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Abstract

Control system components are sensitive to the end-to-end latency and age of signal data. They
are also affected by variation (jitter) in latency and age values due to different runtime configura-
tions (i.e., sampling or data-driven signal processing pipelines, dissimilar communication mecha-
nisms, partitioned architectures, and globally synchronous versus asynchronous hardware). This
technical note introduces an analysis framework designed to calculate the end-to-end latency and
age of signal stream data as well as their jitter. The latency analysis framework and calculations
are illustrated in the context of an example model that uses the flow specification notation of the
Architecture Analysis & Design Language (AADL). The report describes how this latency analy-
sis capability can be used to determine worst-case end-to-end latency on system models of differ-
ent fidelity and how it accounts for partitioned architectures. It also summarizes the worst-case
end-to-end flow latency analysis capability provided by the Open Source AADL Tool Environ-
ment (OSATE) flow latency analysis plug-in.

SOFTWARE ENGINEERING INSTITUTE | vii



viii | CMU/SEI-2007-TN-010



1 Introduction

Many embedded systems have control system components that process a signal data stream from
sensors and affect the external environment (e.g., a physical plant) through actuators. The process-
ing of such a signal stream is time sensitive. The degree of time sensitivity depends on the lag of
the physical systems and the responsiveness of the control algorithm. It is also affected by the
sampling age of the data (i.e., the amount of time expired since the data was read by a sensor and
an output computed with this data is passed to an actuator).

Control algorithms are designed to accommodate this delay. However, control algorithms are sen-
sitive to variation (jitter) in this delay. For example, Cervin, Arzén, and Henriksson describe how
sampling jitter and end-to-end latency jitter from a sensor to an actuator affects the stability of
controllers [Cervin 2006]. They also show that jitter varies according to the scheduling algorithm
for executing a task set. In other words, the choice of runtime system affects end-to-end latency
and age as well as their jitter. Their jitter is perceived by the control algorithm as increased noise
in the data, which can occur when configuring an embedded application with different scheduling
and communication policies or when migrating a proven legacy application to a new platform.

Furthermore, the end-to-end latency and the age of data in a signal stream may differ. End-to-end
latency is the amount of time it takes for a new data value from a sensor to be processed and out-
put at the actuator. If data elements are missing or the data stream is oversampled, the same data
element may be processed multiple times. In that case, the age of the data output to the actuator
may be larger than the end-to-end latency.

There are a number of contributors to the end-to-end latency/age and their jitter, including the
following:

. actual execution time of a task

The execution time of a task can vary between a minimum and a maximum (or worst-case)
time. Use of caches in processors may reduce the minimum execution time. But they may
not reduce maximum execution time under worst-case assumptions, and preemption by an-
other task may invalidate the cache, resulting in cache misses.

e completion time of a task

Other tasks and variation in their execution times affect the completion time of a task. That
completion time may be later than its worst-case execution time due to other tasks sharing
the processor or to synchronization on shared resources. The worst-case completion time of a
task in a schedulable system is its deadline.

o  sampling latency

Tasks may process a data stream in a data-driven manner (i.e., the completion of one task
triggers the execution of the next task). In this case, any latency jitter due to tasks is cumula-
tive. Control systems typically use sampling to process the data more deterministically and
manage latency jitter. Sampling occurs at a given rate, is driven by a clock, and increases
end-to-end latency.
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o  sampling jitter

Latency jitter may exceed the sampling period. In this case, the sampling task may process
the old value sometimes and the new value other times. The mechanism used to communi-
cate data between tasks may also contribute to sampling jitter. Communication through a
shared data area may result in non-deterministic sampling when tasks execute preemptively
on the same processor or concurrently on two different processor cores. For example, a task
down-sampling at half the rate may sample two data elements in a row and then skip two
data elements instead of sampling every other data element. This results in a sampling varia-
tion of two frames.

o  globally asynchronous systems

In a globally synchronous system, task dispatches are aligned. As a result, the sampling la-
tency can be determined by rounding the computational latency to the next multiple of the
sampling rate. In a globally asynchronous system, the sampling latency has to be added to
the computational latency to accommodate worst-case assumptions of misalignment of
clocks. Furthermore, clock drift adds to latency jitter.

e  partitioned architectures and time-triggered architectures

Partitioning is used to support integrated modular avionics (IMA). In order to achieve more
deterministic behavior, frame-delayed communication is typically used. Frame-delayed
communication limits increases in jitter, but it adds to end-to-end latency. Furthermore,
frame-delayed communication may double the end-to-end latency in a migration to a parti-
tioned system, when it is combined with an existing task communication mechanism such as
periodic I/O through a high-priority task. Similarly, time-triggered architectures operate a de-
terministic protocol on a system bus to maintain deterministic behavior. Again, this may lim-
it jitter and increase end-to-end latency.

The international, industry standard Architecture Analysis & Design Language (AADL) [SAE
AS5506 2004] has the expressive power to model

o  signal streams as end-to-end flows

o  sampling and data-driven processing as periodic and aperiodic threads that communicate
through sampling data ports and queued event data ports

e  partitioned and time-triggered architectures

AADL also can map application software onto different hardware platforms and specify ranges of
execution times on different platforms, deadlines, and expected latencies along specified data
flows. Therefore, AADL models can form the basis for an analytical framework through which
we can investigate the impact of the runtime system on end-to-end latency, age, and their jitter
and compare those results against the assumptions made by the control algorithms.

In this report, we describe the ability of AADL to determine a lower bound for the worst-case
end-to-end latency in a system. If this lower bound value exceeds the desired latency, the re-
quirement is not met. The AADL model may reflect the actual system at different levels of fidel-
ity. As the fidelity increases, the lower bound may increase as well, but it will never decrease. For
example, we demonstrate that the end-to-end latency of a signal flow may be determined from a
model at the level of subsystems that are mapped into partitions, where those partitions take into
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account the latency due to cross-partition communication. The model may be refined to specify
latency contributed by an individual subsystem due to processing, or the subsystem may be elabo-
rated into a task model where execution times, deadlines, and sampling rates are taken into ac-
count. The application system may be mapped onto different hardware platforms; in that case,
workload on individual processors and communication latency can be taken into account in the
end-to-end latency analysis.

This technical note summarizes the flow latency analysis capabilities that are provided by the
flow latency analysis plug-in for the Open Source AADL Tool Environment (OSATE). The flow
latency analysis capability utilizes the ability of the AADL to support specification of end-to-end
flows through a sequence of system components.

In Section 2, we describe the flow specification notation in AADL. In Section 3, we introduce a
latency analysis framework for calculating the end-to-end latency, and in Section 4 we discuss its
use on system models. In Section 5, we explain how the flow latency analysis plug-in can be used
on system models of different fidelity.
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2 AADL Flow Specifications and Flow Instances

A flow specification describes an externally observable flow of application logic through a com-
ponent. Such logical flows may be realized through ports and connections of different data types
and a combination of data, event, and event data ports. Flow specifications represent

o  flow sources—flows originating from within a component
o  flow sinks—flows ending within a component

. flow paths—flows through a component from its incoming ports to its outgoing ports

Flow instances describe actual flow sequences through components and sets of components across

one or more connections. They are declared in component implementations. A flow sequence

takes one of two forms:

1. A flow implementation describes how a flow specification of a component is realized in its
component implementation.

2. An end-to-end flow specifies a flow that starts within one subcomponent and ends within
another subcomponent.

Flow specifications, flow implementations, and end-to-end flows can have expected and actual
values for flow-related properties (e.g., latency or rounding error accumulation).

The purpose of specifying end-to-end flows is to support various forms of flow analysis, such as
end-to-end timing and latency, reliability, numerical error propagation, Quality of Service (QoS),
and resource management based on operational flows. To support such analyses, relevant proper-
ties are provided for the end-to-end flow, the flow specifications of components, and the ports
involved in the flow to be analyzed. For example, to deal with end-to-end latency, the end-to-end
flow may have properties specifying its expected maximum latency and actual latency. In addi-
tion, ports on individual components may have flow-specific properties (e.g., an in port property
specifies the expected latency of data relative to its sensor sampling time or in terms of end-to-end
latency from sensor to actuator to reflect the latency assumption embedded in its extrapolation
algorithm).

2.1 SPECIFICATION OF EXTERNALLY VISIBLE FLOWS

A flow specification declaration in a component type specifies an externally visible flow through
a component’s ports, port groups, or parameters. The flow through a component is called a flow
path. A flow originating in a component is called a flow source. A flow ending in a component is
called a flow sink. Figure 1 illustrates a system called GPS with three ports and two flow specifi-
cations. These are the flows through GPS and out of GPS that are externally visible. The flow
path symbol is connected to two ports, while the flow source symbol is connected to one port.
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—p Flow path System GPS

—I Flow sink

I— Flow source

flow path £
pt2

pt1

flow source F?
pt3

Figure 1:  Flow Specifications for GPS System

The ports identified by a flow specification can have different data and port types (i.e., one can be
an event port and the other an event data port). Also, multiple flow specifications can be defined
involving the same ports. For example, data coming in through an in port group is processed and
data derived from one of the port group’s contained ports is sent out through different out ports.
This capability allows logical flows of information through components to be characterized by
attributing flow specifications and the ports involved in flow specifications with relevant AADL
property values. Properties other than the set of predeclared properties can be introduced through
the AADL Property Set concept [Feiler 2006, p. 103].

2.2 FLOWS THROUGH COMPONENT IMPLEMENTATIONS

A flow implementation declaration in a component implementation specifies how a flow specifi-
cation is realized as a sequence of flows through subcomponents along connections from the flow
specification in port to the flow specification out port. The system implementation for system
S1, shown on the right of Figure 2, contains process subcomponents P/ and P2. Each process
subcomponent has two ports and a flow path specification as part of its process type declaration.
The implementation of flow path F'/ is shown in both graphical and textual form on the right side
of Figure 2. F'I starts with port p¢/ and follows a sequence of connections and subcomponent flow
specifications through connection C/, subcomponent flow specification P2.F5, connection C3,
subcomponent flow specification P/.F7, and connection C5. This flow implementation ends with

port pt2.
pt1 System implementation S1.impN
c1 flow path F5
Process P2
System S1 pt2
C3
(Flowpalh EL . /L
pt3 \ Process P1 /
Flow Specification
flow path F1: pt1 - pt? Flow Implementation for flow path F1
flow path F2: pt1-> pt3 flow path F1: pt1-> C1-» P2F5-> C3-» P1F7-» C5-> pt?

Figure 2:  Flow Specification and Flow Implementation
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Flow implementations can be declared for specific modes and mode transitions. Furthermore,
flow implementations can have mode-specific property values, which accommodate the modeling
of flows in modal systems. Once component implementations are known at multiple levels, actual
flow properties such as latency at higher levels of the hierarchy can be calculated from the flow
properties of the lower levels.

2.3 END-TO-END FLOWS

An end-to-end flow is a logical flow through a sequence of system components (i.e., threads, de-
vices, and processors). An end-to-end flow is specified by an end-to-end flow declaration. End-to-
end flow declarations are declared in component implementations, typically in the flow imple-
mentation in the system hierarchy that is the root of all threads, processors, and devices involved
in an end-to-end flow. The subcomponent identified by the first subcomponent flow specification
referenced in the end-to-end flow declaration contains the system component that is the starting
point of the end-to-end flow. Subsequent named subcomponent flow specifications contain addi-
tional system components.

Figure 3 illustrates end-to-end flows of a system ControlSys. The selected end-to-end flow speci-
fication, Controlleriflow, is shown in black, while the other one is shown in gray. The subcompo-
nent flows and connections that make up the selected end-to-end flow are shown in black, while
subcomponent flows and connections that are not part of the selected flow are shown in gray. An
editor can use this visualization to display and support the definition of end-to-end flows. The
user defines the elements of an end-to-end flow by selecting and deselecting subcomponent flows
and connections. Flow implementations can be visualized in a similar manner.

