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Abstract

Over their lifetime, systems exist in many forms, such as instances of a system deployed in differ-
ent contexts or a system evolving over time. Variability may also occur in terms of functionality
reflected in the domain architecture, nonfunctional properties (such as performance, reliability,
and safety-criticality) that are realized in the runtime architecture, interfaces to the deployment
environment with which the system interfaces, and mapping to computing platforms.

The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language (AADL)
is an industry-standard, architecture-modeling notation specifically designed to support a compo-
nent-based approach to modeling embedded systems. This technical note discusses how AADL
can be used to model system families and configurations of system and component variants. It
shows that AADL supports system families by providing component types that are used to specify
component interfaces and multiple implementations for each component type. This report also
shows that AADL uses properties to represent multiple dimensions of system variability ranging
from variation through conditional compilation to variation through different sets of calibration
parameters.
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1 Introduction

Over their lifetime, systems exist in many variations, such as instances of a system deployed in
different contexts or a system evolving over time. Variability may also occur in terms of
« functionality that is reflected in the domain architecture of the system

« nonfunctional properties such as performance, reliability, and safety-criticality that are real-
ized in the runtime architecture of the system

« interfaces to the deployment environment with which the system interfaces

« mapping to computing platforms

These variations can be represented as different application software, conditionally compiled ap-
plication software, calibration parameters to the application software, and different configurations
of the computing platform and deployment context (where the deployment context is the actual
deployment environment or a simulated deployment environment—in the simplest case in the
form of realistic test data sets). A system can be configured in terms of these variations before it
becomes operational and may support switching between multiple configurations during opera-
tion.

The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language (AADL)
international industry standard is an architecture modeling notation specifically designed to sup-
port a component-based approach to the modeling of embedded systems. Components provide an
abstraction that separates the interface with other components from component implementations,
allows multiple implementations to be specified as component variants, provides multiple inter-
face views for different users of a component, and supports the representation of a system hierar-
chy through composition of components. The application component view is a logical architecture
view that organizes the domain functionality into manageable units; it primarily represents the
static aspects of a system.

AADL explicitly supports modeling of the runtime architecture through processes, threads, and
interaction models between them—providing a concurrency view in terms of a task and commu-
nication architecture that models the active components of a system and their interaction. AADL
provides the concepts of mode and mode-specific properties to capture dynamic aspects of a sys-
tem architecture. AADL provides component concepts of processor, memory, and bus to model
the computing platform and the concept of device to model the operational environment. Also, the
AADL provides properties to specify mappings of application components onto the execution
platform, a capability that provides a deployment view of the system.

In this report, we examine how system families (i.e., different configurations of systems) can be
modeled with AADL.? In particular, we discuss
« the AADL language concepts for component-based system modeling (Section 2)

1 Except where noted, we discuss the initial version of the AADL language standard.
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« modeling system variations without changes to the system structure and interaction topology
(Section 3)

« modeling variation in the system hierarchy and component interaction topology (Section 4)
« modeling of variation in component interfaces (Section 5)

« modeling of variation in the deployed system (Sections 6 and 7)

« modeling of a reference architecture (Section 8)

« how capabilities of AADL V2, namely abstract components and parameterization of compo-
nent templates, improve modeling of configurable system architectures (Section 9)
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2 Component-Based Modeling

An AADL model is composed of component types, implementations, and instances. A component
type defines the interface of the component to the other components. A component implementa-
tion defines the internal structure of the components. Both the component types and implementa-
tions represent classes of systems. The component instance represents a sample system (instanti-
ated from a specific implementation) amenable to analysis. AADL supports component-based
modeling through the following categories of components: system, process, thread group, thread,
data, subprogram, processor, memory, bus, and device.

2.1 COMPONENT TYPES

A component type specifies the features (such as data, event, and message output) the component
provides to other components through output ports, access provided to (data, bus) components
contained within the component, and provided subprogram services. A component type also spe-
cifies the features (such as data, events, and message) the component requires from other compo-
nents through its input ports, access the component requires to other components (data, bus), and
subprogram services it requires. In addition, a component type provides a flow specification from
the component’s input ports to its output ports. A component type may have a set of property val-
ues that apply to all implementations and instances of the component unless explicitly overwritten
in the component implementation or subcomponent (component instance) declaration.

Table 1 illustrates the specification of a thread type that has properties indicating that it is a
periodic thread with a certain period. The features specify the interaction points with other
components. The thread has data ports that communicate the latest value in a data stream, an
event port to reset its computation, and data access declarations to indicate shared access to
data components.
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Table 1: ~ Component Type Specification

thread controller
features
-- provided features
desiredvValue: out data port BaseTypes::UIntl6
{ Typing::DomainType => data appTypes::anglevalue ;
Typing::AngleRange => 0 degree .. 45 degree; };
calibrationParameter: provides data access ;
resetState: in event port;
-- required features
currentValue: in data port AppTypes::angleValue;
setPoint: requires data access AppTypes::anglevalue
{ Typing::BaseType => data BaseTypes::UInt32; };
flows
signalFlow: flow path currentValue -> desiredValue;
properties
Dispatch_Protocol => Periodic;
Period => 20 ms;
end controller;

property set Typing is
BaseType: classifier (data) applies to ( data, port );
DomainType: classifier (data) applies to ( data, port );
AngleRange: aadlinteger units ( degree ) applies to ( data, port );
end Typing;

Source_Data _Size => 16 bits;
end UIntl6;
data UInt32
properties package BaseTypes
public
data UIntl6
properties
Source_Data Size => 32 bits;
end UInt32;
end BaseTypes;

package AppTypes
public
-- a data type with base types as property values
data anglevalue
properties
Typing: :BaseType => data BaseTypes::UIntl6;
end angleValue;
end AppTypes;

In Table 1, we illustrate the use of data types on ports and data access to model the base type and
domain type of data being interchanged. For that purpose, we introduce a package BaseTypes
that contains a collection of base type definitions and a package AppTypes that contains ap-
plication data type definitions. Furthermore, we introduce two properties that allow us to
associate a base type or an application type with a port or access feature. The out data port
desiredValue in the thread control ler example in Table 1 has a data classifier
that identifies the base type, while the domain type is recorded as Typing: :DomainType
property. This instance would be a direct reflection of component source code that does not use
domain typing (e.g., Simulink models); in this case, domain types and other domain constraints,
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such as a limit on the data value and its unit, are documented to support consistency checking in
the AADL model.

The requires data access feature called setPoint inthe controller thread
example specifies the classiTier in terms of a domain type. In this case, the BaseType
property is used to record the base data type with the feature. (Note that we have defined a default
base type representation with the data component type declaration.) This base type is then over-
ridden by the BaseType property on the data access feature to indicate that this component
makes a base type assumption different from the default value. Consistency between the base type
specifications of both ends of a port or access connection can be checked on the AADL model, if
not already checked by the application language. If the default base type is not overridden in the
feature declaration, classifier matching of the endpoints of a connection already ensures that
the base types match as well.

2.2 COMPONENT IMPLEMENTATIONS

A component implementation declaration specifies implementation-specific property values. It
may specify subcomponent declarations (i.e., specification of component instances that are con-
tained in the component) and how subcomponents interact with each other and with external
components through the features of the component as expressed by connection declarations.

Properties in a component implementation may identify the source text that makes up the applica-
tion logic. This source text may be written in any application language (i.e., programming lan-
guages such as C, Ada, or Java, or modeling languages such a Matlab/Simulink). Other properties
specify characteristics of the application component that are relevant to architecture analysis (e.g.,
timing properties or reliability properties).

