
may lead to reconsideration of previous activities. For example, a particular migration
strategy may require that new stakeholders be consulted. Or, information gathered during the

CMU/SEI-2005-TN-029 7

initial activities may be insufficient to determine whether conversion to services is cost
effective. In this case, additional information about the component and/or target SOA may be
gathered during the analysis process. This proved to be the case in the pilot application of the
SMART process described in Section 3, where a hands-on analysis of the legacy code was
used to answer specific questions and verify assertions.

The five activities and associated tasks of SMART are detailed in Sections 2.1 through 2.5. A
summary of the output from SMART is provided in the appendix.

2.1 Establish Stakeholder Context
In order to establish the context in which the migration to services will take place, the
SMART team employs the SMIG to solicit information about stakeholders. Stakeholders
typically include the owners and current end users of the legacy system, and the potential end
users of the migrated services operating within the SOA. Other stakeholders who are
sometimes important include those who are funding or controlling the migration effort,
groups defining the target SOA, and Verification and Validation groups that will certify the
properties of the new services.

The key to this activity is to identify who knows most about the legacy system, what it
currently does, and what it should do as a service or set of services. A significant but non-
obvious goal is to identify the parties who are best situated to indicate whether there is
sufficient demand for the service to warrant migration efforts. Input from these parties is
critical to counteract any tendency toward assuming without evidence that the legacy system
is a good source for useful and appropriate services. Their input will also influence the
interface design for the resulting services.

This activity also initiates the construction of a list of legacy component characteristics that
will later drive the analysis process. A list of migration issues is also begun.

The Establish Stakeholder Context activity has three tasks:

1. Create Stakeholder List.

The Stakeholder List identifies stakeholders and the type of information to be elicited
from each, and provides contact information.

2. Create Characteristics List.

The Characteristics List identifies information about components that will be gathered
and later considered to determine whether service migration is feasible and appropriate.
The Characteristics List may be updated at any time during the process as additional
relevant features are identified.

8 CMU/SEI-2005-TN-029

3. Create Migration Issues List.

The Migration Issues List identifies concerns that will have to be addressed during the
migration process. Some migration issues may be applicable to all components and
services (i.e., general issues), while others may be applicable only to specific
components or services.

The SMIG contains questions that will guide the capture of information related to:

• Goal of Migration

• Expectations

• Potential Service Users

• Legacy System End Users and Owners

• Contractors

• Legacy Components and Potential Services

2.2 Describe Existing Capability
The goal of the second activity of SMART is to obtain descriptive data about the components
of the legacy system. The activity employs the SMIG to gather data about a specific set of
topics related to the legacy system, but the SMART team has the latitude to pursue interesting
leads. For example, the SMART team may ask questions about the philosophy and strategies
applied for use of COTS products in the legacy system on learning that the system developers
opted to use a custom (non-standard) interface to a commercial database.

Basic data solicited during this activity includes the name, function, size, language, operating
platform, and age of the legacy components. Technical personnel are questioned about the
architecture, design paradigms, code complexity, level of documentation, module coupling,
interfaces for systems and users, and dependencies on other components and commercial
products.

In addition, data about the relative quality and maturity of legacy components is gathered,
including outstanding problems, change history, user satisfaction, and likelihood of meeting
longer term needs. Historical cost data for development and maintenance tasks is collected to
support effort and cost estimates.

The Describe Existing Capability activity has three tasks.

1. Update the Characteristics List.

2. Create a Component Table.

• Identify components under consideration for migration to service.

• Capture characteristics (identified in the Characteristics List) of each component
under consideration as a column in the Component Table. These columns indicate
the information that will be gathered on each component.

CMU/SEI-2005-TN-029 9

3. Update Migration Issues List.

Identify and capture any general migration issues, as well as issues specific to
components identified in the Component Table.

The SMIG contains questions that will guide the capture of information related to

• legacy system characteristics

• legacy system architecture

• code characteristics

2.3 Describe the SOA State
The third activity of SMART is intended to

• gather evidence about potential services that can be created from the legacy components

• gather sufficient detail about the target SOA to support decisions about what services
may be appropriate and how they will interact with each other and the SOA

Initial information about potential services often comes via SMIG-directed conversations
with legacy component owners. However, the information gathered must be tempered by data
from users, corporate architects, domain groups, communities of interest, and reference
models that address service definition. In some cases, these groups and models will define the
entire set of services that support the organization’s goals, and into which any potential
services built from the legacy components must fit.