System ControlSys
End to end flow Controller 1flow
End to end flow ControlleriZflow

flow source F31 flow path F1 flow sink F51

/

\

Actuator ]

Controller2

Figure 3:  End-to-End Flow Declaration and Selection

Notice that an end-to-end flow is expressed in terms of the flow specifications of its subcompo-
nents. As a result, we can analyze flows in terms of subcomponent flow specifications without
requiring the implementations of those components to be specified. We can validate the property
values of a flow specification using the property values derived from the flow implementation that
is based on the flow specification property values of its subcomponents. This capability supports a
specification-based, low-fidelity analysis of architecture models early in the life cycle, before sys-
tem details are available. As we refine a system architecture and provide a flow implementation
for the refined components, the end-to-end flow analysis can be revisited at higher fidelity.
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2.4 END-TO-END FLOW INSTANCES

Flow declarations are associated with individual components. End-to-end flow declarations are
specified in terms of the immediate subcomponents. For a system instance, these flow declara-
tions are recursively expanded in the same way that subcomponent declarations result in a hierar-
chy of component instances in an AADL instance model or a collection of connection declara-
tions results in a semantic connection.

Figure 4 shows how a flow sink specification expands into a three-level system hierarchy. The
flow sink specification FS/ for system S2 is expanded into the connection C/ and flow sink speci-
fication FS2 of process P2, which in turn is expanded into the connection CC/ and the flow sink
specification F'S1 of thread 75. In short, the ultimate flow sink specification of system S2 is the
flow sink of thread 775.

System S2
/\ flow sink F31

System implementation S2.impl

Flow implementation c1 Process P2

flow sink FS1: C1 -= P2.FS2 flow sink FS2

Flow implementation
flow sink FS2: CC1 -> T5.FSt1

Process implementation P2
- AL LIS LE
Thread T5

flow sink F51

Figure 4:  Flow Declarations and the System Hierarchy

Figure 5 illustrates the expansion of an end-to-end flow declaration into the end-to-end instance
flow in a system instance model. Notice that the end-to-end flow declaration is declared with the
component implementation that is the common root of all system components involved with the
end-to-end flow. In our example, the common root is the component implementation that contains
systems S0, S1, and S2 as subcomponents. The ultimate flow source of the example end-to-end
flow is the flow source in thread 70. The ultimate flow sink is the flow sink in thread 75. The end-
to-end instance flow follows the semantic connections from thread 70 to thread T/, T1 to 72, and
72 to T5. Notice that the flow path F/ of system S/ represents the flow through both threads 7'/
and 72. We have used dashed lines to mark the end-to-end instance flow in Figure 5.
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End-To-End Flow Declaration
flow SenseControlActuate: S0.FS1 -=C1 = S1.F1 = C2-= S2.FS1

flow source F51 ﬂw,‘{ path F1 flow sink F51

+ System S0 System S2 ]

T~ \

Connectl_on Process impl P2 I
Declaration

- —— r=— ===
Thread 102 [ L. Thvsad TLp ), Thizad 12,08 . g Thread TS 4

(TR R ,

FlowSpec instance Connection Instance

System $1

I Process impl PO

End-To-End Instance Flow of SenseControlActuate
T0.F$1 -> <Conninstance1> -> $1.P1.T1.FX1 -> <Conninstance3> -> $1.P1.T2.FX2
-> <Conninstance3> => $2.P2.T5.FS1

Figure 5:  End-To-End Flow in a System Instance

2.5 TEXTUAL FLOW DECLARATION EXAMPLES

The example in Table 1 illustrates various aspects of defining flow specifications. The process
foo has several flow specifications. Flowl and Flow2 are two different flow paths through the
process from the same incoming port to two different outgoing ports. F1ow3 represents a flow
where the process foo acts as an information sink (i.e., it consumes the in event port
initcmd). Similarly, the process foo acts as an information source for the out event
port Status.

The process implementation foo.basic consists of several threads that are assumed to
have flow specifications as indicated in the commented text' and specifies a flow implementation
for several flow specifications. This flow implementation indicates how the flow is realized as
flow through the component’s subcomponents. It also specifies two end-to-end flows that are lo-
cal to the process foo: (1) ETE1 starts with a flow source of a subcomponent and ends with a
flow sink of a different subcomponent, and (2) ETE2 specifies a flow whose starting and ending
elements are flow paths (i.e., we are specifying a subflow of interest although the information
flows in and out of the specified end-to-end flow).

' Comment lines in an AADL specification are prefaced by two dashes (--).
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Table 1:  Aspects of Defining Flow Specifications

process foo

features
Initcmd: in event port;
Signal: in data port gps::signal data;
Resultl: out data port gps::position.radial;
Result2: out data port gps::position.cartesian;
Status: out event port;

flows
-- two flows split from the same input
Flowl: flow path signal -> resultl;
Flow2: flow path signal -> result2;
-- An input is consumed by process foo through its initcmd port
Flow3: flow sink initcmd;
-- An output is generated (produced) by process foo and made
available
-- through its port Status;
Flow4: flow source Status;
end foo;

process implementation foo.basic
subcomponents

A: thread bar.basic;

-— bar has a flow path fsl from pl to p2

-- bar has a flow source fs2 to p3

C: thread baz.basic;

B: thread baz.basic;

-- baz has a flow path fsl

-— baz has a flow sink fsink

connections

connl: data port signal -> A.pl;

conn2: data port B.p2 -> resultl;

conn3: data port C.p2 -> result2;

conn4: data port A.p2 -> B.pl;

conn5: data port A.p2 -> C.pl;

conn6: event port A.p3 -> Status;
connToThread: event port initcmd -> C.reset;

flows
Flowl: flow path
signal -> connl -> A.fsl -> conn4 ->
C.fsl -> conn2 -> resultl;
Flow2: flow path
signal -> connl -> A.fsl -> connb5 ->
C.fsl -> conn3 -> result2;
Flow3: flow sink initcmd -> connToThread -> C.fsink;
-- a flow source may start in a subcomponent,
--— 1.e., the first named element is a flow source
Flow4: flow source A.fs2 -> connect6 —-> status;
-- an end-to-end flow from a source to a sink
ETEl: end to end flow

A.fs2 -> conn5 -> C.fsink;
-- an end-to-end flow where the end points are not sources or
sinks
ETE2: end to end flow
A.fsl -> conn5 -> C.fsl;
end foo.basic;
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3 Latency Analysis Framework

Flow latency is the amount of time it takes for information to flow from the starting point of an
end-to-end flow to its destination via connections and, possibly, intermediate components. The
starting point, intermediate components, and destination can be threads or devices; we refer to
them as tasks.

Flow latency is affected by these four factors:
1. processing time by tasks in the end-to-end flow

Tasks are AADL threads and devices.
2. processing delay due to queuing or sampling

Tasks may communicate via queued ports (AADL event or event data ports) or un-
queued sampling ports (AADL data ports). The processing delay due to queuing is affected
by the number of elements in the queue; the processing delay due to sampling is affected by
the rate at which the information is being sampled.

3. transfer time of information between tasks along connections

Transfer between tasks may occur on the same processor (AADL threads bound to the same
processor), between tasks on different processors, or between a task and a device. The trans-
fer time is affected by the amount of data being transferred and the buses to which a connec-
tion is bound.

4. transfer delay due to queuing or waiting for time slots in the transfer protocol

Transfer delay due to queuing is affected by the number of elements in the transfer queue,
while transfer delay due to time slotting is affected by the rate at which slots for transfer are
made available by the transfer protocol.

The end-to-end latency of a flow is determined by the processing time of each task, processing
delay by all but the first task, and transfer time and delay for each of the connections between the
tasks.

We can distinguish between best-case latency and worst-case latency. Best-case latency is deter-
mined by the minimum execution time of each task involved in a flow. It establishes a lower
bound under the assumption that each task can execute immediately (i.e., each task has dedicated
or highest priority access to a processor and is not preempted by other tasks). Worst-case latency
is determined by the deadline of each task involved in the flow under the assumption that the tasks
are schedulable. It establishes a lower bound that can be reduced by effectively dropping task
deadlines while maintaining schedulability for a given periodic workload.

Latency jitter is determined by the completion time of each task. Completion time is affected by a
variation in actual execution time between the minimum and maximum execution time and is
bounded by the deadline under the assumption that the task set is schedulable. For a fixed work-
load, the maximum completion time may be lower than the specified deadline; for a varying
workload, the deadline represents an upper bound under the assumption that all deadlines are met.
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The age of data differs from latency, when data is re-sampled—as is the case when up-sampling
occurs or there are missing data elements in the data stream (e.g., due to a missing sensor read-

ing).

In the following sections, we look at each of these factors in more detail.

3.1 PROCESSING TIME

Tasks have several timing-related properties that reflect the processing time, including the follow-
ing:
e  minimum and maximum execution time

Execution time, the amount of time the task is executing on a processor, is determined by the
number of instructions executed. Therefore, execution time is dependent on processor speed
and is affected by cache and pipelining techniques used by the processor. The minimum exe-
cution time can be used to determine a lower bound on latency, on the assumption that the
active component is not preempted. The maximum execution time can be used to determine
a lower bound on throughput, on the assumption that the active component is not preempted.
Compute Execution Time plus Recover Execution Time properties in AADL
specify a time range to represent these values. Processor-specific property values can be used
to identify processor-type execution times. Alternatively, the execution time can be specified
with respect to a reference processor, and a scaling factor for a specific processor type is
used to determine the execution time.

e completion time and deadline

Completion time is the amount of time that expires between the dispatch and completion of a
task. This time takes into account delays due to preemption or resource locking. The mini-
mum completion time is the minimum execution time, under the assumption that the task
execution is not delayed. Consequently, the minimum completion time is affected by the
processor speed. The maximum completion time is the task deadline; it is not sensitive to the
processor speed. The task deadline can be used to determine the maximum latency due to
processing, on the assumption that the task set is schedulable. The Deadl ine property in
AADL specifies the deadline for periodic, aperiodic, sporadic, and background threads.

For worst-case flow latency analysis, the AADL properties Deadline and Period are used.
Compute Execution Time and Recover Execution Time are not utilized in the
worst-case flow latency analysis. The lower bound of the Compute Execution Time repre-
sents the minimum execution time and a lowest bound for best-case end-to-end latency calcula-
tions.

3.2 PROCESSING DELAY

Several factors can cause processing delay. We examine these factors separately for sampled
processing and data-driven (queued) processing.
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3.21 Sampled Processing

Sampled processing occurs when a task is dispatched independently of the arrival of the input that
is processed by the task.

A periodic task may sample the input on its incoming data ports at the rate of its period. Periodic
tasks may also sample event ports and event data ports at the rate of their period. The sampling
rate is determined by the rate at which a task is dispatched. For periodic threads

(Dispatch Protocol property value Periodic) or devices with periodic drivers

(Device Dispatch Protocol property value Periodic), the sampling delay is the value
of the Period property.

At each sampling point, the task may process the complete port queue, if the

Dequeue Protocol property value is A11Items (the default value), or it may process one
item if the value is OneItem. A sampled processing thread may represent, for instance, a system
health monitor that samples an alarm queue (event port) periodically. Note that if the arrival rate
on an event data port is higher than the processing rate and only one item at a time is processed,
the queue will routinely overflow, and data elements will be lost.

An aperiodic or a sporadic thread may sample the input on its incoming data ports if its dispatch is
triggered by event or event data arrival that is not part of the flow being analyzed. The maximum
interarrival rate determines the worst-case latency.