Subcomponent and connection declarations act as a blueprint for a component. Subcomponent
declarations specify the parts of a component and their connections. The classifier of a subcom-
ponent declaration identifies the type of component to be used as subcomponent. A classifier may
refer to a component type—where the interface of the subcomponent is known and its connection
to other subcomponents can be specified. A classifier may also refer to a component implementa-
tion—where the interface and the content of the subcomponent are known (i.e., we have specified
more than one level of the system hierarchy). In other words, we can specify partially complete
component blueprints by identifying only a component type or a more fully specified system hier-
archy by identifying component types and implementations. We use the component extends
concept to refine and extend a component type or implementation, as illustrated for the hybrid
power train system implementation in Table 2.
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Table 2: A Car System Architecture

system car
end car;
system implementation car.singleengine
subcomponents
PowerTrain: system power_train.singleengine;
ExhaustSystem: system exhaust_system;
end car.singleengine;

system power_train
features
exhaustoutput: requires bus access Manifold;
end power_train;
system implementation power_train.singleengine
subcomponents
ETC: system ThrottleController;
ABS: system AntilockBrakingSystem;
CruiseControl: system CruiseControl;
Transmission: system Transmission;
PowerPlant: device Engine;
end power_train.singleengine;
system implementation power_train.hybrid
extends power_train.singleengine
subcomponents
PowerPlant: refined to device Engine.Gasoline;
AlternatePowerPlant: device Engine.Electric;
end power_train.hybrid;

system ThrottleController
features
actualAngle: in data port;
desiredAngle: out data port;
end ThrottleController;

system AntilockBrakingSystem
features
slip: in data port;
brakeActive: out data port;
end AntilockBrakingSystem;

system CruiseControl

system Engine

end Engine;

system implementation Engine.Gasoline
end Engine.Gasoline;

system implementation Engine.Diesel
end Engine.Diesel;

system implementation Engine.Electric
end Engine.Electric;
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3 System Configuration by Properties

3.1 TYPES OF PROPERTY-BASED CONFIGURATION

In this section, we discuss how the following five forms of system variation can be modeled
through property values:
1. variation through alternative source code files

2. variation through conditional compilation in source code
3. variation of execution platform binding
4

variation through application parameters that remain constant during the operation of a sys-
tem, such as calibration parameters

5. variation of data sets used in the execution of system components

3.1.1 Alternative Source Code Files

The AADL standard defines a number of predeclared properties that specify mappings to applica-
tion component source code. One such property is Source_Text. This property specifies the
file name(s) that contains the source code for a component specified in AADL. This source code
can be written in one of a number of source languages, which can be specified through the
Source_Language property.

Source_Text property values (i.e., application source files) are typically associated with proc-
esses, threads, or subprograms called by threads. When a source file is specified, we assume that
the application source code it contains complies with the AADL specification of the application
component. We can check that compliance with tools that process both the source code and the
component specification in AADL.

We can initially specify a system architecture without source file names, or we can preconfigure it
with a default set of source files. We can then specify source file selections for a system architec-
ture by declaring contained property associations in the properties section of the top-level system
implementation in the same manner as we have specified the configuration selection of subcom-
ponent implementations. An example of the use of contained property associations to specify
Source_Text files is shown in Table 3.

Table 3:  Two Configured Systems

system implementation car.diesel_automatic_java
extends car.diesel_automatic
properties
Source_Text => “Transmission_automatic.java”
applies to PowerTrain.Transmission;
-- other source files as configuration selections
Source_Text => “Engine_Diesel.java”
applies to PowerTrain.PowerPlant;
end car.diesel_automatic_java;
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3.1.2 Conditionally Compiled Source Files

A single application source file can contain conditionally compiled code. In other words, portions
of the source code are tagged, and this code is only included in the compilation if the appropriate
tag value is set as one of the compilation parameters.

Typically, these conditional compilation tags act as system-wide configuration parameters (i.e.,
different source files use the same set of tags if they contain code fragments that address a particu-
lar system characteristic). For example, a conditional compilation tag may specify that the power
train includes a turbo, and as a result some of the source code files will contain code fragments
that perform special processing.

In the example in Table 4, we define an enumeration property type that introduces the tag values
for a particular tag as literals, and we define a property whose enumeration literal value represents
the tag value to be used for conditional compilation. In Table 4, the tag values are defined by
TurboType, while the Turbo property represents the conditional compilation flag. If the values
are Boolean, integer, or real, then we can use the corresponding built-in property types through
the inherit concept. By doing so, we declare the property value of a tag property with the top-
level component in the system hierarchy, and the property value applies to all components in the
system hierarchy.

The conditional compilation property values can be utilized by a tool that generates build scripts
from AADL models, populating a build script with the appropriate parameter values for the
source code compiler.

Table 4:  Conditional Compilation through Tag Values

property set CondComp is
TurboType : type enumeration ( NoTurbo, Bosch, Eaton );
Turbo : inherit TurboType applies to (all);
Cylinders : inherit aadlinteger applies to (all);

end CondComp;

system implementation car.diesel_automatic_GTD
extends car.diesel_automatic

properties
CondComp: :Turbo => Eaton;
CondComp: :Cylinders => 6;

end car.diesel_automatic_GTD;
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In some source language systems, the presence of the conditional compilation tag itself indicates
whether a code fragment should be included. In this case, we can use a simplified approach for
representing the conditional compilation tags that make up a particular compilation configuration
parameter set. In Table 5, we define an enumeration property type, whose enumeration literals are
the names of the conditional compilation tags. We then define a property that accepts a list of
those literals. This property is defined as inherit, and its values are declared in the top-level
system implementation (i.e., the property value list applies to all components). Table 5 shows an
example.

Table 5:  Conditional Compilation through Tags

property set CondComp is
CondCompTags : type enumeration ( Turbo, ABS, SixCylinder );
CondCompParameter : inherit list of CondCompTags applies to (all);
end CondComp;

system implementation car.diesel_automatic_GTD
extends car.diesel_automatic
properties
CondComp: :CondCompParameter => ( turbo, ABS );
end car.diesel _automatic GTD;

3.1.3 Deployment Configuration: Software/Hardware Mapping

The AADL standard defines properties that specify the binding of application components to pro-
cessor, memory, and bus components. These properties define actual binding through
Actual_<bindingtype> Binding, where <bindingtype> is processor, memory, or
connection.

The binding is specified through contained property associations that are declared in the system
implementation, the common root of the application system and the execution platform. The value
of the binding refers to an execution platform component, and the applies to clause identifies
the component the property value is associated with.

In Table 6, we use the binding properties in conjunction with inheritance (extends construct) to
separate the logical composition from the hardware binding. This separation allows us to define
an implementation that chooses the desired implementation of the application system and the de-
sired implementation of the hardware platform. This system instance configuration is then tailored
by specifying a software/hardware mapping through binding property values in the implementa-
tion extension.
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Table 6:  Alternative Deployment Configurations

system carSystem
end carSystem;
system implementation carSystem._DualProcessor
subcomponents
carApp: system car.diesel_automatic;
carECU: system ECU.DualProcessor;
end carSystem.DualProcessor;

system implementation carSystem.DualProcessorConfigl
extends carSystem.DualProcessor
properties
Actual_Processor_Binding =>
reference carkECU.ProcLeft applies to carApp.PowerTrain.ETC;
Actual_Processor_Binding =>
reference carECU.ProcRight applies to carApp.PowerTrain.ABS;
end carSystem._DualProcessorConfigl;

system implementation carSystem.DualProcessorConfig2
extends carSystem.DualProcessor
properties
Actual_Processor_Binding =>
reference carECU.ProcLeft applies to carApp.PowerTrain.ABS;
Actual_Processor_Binding =>
reference carECU.ProcRight applies to carApp.PowerTrain.ETC;
end carSystem._DualProcessorConfig2;

3.14 Calibration Parameters and Other Constant System Parameters

We can also configure application systems by setting certain application parameters during sys-
tem build, load, or start-up. In cases such as calibration parameters, these values may even be set
through special tools while operation is suspended. We can model constant parameters such as
those in AADL through property constants and property values.

Each application parameter can be defined as a property constant as shown in Table 7. Parameter
values can be Boolean, string, integer and real with and without measurement unit, range of val-
ues, user-defined values in the form of enumeration literals, and lists of any of these values.