The characteristics of the target SOA will temper decisions about whether legacy components
can be reused. The degree to which a legacy component is inconsistent with these
characteristics will profoundly influence the overall migration costs.

Note that the target SOA can be owned by the same organization that owns the legacy
components, or by another organization. It may provide a fixed or pre-existing architecture,
or the architecture for the SOA may be developed simultaneously with the reengineering of
legacy components. The actual placement along this spectrum will have important technical
and political consequences for decisions that are made.

The Describe SOA State activity has four tasks:

1. Update the Characteristics List and Component Table.

2. Create SOA Description.

• standards and technologies to be employed and relevant guidance documents

• execution platforms, substrates, and middleware

• deployment requirements

• special requirements regarding handling of data and state

10 CMU/SEI-2005-TN-029

• specific quality of service requirements that affect potential services directly and
end-to-end1 quality of service requirements that affect related collections of services

3. Create Service Table.

• Identify potential services that can be derived from components as well as any
services that may already have been identified by the organization. This table will
be expanded during subsequent activities.

• Capture information regarding potential services in each Service Table entry.

- Information sources include groups such as potential service users, corporate
architects, domain groups, and communities of interest.

4. Update Migration Issues List.

Update the Migration Issues List with general, component- or service-specific
information as necessary.

The SMIG contains questions that will guide the capture of information related to

• service requirements

• target SOA and legacy system adaptation

• service-oriented changes

• support

2.4 Analyze the Gap
The goal of the fourth activity is to identify the gap between the existing state and the future
state and determine the level of effort and cost needed to convert the legacy components into
services. This analysis may also suggest potential tradeoffs between the target architecture
and the legacy components. For example if the target SOA is flexible, or if it is still in the
process of being defined, a relatively minor change to its requirements may allow more
legacy components to be converted to services or may simplify the conversion effort.
However, substantial risks to the migration effort are introduced when the target SOA has a
large number of to-be-defined areas.

SMART uses several sources of information to support the analysis activity. The issues,
problems, and data gathered as the SMART team investigates the available components,
required services, and SOA requirements form one source of information. A second, optional
source of information involves the use of code analysis and architecture reconstruction tools
to analyze existing source code. Where documentation is insufficient or where there is
uncertainty about code characteristics such as dependencies on commercial products, tool
analysis is very helpful. This option can also be used with great effect to survey
representative portions of the code to verify other opinions and judgments.

1 By end-to-end, we mean the pathway through applications using cooperating services and the

network to perform a specific task.

CMU/SEI-2005-TN-029 11

The tasks associated with the Analyze the Gap activity include

1. Create Component Service Options Table.

• Compare and map available components (Component Table) to needed services
(Service Table). Mapping need not be one to one. A component may need to be split
into several services, or several components may be combined to form a service.
Also, it is possible to have several ways of producing a service. This may involve
alternate ways of using available components, as well as using capabilities that were
not part of the original system, such as COTS products.

• Capture each mapping option in a Component Service Options Table entry.

2. Identify Additional Data Needed.

If there are gaps in understanding, the SMART team identifies the information and
creates a strategy to obtain it. For example, if there is concern about the completeness
and accuracy of the data gathered, the SMART team may elect to gather additional data
via hands-on architectural and code analysis.

3. Gather Additional Data.

• Execute strategy to gather additional data.

• Update Component Table, Services Table, and Component Service Options Table as
appropriate.

4. Analyze component/service options.

Using the information contained in the Component Table, Services Table, Component
Service Options Table, and Migration Issues List,

• Estimate the cost and effort required to migrate the component(s) to services, and to
build the services from scratch, for each entry in the Component Service Options
Table.

• Determine the level of difficulty and risk associated with the migration effort.

• Update Component Service Options Table.

2.5 Develop Migration Strategy
The final activity of SMART involves recommending one or more of the options documented
in the Component Service Options Table, selecting a strategy to achieve the goal, and
presenting the SMART team findings. In many cases, the migration strategy may involve
multiple steps, such as an initial “quick and dirty” wrapping, followed by restructuring of the
application (now service) into appropriate layers, and finally by modification to use other
services. Example elements of a strategy include

• the identities of specific components to migrate

• recommendations regarding the ordering of migration efforts

• specific migration paths to follow (simple wrapping vs. rewriting of code)

12 CMU/SEI-2005-TN-029

• identification of increments that lead to increasing capability

• suggestions regarding organization(s) best equipped to lead the migration effort

• suggested coordination with related efforts (for example, SOA infrastructure builds)

The tasks associated with the Develop Strategy for Service Migration include

1. Select recommended component/service options.

Update Component Service Options Table with recommendations

2. Create the Migration Alternatives Table.

For each recommendation in the Component Service Options Table, there may be more
than one viable strategy to achieve the migration goal. These strategies may vary along
many dimensions, such as the components selected for migration, the sequencing of
migration activities, the use of external services, and the types of modifications made to
the code. Viable strategies are documented as entries in the Migration Alternatives
Table.