When an aperiodic or a sporadic thread is dispatched by the arrival of an event or event data from
its predecessor in the flow, we have queued processing (see Section 3.2.4). When a data port
processes by an aperiodic thread at the completion of its predecessor, it does not introduce proc-
essing delay. Instead, we have a processing chain (see Section 3.2.3).

3.2.2 Synchronous and Asynchronous Sampling

We can distinguish between scenarios where sampling dispatches of the predecessor and a given
task are performed with respect to a common clock (synchronous sampling) and those where the
task dispatch is performed independently (asynchronous sampling).

In asynchronous dispatch, the dispatch rate of the sampling task determines the processing delay.
A sampling task dispatch may have just missed the arrival of the output, since the output is made
available independently. This circumstance results in a maximum delay of the period between
dispatches of the sampling task. Figure 6 shows a periodic task 72 that samples the output of an
independently executing task 7'/. The maximum processing delay due to sampling is the period of
72, which is added to the processing time of 7/ to determine the latency.

12 | CMU/SEI-2007-TN-010



Period of T2
Task T2

Task Tl ~ ——==——~—
\ Sampling delay
Processing time

Figure 6:  Asynchronous Sampling

This assumption is also the default interpretation in the AADL standard document. The AADL
algorithm can easily be changed to handle globally asynchronous systems, in which each proces-
sor operates with a separate clock, or partially synchronous systems where some hardware com-
ponents share clocks.

Synchronous sampling can occur for periodic threads on the same processor and on processors
and devices whose execution is coordinated by a common clock. Synchronous sampling offers a
more precise figure for worst-case latency by recognizing that the execution of several tasks oc-
curs according to a common timeline. In that situation, the originator and the sampling task are
dispatched periodically and their periods are harmonic (i.e., their periods are the same or one is a
multiple of the other).

Figure 7 illustrates synchronous sampling for two tasks with the same period. The time of arrival
of data at the sampling task 72 is the processing time of the originator 7/ and any transfer time
and delay. The processing delay of the sampling task is the difference between the arrival of data
from the synchronous predecessor and the next dispatch time of the sampling task. The latency,
which is the sum of the processing time of the predecessor and the processing delay of the sam-
pling task, is the period of 72.

Period of T2

I_"- Laﬁncy
T 1 |
Task T1 ---3-- / & ------

Processing time ~ Sampling delay

Figure 7:  Synchronous Sampling

3.2.3 Sampling of Processing Chains

In general, the latency for synchronous sampling is the processing time plus any transfer time and
delay rounded up to the next multiple of the sampling period. A periodic task may synchronously
sample a processing chain that starts with a periodic task and has intermediate tasks whose dis-
patch is triggered by the completion of their predecessors—such as aperiodic threads or periodic
threads with immediate data port connections. In this scenario, the cumulative time to be rounded
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up is the sum of the processing times, any queued processing delays, and any transfer time and
delays. Figure 8 illustrates sampling of such a processing chain 77/ and 712 resulting in a latency
of two periods of 72.

Period of T2
Task T2 ~~~ - 7{“' Lﬁtency

Task Tl -=-y=== \

Task T12 \ = .
Processing time Sampling delay

Figure 8:  Synchronously Sampled Processing Chain

AADL supports data port connections with transfer timing characteristics that guarantee determi-
nistic transfer of data streams. Data port connections can be declared to be immediate (mid-frame
communication) or delayed (phase-delayed communication). We illustrate this capability in
Figure 9. Delayed connections guarantee that the output of the originator is always sampled at the
next dispatch of the active component, so that the processing delay is always the period of the
receiver. Immediate connections delay the execution of the periodic recipient task, which effec-
tively treats the periodic recipient as an aperiodic thread whose dispatch is triggered by the com-
pletion of the originator (i.e., a sampling processing chain).

Periodic 10 Hz Periodic 10 Hz
o ————— —_— -\-\-\-‘_"‘:3 _________ fmmmmmmm == — -\-\-\-:‘-\:'\5 _________ -
/ Thread 1 . Thread2 ; Thread 1 p—s—p Thread2
Frm oo o o o . b e e e e e d e e e e e === v e o o e e — -
Thread 1 Thread 1
Thread2 W Y Y Thread 2 N y
I } } > f f } >
Tu T1 TZ TI:I T1 . T2
Immediate Connection Delayed Connection

Figure 9:  Timing of Immediate and Delayed Connections

3.24 Data-Driven Processing

Data-driven processing occurs when transferred information drives the dispatch of a task, and the
dispatch request is queued if the task has an active dispatch. These are aperiodic threads or de-
vices whose dispatch is driven by input on an event or event data port. If an end-to-end flow in-
cludes events or event data through such ports, the queuing delay contributes to the end-to-end
latency. Events or event data can be sent by a thread at any time during its execution. It is as-
sumed that in the worst case, the event or event data was sent at completion time of the predeces-
sor. In this case, under the assumption that the system is schedulable, the predecessor’s deadline is
its worst-case completion time.

The maximum processing delay is determined by the number of elements in the queue and the
active dispatch. In other words, the worst-case processing delay is the queue size multiplied by the
task deadline.
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3.3 TRANSFER TIME AND DELAY

Transfer of information between tasks is affected by the size of the data, overhead of the transfer
protocol, and speed of the execution platform component(s) that carry out the transfer. The size of
data to be transferred is specified through the Source Data Size property, which can be as-
sociated with the data or event data port or with the data classifier of the data or
event data port.

Transfers may occur within one processor or across processors through networks/buses. Thus, the
transfer time is affected by the binding of the application components and connections to the exe-
cution platform. Transfer delay results from queuing within the transfer protocol implementation

and multiplexing of the physical transfer medium.

Several properties have been predeclared in the AADL standard for buses and processors to de-
termine the transfer time within memory or on a bus. The predeclared properties are

Assign Time, Number of Bytes,Assign Byte Time,and Assign Fixed Time.
Using those properties, the equation for computing transfer time within memory or on a bus is as
follows: (Assign Time = (Number of Bytes * Assign Byte Time) +

Assign Fixed Time).

The AADL standard also has predeclared a Transmission Time and a
Propagation Delaytime. Transmission Time captures the amount f time it takes to
transmit data. Propagation Delay captures any delay in transmission due to the protocol

used.

There may be situations where a hardware platform has not been identified or binding of tasks to
processors has not been established. In these cases, the latency property associated with a connec-
tion is interpreted to take into account communication latency (see Section 4.6).

3.4 USE OF LATENCY PROPERTY

The AADL standard has three predeclared latency-related properties:

1. The Latency property can be specified for end-to-end flows, flow specifications, and con-
nections. It represents the “maximum amount of elapsed time allowed between the time the
data or [event] enters a flow or connection and the time it exits” [SAE AS5506 2004, p.
209].

2. The Expected Latency property specifies “the expected latency for a flow specifica-
tion” [SAE AS5506 2004, p.207].

3. The Actual Latency property specifies “the actual latency as determined by the imple-
mentation of the end-to-end flow” [SAE AS5506 2004, p.189].

The flow latency analysis framework utilizes the Latency and Expected Latency proper-
ties. When the analysis algorithm needs to retrieve a latency value, it first attempts to find the
Latency value; if that value is not present, the algorithm attempts to retrieve the

Expected Latency value. The values can be used interchangeably, with the Latency value
overriding the Expected Latency value.
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In a flow specification, the Latency (or Expected Latency) property represents the flow
latency that is expected to be contributed by the flow through the component. This value is used
in end-to-end flow latency analysis as the latency value for each component of the instance model
involved in the flow, unless the component is a thread or device and has its dispatch protocol, pe-
riod, and deadline specified. If that is so, the latency determined by those property values is com-
pared against the Latency value of the thread flow specification, and the smaller of the two is
used in the end-to-end flow calculations. In other words, the Latency property value acts as a
surrogate for the latency contribution by a component for which more detailed information for
determining the latency contribution is not available.

In an end-to-end flow, the Latency (or Expected Latency) property represents the latency
value that the calculated end-to-end latency is compared against.

When flow latency analysis is applied to a declarative AADL model, the latency is computed for
each flow implementation declaration and compared with the Latency (or
Expected Latency) property value of the flow specification.

A Latency (or Expected Latency) property value can also be associated with a connec-
tion. This value is used in end-to-end flow latency analysis by default, unless the connection is
bound to a bus. In that case, the computed latency value is determined by the transfer time and
transfer delay based on the binding of the connection to execution platform components (bus, pro-
cessor, and device)—as discussed in Section 3.3. This computed latency can be included in the
flow latency analysis by redefining the getConnectionLatency method of the
FlowLatencyAnalysisSwitch class to compute the latency for connection instances in-
stead of retrieving the Latency or Expected Latency value.
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4 Latency Analysis lllustrated

In this section, we describe the calculation of end-to-end flow latency in the context of an exam-
ple system to illustrate how sampling latency is determined for event and event data streams and
periodic and aperiodic processing chains of threads that operate on signal streams (i.e., communi-
cate state data through data ports). In a report on concurrency, Hansson and others provide a more
formal treatment of bounds imposed by an application task and communication architecture on
latency and other preference characteristics.”

For periodic and aperiodic processing chains, we can treat sequences of sampling periodic threads
that are dispatched with respect to a common clock as special cases for which we can determine a
less conservative latency value. We can distinguish between immediate and delayed connections
and between periodic threads and devices. Furthermore, we can model periodic thread sampling
with different periods (i.e., threads that down-sample or up-sample) as special cases by distin-
guishing between harmonic threads and non-harmonic threads.

For down-sampling by harmonic threads, the lower rate receiving thread does not sample and
process every data element; thus, the latency of the skipped element does not have to be consid-
ered. In up-sampling, the same data element is sampled twice (i.e., the same data value is deliv-
ered more than once). For a new value, the end-to-end latency is determined by the first sample of
the new value. This data value ages as it is repeatedly sampled. If aging due to up-sampling is to
be taken into account in the latency calculation, the latency is determined by the longest period in
the processing chain reduced by the amount of time the last thread in the chain finishes before the
end of its period (i.e., the difference between that task’s period and deadline).

In the following sections, we describe the instance model on which latency analysis is performed
and introduce an example system model used in the illustration of the latency analysis. Then, we
discuss modeling of the flow through event data ports with aperiodic threads (data-driven process-
ing) and periodic threads (sampled processing). We discuss flows that are represented by data
ports and periodic as well as aperiodic threads. We close this section with a discussion of latency
contributions by partitioned system architectures and the ability to perform multifidelity latency
analysis.

4.1 THREAD-LEVEL INSTANCE MODELS

Thread-level instance models are fully specified, with leaf components of the component instance
hierarchy that are thread, device, processor, bus, and memory component instances. Communica-
tion between these components occurs through port connection instances. Port connection in-
stances connect ports of leaf components in the instance hierarchy (e.g., from thread to thread,
from device to thread, or thread to device). They represent a semantic connection, as defined in

2 This report, Impact of Architecture Concurrency on Performance Engineering (CMU/SEI-2007-TN-048), is in de-

velopment.

SOFTWARE ENGINEERING INSTITUTE | 17



the AADL standard [SAE AS5506 2004]. A port connection instance (1) starts with a sequence of
Zero or more port mappings originating with a thread or device port, (2) makes a connection from
one subcomponent port to another subcomponent port, and (3) ends with a sequence of zero or
more port mappings from a component port to a port of one of its subcomponents. The port map-
pings and the subcomponent port connection are expressed by connection declarations in the
component implementation that contains the subcomponent(s).