Property constants are not associated with specific components in a system architecture; instead,
they provide global values. Property constants are defined in property sets. As a result, we must
specify alternative configurations (in terms of different sets of values) as variants of the same
property set. We can accomplish that by managing property sets through a version control system
used on AADL models. In other words, we can select different parameter configurations by in-
cluding the appropriate version of the property set in the workspace of an AADL modeling envi-
ronment. Examples of system parameters as property constants are shown in Table 7.
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Table 7:  System Parameters as Property Constants

property set SystemParameters is
Turbo: constant aadlboolean => false;
ThrottleSetting: inherit aadlreal => 0.576 applies to (all);
Speed: type units (kph);
TopSpeed: constant aadlinteger SystemParameters::speed => 250 kph;

TireType: type enumeration ( Touring, Winter, Offroad, Highspeed );
Tires: constant SystemParameters::TireType => Touring;

end SystemParameters;

The parameters can also be modeled by properties. In this case, we define the properties in a
property set and specify different configurations of parameter values through property associa-
tions in different implementations of the top-level system component. (For more information, see
Section 3.2.1.) This process mirrors the approach taken for modeling conditional compilation tags
or source file selection.

Properties are associated with components (and other AADL model elements such as connections
and ports) of the system architecture. Consequently, property values are accessible only in the
context of constructs such as system components, connections, and ports. We can define proper-
ties to be globally applicable by defining a property as inher it and associating it with the top-
level system component, as shown in Table 8. When retrieving a property value for one of the
system components, we follow the system hierarchy up to find a component that has the desired
property value. Notice that the use of property sets for system parameters allows different prop-
erty values to be used for different system components (i.e., different subsystems).

Table 8:  System Parameters as Component Property Values

property set SystemParameters is

Turbo: inherit aadlboolean applies to (all);
ThrottleSetting: inherit aadlreal applies to (all);
TopSpeed: inherit aadlinteger units ( kph ) applies to (all);

TireType: type enumeration ( Touring, Winter, Offroad, Highspeed );
Tires: inherit SystemParameters::TireType applies to (all);
end SystemParameters;

system car
end car;

system implementation car.hybrid

subcomponents

-- the car parts

connections

-- the connectivity between parts

properties
SystemParameters::Turbo => false;
SystemParameters: :ThrottleSetting => 0.576;
SystemParameters: :TopSpeed => 195 kph;
SystemParameters::Tires => Touring;

end car.hybrid;
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Application parameters such as calibration parameters are part of the application data that gets
loaded into the execution platform and consumes memory resources. A memory requirement may
simply be specified for the application component through the Source_Data_Size property
or Source_Code_Size property, depending on how programming language compilers include
those constants in the code binaries. Therefore, it may not be necessary to explicitly model these
parameters as data components of the application system architecture.

If desirable, we can model this calibration data by declaring a data component in a process or sys-
tem, as illustrated in Table 9. We define the size of the calibration data area as a property of the
data component type and apply it to all implementations. We can use the data implementation
declaration to define a particular set of calibration data values. In the top-level system, the decla-
ration of the calibration data component instance chooses the desired data set by naming the ap-
propriate data component implementation.

Table 9:  System Parameters as Data Components

system car
end car;

system implementation car.hybrid
subcomponents

Calibration: data CalibrationData.config_1;
-- the car parts
connections
-- the connectivity between parts
end car._hybrid;

data CalibrationData
properties

Source_Data_Size => 40 B;
end CalibrationData;

data implementation CalibrationData.Config_1

properties
SystemParameters: :Turbo => false;
SystemParameters: :ThrottleSetting => 0.576;
SystemParameters: :TopSpeed => 195 kph;
SystemParameters::Tires => Touring;

end CalibrationData.Config_1;

3.15 Modeling of Data Sets

Data sets are used in simulation environments in two ways: (1) they represent data that is part of
the application system, or (2) they represent a data stream from the embedded system environ-
ment such as sensors that are replayed for simulation runs. If the data is part of the application
software, we can model the data set as a data component with the data set values as its values, as
was done in Table 9.

If the data set represents a sensor data stream for simulation runs, we can represent it through a
property associated with the device port through which the data stream is communicated. When
associated with an out port, the data stream represents data to be sent to other components. When
associated with an in port, it represents data that is expected to be received from other compo-
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nents. This property may refer to a file that contains the data set or contain the data stream values,
both of which are illustrated in Table 10.

In Table 10, we show the respective property being declared in a device implementation. In this
representation, we can select different data sets by choosing different implementations for an in-
stance of the device. Alternatively, we can use contained property associations that are declared at
the top-level system component and apply to the appropriate port of the desired device instance.
In the latter case, we select alternative data set configurations by choosing the appropriate top-
level system component with the desired configuration parameters. The benefits of each approach
are discussed in the next section.

Table 10: Simulated Device Data Set

device WheelSensor
features

Signal: out data port Common::Real;
end WheelSensor;

device implementation WheelSensor.datasetl
properties

Simulation: :DataSetFileName => “datasetl.csv” applies to Signal;
end WheelSensor .datasetl;

device implementation WheelSensor.dataset2
properties
Simulation: :RealDataStream => ( 0.111, 0.211, 0.321, 0.432)
applies to Signal;
end WheelSensor .dataset?2;

3.2 MANAGING CONFIGURATION PROPERTIES IN ARCHITECTURE MODELS

In the examples of the previous sections, we have seen that properties representing the configura-
tion of a system apply to specific components of the system or to the system as a whole. We can
declare component-specific properties as part of a component type declaration or a component
implementation declaration. When we declare them in a component type declaration, all instances
of the component have the same property values. Similarly, when we declare them in a compo-
nent implementation, all instances of that implementation have the same property values.

In Table 11, we show an example in which a throttle control variant is defined as an explicit com-
ponent implementation by specifying a specific file as Source_Text property value. We can
select alternative property values by choosing the appropriate component implementation in the
subcomponent declaration of the parent component implementation declaration. In the next sec-
tion, we discuss how to model component implementation selection throughout the system hierar-
chy.
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Table 11:  Properties Represent Component Implementation Variants

system ThrottleController
features
actualAngle: in data port;
desiredAngle: out data port;
end ThrottleController;

system implementation ThrottleController.Regular
properties
Source_Text => “ETCLowOctane.c”;

end ThrottleController.Regular;

Different instances of the same component might require different property values. For example,
different instances of a simulated device might require different seed values. We can also declare
component-specific properties through a contained property association placed with the top-level
system component and declared to apply to a specific instance in the system hierarchy, as in the
following: Simulation: :SeedValue => 0.31415 applies to
sysl.subsysl.process2.device3.

In this section, we examine how these properties can be managed as part of the declarative AADL
model through a collection of component implementations of the top-level, system component,
XML-based system configuration files that are associated with XML-based instance model files.

3.2.1 Properties as System Configuration Parameters

Some properties can be viewed as parameters of a system configuration. In this case, we specify
all property values that act as parameters of a system configuration in a single location (i.e., the
properties section of the top-level component implementation). For example, the properties speci-
fying the binding of application components to the execution platform represent a particular run-
time configuration of the operational application system, as illustrated in Table 6 on page 10.

Other properties apply to specific component instances in a system model. We can declare those
properties in the top-level system implementation by indicating that they belong to a subcompo-
nent (or features, connection, or other model element) through the applies to clause.

Table 12 illustrates the use of the extends construct on the top-level component implementation
in defining a full system configuration in multiple steps. For this example, we declare a system
implementation that chooses the application system implementation and the hardware platform
implementation. Then extensions of this implementation specify the conditional compilation pa-
rameters. This implementation is the basis of two component implementation extensions that add
alternative deployment configuration (processor binding) information.
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Table 12:  Partial and Full System Configurations

system carSystem
end carSystem;
system implementation carSystem.DualProcessor
subcomponents
carApp: system car.diesel_automatic;
carECU: system ECU.DualProcessor;
end carSystem.DualProcessor;

system implementation carSystem.DualProcessorCondCompConfigl
extends carSystem.DualProcessor

properties
CondComp: :CondCompParameter => ( turbo, ABS );

end carSystem._DualProcessorCondCompConfigl;

system implementation carSystem.DualProcessorDeploymentConfigl
exends carSystem. DualProcessorCondCompConfigl
properties
Actual_Processor_Binding =>
reference carECU.ProcLeft applies to carApp.PowerTrain.ETC;
Actual_Processor_Binding =>
reference carECU.ProcRight applies to carApp-PowerTrain._ABS;
end carSystem. DualProcessorDeploymentConfigl;

system implementation carSystem. DualProcessorDeploymentConfig2
exends carSystem. DualProcessorCondCompConfigl
properties
Actual_Processor_Binding =>
reference carkECU.ProcLeft applies to carApp.PowerTrain.ABS;
Actual_Processor_Binding =>
reference carECU.ProcRight applies to carApp.PowerTrain.ETC;
end carSystem._DualProcessorDeploymentConfig2;

The AADL standard does not prescribe how AADL models are stored as files in a file system.
One possible mapping is to store each AADL package in a separate file. If it is desirable to store
information about different configurations in separate files, each component implementation con-
tains a set of configuration parameters as property associations in a separate package. Table 13
shows this circumstance, with the assumption that the DualProcessor system implementation
is declared in a package car: :Baseline.