3. Analyze entries in the Migration Alternatives Table and select a strategy.

Considering risk, cost, effort, schedule and other relevant factors, select a Service
Migration Strategy.

4. Prepare and Present Findings.

Prepare a final presentation detailing the Service Migration Strategy.

SMART provides a preliminary analysis of the viability of migrating legacy components to
services, migration strategies available, and the costs and risks involved. In particular, it
attempts to answer several questions:

• Which components can reasonably be used to derive services?

• What sorts of activities must be performed to accomplish the migration?

• What strategies are most appropriate for the migration effort?

The sponsoring organization receives a detailed briefing of the results of SMART, but the
briefing is not intended to replace system engineering activity. It is assumed that the
organization will reflect on the results and pursue further engineering analysis along the lines
recommended by SMART.

CMU/SEI-2005-TN-029 13

3 Pilot Application of SMART

An early version of SMART was applied in a recent analysis of the potential for migrating a
set of legacy components from a DoD command and control (C2) system to a target SOA.
This early version differed from the current structure of SMART because the SMIG and
various outputs had not been formalized. However, similar concepts were applied informally.

3.1 Establish Stakeholder Context
Stakeholder context was established through a meeting with the government owners of the
system and the contractors who had developed the system. At the initial meeting, the SMART
team was given an overview of the set of systems, the history of the systems, the migration
plans, and the drivers for the migration. The team was also given a brief orientation to the
target SOA and provided with system documentation.

DoD systems have recently focused on the concept of network-centric operations: to provide
forces with access to integrated information from a variety of previously unconnected sources
[Alberts 00]. This focus requires strong emphasis on interoperability to ensure that systems
work together effectively. To facilitate such interoperability, the DoD has initiated a number
of projects that examine different aspects of the infrastructure for network centric operations.
Several of these projects are developing SOAs so that C2 applications can be built as a set of
interactions between infrastructure services (e.g., communication, discovery) and services
that are specific to the C2 domain (application domain services). Current and future DoD
program offices have been targeted to contribute application domain services.

The owners of the systems recognized that a selected set of components from their C2
system, if converted to application domain services (ADS), would have broad applicability.
They had targeted potential services as part of their initial analysis of ADS requirements. The
SMART team’s role was to perform a preliminary evaluation of the feasibility of converting a
set of their components into these application domain services.

3.2 Describe Existing Capability
To determine the existing capabilities of the C2 system, the SMART team met with the
contractor and representatives of the government to focus on a limited number of legacy
components and to select characteristics for further screening. These sources provided
significant detail about the legacy system, but the available architecture documentation was
incomplete. In particular, logical and development views of the system architecture were not

14 CMU/SEI-2005-TN-029

available. This represented a problem for our analysis, and is discussed in more detail in
Section 3.4.

As detailed by the contractors and government representatives, the pilot C2 system has two
parts: (1) a mission planning system and (2) a mission execution system that adds situational
awareness to the planning capability. These two systems were initially developed as part of a
product line. Both rely on a set of core components for the data model, data analysis, and
visualization.

A physical view of the current system is illustrated in Figure 4.

Figure 4: Physical View of the Current System

As shown in Figure 4, in the current environment there is a single instance of the C2
application per machine and an instance of the synchronization server deployed on another
machine. Instances of the C2 application interact with the synchronization server to send and
receive data updates. The entire system is under the control of one organization. The SMART
team used this observation at several points during the study to help the client understand the
implications of making the transition from the current environment to an SOA environment.

The current system, written in C++ on a Windows operating system, had a total of about
800,000 lines of code and 2500 C++ classes. In addition, the system had dependencies on a
commercial database and a second product for visualizing, creating, and managing maps.
Both commercial products have only Windows versions.

The team focused on the 29 specific C++ classes that would presumably provide the basis for
the seven potential services that the government team had previously identified, and that
offered high probability of providing useful insight. The team identified characteristics that
would be the focus for analyzing the components, starting with those provided by OAR and

CMU/SEI-2005-TN-029 15

supplemented with team knowledge of the necessary characteristics of services operating
within the target SOA. The characteristics included the following:

• size

• complexity

• level of documentation

• coupling

• cohesion

• number of base classes

• programming standards compliance

• black box vs. white box suitability (i.e., wrapping vs. making internal modifications)

• scale of changes required

• commercial mapping software dependency

• Microsoft dependency

• support software required

These characteristics formed the basis for the more detailed analysis discussed in Section
3.4.1.