End-to-end flow instances consist of a sequence of FlowSpec instances of the leaf component
instances involved in the flow and port connection instances that represent the flow between these
leaf components. In an end-to-end flow instance, the typical sequence is as follows:

1. flow source instance

2. sequence of port connection instances and flow path instances of components in the end-to-
end flow

3. port connection instance and a flow sink instance

Note that the starting and ending flow instances are not required to be flow sources and flow
sinks; they can also be flow paths. This flexibility allows users to define end-to-end flows that are
subsets of a complete end-to-end flow (e.g., define an end-to-end flow through the embedded
software with inclusion of the flow through the sensor or actuator despite the flow of the first
software component being a flow path that routes the input from a sensor to a component out
port).

4.2 THE EXAMPLE MODEL

The system model in Figure 10 illustrates different aspects of the end-to-end flow analysis capa-
bility. In that figure, we present a system that consists of a sensor device Ds, two processes P/
and P2, and an actuator device Da. Process P consists of a single thread 7/, while process P2
consists of two threads 72 and 73. We analyze end-to-end flows that start with Ds, flow through
T1, T2, and T3, and end in Da. These flows may be represented by sampled data ports, or by
queued event data ports. The devices and the threads may be dispatched periodically or ape-
riodically.

Figure 10: Flow from a Sensor through Three Threads to an Actuator

The three threads may execute on the same processor or on different processors. These processors
may be connected by a bus, or they may operate with shared memory (e.g., dual-core processors).
The distribution of the threads across processors may require them to be placed in separate proc-
esses. The resulting instance model is the same: port connection instances between thread in-
stances.

The worst-case flow latency calculations described in this section represent a lower bound. In oth-
er words, distribution onto multiple processors may increase the latency due to communication. If
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assumptions are made about a fixed periodic workload, the lower bound may be reduced by using
the maximum completion time as the effective deadline, as discussed earlier.

4.3 FLOW PROCESSING THROUGH EVENT DATA PORTS

AADL offers event data ports to support queued data or message processing. The arrival of data
on such a port can trigger the execution of an aperiodic thread, which is, in effect, data-driven
processing. AADL also allows event data ports to be sampled by periodic threads. In this case, the
thread may process one item in the queue or all items in the queue. In this section, we examine the
impact of the data-driven and sampled flow representation on end-to-end latency.

A sensor device may observe an event in the physical environment and report the event through
its port. This event is assumed to occur independently of any processing clock. An example of
such a sensor is one that measures the rotation of a wheel. This type of sensor activity is modeled
in AADL by an aperiodic device. A sensor device may also periodically sample the physical envi-
ronment, such as measuring the temperature; this type is modeled in AADL by a periodic thread.

Similarly, an actuator device may react to the data arriving at its port (i.e., behave as an aperiodic
thread). An example of this type of actuator is one that adjusts the angle of a flap. Alternatively, a
device may operate periodically by sampling its input port. An example of such a device is a dis-

play that refreshes at a given rate.

In the next sections, we assume that the device is aperiodic. The effect of periodic devices on the
latency calculation is addressed in Section 4.4.4. The Appendix includes a complete AADL model
example with variations of system configurations that are concrete instances of the signal flow
processing variations discussed in this section.

4.3.1 Data-Driven Processing through Queued Ports

Data-driven processing is modeled in AADL by event data ports and aperiodic threads whose dis-
patch is triggered by the arrival of data. In the example shown in Figure 11, the devices and
threads operate aperiodically. The sending of event data is triggered within the device Ds; the ar-
rival of event data triggers the execution of 7'/, which in turns triggers 72, followed by 73. Com-
pletion of 73 triggers the execution of Da.

We assume that Ds and Da have specified a Latency (L) property value for their flow specifica-
tions, while the threads have specified a Deadline (D). Notice that the end-to-end flow is effec-
tively a processing chain; its end-to-end latency is the cumulative worst-case completion time,
which is the sum of the deadlines. Table 2 contains the details for latency and other values.

Processing time

Task Ds
Task T1
Task T2
Task T3
Task Da | | |

Figure 11: Data-Driven Flow Processing Chain
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Table 2:  Determination of Values for Data-Driven Processing

Property Computation of Value Detail
Worst-case flow latency ThesumofDs L+ T1 D+ T2 D+ If the event data ports have a queue greater than
T3 D+ Da_L zero, the latency is increased by queuing delay,

which in the worst case is QueueSize * D of the
thread with the incoming port.

Best-case flow latency ThesumofDs L+ T1 P+ T2 P+ This lower bound increases as

T3_P+T3 Emin + Da_L (Emin e faults occur and recovery execution time is
represents the minimum execution added

time), with the assumption that the

e actual execution time ranges between the min-
queues are always empty

imum and maximum values

e completion time increases due to preemption
by other threads
Maximum latency jitter The sum of This variation can be larger than the period of an

o the difference between the mini- individual processing step (frame).

mum execution times and the
deadlines of all threads

o the queuing latencies of all threads
Age of data Same as its latency

Output Data-driven Missing input results in missing output.

Observations

o Ifathread has a specified flow specification latency, this latency is expected not to exceed
the deadline of the thread. If a flow latency smaller than the deadline can be guaranteed, it is
effectively the deadline of the thread and assures schedulability; that flow latency can be
used in the calculation.

e  All sensor readings are processed by all processing steps unless a port queue overflows.
Missed or dropped sensor readings result in a missed output in the end-to-end flow.

4.3.2 Sampled Data Stream Processing through Periodic Threads

Event data ports that are sampled by periodic threads can be used to represent applications such as
a health monitor that periodically monitors event, alarm, or message streams without creating
overload conditions (due to high burst alarm) or message rates (by not reacting to every arriving
event or event data individually). In a sampled data stream, the thread is assumed to examine all
items in the port queue on dispatch.

Ds L Asynch sampling T1 P
Task Ds =
\ T1 D
Task T1 ~  ®____=Z W T2D
Task T2 ———=—- T3 D
Task T3 Synch sampling HJ“"_ Da L
Task Da T2 P ., T3P - Latency
I \ 1 / 1 >
Period of T1, T2, T3

Figure 12: Synchronous Sampling Task Sequence

In the example shown in Figure 12, the devices operate aperiodically, while the threads periodi-
cally sample the flow through event data ports. The threads may sample with the same rate (pe-
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riod) or different rates. Table 3 contains the computations and details for latency and other values

for synchronous and asynchronous sampling.

Table 3:
Property

Computation of Value

Synchronous sampling (with all sampling at same rate)

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of data

Output

ThesumofDs L+ T1 P+ T2 P+
T3 P+T3 D+Da L

ThesumofDs L+ T1 P+ T2 P+
T3_P+ T3_Emin + Da_L (Emin repre-
sents the minimum execution time.)
The difference between the minimum
execution time and the deadline of T3

The same as the latency unless an
element is missing in the data stream.
For each set of consecutively missing
elements, the age increases by the time
interval since the last real value of the
component that drops a data stream
element. For example, if a sensor oper-
ates at a rate of 10 ms, a missed read-
ing adds 10ms. If the computation of T2
operates at 20 ms and cannot produce
output in time, 20 ms are added to the
age of the data passed to the actuator.

Produced with every period

Determination of Values for Sampled Data Stream Processing

Detail

For T2 and T3, the sampling delay Ti_Pis
assumed to be larger than or equal to Ti-
1_D if all the periods are equal and the
deadline is less than or equal to the pe-
riod.

The jitter is less than the period of T3.

There is no increase in age due to up-
sampling in this scenario, as the threads
are assumed to have the same period.
Missed elements may be due to the sen-
sor or any of the processing steps not
producing output.

It may be based on aged data.

Asynchronous sampling (the dispatch of different threads is triggered by different clocks)

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of date

Output

The sumofDs L+ T1 P+ T1 D+
T2 P+T2 D+T3 P+T3 D+Da L

Thesumof Ds L+ T1_P+ T1_Emin +
T2 P+ T2 _ Emin+ T3 _P+ T3_Emin +
Da_L (Emin represents the minimum
execution time.)

The sum of the differences between the
minimum execution time and the dead-
line of each thread

The same as the latency unless an
element is missing in the data stream
(see synchronous case)

Produced with every period of T3

Clocks may be offset from each other and
have drift. The maximum offset equals the
period; thus, we add the sampling period

to the processing time of the predecessor.

It may exceed one or more frames.

It may be based on aged data.
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4.3.3 Mixed Event Data Flow Processing

In mixed event data flow processing, the devices operate aperiodically. Processing is a combina-
tion of sampled and data-driven operations. The threads, therefore, are a combination of aperiodic
and periodic threads. In our example, we describe two scenarios:

1. The first thread (77) is aperiodic; the second (72), periodic; and the third (73), aperiodic.

The cumulative processing time of the sensor device Ds and the thread 7'/ is sampled by the
thread 72. This sampling is asynchronous because it is the first sampling in the flow. The
processing times of 72, T3, and the actuator device Da are cumulative and add to the total la-
tency.

2. Threads T! and 73 are periodic, while thread 72 is aperiodic.

T1 performs asynchronous sampling of the Ds processing time. The cumulative processing
time of 7'/ and 72 is sampled by 73. This sampling is synchronous with respect to the period
of T1.

Table 4 contains the computations and details for latency and other values.

Table 4:  Determination of Values for Mixed Event Data Flow Processing
Property Computation of Value Detail

Sampling where T1 and T3 are aperiodic and T2 is periodic

Worst-case flow latency The sumof Ds L + T1_Emin + T2_P T2 is the first thread to sample the flow, thus, its
+ T2_Emin+ T3_Emin + Da L sampling occurs independently (asynchronously)
to the device generating the stream.

Best-case flow latency The sumof Ds L + T1_Emin+ T2_P
+ T2_Emin+ T3_Emin + Da_L (Emin
represents the minimum execution
time.)

Maximum latency jitter The sum of differences between the It may exceed one or more frames.
minimum execution time and the
deadline of T7, T2, and T3

Age of data The same as the latency unless an Missed elements may be due to the sensor or any
element is missing in the data stream.  of the processing steps not producing output (e.g.,
For each set of consecutively missing  due to missed deadline).
elements, the age increases by the
time interval since the last real value
of the component that drops a data
stream element.

Output Produced with every period It may be based on aged data.
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Table 4:
Property

Computation of Value

Sampling where T1 and T3 are periodic and T2 is aperiodic

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of data

Output

The sumof Ds L+ T1_P+(T1_D +
T2 D)>T3 P+ T3 D+ Da L

The sumof Ds_L + T1_P+ (T1_Emin
+ T2_Emin)>T3_P + T3_Emin +
Da_L. (Emin represents the minimum
execution time.)

The difference between the minimum
execution time and the deadline of T3
plus zero or more multiples of the T3

period

The same as the latency unless an
element is missing in the data stream
(For each set of consecutively missing
elements, the age increases by the
time interval since the last real value
of the component that drops a data
stream element.)

Produced with every period of T3

Determination of Values for Mixed Event Data Flow Processing (cont.)

Detail

The notation (X)>Y indicates that the value X'is
rounded up to the next multiple of Y. In this sce-
nario the periods of 77 and T3 may differ.

The sum of the minimum execution time of 77 and
T2 rounds up to X multiples of T3_P, while the
sum of their deadlines rounds up to Y multiples of
T3_P with X' less or equal to Y. In practical terms
this means that the signal stream is sampled non-
deterministically. As a result, the latency may
oscillate by multiples of the period of T3 (i.e., the
sampling thread may sometimes sample the same
data value twice while at other times skip a data
value).

Missed elements may be due to the sensor or any
of the processing steps not producing output.

It may be based on aged data.