Table 13:  System Configuration in Separate AADL Package

package car::configuration2
system carSystem extends car::Baseline::carSystem

end carSystem;
system implementation carSystem. DualProcessorDeploymentConfig2
exends car::Baseline::carSystem. DualProcessor
properties
CondComp: :CondCompParameter => ( turbo, ABS );
Actual_Processor_Binding =>
reference carECU.ProcLeft applies to carApp.PowerTrain.ABS;
Actual_Processor_Binding =>
reference carECU.ProcRight applies to carApp.PowerTrain.ETC;

end carSystem._DualProcessorDeploymentConfig2;
end car::configuration2;
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3.2.2 Instance Models and System Configurations

AADL supports an XML-based persistent storage of AADL models. The AADL Meta Model and
XML/XMI Interchange Representation Annex [SAE-AS5506/1 2006] defines an AADL-specific
XML representation for declarative AADL models (i.e., those that correspond to the textual
AADL representation), for AADL instance models (i.e., models that are instantiated from a speci-
fied system implementation as the root of an embedded system), and for system configurations
(i.e., sets of property values that can be associated with AADL instance models).

The AADL XML representation allows AADL instance models to be stored in separate files. It
also allows system configuration information in the form of property values that are associated
with a specific AADL model instance to be stored in files separate from the AADL instance mod-
el file. These sets of property values can be specified to apply to specific modes of system opera-
tion.

16 | CMU/SEI-2007-TN-047



4 Configuration of System Structure and Connection
Topology

We might need to configure a system through component implementation selection for two rea-
sons: (1) component variants are represented by different property values recorded in different
component implementations, and (2) component variants represent variation in the system struc-
ture and connection topology (i.e., they differ in the set of subcomponents and connections, which
are declared in component implementations).

In this section, we use extends declarations to express the classifier selection in subcomponents
and to add connections. In Section 9, we explore the use of parameterized component classifier
declarations, a feature of Version 2 of the AADL language, to model a reference architecture and
its variants and instantiations.

41 IMPLEMENTATION SELECTION THROUGH COMPONENT EXTENSION

In this approach, we model the component blueprint by specifying component implementations
that identify the classifier of a subcomponent by its component type. This identification allows us
to specify connections between subcomponents and with the features of the component itself.
However, the implementations of the subcomponent have not been chosen yet. In other words, we
have not yet identified the substructure of the subcomponents, as illustrated in Table 14.

Table 14: A Common System Architecture

system car
end car;
system implementation car.common
subcomponents
PowerTrain: system power_train;
ExhaustSystem: system exhaust_system;
connections
bus access ExhaustSystem.exhaustManifold -> PowerTrain.exhaustManifold;
end car.common;

system power_train
features

exhaustManifold: requires bus access Manifold;
end power_train;

system implementation power_train.singleengine
subcomponents
ETC: system ThrottleController;
ABS: system AntilockBrakingSystem;
CruiseControl: system CruiseControl;
Transmission: system Transmission;
PowerPlant: system Engine;
end power_train.singleengine;
system implementation power_train.twoengine
extends power_train.singleengine
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Table 14: A Common System Architecture (cont.)

subcomponents
AlternatePowerPlant: system Engine;
end power_train.twoengine;

system ThrottleController
features
actualAngle: in data port;
desiredAngle: out data port;
end ThrottleController;
system implementation ThrottleController.bosch
end ThrottleController.bosch;

system AntilockBrakingSystem
features
slip: in data port;
brakeActive: out data port;
end AntilockBrakingSystem;
system implementation AntilockBrakingSystem.bosch
end AntilockBrakingSystem.bosch;

system CruiseControl

end CruiseControl;

system implementation CruiseControl.delphi
end CruiseControl ._delphi;

system Transmission

end Transmission;

system implementation Transmission.automatic
end Transmission.automatic;

system Engine

end Engine;

system implementation Engine.Gasoline
end Engine.Gasoline;

system implementation Engine.Diesel
end Engine.Diesel;

system implementation Engine._Electric
end Engine.Electric;

system exhaust_system
features
exhaustManifold: provides bus access Manifold;
end exhaust_system;
system implementation exhaust_system.sporty
end exhaust_system.sporty;

bus Manifold
end Manifold;
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These component implementations will be refined through a component implementation exten-
sion. The refined to construct in AADL allows the addition of detail in the component classi-

fiers (i.e., the component type in the classifier reference may be refined to identify a specific im-
plementation of the given component type), as shown in Table 15.

Table 15: A Specific System Configuration

system implementation power_train.diesel
extends power_train.singleengine

subcomponents
ETC: refined to system ThrottleController.bosch;
ABS: refined to system AntilockBrakingSystem.bosch;
CruiseControl: refined to system CruiseControl.delphi;
Transmission: refined to system Transmission.automatic;
PowerPlant: refined to device Engine.Diesel;

end power_train.diesel;

system implementation car.diesel
extends car.common
subcomponents
PowerTrain: refined to system power_train.diesel;
ExhaustSystem: refined to system exhaust_system.sporty;
end car.diesel;

If we want to specify a different car configuration, one with a gasoline engine, we select a differ-
ent implementation of the engine for the engine subcomponent in the power train implementation.
This is illustrated in Table 16.

Notice in Table 16 that we had to introduce a new power train implementation and a new car im-
plementation to reflect this configuration. We document implementation selections as configura-
tion choices, as part of a component implementation. We had to document, for instance, a change
to a selection at the leaf node of the system hierarchy in the enclosing component as a new im-
plementation. Also, we had to record this new implementation in its enclosing component. This
degree of documentation results in a proliferation of a new set of component implementations up
the system hierarchy. In the next section, we will discuss how to address this issue by utilizing a
property that specifies the desired component implementation as its classifier value and associates
this value with the appropriate subcomponent in the system hierarchy.
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Table 16:  Configuration Change in one Component

system implementation power_train.gasoline
extends power_train.singleengine

subcomponents
ETC: refined to system ThrottleController.bosch;
ABS: refined to system AntilockBrakingSystem.bosch;
CruiseControl: refined to system CruiseControl.delphi;
Transmission: refined to system Transmission.automatic;
PowerPlant: refined to system Engine.Gasoline;

end power_train.gasoline;

system implementation car.gasoline
extends car.common
subcomponents
PowerTrain: refined to system power_train.gasoline;
ExhaustSystem: refined to system exhaust_system.sporty;
end car.gasoline;

Notice also in Table 16 that we had to repeat the implementation choices of the other components.
We can address this issue by specifying partially bound configurations of components. In other
words, we can define a power train implementation with the implementation of all subcomponents
specified, except for the engine. This component implementation can then be refined to a com-
pletely configured power train, as illustrated in Table 17.

Table 17: A Partially Bound System Configurations

system implementation power_train.selectEngine
extends power_train.singleengine
subcomponents
ETC: refined to system ThrottleController.bosch;
ABS: refined to system AntilockBrakingSystem.bosch;
CruiseControl: refined to system CruiseControl.delphi;
Transmission: refined to system Transmission.automatic;
end power_train.selectEngine;

system implementation power_train.gasoline
extends power_train.selectEngine
subcomponents
PowerPlant: refined to system Engine.Gasoline;
end power_train.gasoline;

In the scenarios in this section, the modeler chooses an implementation of the top-level system
component (in our example the car) as the root of a system instance. The implementation name
acts as the desired configuration of the system. At each level in the system hierarchy, configura-
tions are explicitly named. Including a new variant introduced to one of the leaf components in
the system hierarchy in a configuration results in a new component implementation declaration
(acting as an explicitly named configuration) for each enclosing component in the system hierar-
chy.
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In summary, AADL supports partially configured systems by refining a subset of the classifiers.