3.3 Describe the SOA State
The system owner had completed a preliminary identification of potential services that could
be built from components of the legacy system. This analysis was derived from high-level
requirements for applications that were being targeted as consumers of services to be
provided by the SOA. The system owner had matched legacy functionality to these high-level
requirements and provided some initial estimates of the contents of the potential services.

The SMART team investigated the target SOA through an analysis of available
documentation and through a meeting with the developers. The target DoD SOA is currently
under development. It is being built using a variety of commercial products and standards,
along with a significant amount of custom code. The effort is focused on satisfying a number
of specific quality attributes important to the DoD, such as performance, security, and
availability. In order to meet these needs, the SOA will impose a number of constraints on
potential services. Because the SOA is still under development, the specifications for how to
deploy and write services are still unclear.

The target SOA is illustrated in Figure 5.

16 CMU/SEI-2005-TN-029

Figure 5: High-Level Physical View of the Target SOA

Figure 5 shows that the SOA includes common services (CS) that are to be used by user
applications and application domain services (ADS). The SOA owns the interfaces for the
common services. The environment allows for a set of ADSs that will derive their
requirements from user applications. It is still unknown if ADS and CS services will run
within a single machine or will be distributed over a network. Groups within the DoD are
invited to submit proposals for services to meet these requirements, either by building them
from scratch or by migrating them from legacy components. These requirements then need to
be analyzed in detail and matched to existing functionality to determine what can be used as-
is, what has to be modified, and what requires new development.

Even though the full details of compliant services for the SOA have not yet been worked out,
the SOA imposes a number of constraints on organizations that are developing ADSs from
legacy components. Some of the constraints/requirements for developers of ADSs include

1. An ADS must be self-contained, that is, it should be able to be deployed as a single unit.

In this specific target SOA, services must be stand-alone and of small granularity so that
they can be deployed as needed on standardized and often limited-resource platforms. In
a legacy component, functionality that has been identified as part of a service needs to
be fully extracted from the system, including code that corresponds to shared libraries or
the core of a product line.

2. In the target SOA, an ADS must be deployable on a Linux operating system.

For Windows-based legacy components this could be a problem, especially if there are
dependencies on the operating system through direct system calls or if there is a
dependency on commercial products that are only available for Windows systems.
Ideally, system calls should be eliminated. If this is not possible, they should be

CMU/SEI-2005-TN-029 17

evaluated to see if there are equivalents in the Linux operating system or if this
functionality is part of one of the common services.

3. All services will share a common data model and all data will be accessed through a
Data Store common service.

The need for a common data model is driven by a desire for information to be shared
and understood by all user applications. As a result, services will no longer define
internal data. All data will be defined as part of the common data model. Legacy
components must replace all dependencies on databases and file systems with calls to
the data store service and ensure that all the data needed is part of the common data
model.

4. An ADS will use the Discovery common service to find and connect to other services.

If the ADS will rely on other services, code to discover and connect to these services
will have to be written. Once the service is developed it must be advertised. This is done
by registering the service with the discovery service. Once this advertised service has
been registered, other applications that wish to use this service will perform a discovery
on the available services and choose which service(s) they desire to use.

5. An ADS will use the Communications common service for communicating with other
services.

The target SOA provides tools for generating data readers and data writers that will take
incoming and outgoing data and format it accordingly.

3.4 Analyze the Gap
Given the known and projected constraints of the target SOA, the SMART team analyzed the
legacy components to determine their suitability for reuse as services, and the amount of
effort and risk that would be involved.

The SMART team performed three different types of analyses: (1) an analysis of the changes
to the legacy components that would be necessary for migration to the SOA, (2) an informal
evaluation of code quality, and (3) an architecture reconstruction to obtain a better
understanding of undocumented dependencies. The results of these analyses allowed the team
to define a service migration strategy that mitigated some of the risk caused by the instability
of the target SOA. These analyses are each described in the following subsections.