Asynchronous sampling where T1 and T3 are periodic and T2 is aperiodic

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of data

Output

ThesumofDs L+ T1_P+ T1_D+
T2 D+ T3 P+ T3 D+Da L

The sumofDs L+ T1_P+ T1_Emin
+ T2 Emin+ T3_P + T3_Emin +
Da_L

The sum of differences between the

minimum execution times and the
deadlines of T1, T2, and T3

The same as the latency unless an
element is missing in the data stream
(see synchronous case)

Produced with every period of T3

This value may exceed one or more frames.

It may be based on aged data.
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4.3.4

Harmonic Up and Down Sampling

In harmonic sampling, threads have different periods. Processing along the flow may perform

down- and up-sampling. For example, 7/ may sample at 40Hz, 72 at 20Hz, and 73 at 40Hz. In

this case, we have harmonic periods among sampling threads (see Figure 13). If successive

threads have harmonic periods, we can utilize the synchronous sampling reduction. Table 5 con-

tains the computations and details for latency and other values

Asynch sampling T1 P

Ds L

Task Ds = /
\ Tl D
Task T1 ~  ®____=Z
Task T2 \ T2 D
as - - o T3_D
Task T3 Synch sampling """ Da L
Task Da | T|2—P T3 P “""Latency
I\ T |\_ |
Dispatch of T1, T3 Dispatch of T2
Figure 13: Harmonic Sampling
Table 5:  Determination of Values for Harmonic Sampling
Property Computation of Value Detail

Synchronous sampling (successive threads have harmonic periods)

Worst-case flow latency

Best-case flow latency

Maximum latency jitter
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The sumofDs L+ T1_P+
T1_D>T2 P+ T2 D>T3 P+ T3 D+
Da_L

ThesumofDs L+ T1_P+
T1_Emin>T2_P + T2_Emin>T3_P +
T3 _Emin + Da_L (Emin represents
the minimum execution time)

The difference between the minimum
execution time and the deadline of T3
plus the sampling variation of one T3
period due to up-sampling

This formula indicates the rounding up of T2’s
processing time to the next multiple of T3’s sam-
pling delay. If the thread deadlines are equal to
the periods, then T1_D>T2 Pand T2_D>T3 P
have the value T2_P, since T2_P is a multiple of
T1_Pand T3_P.

Note that the completion time of T2 varies be-
tween its minimum execution time and its dead-
line, which may span two periods of T3. The sam-
pling latency contribution of T3 may be one or two
times its period. In other words, T3 may sample
non-deterministically.

The total is more than one frame.

In case of 2X up-sampling, the sampling thread
may sample the same element three times and an
element only once instead of sampling every ele-
ment twice.

If sampling occurs as part of the application code
instead of being performed by the runtime system
at the time of dispatch, T2 may also sample non-
deterministically because sampling occurs with
the execution of the first instructions. This time
can vary depending on the execution of other
threads. In 2X up-sampling, the down-sampling
thread may sample two data elements in a row
and then skip two data elements, adding to the
latency jitter.



Table 5:
Property
Age of data

Output

Computation of Value

The same as the latency, unless an
element is missing in the data stream

Produced with every period of T3

Determination of Values for Harmonic Sampling (cont.)

Detail

Due to up-sampling by T3, the age can increase
by the period of T3. It is common practice in those
cases to avoid this age increase by using extrapo-
lation. Missed elements may be due to the sensor
or any of the processing steps not producing out-
put.

It may be based on aged data.

Asynchronous sampling (the dispatch of different threads is triggered by different clocks)

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of data

Output

4.3.5

ThesumofDs L+ T1_P+ T1_D+
T2 P+T2 D+ T3 P+T3 D+Da L

The sumofDs L+ T1_P+ T1_Emin
+T2_P+T2 Emin+ T3 P+

T3 _Emin + Da_L (Emin represents
the minimum execution time.)

The sum of the differences between
the minimum execution time and the
deadline of each thread, plus any jitter
due to non-deterministic sampling

The same as the latency, unless an
element is missing in the data stream

Produced with every period of T3

Non-harmonic Sampling

Clocks may be offset from each other and have
clock drift. The maximum offset is equal to the
period; thus, we add the sampling period to the
processing time of the predecessor.

This jitter variation is higher than that of the syn-
chronous case.

Due to up-sampling by T3, the age can increase
by the period of T3. It is common practice in those
cases to avoid this age increase by using extrapo-
lation.

It may be based on aged data.

Non-harmonic sampling occurs if the periods of two successive threads are not multiples of each

other. In the case of non-harmonic, synchronous sampling, the latency of one processing step is

the sum of the processing time 7i-/ D and the sampling (processing) delay 7i P reduced by the

largest common multiple (LCM) of the periods Ti-/ P and 7i P. The reduction is because the

LCM represents the time step by which the dispatch times of the non-harmonic thread dispatches

differ along the timeline.

4.4 FLOW PROCESSING THROUGH DATA PORTS

AADL offers data ports to support sampled processing of data (i.e., processing of the most re-

cent data value). Sampling occurs through periodic threads. For data port connections between
periodic threads, the AADL assures deterministic sampling through immediate and delayed

port connections. Immediate port connections assure mid-frame communication, while delayed

connections assure frame-delayed communication. The AADL also allows threads with data ports
to be triggered by events. In particular, a thread can be dispatched as a result of completion of the
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predecessor thread. This sequence is specified in AADL by an event connection from the prede-
clared Complete port of the predecessor to the Dispatch port of the thread to be dispatched.
In this way, AADL allows threads with data ports to be used for data-driven processing.

For our discussion in the next sections, we assume that the device is aperiodic. The effect of peri-
odic devices on the latency calculation is addressed in Section 4.4.4. The Appendix includes a
complete AADL model example with variations of system configurations that are concrete in-
stances of the signal flow processing variations discussed in this section.

441 Use of Immediate Connections

In this scenario, all threads execute periodically and are connected by immediate connections.
This means that the execution of 72 is delayed until 77 completes and passes its output on. Simi-
larly, 73 delays its execution until 72 completes and passes its output on. The result is mid-frame
communication between 7'/, 72, and 73. Note that processing of all three threads must complete
by the deadline of 73.

If processing is distributed across processors with different clocks, latency increases by the com-
munication delay. It is not affected by clock offset or drift because the immediate connection se-
quence effectively acts like data-driven processing.

Table 6 contains the computations and details for latency and other values.

Table 6:  Determination of Values Where Immediate Connections Are Used

Property Computation of Value Detail

Worst-case flow latency Ds L+T1 P+T3 D+Da L T1 is still sampling the sensor, while T1, T2, and
T3 form a processing chain with a common dis-
patch time and a deadline of T3 _D.

Best-case flow latency Ds_L + T1_P + sum of minimum exe-
cution time for 71, T2, and T3+ Da_L

Maximum latency jitter The difference between the sum of This value is less than a frame.
minimum execution times of the three
threads and the deadline of T3

Age of data The same as the latency, unless an
element is missing in the data stream

Output Produced with every period of T3 It may be based on aged data.

442 Use of Delayed Connections

In this scenario, all threads execute periodically and are connected by delayed connections. As a
result, the output of 7/ is delayed until its deadline, and 72 samples the output of 77 relative to
TI’s deadline rather than its completion time. Similarly, 73 samples the output of 72 relative to
T2’s deadline rather than its completion time. The result is frame-delayed communication be-
tween T/, T2, and T3.

26 | CMU/SEI-2007-TN-010



If processing is distributed across processors with different clocks, latency increases by clock off-
set and drift (i.e., by a maximum of 72 P and 73_P). The jitter increases by the clock drift delta
for 72 and 73.

Table 7 contains the computations and details for latency and other values.

Table 7:  Determination of Values Where Delayed Connections Are Used

Property Computation of Value Detail

Worst-case flow latency Ds L+ T1_P+T1_D>T2 P+ T1 is still sampling the sensor, while T7, T2, and
T2 D>T3 P+ T3 D+Da L T3 form a processing chain with guaranteed

frame-delayed communication.

Best-case flow latency Ds L+ T1_ P+ T1_D>T2 P+ Delayed connections ensure that data is passed

T2 _D>T3 P+ T3 _Emin+ Da_L to the recipient at the deadline, effectively phase
] ) delayed. If the actuator device operates periodi-

Differs from the worst-case scenario cally, the connection from T3 to Da could be de-
in that T3_D is replaced by the mini- layed as well.

mum execution time for T3

Maximum latency jitter The difference between the minimum This value is less than a frame.
execution time and the deadline of T3

Age of data The same as the latency, unless an
element is missing in the data stream

Output Produced with every period of T3 It may be based on aged data.

4.4.3 Mixing Imnmediate and Delayed Connections

The flow through data ports can be a combination of immediate and delayed connections. In
Figure 14, we assume the connection 7'/ -> 72 is immediate while 72 ->> T3 is delayed. T/ sam-
ples the output of the device; 73 samples the output of the processing chain 7/-72.

If processing is distributed across processors with different clocks, latency increases by clock off-
set and the drift between the clocks of 77 and 73 (i.e., by a maximum of 73 _P). The jitter in-
creases by the clock drift delta for 73.

Asynch sampling T1 P

Ds L

Task Ds

Task T1

Task T2

Task T3 . —_—

Synch samplin
Task Da Y T3_Pp & Latency
———— | >

Dispatch of T1, T2, T3

Figure 14: The Effect on Latency of Mixing Immediate and Delayed Data Port Connections
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Table 8:  Determination of Values Where T1 to T2 is Immediate and T2 to T3 is Delayed

Property

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of data

Output

Computation of Value

ThesumofDs L+ T1_P+
(T2_D)>T3 P+ T3_D + Da_L, with
the sampling delay of 73 rounded up
to the deadline of T2

ThesumofDs L+ T1_P+
(T2_D)>T3_P+ T3_Emin+ Da_L
(Emin represents the minimum execu-
tion time.)

The difference between the sum of
the minimum execution times of the
three threads and the deadline of T3

The same as the latency, unless an
element is missing in the data stream

Produced with every period of T3

Detail

When T1 and T2 are dispatched at the same time,
the latest completion time of this processing chain
is the deadline of the last element in the process-

ing chain (T2 in Figure 14).

This value is less than a frame.

It may be based on aged data.

If the thread 72 is aperiodic and dispatched by the completion of its predecessor 7/ instead of an

immediate connection, the cumulative time being sampled by 73 is the sum of 7/ _D and 72 _D.
This time, rounded up to the next period of 73, is the worst-case latency contributor; the best-case

latency contributor is the sum of minimum execution times of 77 and 72. The resulting maximum

latency jitter is larger than that for periodic 72 with an immediate connection. This is shown in

Table 9

Table 9:  Determination of Values Where T1 Completion Triggers T2 and T2 to T3 is Delayed

Property

Worst-case flow latency

Best-case flow latency

Maximum latency jitter

Age of data

Output
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Computation of Value

The sumofDs L+ T1_P+(T1_D+
T2 D)>T3 P+ T3 D+ Da L

The sumof Ds L+ T1_P+ (T1_Emin
+ T2_Emin)>T3_P + T3 _Emin + Da_L

The difference between the rounded
sum of minimum execution times and
the rounded sum of deadlines of T1
and T2 plus the difference between
minimum execution time and the
deadline of T3

The same as the latency, unless an
element is missing in the data stream

Produced with every period of T3

Detail

When T1 completion dispatches T2; thus, the sum
of their deadlines is the worst-case processing
delay being sampled.

This value may be more than one frame due to
the rounding up of the T7 and T2 processing de-
lay.

It may be based on aged data.



444 Data-Driven Processing of Data Ports

The use of data ports for transferring data and triggering the execution of each aperiodic thread
through the completion event of the predecessor thread is equivalent to the use of event data ports
with queue size of zero or one.