The resulting component implementation is then further refined. The fact that a component type

or implementation is partially configured is inferred from incomplete subcomponent declarations.

Implementation selection through component extension is achieved as follows:

1. Subcomponents are declared with component types as classifiers.

2. They are then refined to the desired implementation selection in extends declarations of
the enclosing component implementation and refined to constructs of the subcompo-

nent. If default implementations are specified, the current AADL standard does not allow
their refinement in extends declarations.

In this approach, every configuration at each level of the system hierarchy is explicitly modeled
by a named component implementation.
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5 Modeling of Component Interface Variation

Component types can be declared as extensions of other component types, allowing interfaces to
be refined and extended. Some features may be incompletely specified (i.e., may not name a com-
ponent type or implementation in a classifier reference).

51 COMPONENT INTERFACE TEMPLATES

Component type declarations can represent a pattern of component interfaces. For example, the
component type declaration shown in Table 18 specifies a set of interaction points through feature
declarations without classifier references. In this case, the intended type of component interaction
is reflected in the feature category, but specifics of the information being communicated are not
committed yet. This component type declaration can be referenced in subcomponent declarations,
allowing interactions with this component to be specified through connection declarations.

Table 18: Controller Component Type Template

thread controllerTemplate
features
-- provided features
desiredValue: out data port;
-- required features
currentValue: in data port;
setPoint: requires data access;
properties
Dispatch_Protocol => Periodic;
Period => 20 ms;
end controllerTemplate;

If the specific set of interaction points varies between different variants of a component family,
we can use a port group feature to specify a collection of interaction points as a single feature. By
using a port group feature, we can specify that this component will interact with other components
through a port group connection without specifying the number and types of interactions yet. This
flexibility is useful when specifying patterns of architectural structures and interactions.
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Table 19 shows an example of a generic component interface with a port group for each of the
inputs and outputs through collections of ports.

Table 19: Component Type with Port Group Interaction Points

thread genericComponentTemplate
features
providedValues: port group;
requiredValues: port group;
end genericComponentTemplate;

5.2 COMPONENT INTERFACE REFINEMENT

These templates can be refined into more completely specified component interfaces through the
use of the component type extension mechanism. This mechanism allows the modeler to refine an
existing component type declaration and to extend its set of features.

We first look at the refinement of component types into more completely specified interfaces.
This form of component type extension acts as a specialization of the component type. Table 20
refines the previously declared control lerTemplate into a throttle controller by refining the
previously declared Features to have specific domain data types.

Table 20:  Component Type Refinement

thread ThrottleController extends controllerTemplate
features
-- provided features
desiredValue: refined to out data port appTypes::voltageValue;
-- required features
currentValue: refined to in data port appTypes::angleValue;
setPoint: refined to requires data access appTypes::angleValue;
end ThrottleController;

In a second step, we refine this component interface to make use of specific base types for the
data. We do this through a component type extension to the throttle controller type (see
ThrottleControllerUIntl6 in Table 21). We introduce an additional component type as
an extension for each desired base type combination for the features to allow base type matching
on connections to be performed without having selected an implementation for a subcomponent.

Table 21:  Type Selection for Ports

-- base type selection via type extension
thread ThrottleControllerUIntl6 extends ThrottleController
features
-- provided features
desiredvValue: refined to out data port appTypes::voltageValue.UIntl6;
-- required features
currentValue: refined to in data port appTypes::angleValue.UIntl6;
setPoint: refined to requires data access appTypes::angleValue._ UIntl6;
end ThrottleControllerUlntl6;
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5.3 COMPONENT INTERFACE EXTENSION

An incompletely specified component type can also be viewed as a common interface as the basis
for multiple component interface variants. Variants can be defined as component type extensions
with additional features. This form of component type extension acts as a subclass of the compo-
nent type being extended. Table 22 shows a variant of the throttle controller interface that permits
calibration. The calibration parameter does not have its implementation specified; this allows the
details of the calibration parameters to be supplied through refinement of the classifier to a data
component implementation.

Table 22: Extended Component Interface

thread ThrottleControllerWithCalibration extends ThrottleController
features
-- A component variation that permit calibration
calibrationParameter: provides data access ThrottleCalibration;
end ThrottleController;

5.4 CONFIGURING COMPONENT INTERFACE VARIANTS

Component types are named in classifier references of features and subcomponent declarations.
They may be named with an implementation name or by themselves. When making use of com-
ponent interface specifications that are incomplete, the modeler should be aware that a component
type reference cannot be refined into a different component type in the AADL standard, even if
that component type is an extension of the original component type. Table 23 illustrates such an
example. A generic control process is defined to consist of a controller, whose classifier is the
generic controller template. Since this component type has ports specified, the component imple-
mentation can include connection declarations.

Table 23:  Use of Generic Component Type

process ControlProcess
features
Signalin: in data port;
Signalout: out data port;
end ControlProcess;
process implementation ControlProcess.impl
subcomponents
-- A component variation that permits calibration
controller: thread controllerTemplate;
connections
data port Signalln -> controller.currentValue;
data port controller._desiredvValue -> Signalout;
end ControlProcess.impl;
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6 Variation in Deployment Configurations

AADL supports modeling of execution platform components through the component types of
processor, memory, bus, and device. An AADL model of a system consists of an instance of an
application system, an instance of an execution platform, and a specification of bindings of appli-
cation components to execution platform components.

A processor component is an abstraction for an execution platform component that schedules and
executes application threads bound to it. A processor type can be defined to represent processor
hardware (as an abstraction of the hardware details) or processor hardware together with an oper-
ating system. For example, a dual core processor may be represented by a processor type that
hides the fact that two CPUs are contained if the application has no awareness of and ability to
bind to the individual CPU. A processor can have multiple implementations, where each imple-
mentation represents a different variant in a processor family. The models of the variants may
only differ in the property values associated with each processor implementation.

In a similar fashion, the memory component can represent various types of storage media, and the
bus component can be used to model entities that connect execution platform components (e.qg.,
buses, networks, and wired and wireless connections). These physical connections may include
connection protocols as part of their abstraction. The device component models a component of
the physical target environment of an embedded system (e.g., sensors and actuators or a physical
plant being controlled) where the device ports represent sensor and actuator inputs or outputs.

The system component configures individual execution platform components into systems. A sys-
tem may have one or more than one system interface specification (system type declaration). Mul-
tiple system implementations can be defined for each system interface.

Modelers can define a family of embedded system configurations by specifying a top-level system
that contains an application system subcomponent and an execution platform component. Differ-
ent top-level system implementations may choose different execution platforms for the same ap-
plication system.

First, we introduce the AADL package concept; then, we define hardware platforms and varia-
tions embedded systems configurations.

6.1 USE OF AADL PACKAGES

AADL packages? allow users to group collections of component type and implementation decla-
rations into related groupings. AADL packages are named, and nested package names are sup-
ported. For example, a package may be named SEI::Avionics::Classes. Name nesting allows
name uniqueness to be relative to the enclosing package name. AADL package declarations are
not nested inside other AADL packages. However, tools may present a view that allows users to
navigate a collection of packages in a user’s workspace according to the package hierarchy.

2 AADL packages are similar to Java packages.
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There is no restriction imposed by AADL on the visibility of packages. However, AADL pack-
ages do restrict the visibility of component classifier declarations by providing public and private
sections of the package. This allows classifiers in a given package to be referenced by any other
package, as long as they are declared in the public section as shown in Table 24.