3.4.1 Changes to Legacy Components

The team analyzed the candidate legacy components in terms of the characteristics that were
developed in Section 3.2. The SMART team identified dependencies of the selected classes
on other classes, the commercial mapping software, the commercial database, and Windows,
but was not sure that all dependencies had been identified. Most of the legacy documentation

18 CMU/SEI-2005-TN-029

was in the form of code comments and from a tool DOxygen which can extract after-the-fact
data from the C++ code, such as classes, attributes, dependencies, and comments. However,
during the analysis the team found that the DOxygen tool only picked up first-level
dependencies. This indicated that the coupling and the amount of code that was used by each
class was higher than could be estimated from the existing documentation.

There were also no consistent programming standards, leading to idiosyncrasies in the code
produced among different programmers. This increased the difficulty of our analysis, and it
would also increase the difficulty of any reuse. As might be expected from a relatively recent,
object-oriented system, overall cohesion was found to be high. The contractor provided
estimates for converting the components into services, based on a set of simplifying
assumptions on the actual make-up of the target SOA and the final set of user requirements.

A summary of the initial analyses of converting the selected components to services is shown
in Figure 6. Base classes are those from which the classes in the service are inheriting
properties in the object-oriented context. “Coupled” classes are those that contain code that is
used by the classes in the service. It is important to account for these, as they represent code
that must be migrated.

LowLow17.523,75023Total

1

4

12.5

Migration
Effort
(MM)

Scope of A
nalysis

LowLow5,3883“Coupled” Classes

LowLow to
Medium2,1994Base Classes

LowLow to
Medium16,163167Selected

Services

Level
of

Risk

Level
of

Difficulty

Size
(LOC)

Number
of

Classes

Number
of

Services
Services

LowLow17.523,75023Total

1

4

12.5

Migration
Effort
(MM)

Scope of A
nalysis

LowLow5,3883“Coupled” Classes

LowLow to
Medium2,1994Base Classes

LowLow to
Medium16,163167Selected

Services

Level
of

Risk

Level
of

Difficulty

Size
(LOC)

Number
of

Classes

Number
of

Services
Services

Figure 6: Results of Initial SMART Analysis

Using the existing contractor, the level of difficulty of making these changes would be low to
medium, and the risk would be low because of the contractor’s familiarity with the systems.
However, because of inadequacies in the architecture documentation and the contractor’s
underestimation of the amount of code used by the potential services, there remained a
number of gaps in understanding of the system. For example, it was mentioned that one of
the services made extensive use of the data model. This data model had over 1000 classes and
was used by almost every class included in the potential services. Even though analysis did
not initially focus on the data model, because of its size it now represented the largest

CMU/SEI-2005-TN-029 19

potential source of reuse in our study. However, as pointed out in Section 3.3, constraints of
the target SOA may not allow the data model to be reused.

As a result, it was not possible to accurately know how many other classes are used by a
specific service. In addition the estimates for rehabilitation of the legacy components would
have been understated. For example, the calls to user interface code would have to be
removed, and it would be necessary to know where these are located.

To get a better understanding of these issues the SMART team performed code analysis and
architecture reconstruction.

3.4.2 Code Analysis

To address remaining issues, the team first analyzed the code through a code analyzer
“Understand for C++.” This analysis provided

• a data dictionary

• metrics at the project, file, class, and function level

• an invocation tree

• a cross reference for include files, functions, classes/types, macros and objects

• unused functions and objects

The code analysis enabled the team to validate the input from the contractor and to produce
input for the architecture reconstruction tool that would identify dependencies.

From the code analysis, it was found that the code was better organized and documented at
the code level than most code the team was familiar with. However, as mentioned earlier,
there were inconsistencies in the quality and documentation between different parts of the
code that made the analysis complicated:

1. Since there was no consistent coding standard, individual differences between
programmers could be identified. This made the code harder to understand.

2. Some parts of the code were difficult to navigate, with little cohesion and awkward file
organization. Naming standards were different for files, classes, attributes, and method
names. Code organization styles were different.

3. The organization of files was not standardized. For example, it was not clear why some
files that did not perform user interface (UI) functions were located in UI directories.
Another example is that some include files were co-located with code files and others
located in a separate directory. Some files contained more than one class and there were
no clear criteria for when this was allowed.

Despite these difficulties that forced the team members to become more familiar with the
code than anticipated, they were able to produce the input for the architecture reconstruction
tool.

20 CMU/SEI-2005-TN-029

3.4.3 Architecture Reconstruction

To address the issue of dependencies in more detail, the SMART team conducted an
architecture reconstruction with a tool called ARMIN. Architecture reconstruction is the
process by which the architecture of an implemented system is obtained from the existing
system [Kazman 03, O’Brien 02].