4.5 USE OF PERIODIC DEVICES

We have assumed that a device does not operate periodically, a sensor/input device reading is
triggered by an external event, and the actuator/output is processed at the time of arrival of the
data.

In the AADL standard, the sensor device can be declared to operate periodically (e.g., a sensor
reading the temperature every second) through the Device Dispatch Protocol property,
whose default value is Aperiodic. In the periodic case, we assume that the device and the
processor executing the thread operate from a single global clock and the analysis plug-in
applies the synchronous sampling reduction. We also assume that the device has a Period and
a Deadline defined. The processing time of Ds—being either the latency or deadline—is syn-
chronously sampled by periodic 7/ resulting in Ds L>T1 P as the first contributor to the end-to-
end latency. If T/ is aperiodic or periodic with an immediate connection coming from the device,
Ds and T1 act as a processing chain resulting in (Ds_L + T1_D)>T2_P as the first latency con-
tributor.

The actuator device may also execute periodically by sampling the output of 73 to drive a physi-
cal device. In this case, the last contribution is 73_D>Da_P + Da_D, assuming that the actuator
device has a period and deadline specified.

4.6 COMMUNICATION LATENCY

The previously mentioned formulas have not included communication latency, which is deter-
mined as discussed in Section 3.3. For synchronous sampling, if the sum of the processing time of
the sender thread (i.e., its deadline) and the communication latency does not exceed the period of
the recipient, the communication latency does not add to the end-to-end latency. This circum-
stance may occur when a system architect sets the deadline of a sending thread to be before the
end of the period by an amount that is the maximum expected communication latency.

If the sum of the sender processing time and the communication latency exceeds the period of the
recipient in synchronous sampling, however, the result is a sampling latency of the next multiple

of the recipient period. In this case, the maximum latency jitter is affected by the communication

latency.

For asynchronous sampling, the communication latency directly contributes to the end-to-end la-
tency in the same way as sender processing time.

4.7 PARTITIONED SYSTEMS

Some system architectures introduce time and space partitioning [ARINC653 2003]. Partitions
represent virtual processors that are responsible for scheduling the execution of threads, resulting
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in the virtualization of the timeline of threads within a partition. Partition execution order can af-
fect latency. In order to maintain predictability and determinism of communication timing and
latency and isolate the application from partition allocation to processors, interpartition communi-
cation is expected to occur in a phase-delayed fashion (i.e., the data arrives at the recipient parti-
tion at its next partition period).

The SET property set that comes with the flow latency analysis plug-in defines two properties for
partitioning. The Partition Latency property reflects the latency contribution of a partition
in cross-partition communication. This latency corresponds to the period at which a partition is
executed on a processor. In addition, an Is-Partition Boolean property indicates whether a
system or process should be interpreted as a partition. Toggling the Is Partition property
value allows for “what-if” analysis without having to reenter the partition period value. The flow
latency analysis plug-in takes into account these two partition properties in determining the end-
to-end latency in partial system models, as well as in system models that have been expanded to
the thread level. Cross-partition communication essentially has the effect of a sampling delay on
the order of Partition Latency.

In a periodic recipient thread, the sampling latency is the larger of the partition period or the pe-
riod of the thread. A thread executing at a slower rate than the partition execution drives the sam-
pling. Where a thread executes at a higher rate than the partition (i.e., multiple thread executions
occurring in the same partition dispatch), the partition drives the sampling.

For synchronous execution of partitions, the cumulative time includes the communication latency
and is rounded up to the next multiple of the sampling latency. For asynchronous execution of
partitions (i.e., execution based in independent clocks), the cumulative time—including commu-
nication latency and sampling latency—is added to the total latency. For both synchronous and
asynchronous execution, the cumulative time is reset to zero.

Given the assumption that interpartition communication is always delayed to the partition period,
the latency contribution of such communication is determined independently of the binding to the
execution platform. Consequently, the latency of interpartition communication can be taken into
account for system models that do not include execution platform components or bindings to the
execution platform.

4.8 MULTIPLE FIDELITY LATENCY ANALYSIS

Systems may be modeled at various levels of fidelity. Early in the design process, a system may
be modeled in terms of one or two layers of subsystems. A system integrator may model a system
of systems in terms of its systems without detailed models of each of those systems.

AADL and the OSATE toolset allow such models to be instantiated and analyzed. This compati-
bility allows us to support end-to-end latency analysis of partial models, where an end-to-end flow
declaration results in an end-to-end flow instance specifying a flow through the system or process
components that are the leaves of the instance model.

In a partially specified instance model, the component instance hierarchy is expanded as much as
possible. Expansion stops if a subcomponent does not have a classifier, has only a component
type, or has a component implementation without subcomponents. Feature (port) instances are

30 | CMU/SEI-2007-TN-010



added to component instances for which the component type is defined. Port connection instances
are created for the lowest component instances with port instances (typically leaf component in-
stances unless the leaf component instance does not have a classifier, in which case the direct par-
ent is considered the leaf node with port instances).

These port connection instances do not represent semantic connections as defined in the AADL
standard because they do not connect threads, processors, and devices. However, these instances
permit partially specified instance models to be processed as low-fidelity models of a system. For
example, a system may be modeled in terms of subsystems that get mapped into separate parti-
tions in a partitioned architecture. We can perform worst-case end-to-end analysis taking into ac-
count the sampling latency due to interpartition communication. If the subsystem flow specifica-
tions include a latency property, the expected latency due to processing within a subsystem can be
taken into account. If the connections have a latency property, communication latency is taken
into account as well.

When at least one subsystem has been elaborated down to the thread level, the end-to-end latency
analysis can be revisited. For an elaborated subsystem, the latency calculation takes into account
periodicity, sampled and data-driven processing, and other latency contributors. This analysis
identifies the offending subsystem, if the end-to-end latency increases compared to the subsystem-
level analysis. For example, an application system may perform its communication through an
application-level, high-priority, periodic I/O task that receives input from other subsystems and
places it into an internal data area. Similarly, the system may take output from an internal data
area and pass it on to other subsystems at the beginning of the next frame. If such an application is
ported to a partitioned architecture, the end-to-end latency contribution due to interpartition com-
munication may double, since the partition communication mechanism adds sampling communi-
cation delay and the application-level, periodic I/O thread adds sampling delay.
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5 The Flow Latency Analysis Plug-In

We have provided a plug-in to OSATE that performs worst-case flow latency analysis. This plug-

in determines the latency of flow implementations declared for components and compares it to the

latency specified by the corresponding flow specification of the component. This plug-in can eas-

ily be extended to perform best-case and jitter analysis as well as calculation of age of data.

The implementation of the flow latency analysis plug-in has the following restrictions currently
(OSATE release 1.5.1):

sampled processing delay

The flow latency analysis plug-in assumes that the Dequeue Protocol value is
AllItems.

The flow latency analysis plug-in does not support independent sampling of a flow by an
aperiodic or sporadic thread. The plug-in assumes that an aperiodic thread is dispatched
by a completion event or event data output from its predecessor in the flow (i.e., we have
queued processing).

synchronous versus asynchronous sampling

The flow latency analysis plug-in assumes that the execution platform is globally syn-
chronous (i.e., periodic threads and devices are dispatched by a common clock).

communication latency

The flow latency analysis plug-in does not take into account any execution platform
properties or the size of the data being transferred. Instead, it interprets the latency prop-
erty associated with a connection accounting for communication latency (see Section
4.6). The flow latency analysis plug-in can easily be extended by redefining the
getConnectionLatency method of the FlowLatencyAnalysisSwitch class
to calculate the latency based on the other properties.

The flow latency analysis plug-in does not compute the communication latency value
from bus properties such as the transfer time and transfer delay based on the binding of
the connection to execution platform components (bus, processor, and device)—as dis-
cussed in Section 3.3. Instead it uses the latency value associated with the connection,
which represents a default value that is independent of a specific hardware binding and
could represent communication within a processor. This computed latency can be in-
cluded in the flow latency analysis by refining the getConnectionLatency method
of the FlowLatencyAnalysisSwitch class to compute the latency for connection
instances instead of retrieving the Latency or Expected Latency value.

latency property use

The calculated end-to-end flow latency is used in the comparison and recorded as a re-
sult through the report mechanism but is currently not explicitly stored back into the
AADL model as an Actual Latency value.
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e aging of data
- The flow latency analysis tool does not include aging in its latency calculation.

e non-harmonic synchronous sampling

- The latency analysis plug-in does not take this reduction into consideration. Instead, the
plug-in assumes asynchronous sampling (i.e., it uses a slightly more conservative la-
tency value).

The plug-in also supports the validation of flow specification latency values by comparing them
against flow implementation latency calculations. The flow implementation latency is calculated
in terms of the immediate subcomponents in the component hierarchy, not in terms of the leaf
components. The flow specification latency property value of the immediate subcomponent and
its partition latency property and the connection latency are used in the calculation.
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6 Summary

In this report, we introduced an end-to-end latency analysis framework that operates on AADL
models. This latency analysis framework allows us to determine worst-case and best-case end-to-
end latency and age of signal data streams as well as variation in latency and age. Control systems
are signal processing applications that are sensitive to such latency jitter. This analysis helps iden-
tify whether deployment and porting of control system applications to different hardware plat-
forms and runtime system architectures will increase the instability of the control algorithms.

The analysis framework identifies all contributors to latency and latency jitter. The algorithms for
calculating worst-case and best-case end-to-end latency and latency variation have been illustrated
in the context of a specific system model. Data-driven and sampling application architectures,
different choices of communication mechanisms, and impact of partitioned architectures have
been taken into account in the latency calculation.

A flow latency analysis plug-in is available as part of OSATE, an open source toolset for AADL.
This plug-in currently supports worst-case latency analysis and can easily be extended to support
best-case and jitter analysis.
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Appendix Example AADL Model

Sampled and Data-Driven Processing with Event Data Ports
-— This file contains a model that illustrates end-to-end latency due
-- to sampled processing.

-- Sampled processing occurs through event data port communication.

-- The event data ports are configured to be of queue size one with
-- the latest data in the queue.

—-— The example is a signal flow from a sensor through three
-- processing steps to an actuator.

-- The first and third processing steps operate at twice the rate of
-- the second step.

-- The steps have a compute execution time that can vary between the
-- specified ranges.

-—- The sensor device is the originator of the signal stream.
-—- The sensors operate under two scenarios:

-- 1) The sensor periodically probes the environment, i.e., executes
-- periodically.

-— 2) The sensor reading is triggered by some physical event that
-- occurs randomly with a maximum rate.

-—- The sampling latency is affected by whether the system operates
-- with respect to a global clock (synchronous system) or independent
-- clock (asynchronous system).

-— The models below are set up to execute under a synchronous and an
-- asynchronous system.

data timedata
end timedata;

-- The processing steps are defined as threads inside processes.

-- This allows them to be distributed onto different processors or
-- execute on the same processor.

-—- The threads are periodic threads that use event data port
-—- connections to sample at dispatch time.

-- This controls the amount of jitter in end-to-end latency.

-- In a separate model we will describe the same architecture that
-- samples the data stream deterministically.