Table 24: Visibility of Packages

package BasicTypes
public
data integer
end integer;
data implementation integer.ul6
properties
Source_Data_Size => 16 bits;
end integer.ulé6;
data implementation integer.u32
properties
Source_Data_Size => 32 bits;
end integer.u32;

data real

end real;

data string

end string;
end BasicTypes;

package CarDomain::Engine
public
data Engine
features
getRPM: subprogram getTheRPM;
end Engine;
subprogram getTheRPM
features
rpm: out parameter integer.ul6;
end getTheRPM;
end CarDomain::Engine;
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6.2 THE HARDWARE PLATFORM

Execution platform components—such as processors, memory, and network components—as well
as components that represent the physical environment of an embedded system are represented by
processor, memory, bus, and device component type and implementation declarations. These
hardware component declarations represent a library of components; modelers can organize them
into different packages, each representing a different supplier, and through nested package names
into different product families. Table 25 illustrates the nested-package-name concept.

Table 25:  Nested Package Names

package 1BM::PowerPC
public
processor PowerPC7XX
end PowerPC7XX;
processor PowerPC970
end PowerPC970;
processor implementation PowerPC970.Basic
end PowerPC970.Basic;
end 1BM: :PowerPC;

If a component product family is large, we can organize it through a combination of component
classifier extensions and multiple packages. In Table 26, we use the preceding example to define
members of the FX family in a separate package.

Table 26:  Defining Family Members in a Separate Package

package 1BM::PowerPC: :FX
public
-- make the processor type name locally visible
processor PowerPC970 extends I1BM::PowerPC: :PowerPC970
end PowerPC970;
-— introduce the FX variant as an extension of the basic one
processor implementation PowerPC970.FX
extends IBM::PowerPC: :PowerPC970.Basic
-- add any FX specific properties
end PowerPC970.FX;
end IBM::PowerPC::FX;

These hardware components make up standardized modular motherboards, which themselves are
configured into computing platforms for different embedded system platforms. In other words, we
now define system types and implementations that represent different boards. These system com-
ponents require or provide access to buses to model the fact that the board may be plugged into a
PCI bus or connected to a 1553 bus, a CAN bus, or high-speed Etherswitch.

We can keep the board system declarations in one set of packages and the airframe-specific hard-
ware architectures in other packages. The hardware architectures themselves can be defined as a
family that is configurable by using the classifier extensions, explicit parameterization of compo-
nent classifier declarations (an AADL Version 2 capability, see Section 9), and properties—as
illustrated in Section 3.
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In Table 27, we show packages that define motherboards with slots and components of certain
types and that contain specific configurations of the populated motherboard. In this instance, we
do not take advantage of the explicit parameterization of component classifier declarations. A
model with explicit parameterization would require a separate prototype declaration for each sub-
component classifier, which increases the size of the model.’

Table 27: Package Families

package 1BM::Motherboard
public
-- make the processor type name locally visible
system Motherboard
features
pci: requires bus access PCI;
Bus1553: requires bus access BUS1553;
end Motherboard;
-— introduce the FX variant as an extension of the basic one
system implementation Motherboard.PPC
subcomponents
pr
OC : processor;
meml: memory;
mem2: memory;
mem3: memory;
dmal: bus DMA;
connections
ml: bus access dmal -> meml.dma;
m2: bus access dmal -> mem2.dma;
m3: bus access dmal -> mem3.dma;
pl: bus access dmal -> proc.dma;
end Motherboard.PPC;
end IBM: :Motherboard;

package IBM::Motherboard: :Populated
public
system implementation Motherboard.PPC970
extends Motherboard.PPC
subcomponents
proc : refined to processor IBM::PowerPC::PowerPC970;
meml: refined to memory DRAM;
mem2: refined to memory DRAM;
mem3: refined to memory DRAM;
end Motherboard.PPC970;
end IBM::Motherboard: :Populated;

package 1BM::Motherboard: :Configured
public
system implementation Motherboard.PPC970HighPerformance
extends IBM: :Motherboard: :Populated: :Motherboard.PPC970
properties
Hardware: :ProcessorSpeed => 1.4 GHZ applies to proc;
Hardware: :MemoryCapacity => 512 MB applies to meml;
Hardware: :MemoryCapacity => 512 MB applies to mem2;
Hardware: :MemoryCapacity => 512 MB applies to mem3;
end Motherboard.PPC970HighPerformance;
end IBM::Motherboard: :Configured;

® In AADL, subcomponents can be independently refined with a classifier. Although the language allows for a mix of explicit

parameterization and incomplete subcomponent declarations, it may be desirable to establish a modeling rule requiring
prototypes for parameterization.
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In Table 28, we illustrate descriptions of target platform-specific computer hardware configura-
tions.

Table 28: Example Target Platform-Specific Hardware Configurations

package Lockheed: :ComputePlatforms
public
system ComputePlatform
end ComputePlatform;
system implementation ComputePlatform.F16
subcomponents
procl : system IBM::Motherboard::Motherboard;
proc2 : system IBM::Motherboard: :Motherboard;
pcil: bus PCI;
canl: bus BUS1553;
can2: bus BUS1553;
connections
pl: bus access pcil -> procl.pci;
p2: bus access pcil -> proc2.pci;
bl: bus access canl -> procl.Busl1553;
b2: bus access can2 -> proc2.Busl1553;
end ComputePlatform.F16;
end Lockheed: :ComputePlatforms;

package Lockheed: :ComputePlatformConfigurations
public
system implementation ComputePlatform.F16HiPerf
extends Lockheed: :ComputePlatforms: :ComputePlatform.F16;
subcomponents
procl : refined to
system IBM::Motherboard: :Motherboard.PPC970HighPerformance;
proc2 : refined to
system IBM::Motherboard: :Motherboard.PPC970HighPerformance;
pcil: refined to bus PCl_HighPerformance;
canl: refined to bus BUS1553.V2;
can2: refined to bus BUS1553.V2;
end ComputePlatform.F16HiPerf;
end Lockheed: :ComputePlatformConfigurations;
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6.3 EMBEDDED SYSTEM CONFIGURATIONS

We can now define configurations of the complete embedded system (i.e., the embedded applica-
tion software and the execution platform). The simplest form of such a configuration is a system
implementation declaration that combines an instance of the application system and an instance of
the computing platform (see Table 29). Again, we can define a generic configuration that is then
refined into specific configuration variants.

Table 29: Configuration of an Embedded System

package Lockheed: :F16EmbeddedSystem
public
System implementation F16.GenericConfiguration
subcomponents
App: system Lockheed::Avionics::F16Avionics;
ComputePlatform: system Lockheed: :ComputePlatformConfigurations::
ComputePlatform;
end F16.GenericConfiguration;

System implementation F16.BaseConfiguration
Extends F16.GenericConfiguration
subcomponents
App: refined to system Lockheed::Avionics: :F16Avionics.Baseline;
ComputePlatform: system Lockheed::ComputePlatformConfigurations::
ComputePlatform.Baseline;
end F16._.BaseConfiguration;

end Lockheed: :F16EmbeddedSystem;

Given a specific system configuration, we can now define system variations that differ in how the
application software is to be bound onto the computing platform hardware. AADL offers a set of
predeclared properties to specify binding constraints as well as properties that record the actual
binding decisions regarding binding of threads and processes to processors and memory, and con-
nections to buses. The binding constraints are expressed through Al lowed_<type> Binding
and Al lowed_<type> Binding_Class properties, where <type> is processor, memory, or
connection. The former identifies specific instances of processors, memory, and buses to which an
application component can be bound. The latter identifies the types of processors, memory, and
buses that are acceptable targets of binding decisions.

It is expected that modelers take these constraints into consideration when making actual binding
decisions. The actual binding decisions are then recorded (by a tool or a person) in the
Actual_<type> Binding properties. The actual binding properties can be recorded as addi-
tional system implementation declarations—as shown in the following example (see Table 30).
Or the property values can be associated with the AADL instance model and stored as part of a
modified instance model XMl file or as an XMI-based configuration file separate from the in-
stance model. (See the instance model description of the AADL Meta Model and XML/XMI In-
terchange Format Annex AS-5506/1 [SAE-AS5506/1 2006].) Some toolsets may choose to limit
users to specify binding constraints only and let tools store the actual bindings in the instance
model. In this case, users may specify binding constraints to limit the choice to a single compo-
nent.