To begin the architecture reconstruction, the team took the output from the code analysis and
performed a focused analysis of the as-built architecture.

The team aggregated the code into several groups, each of which was dedicated to one of the
following areas:

• component code that was identified as part of each service analyzed

• code directly dependent on the commercial mapping software

• user interface code

• the remainder of the code—data model, base classes, utilities, and code that did not
belong to any of the above groups

In our analysis, the team was interested in dependencies between services and

• user interface classes

• the commercial mapping software

• other services

• the remainder of the code that mainly represented the data model

Through the analysis the team was able to identify a substantial number of undocumented
dependencies between classes. These will enable a more realistic understanding of the scope
of the migration effort.

The team was told that the architecture of the system followed the application of the Model
View Controller (MVC) pattern. The architecture reconstruction found undocumented
violations of the MVC architecture—specifically calls from the model to the view—that
would need to be addressed in any migration effort.

The change from a standard system development effort to an SOA can have unanticipated
impacts. For example, the product line approach used by the system developers was an
excellent choice for the legacy application. However, the resulting architecture may increase
the difficulty of the migration effort, since the large numbers of dependencies on core assets
and the multiple levels of inheritance encoded may make it difficult to isolate stand-alone
services needed for easy deployment in the target SOA. A solution to this problem might be
to consider each service in itself as part of a product line, but this could require that the set of
core assets be redefined.

CMU/SEI-2005-TN-029 21

3.5 Develop Migration Strategy
The recommended migration strategy can be summarized in the following steps:

1. Require the contractor to update the software architecture documentation and
standardize comments in the code.

2. Work with the developers of the target architecture to define what is meant by a
compliant service.

3. Work closely with the team within the target architecture group that is defining the data
model to understand its contents and influence it as necessary.

4. Find out if the vendor has plans for a Linux version of the mapping software or if the
target architecture group has plans for a mapping common service to replace the current
Windows mapping software.

5. Interact with potential application developers that will be using the services to
understand their requirements and develop appropriate service interfaces.

6. Recalculate cost and effort of migration based on a complete set of code dependencies
and new understanding of user requirements and SOA constraints.

7. Understand the commonality between the current service migration effort and a second
forthcoming similar migration project to a different target SOA.

In examining the potential for reuse of the existing legacy components, the team found that
the current legacy code represents a set of components with significant reuse potential.
However, because the current legacy system does not have sufficient architecture or other
high-level documentation, it was difficult to understand the “big picture” as well as
dependencies between classes.

To avoid this problem with future systems, the team recommended that the organization
require the following changes from its contractors to make reuse of its legacy components
more viable:

• documentation in the form of a suitable set of architectural views

• consistent use of programming standards

• documentation of code so that comments can be extracted using an automated tool

• documentation of dependencies, especially when they violate architectural patterns

A good starting point was provided by the analysis of the legacy components, based on the
characteristics identified as important during the data-gathering activities. However, the team
performed additional analysis of the code, as well as an architecture reconstruction to obtain
additional data. The architecture reconstruction provided an “as-built” representation of the
structure of the system and its dependencies. It suggested that the significant dependencies
between classes will make reuse and deployment of services more difficult. If the migration
effort moves forward, the results of the architecture reconstruction can be a starting point for
understanding how to disentangle dependencies.

22 CMU/SEI-2005-TN-029

The largest risk in reusing the legacy components concerns the fact that the SOA has not been
fully developed. While its overall structure has been defined, many of the specific
mechanisms for interacting with it are still pending. Thus, it is not yet clear what the
requirements for being a service in this environment will be in 12 or 18 months.

The impact that SOA decisions will have on the migration efforts is clearly seen in the
concerns regarding the legacy data model. The architecture reconstruction allowed the team
to document the central role of the data model, and to identify it as a potentially valuable
reusable component, even though it had not been identified during the initial analysis.
However, this finding was tempered by the fact that in the target SOA environment,
potentially all services will have to use a common data model. If this is the case, all elements
of the data model will require mapping to existing elements of the common data model.
Negotiations will be necessary to make sure that all data elements needed by the services
become part of the common data model.

To address the SOA instability issue head on, the team recommended that the organization
take a proactive approach in working with the developers of the target SOA to understand the
implications of the evolving SOA on services.

The organization should also work closely with the developers of the applications who will
be using these services. Even though the technical part of the communication will be handled
by a common service, the data to be transferred during that communication must be
negotiated—the contents of both the request and the response message that is communicated
between the application and the service must be defined. An initial and crucial element of
discussion should be the data model, given that it is used by all the potential services.