-- Stepl executes at a rate of 20 Hz and has a deadline or maximum
-- latency of 45 ms.

thread stepl
features
ined: in event data port timedata { Queue Size => 0; };
outed: out event data port timedata;
flows
flowl: flow path ined -> outed { latency => 45 ms;};
properties
period => 50 ms;
deadline => 45 ms;
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Compute Execution Time => 6 ms .. 10 ms;
end stepl;

thread implementation stepl.periodic

flows
flowl: flow path ined -> outed;
properties

Dispatch Protocol => Periodic;
end stepl.periodic;

thread implementation stepl.aperiodic

flows
flowl: flow path ined -> outed;
properties

Dispatch Protocol => Aperiodic;
end stepl.aperiodic;

thread step?2
features

ined: in event data port timedata { Queue Size => 0;

outed: out event data port timedata;
flows

flowl: flow path ined -> outed { latency => 70 ms;

properties

period => 100 ms;

deadline => 70 ms;

Compute Execution Time => 15 ms .. 23 ms;
End step2;

thread implementation step2.periodic

flows
flowl: flow path ined -> outed;
properties

Dispatch Protocol => Periodic;
end step2.periodic;

thread implementation step2.aperiodic

flows
flowl: flow path ined -> outed;
properties

Dispatch Protocol => Aperiodic;
end step2.aperiodic;

thread step3
features
ined: in event data port timedata { Queue Size =>

outed: out event data port timedata;
flows

flowl: flow path ined -> outed { latency => 45 ms;
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properties

period => 50 ms;

deadline => 45 ms;

Compute Execution Time => 6 ms .. 10 ms;
End step3;

thread implementation step3.periodic

flows
flowl: flow path ined -> outed;
properties

Dispatch Protocol => Periodic;
end step3.periodic;

thread implementation step3.aperiodic

flows
flowl: flow path ined -> outed;
properties

Dispatch Protocol => Aperiodic;
end step3.aperiodic;

-- At the beginning of each dispatch the sensor device reads the
-- clock and passes it as the value of its output.

device sensor
features

outed: out event data port timedata;

devbus: requires bus access devicebus;
flows

flowl: flow source outed { latency => 2 ms;};
properties

period => 50 ms;

deadline => 2 ms;

Compute Execution Time => 1 ms .. 2 ms;
end sensor;

-- Sensor periodically senses the physical environment.

device implementation sensor.periodic
flows

flowl: flow source outed;
properties

Device Dispatch Protocol => Periodic;
end sensor.periodic;

-- Sensor detects an in the physical environment.
-— This occurs randomly with a maximum rate of the period.

device implementation sensor.aperiodic
flows

flowl: flow source outed;
properties

Device Dispatch Protocol => Aperiodic;
end sensor.aperiodic;
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-— The actuator will read the clock and log the difference to the
-— received data (sensor clock time) as its last action.

device actuator
features

ined: in event data port timedata { Queue Size => 0; };
devbus: requires bus access devicebus;
flows

flowl: flow sink ined { latency => 3 ms;};
properties

period => 50 ms;

deadline => 3 ms;

Compute Execution Time => 1 ms .. 3 ms;
end actuator;

-- Output is sampled. This reduces the latency jitter.

device implementation actuator.periodic
flows

flowl: flow sink ined;
properties

Device Dispatch Protocol => Periodic;
end actuator.periodic;

-- Arrival of data causes actuator to become active.

-— This reduces end-to-end latency at the expense of increased
-- Jjitter.

device implementation actuator.aperiodic

flows

flowl: flow sink ined;
properties

Device Dispatch Protocol => Aperiodic;
end actuator.aperiodic;

process Pstepl
features

ined: in event data port timedata;
outed: out event data port timedata;

flows
flowl: flow path ined -> outed;
end Pstepl;

process implementation Pstepl.periodic
subcomponents

Tstepl: thread Stepl.periodic;
connections

cin: event data port ined -> Tstepl.ined;

cout: event data port Tstepl.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstepl.flowl -> cout -> outed;
end Pstepl.periodic;

process implementation Pstepl.aperiodic
subcomponents
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Tstepl: thread Stepl.aperiodic;
connections

cin: event data port ined -> Tstepl.ined;

cout: event data port Tstepl.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstepl.flowl -> cout -> outed;
end Pstepl.aperiodic;

process Pstep?2
features

ined: in event data port timedata;
outed: out event data port timedata;

flows
flowl: flow path ined -> outed;
end Pstep2;

process implementation Pstep2.periodic
subcomponents

Tstep2: thread Step2.periodic;
connections

cin: event data port ined -> Tstep2.ined;

cout: event data port Tstep2.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstep2.flowl -> cout -> outed;
end Pstep2.periodic;

process implementation Pstep2.aperiodic
subcomponents

Tstep2: thread Step2.aperiodic;
connections
cin: event data port ined -> Tstep2.ined;

cout: event data port Tstep2.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstep2.flowl -> cout -> outed;
end Pstep?2.aperiodic;

process Pstep3
features

ined: in event data port timedata;
outed: out event data port timedata;

flows
flowl: flow path ined -> outed;
end Pstep3;

process implementation Pstep3.periodic
subcomponents

Tstep3: thread Step3.periodic;
connections

cin: event data port ined -> Tstep3.ined;
cout: event data port Tstep3.outed -> outed;
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flows

flowl: flow path ined -> cin -> Tstep3.flowl -> cout -> outed;
end Pstep3.periodic;

process implementation Pstep3.aperiodic
subcomponents
Tstep3: thread Step3.aperiodic;
connections
cin: event data port ined -> Tstep3.ined;
cout: event data port Tstep3.outed -> outed;
flows
flowl: flow path ined -> cin -> Tstep3.flowl -> cout -> outed;
end Pstep3.aperiodic;

system application
features

db: requires bus access devicebus;
end application;

-—- This application configuration has all processing steps as well
-- as the sensor and actuator as periodic tasks.

-- The connections are delayed connections to allow for
-- deterministic sampling at each step.

-—- The worst-case end-to-end latency for this system on a

-- synchronous execution platform is the sum of the periods of the
-—- three processing steps plus the actuator period (sampling

-- latencies) plus the deadline of the actuator (303 ms).

-- The worst-case end-to-end latency for this system on an

-- asynchronous execution platform is the sum of computational
-- latency (deadline of predecessor) rounded up to the next

-- multiple of the periods of the three processing steps plus
-- the actuator period (sampling latencies) plus the deadline
-— 0f the predecessor of the sampler (sensor, three steps)

-- plus the deadline of the actuator (415 ms).
system implementation application.allperiodicsampled
subcomponents
sense: device sensor.periodic;
actuate: device actuator.periodic;
computel: process Pstepl.periodic;
compute2: process Pstep2.periodic;
compute3: process Pstep3.periodic;
connections
senseconn: event data port sense.outed -> computel.ined;
computel?2: event data port computel.outed -> compute2.ined;
compute23: event data port compute2.outed -> compute3.ined;
actuateconn: event data port compute3.outed -> actuate.ined;
bus access db -> sense.devbus;
bus access db -> actuate.devbus;
flows
etelatency: end to end flow sense.flowl -> senseconn -> com-

putel.flowl
-> computel?2 -> compute2.flowl -> compute23 -> com-
pute3.flowl
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-> actuateconn -> actuate.flowl { latency => 303 ms;};

end application.allperiodicsampled;

-- This application configuration has all processing steps as well
-- as the actuator as aperiodic tasks.

-- The sensor can be periodic or aperiodic with the same result

-- in latency.

-- The worst-case end-to-end latency for this system on a

-- synchronous or asynchronous execution platform is the

-- sum of the deadlines of the three processing steps plus the

-- actuator deadline and sensor deadline (computational latency)
-— (165 ms).

system implementation application.alldatadriven

subcomponents
sense: device sensor.periodic;
actuate: device actuator.aperiodic;
computel: process Pstepl.aperiodic;
compute2: process Pstep2.aperiodic;
compute3: process Pstep3.aperiodic;

connections
senseconn: event data port sense.outed -> computel.ined;
computel2: event data port computel.outed -> compute2.ined;
compute23: event data port compute2.outed -> compute3.ined;
actuateconn: event data port compute3.outed -> actuate.ined;
bus access db -> sense.devbus;
bus access db -> actuate.devbus;

flows
etelatency: end to end flow sense.flowl -> senseconn —-> com-

putel.flowl
-> computel?2 -> compute2.flowl -> compute23 -> com-
pute3.flowl

-> actuateconn -> actuate.flowl { latency => 165 ms;};

end application.alldatadriven;

-- hardware platforms: single processor, dual processor

processor singleCPU
features

db: requires bus access devicebus;
pb: requires bus access cpubus;
end singleCPU;

processor implementation singleCPU.basic
end singleCPU.basic;

bus cpubus
end cpubus;

bus implementation cpubus.basic
end cpubus.basic;

bus devicebus
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end devicebus;

bus implementation devicebus.basic
end devicebus.basic;

system hardwareplatform
features

db: provides bus access devicebus.basic;
end hardwareplatform;

system implementation hardwareplatform.single
subcomponents
cpul: processor singleCPU.basic;
dbl: bus devicebus.basic;
connections
bus access dbl -> cpul.db;
bus access dbl -> db;
end hardwareplatform.single;

system implementation hardwareplatform.dual
subcomponents
cpul: processor singleCPU.basic;
cpu2: processor singleCPU.basic;
dbl: bus devicebus.basic;
cpubusl: bus cpubus.basic;
connections
bus access dbl -> cpul.db;
bus access dbl -> cpu2.db;
bus access dbl -> db;
end hardwareplatform.dual;

-- system configurations: hardware and application

system topsystem
end topsystem;

-- first all single processor configurations

system implementation topsystem.allperiodicsampled
subcomponents

app: system application.allperiodicsampled;
hw: system hardwareplatform.single;
connections

dveconn: bus access hw.db -> app.db;
properties

Actual Processor Binding => reference hw.cpul applies to app;
end topsystem.allperiodicsampled;

system implementation topsystem.alldatadriven

subcomponents

app: system application.alldatadriven;
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hw: system hardwareplatform.single;
connections

dveconn: bus access hw.db -> app.db;
properties

Actual Processor Binding => reference hw.cpul applies to app;
end topsystem.alldatadriven;

-—- The same application systems can be configured with a two
—— processor system.

-- We are showing one configuration where the second step is

-— located on a second processor.

-- In this case the end-to-end latency is increased by any

-- communication latency between the two processors across the bus.

system implementation topsystem.distributedalldatadriven
subcomponents

app: system application.alldatadriven;

hw: system hardwareplatform.dual;
connections

dveconn: bus access hw.db -> app.db;
properties

Actual Processor Binding => reference hw.cpul applies to
app.computel;

Actual Processor Binding => reference hw.cpu2 applies to
app.compute?2;

Actual Processor Binding => reference hw.cpul applies to
app.compute3;
end topsystem.distributedalldatadriven;
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Sampled Processing with Data Ports
-— This file contains a model that illustrates end-to-end latency
-- due to sampled processing.

-- Sampled processing occurs through data port communication.

-- the example is a signal flow from a sensor through three
-- processing steps to an actuator.

-— The first and third processing steps operate at twice the rate
-- of the second step.

-- The steps have a compute execution time that can vary between
-- the specified ranges.

-—- The sensor device is the originator of the signal stream.
-—- The sensors operate under two scenarios:

-— 1) The sensor periodically probes the environment, i.e.,
-- executes periodically.

-- 2) The sensor reading is triggered by some physical event that
-- occurs randomly with a maximum rate.

—-— The sampling latency is affected by whether the system operates

-- with respect to a global clock (synchronous system) or
-- independent clock (asynchronous system).

-- The models below are set up to execute under a synchronous
-- and an asynchronous system.

data timedata
end timedata;

-- The processing steps are defined as threads inside processes.

-- This allows them to be distributed onto different processors or

-—- execute on the same processor.

—-— The threads are periodic threads that use immediate and delayed

-- data port connections.

-- In other words, communication is guaranteed to always be
-- mid-frame or phase-delayed.

-- This controls the amount of jitter in end-to-end latency.

-- In a separate model we will describe the same architecture
-- that samples the data stream non-deterministically.