30 | CMU/SEI-2007-TN-047




Table 30: Binding Properties Recorded as Additional System Implementation Declarations

package Lockheed: :F16EmbeddedSystem: :Configurations
public
System implementation F16.BaselineConfiguration extends
Lockheed: : F16EmbeddedSystem: : F16 .BaseConfiguration
properties
Allowed_Memory_Binding_Class => classifier nonvolatileDRAM
applies to App.FlightManager.CriticalData;
Allowed_Processor_Binding => reference ComputePlatform._procl
applies to App.FlightDirector.FDProcess;
end F16.BaselineConfiguration;
end Lockheed: :F16EmbeddedSystem: :Configurations;

package Lockheed: :F16EmbeddedSystem: :BoundConfigurations
public
System implementation F16.Baselinel extends
Lockheed: : F16EmbeddedSystem: :Configurations: :F16._BaselineConfiguration
properties
Actual_Memory Binding => reference ComputePlatform.meml
applies to App.FlightManager.CriticalData;
Actual_Processor_Binding => reference ComputePlatform.procl
applies to App.FlightDirector.FDProcess;
end F16.Baselinel;
end Lockheed: :F16EmbeddedSystem: :BoundConfigurations;

The example in Table 30 shows the composition of embedded application software with the
hardware at the top-level of the system hierarchy. AADL does not prescribe or limit modelers to
compose systems that way. A system defined to consist of software and hardware components can
itself become a component of a larger system. In other words, systems with hardware and soft-
ware components may have an external interface that is documented in the root level system type.
An instance of such a system can be integrated with another system by declaring both of them as
subcomponents of a system of systems. They may be integrated by connecting them directly in
terms of the application logic (port/connections) and the hardware platform (bus access). This
integration may require additional integration infrastructure components, such as a network that
ties the systems together.
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7 Runtime Variation of System Configurations

The mode concept in AADL allows modelers to represent dynamic characteristics of embedded
system architectures. We can define any component to have multiple modes. Transitions that are
triggered by port events can be defined for modes.

Modelers can associate mode-specific property values with those components. For example, a
thread may represent an algorithm that can calculate a trajectory at several levels of precision. A
different execution time value can be associated with this thread for each of the levels of precision
that the thread can operate in; this example is illustrated in Table 31. A second property may spec-
ify the level of precision that is achieved in each of the modes. When an instance of a component
is connected to other components, the system instance model can be analyzed for possible incon-
sistencies in the levels of precision provided by one component and expected by another compo-
nent under various mode combinations, if both components have modes.

Table 31: Mode-Specific Variation of System Components

thread implementation GPS.Deluxe
modes
Normal : initial mode ;
HiDef : mode ;
properties
Compute_Execution_Time => 10 ms in modes (Normal);
Compute_Execution_Time => 15 ms in modes (HiDef);
end GPS.Deluxe;

Modelers can also declare that the processor binding of application components can have mode-
specific property values—as illustrated in Table 32. In this example, we have modeled the in-
stance where an application component may execute on one processor and later, during operation,
on a different processor. This modeling technique can be used to represent the migration of appli-
cation components between processors to balance the workload or to adapt to hardware failures.

Table 32:  Mode-Specific Variation of Application Binding

properties
Actual_Processor_Binding =>
reference carECU.ProcLeft applies to carApp.PowerTrain.ETC in
modes nominal ;
Actual_Processor_Binding =>
reference carECU.ProcRight applies to carApp.-PowerTrain_ETC in
modes backup;

Finally, modelers can specify that subcomponents and connections are active only in certain mod-
es. In other words, they can specify different application configurations of active treads and com-
munication connections. Mode transitions represent runtime changes from one such runtime con-
figuration to another. This allows us to represent different operational modes in which different
subsystems may be active and in which they communicate in different ways. The example in
Table 33 illustrates two runtime configurations of a hybrid car. In one operational mode, it runs
on the diesel engine only, in the other operational mode it runs both engines as a hybrid.
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Table 33:  Mode-Specific Subcomponent Configuration

system implementation carSystem.DualProcessor

subcomponents
carApp: system car.diesel_automatic in modes DieselOnly;
carApp: system car.Hybrid_automatic in modes Hybrid;
carECU: system ECU.DualProcessor;

modes
DieselOnly: initial mode;
Hybrid: mode;

end carSystem.DualProcessor;
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8 A Car System Reference Architecture

In this section, we illustrate how the current version of the AADL standard can be used to repre-
sent an abstracted system description. In Section 9, we revisit this example to illustrate how the

classifier parameterization feature in the next version of AADL (i.e., AADL Version 2) can im-

prove the conceptual and runtime representation and the instantiation of this reference architec-

ture.

8.1 THE CONCEPTUAL ARCHITECTURE

In Table 34, we define an abstract model of the system by using the system component to repre-
sent a general component concept.

Table 34: A Conceptual Model

system car
end car;

system implementation car.generic
subcomponents
PowerTrain: system powertrain;
ExhaustSystem: system exhaustsystem;
end car.generic;

system powertrain
features

exhaustoutput: requires bus access Manifold;
end powertrain;
system exhaustsystem
features

exhaustManifold: provides bus access Manifold;
end exhaustsystem;

8.2 REFINEMENT INTO A RUNTIME ARCHITECTURE

To turn the abstract model into runtime architecture, we make decisions about which components
require space partitioning (refinement into process) and which components are active components
that can execute concurrently with other active components.

In the example shown in Table 35, we simply refine the classifier by replacing the system key-
word with process as appropriate. The two subsystems, PowerTrain and ExhaustSys-
tem, are redefined as process classifiers. Within powertrainProcess, we choose
thread group asthe component category. The thread group allows those components to
consist of multiple threads, while the different components within powertrainProcess share
an address space.
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Table 35: A Runtime Architecture

system carRT
end carRT;
-- prototypes bound to actuals that are of the process category
system implementation carRT.impl
subcomponents
PowerTrain: process powertrainProcess;
ExhaustSystem: process exhaustsystemProcess;
end carRT.impl;

process powertrainProcess
end powertrainProcess ;

process implementation powertrainProcess.dualengine
subcomponents
TheEngine: device Engine;
TheAlternateEngine: device Engine;
TheTransmission: thread group Transmission;
Throttle_Controller: thread group ThrottleController;
Antilock Braking_System: thread group AntilockBrakingSystem;
Cruise_Control: thread group CruiseControl;
end powertrainProcess.dualengine;

process exhaustsystemProcess
end exhaustsystemProcess;

8.3 SPECIFIC CARS BASED ON RUNTIME ARCHITECTURE

We can now define specific car types. We can do so with respect to the conceptual architecture or
the runtime architecture. In Table 36, we refine the reference runtime architecture for cars into a
specific brand. We also refine the power_train reference architecture into a specific instance,
namely a hybrid gas/electric configuration. It is used to refine the reference implementation of the
car runtime architecture into the specific brand Toyota Prius. The table does not show the refine-
ment of the exhaust system into its sporty implementation.
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Table 36:  Defining Specific Car Types

system Toyota extends carRT
-- bind the component category to be system
end Toyota;

system implementation Toyota.Prius
extends carRT.impl
subcomponents
power_train: refined to process powertrainProcess.Toyota_hybrid;
exhaust_system: refined to process exhaustsystemProcess.sporty;
end Toyota.Prius;

process implementation powertrainProcess.Toyota_hybrid
extends powertrainProcess.dualengine

subcomponents
TheEngine: refined to device Engine.gasoline;
TheAlternateEngine: refined to device Engine.Electric;
TheTransmission: refined to thread group Transmission.Automatic;
Throttle_Controller: refined to thread group ThrottleController.Bosch;
Antilock Braking_System: refined to thread group

AntilockBrakingSystem.Bosch;
Cruise_Control: refined to thread group CruiseControl._Delphi;

end powertrainProcess.Toyota_hybrid;
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9 Modeling with AADL Version 2

The SAE AADL standards committee is making improvements to the AADL notation based on
user feedback. These improvements are in review and will go into ballot in 2007 and be published
as SAE AADL Version 2 in early 2008. In this section, we present two of these improvements
intended to improve the way reference architectures and their instantiations can be modeled.