Dependencies on the mapping software and other commercial products are a concern in the
target environment. The Windows-based mapping software, for example, would need to be
verified for use within the target SOA. A different mapping service might be required by the
target SOA. There are also dependencies on a commercial database. These would have to be
replaced by data access methods endorsed for the target SOA.

The team also noted that because there are dependencies between the primary services that
were analyzed and a second forthcoming project that was being planned by the organization,
there will be duplication of work if these are treated as separate projects.

CMU/SEI-2005-TN-029 23

4 Conclusions and Next Steps

The task of determining whether and how to expose legacy functionality as services can be
complex. Disciplined analyses of existing components and the target SOA are necessary for
sound migration decisions. SMART provides such disciplined analysis through a thorough
and consistent process, a set of data-gathering activities that capture the scope of technical
work to be accomplished, and artifacts that record critical aspects of the process.

We applied an early version of SMART to a command-and-control system and observed both
significant potential for migration to services as well as shortcomings in documentation and
code. In truth, the system owners will have a difficult time defining their services until the
interfaces and expectations of the target SOA are better defined.

While the early version of SMART used to analyze the system proved valuable, there is
significant room for improvement. SMART is being updated with the following goals in
mind:

• Improve the breadth and consistency of information gathered about the engineering effort
necessary to change the legacy artifact into a service. The SMIG is the first tool intended
for this purpose. By incorporating significant technical “know how” into the SMIG, we
also further an ultimate goal of transitioning the technique to other users.

• Incorporate decision rules on when it is most useful to include the code analysis and
architecture reconstruction steps as part of the process.

• Develop machine support for capturing and analyzing data gathered during the SMART
process. This will entail building templates for major artifacts, including the:

- Stakeholder List
- Characteristics List
- Migration Issues List
- Component Table
- Service Table
- SOA Description
- Component Service Options Table
- Migration Alternatives Table
- Service Migration Strategy
- Final Presentation

• Develop techniques and criteria for determining when a SMART team has captured
sufficient information to complete the analysis process.

24 CMU/SEI-2005-TN-029

• Establish a mechanism to capture the net effect of SMART on migration efforts. This
information is essential for continued evolution and improvement of SMART.

While SMART was designed with military migration efforts in mind, we believe that the
technique has general applicability to organizations outside of the DoD. This is particularly
the case when organizational goals involve more than just the wrapping of existing
capabilities in order to make them accessible in an SOA.

As we continue to refine SMART, we plan to apply it to other projects and legacy systems.
We are actively seeking organizations interested in applying the technique. We are also well
on the way to establishing relationships with other organizations interested in adopting and
improving SMART with us.

CMU/SEI-2005-TN-029 25

26 CMU/SEI-2005-TN-029

Appendix SMART Output

During the course of the SMART process, the lists and tables below are generated.

Stakeholder List: Created during “Establish Stakeholder Context” and updated during
subsequent stages as necessary. The Stakeholder List identifies stakeholders and the type of
information to be elicited from each, and provides contact information.

Characteristics List: Created during “Establish Stakeholder Context” and updated during
subsequent stages as necessary. The Characteristics List identifies information about
components to be gathered and later considered in determining whether service migration is
feasible and appropriate. The Characteristics List is composed of a set of predefined
characteristics that have been developed based on SEI experience, combined with the
additional characteristics identified during the SMART process.

Migration Issues List: Created during “Establish Stakeholder Context” and updated during
subsequent stages as necessary. The Migration Issues List identifies concerns that must be
addressed during the migration process. Some migration issues may be applicable to all
components and services (i.e., general issues), while others may be applicable only to specific
components or services.

Component Table: Created during “Describe Existing Capability” and updated during
subsequent stages as necessary. The Component Table identifies components under
consideration for migration to service and is used to capture characteristics (identified in the
Characteristics List) of each component under consideration.

Service Table: Created during “Describe Existing Capability” and updated during subsequent
stages as necessary. The Service Table identifies potential services that can be derived from
components and captures information regarding these potential services.

Component Service Options Table: Created during “Analyze the Gap” and updated during
subsequent stages as necessary. The Component Service Options Table identifies each
potential mapping of legacy components (Component Table) to potential service (Service
Table). Mapping need not be one-to-one. A component may have to be split into several
services, or several components may be combined to form a service. Also, several ways of
producing a service may be possible. This may involve alternate ways of using available
components, as well as using capabilities that were not part of the original system, such as
COTS products. The Component Service Options Table is updated with information about
cost, effort, and risk for each option during “Develop Strategy for Service Migration.”