-- Stepl executes at a rate of 20 Hz and has a deadline or
-- maximum latency of 45 ms.

thread stepl
features

ined: in data port timedata;
outed: out data port timedata;
flows

flowl: flow path ined -> outed { latency => 45 ms;};
properties

Dispatch Protocol => Periodic;
period => 50 ms;
deadline => 45 ms;
Compute Execution Time => 6 ms .. 10 ms;
end stepl;
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thread implementation stepl.periodic
flows

flowl: flow path ined -> outed;
end stepl.periodic;

thread step?2
features

ined: in data port timedata;
outed: out data port timedata;
flows

flowl: flow path ined -> outed { latency => 70 ms;};
properties

Dispatch Protocol => Periodic;

period => 100 ms;

deadline => 70 ms;

Compute Execution Time => 15 ms .. 23 ms;

End step?2;

thread implementation step2.periodic
flows

flowl: flow path ined -> outed;
end step2.periodic;

thread step3
features
ined: in data port timedata;

outed: out data port timedata;
flows

flowl: flow path ined -> outed { latency => 45 ms;};
properties

Dispatch Protocol => Periodic;

period => 50 ms;

deadline => 45 ms;

Compute Execution Time => 6 ms .. 10 ms;
End step3;

thread implementation step3.periodic
flows

flowl: flow path ined -> outed;
end step3.periodic;

-- At the beginning of each dispatch the sensor device reads
-- the clock and passes it as the value of its output.

device sensor
features

outed: out data port timedata;
devbus: requires bus access devicebus;
flows

flowl: flow source outed { latency => 2 ms;};
properties
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period => 50 ms;

deadline => 2 ms;

Compute Execution Time => 1 ms .. 2 ms;
end sensor;

-—- Sensor periodically senses the physical environment.

device implementation sensor.periodic
flows

flowl: flow source outed;
properties

Device Dispatch Protocol => Periodic;
end sensor.periodic;

-- Sensor detects an in the physical environment.
-- This occurs randomly with a maximum rate of the period.

device implementation sensor.aperiodic
flows

flowl: flow source outed;
properties

Device Dispatch Protocol => Aperiodic;
end sensor.aperiodic;

—-—- The actuator will read the clock and log the difference to
-—- received data (sensor clock time) as its last action.

device actuator
features

ined: in data port timedata;
devbus: requires bus access devicebus;
flows

flowl: flow sink ined { latency => 3 ms;};
properties

period => 50 ms;

deadline => 3 ms;

Compute Execution Time => 1 ms .. 3 ms;
end actuator;

-- Output is sampled. This reduces the latency jitter.

device implementation actuator.periodic
flows

flowl: flow sink ined;
properties

Device Dispatch Protocol => Periodic;
end actuator.periodic;

-- Arrival of data causes actuator to become active.

-- This reduces end-to-end latency at the expense of increased
-- jitter.

device implementation actuator.aperiodic

flows

flowl: flow sink ined;
properties

46 | CMU/SEI-2007-TN-010

the



Device Dispatch Protocol => Aperiodic;
end actuator.aperiodic;

process Pstepl

features
ined: in data port timedata;
outed: out data port timedata;

flows
flowl: flow path ined -> outed;
end Pstepl;

process implementation Pstepl.periodic
subcomponents

Tstepl: thread Stepl.periodic;
connections

cin: data port ined -> Tstepl.ined;

cout: data port Tstepl.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstepl.flowl -> cout -> outed;
end Pstepl.periodic;

process Pstep?2
features

ined: in data port timedata;
outed: out data port timedata;

flows
flowl: flow path ined -> outed;
end Pstep2;

process implementation Pstep2.periodic
subcomponents

Tstep2: thread Step2.periodic;
connections

cin: data port ined -> Tstep2.ined;

cout: data port Tstep2.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstep2.flowl -> cout -> outed;
end Pstep2.periodic;

process Pstep3
features

ined: in data port timedata;
outed: out data port timedata;

flows
flowl: flow path ined -> outed;
end Pstep3;

process implementation Pstep3.periodic
subcomponents

Tstep3: thread Step3.periodic;

SOFTWARE ENGINEERING INSTITUTE | 47



connections

cin: data port ined -> Tstep3.ined;

cout: data port Tstep3.outed -> outed;
flows

flowl: flow path ined -> cin -> Tstep3.flowl -> cout -> outed;
end Pstep3.periodic;

system application
features

db: requires bus access devicebus;
end application;

-- This application configuration has all processing steps as well
-- as the sensor and actuator as periodic tasks.

-- The connections are delayed connections to allow for
-- deterministic sampling at each step.

—-—- The worst-case end-to-end latency for this system on a

-- synchronous execution platform is the sum of computational

-- latency (deadline of predecessor) rounded up to the next

-- multiple of the periods of the three processing steps plus

-- the actuator period (sampling latencies) plus the deadline of
-— the actuator (303 ms).

-- The worst-case end-to-end latency for this system on an

-- asynchronous execution platform is the sum of computational
-- latency (deadline of predecessor) rounded up to the next

-- multiple of the periods of the three processing steps plus

-- the actuator period (sampling latencies) plus the deadline of
-— the predecessor of the sampler (sensor, three steps) plus

-- the deadline of the actuator (415 ms).

system implementation application.allperiodicdelayed
subcomponents
sense: device sensor.periodic;
actuate: device actuator.periodic;
computel: process Pstepl.periodic;
compute2: process Pstep2.periodic;
compute3: process Pstep3.periodic;
connections
senseconn: data port sense.outed ->> computel.ined;
computel?2: data port computel.outed ->> compute2.ined;
compute23: data port compute2.outed ->> compute3.ined;
actuateconn: data port compute3.outed ->> actuate.ined;
bus access db -> sense.devbus;
bus access db -> actuate.devbus;
flows
etelatency: end to end flow sense.flowl -> senseconn -> com-

putel.flowl
-> computel?2 -> compute2.flowl -> compute23 -> com-
pute3.flowl

-> actuateconn -> actuate.flowl { latency => 303 ms;};
end application.allperiodicdelayed;

-—- This application configuration has all processing steps as well
-- as the actuator as periodic tasks.
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-—- The sensor operates periodically (aperiodic sensor action

-- increases the latency by the deadline of the third step).

-—- The connections are immediate connections to allow for

-- deterministic processing within the same frame.

-— The actuator connection is delayed to allow for phase delayed
-- sampling to minimize latency jitter for the actuation.

-- The worst-case end-to-end latency for this system on a

-- synchronous execution platform is the deadline of the last

-—- processing step rounded up to the actuator period (sampling

-- latency) and actuator deadlines (computational latency) (53 ms).

-- In the asynchronous case the latency increases by the deadline
-- of the third step, since the actuator samples independently.

system implementation application.allimmediate
subcomponents
sense: device sensor.periodic;
actuate: device actuator.periodic;
computel: process Pstepl.periodic;
compute?2: process Pstep2.periodic;
compute3: process Pstep3.periodic;
connections
senseconn: data port sense.outed -> computel.ined;
computel2: data port computel.outed -> compute2.ined;
compute23: data port compute2.outed -> compute3.ined;
actuateconn: data port compute3.outed ->> actuate.ined;
bus access db -> sense.devbus;
bus access db -> actuate.devbus;
flows
etelatency: end to end flow sense.flowl -> senseconn -> com-

putel.flowl
-> computel?2 -> compute2.flowl -> compute23 -> com-
pute3.flowl

-> actuateconn -> actuate.flowl { latency => 53 ms;};
end application.allimmediate;

-- This application configuration has all processing steps as well
-- as the actuator as periodic tasks.

-- The sensor operates periodically (aperiodic sensor action
-- increases the latency by the deadline of the second step).

-—- The connections are immediate to the first step, delayed for
-- the second step to force phase-delayed sampling, immediate to
-- the third step, and delayed to the actuator.

-- In other words, there are two sampling steps, the computation
-- of step2, and the actuator action.

-- The worst-case end-to-end latency for this system on a

-- synchronous execution platform is the deadline of the first

-- processing step rounded up to the second step period, plus the
-- third step deadline rounded up to the actuator period (sampling

-- latency) plus actuator deadlines (computational latency) (153 ms).

-- In the asynchronous case the latency increases by the deadlines
-- 0of the first and third steps.

system implementation application.twosamplesteps
subcomponents
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sense: device sensor.periodic;
actuate: device actuator.periodic;
computel: process Pstepl.periodic;
compute?2: process Pstep2.periodic;
compute3: process Pstep3.periodic;

connections
senseconn: data port sense.outed -> computel.ined;
computel2: data port computel.outed ->> compute2.ined;
compute23: data port compute2.outed -> compute3.ined;
actuateconn: data port compute3.outed ->> actuate.ined;
bus access db -> sense.devbus;
bus access db -> actuate.devbus;

flows
etelatency: end to end flow sense.flowl -> senseconn —-> com-

putel.flowl
-> computel?2 -> compute2.flowl -> compute23 -> com-
pute3.flowl

-> actuateconn -> actuate.flowl { latency => 153 ms;};

end application.twosamplesteps;

-- hardware platforms: single processor, dual processor

processor singleCPU
features
db: requires bus access devicebus;
pb: requires bus access cpubus;
end singleCPU;

processor implementation singleCPU.basic
end singleCPU.basic;

bus cpubus
end cpubus;

bus implementation cpubus.basic
end cpubus.basic;

bus devicebus
end devicebus;

bus implementation devicebus.basic
end devicebus.basic;

system hardwareplatform
features

db: provides bus access devicebus.basic;
end hardwareplatform;

system implementation hardwareplatform.single
subcomponents

cpul: processor singleCPU.basic;
dbl: bus devicebus.basic;
connections

bus access dbl -> cpul.db;
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bus access dbl -> db;
end hardwareplatform.single;

system implementation hardwareplatform.dual
subcomponents
cpul: processor singleCPU.basic;
cpu2: processor singleCPU.basic;
dbl: bus devicebus.basic;
cpubusl: bus cpubus.basic;
connections
bus access dbl -> cpul.db;
bus access dbl -> cpu2.db;
bus access dbl -> db;
end hardwareplatform.dual;

-- system configurations: hardware and application

system topsystem
end topsystem;

-- first all single processor configurations

system implementation topsystem.allperiodicdelayed
subcomponents

app: system application.allperiodicdelayed;

hw: system hardwareplatform.single;
connections

dveconn: bus access hw.db -> app.db;
properties

Actual Processor Binding => reference hw.cpul applies to app;
end topsystem.allperiodicdelayed;

system implementation topsystem.allimmediate
subcomponents
app: system application.allimmediate;
hw: system hardwareplatform.single;
connections
dveconn: bus access hw.db -> app.db;
properties
Actual Processor Binding => reference hw.cpul applies to app;
end topsystem.allimmediate;

system implementation topsystem.twosamplesteps
subcomponents

app: system application.twosamplesteps;
hw: system hardwareplatform.single;
connections

dveconn: bus access hw.db -> app.db;
properties

Actual Processor Binding => reference hw.cpul applies to app;
end topsystem.twosamplesteps;
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-- The same application systems can be configured with a two
-- processor system.

-—- We are showing one configuration where the second step is
-- located on a second processor.

system implementation topsystem.distributedallperiodicdelayed
subcomponents
app: system application.allperiodicdelayed;
hw: system hardwareplatform.dual;
connections
dveconn: bus access hw.db -> app.db;
properties
Actual Processor Binding => reference hw.cpul applies to

app.computel;

Actual Processor Binding => reference hw.cpuZ applies to
app.compute?2;

Actual Processor Binding => reference hw.cpul applies to
app.compute3;
end topsystem.distributedallperiodicdelayed;
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