CMU/SEI-2005-TN-029 27

Migration Alternatives Table: Created during “Develop Migration Strategy.” For each
recommendation in the Component Service Options Table, there may be more than one viable
strategy to achieve the migration goal. These strategies may vary along many dimensions,
such as the components selected for migration, the sequencing of migration activities, the use
of external services, and the types of modifications made to the code. Viable strategies are
documented as entries in the Migration Alternatives Table.

Service Migration Strategy: Developed during “Develop Migration Strategy.” The Service
Migration Strategy summarizes the SMART process undertaken and information gathered,
and provides a preliminary analysis of the viability of migrating legacy components, to
services, migration strategies available, and the costs and risks involved. In particular, it
attempts to answer several questions:

1. Which components can reasonably be used to derive what services?

2. What sorts of activities must be performed to accomplish the migration?

3. What strategies are most appropriate for the migration effort?

Final Presentation: A slide (plus notes) presentation developed during “Develop Migration
Strategy” that summarizes the process and migration strategy and is presented to the
customer.

28 CMU/SEI-2005-TN-029

References

URLs are valid as of the publication date of this document.

[Alberts 00] Alberts, D.; Garstka, J.; & Stein, F. Network Centric Warfare:
Developing and Leveraging Information Superiority—2nd Edition
(Revised). Arlington, VA: CCRP Publication Series, 2000.

[Bergey 02] Bergey, J.; O'Brien, L.; & Smith, D. “Using the Options Analysis
for Reengineering (OAR) Method for Mining Components for a
Product Line,” 316-327. Software Product Lines: Proceedings of
the Second Software Product Line Conference (SPLC2). San Diego,
CA, August 19-22, 2002. Berlin, Germany: Springer, 2002.

[Brown 02] Brown, A; Johnston, S.; & Kelly, K. Using Service-Oriented
Architecture and Component-Based Development to Build Web
Service Applications. Santa Clara, CA: Rational Software
Corporation, 2002.

[Kazman 03] Kazman, R; O'Brien, L.; & Verhoef, C. Architecture Reconstruction
Guidelines, 2nd Edition (CMU/SEI-2002-TR-034 ADA421612).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003. http://www.sei.cmu.edu/publications/documents
/02.reports/02tr034.html.

[Lewis 05] Lewis, Grace & Wrage, Lutz. Approaches to Constructive
Interoperability (CMU/SEI-2004-TR-020). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/04.reports/04tr020.
html.

[O’Brien 02] O'Brien, L.; Stoermer, C; & Verhoef, C. Software Architecture
Reconstruction: Practice Needs and Current Approaches
(CMU/SEI-2002-TR-024, ADA407795). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports
/02tr024.html.

CMU/SEI-2005-TN-029 29

[Potter 05] Potter, John. Statement of Postmaster General /CEO John E. Potter.

United States Postal Service, 2005. http://www.usps.com
/communications/news/speeches/2005/sp05_0426pmg.htm.

30 CMU/SEI-2005-TN-029

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

SMART: The Service-Oriented Migration and Reuse Technique
5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Grace Lewis, Ed Morris, Liam O’Brien, Dennis Smith, Lutz Wrage
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-029

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes the Service-Oriented Migration and Reuse Technique (SMART). SMART is a technique
that helps organizations analyze legacy systems to determine whether their functionality, or subsets of it, can
be reasonably exposed as services in a Service-Oriented Architecture (SOA). Converting legacy components
to services allows systems to remain largely unchanged while exposing functionality to a large number of
clients through well-defined service interfaces. The U.S. Department of Defense (DoD) is adopting this
approach by defining SOAs that include a set of infrastructure common services on which organizations can
build additional domain services or applications. SMART considers the specific interactions that will be
required by the target SOA and any changes that must be made to the legacy components. An early version
of SMART was applied with good success to assist a DoD organization in evaluating the potential for
converting components of an existing system into services that would run in a new and tightly constrained
DoD SOA environment.

14. SUBJECT TERMS

Service-Oriented Migration and Reuse Technique, SMART, service-
oriented architecture, SOA, migration, legacy components

15. NUMBER OF PAGES

39

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	SMART: The Service-Oriented Migration and Reuse Technique
	Contents
	List of Figures
	Abstract
	1 Introduction
	2 The Service-Oriented Migration and Reuse Technique (SMART)
	3 Pilot Application of SMART
	4 Conclusions and Next Steps
	Appendix SMART Output
	References