The first of two new capabilities is the ability to declare component types and implementations
without choosing a specific concrete component category. In other words, we can declare compo-
nents with the keyword abstract and later refine it into any of thread, thread group, process,
system, data, subprogram, processor, memory, bus, and device.

The second capability is the ability to explicitly specify parameters for component type and im-
plementation declarations that must be supplied to complete the classifier specification. We spec-
ify the classifier parameter as a prototype.

In Table 37, we explicitly specify the parameterization of the component type through
prototypes declarations for two data types to be supplied. One prototype is used in two
Teatures declarations. This ensures that both Features have the same data type.

Table 37: A Parameterized Component Type

thread controllerTemplate
prototypes
dt : data;
sd : data;
features
-- provided features
desiredvValue: out data port prototype dt;
-- required features
currentValue: in data port prototype dt;
setPoint: requires data access prototype sd;
end controllerTemplate;

In Section 9.1, we illustrate the use of classifier parameterization to configure system architec-
tures by supplying the desired classifiers for subcomponents throughout the hierarchy of the sys-
tem architecture. Then, in Section 9.2, we revisit the exercise of modeling a conceptual architec-
ture, the runtime architecture, and their instantiation into actual system architectures.
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9.1 IMPLEMENTATION SELECTION BY CLASSIFIER PARAMETERIZATION

The prototypes declaration acts as an explicit parameter specification for a component type

and component implementation declaration. This declaration may specify

« acomponent category, indicating that a component classifier of the specified category must
be supplied

« acomponent type, indicating that a component implementation of the specified type must be
supplied

« an abstract component type, indicating that component classifiers of any category that can be
instances of this prototype (i.e., whose features, flows, and properties match those of the tem-
plate) can be supplied

« an abstract component implementation, indicating that component classifiers of any category
that can be instances of the template implementation (i.e., whose features, flows, and proper-
ties match those of the generic component type and whose subcomponents and connections
match those of the generic component implementation) can be supplied

We illustrate the use of prototypes in two ways. In the first approach, we define the complete sys-
tem hierarchy with selectable component implementations to be used as subcomponent classifiers
specified as prototypes. These prototypes of lower level components are recursively de-
clared as prototypes in the enclosing component. In other words, all component implementa-
tion selections of a system configuration are prototypes of the top-level system implementation. In
the second approach, we define subcomponent classifiers as prototypes of the directly enclos-
ing component implementation only. In this case, we select classifiers at one level of the system
hierarchy at a time. The second approach is similar to the use of component extensions discussed
in Section 4.1.

9.11 A Configurable Car System Architecture

Table 38 illustrates the use of prototypes to specify the car example as a configurable architecture.
In this example, we make all implementation selections of the system accessible as prototypes of
the top-level system component. A number of the top-level prototypes are passed on as actual
prototypes values for the classifier of a subcomponent, while one prototype is used as a clas-
sifier of the subcomponent itself.

38 | CMU/SEI-2007-TN-047



Table 38: Parameterization via AADL Prototypes

system car
end car;
system implementation car.single
prototypes
tc: system ThrottleController;
abs: system AntilockBrakingSystem;
cc: system CruiseControl;
tm: system Transmission;
en: device Engine;
exhaust_system: system exhaustsystem;
subcomponents
PowerTrain: system powertrain.singleengine(
Throttle_Controller => prototype tc,
Antilock_Braking_System => prototype abs,
Cruise_Control => prototype cc,
TheTransmission => prototype tm,
TheEngine => prototype en);
ExhaustSystem: prototype exhaust_system;
end car.single;
system implementation car.dual extends car.single
prototypes
se: device Engine;
subcomponents
PowerTrain: system powertrain.dualengine(
Throttle_Controller => prototype tc,
Antilock_Braking_System => prototype abs,
Cruise_Control => prototype cc,
TheTransmission => prototype tm,
TheEngine => prototype en,
TheAlternateEngine => prototype se);
ExhaustSystem: prototype exhaust_system;
end car.dual;

system powertrain
features

exhaustoutput: requires bus access Manifold;
end powertrain;

system implementation powertrain.singleengine

prototypes
Throttle_Controller: system ThrottleController;
Antilock Braking_System: system AntilockBrakingSystem;
Cruise_Control: system CruiseControl;
TheTransmission: system Transmission;
TheEngine: device Engine;

subcomponents
ETC: prototype Throttle_Controller;
ABS: prototype Antilock Braking_System;
CruiseControl: prototype Cruise_Control;
Transmission: prototype TheTransmission;
PowerPlant: prototype TheEngine;

end powertrain.singleengine;

system implementation powertrain.dualengine
extends power_train.singleengine

prototypes

TheAlternateEngine: device Engine;
subcomponents

AlternatePowerPlant: prototype TheAlternateEngine;
end powertrain.dualengine;
-- throttle controller etc. as before
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Table 39 illustrates a configured car system architecture by supplying classifiers as actuals for all
prototypes.

Table 39: Configuration Selection via AADL Prototype Actuals

system implementation Toyota.Prius
extends car.dualengine (
en => device Engine.gasoline,
se => device Engine_Electric,
tm => system Transmission.Automatic,
tc => system ThrottleController._Bosch,
abs => system AntilockBrakingSystem.Bosch,
cc => system CruiseControl .Delphi,
exhaust_system => system exhaustsystem.sporty );

end Toyota.Prius;

With this approach, we can also limit the selection to preconfigured subsystem configurations by
not exposing their subcomponent classifiers as prototypes. In our example, we could have precon-
figured the power train with two fully configured component implementation descriptions. In that
case, the top-level system implementation would have a prototype for the power train, replacing
the prototypes for the classifiers to be supplied to the power train declaration within the car im-
plementation. The powertrain.Hybrid declaration of Table 40 defines the power train as a
named system implementation, which is a refinement of the powertrain.dualengine tem-
plate. This system implementation is then referenced in the Toyota.Prius declaration, which
is refined from the car.generic template.

Table 40:  Preconfigured Subsystems as Prototype Actuals

system car
end car;

system implementation car.generic
prototypes
power_train: system powertrain;
exhaust_system: system exhaustsystem;
subcomponents
PowerTrain: prototype power_train;
ExhaustSystem: prototype exhaust_system;
end car.generic;

system implementation powertrain.Hybrid

extends powertrain.dualengine (
PowerPlant => device Engine.gasoline,
AlternatePowerPlant => device Engine.Electric,
TheTransmission => system Transmission.Automatic,
Throttle_Controller => system ThrottleController._Bosch,
Antilock_Braking_System => system AntilockBrakingSystem.Bosch,
Cruise_Control => system CruiseControl _Delphi);

end powertrain.Hybrid;

system implementation Toyota.Prius
extends car.generic (
PowerTrain => system powertrain_Hybrid,
ExhaustSystem => system exhaustsystem.sporty );
end Toyota.Prius;
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9.1.2 Configuration by Nested Prototype Actual Specifications

In this scenario, we leverage the car .generic declaration of Table 40. However, we do not
assume to have preconfigured power train configurations. Instead, we define the power train con-
figuration at the time it is supplied with specific component classifiers for the prototypes. This
approach results in nested prototype specifications shown in Table 41.

Table 41:  Configuration Nested Prototype Actuals

system Toyota extends car
end Toyota;
system implementation Toyota.Prius
extends car.generic (
power_train => system powertrain.dualengine (
TheEngine => device Engine.gasoline,
TheAlternateEngine => device Engine._Electric,
TheTransmission => system Transmission.Automatic,
Throttle_Controller => system ThrottleController.Bosch,
Antilock_Braking_System => system AntilockBrakingSystem.Bosch,
Cruise_Control => system CruiseControl.Delphi ),
exhaust_system => system exhaustsystem.sporty );
end Toyota.Prius;

We can also work with predeclared configurations of subsystems. If we do that for the power
train, the result is the example shown in Table 40 on page 40.

9.2 A CAR SYSTEM REFERENCE ARCHITECTURE REVISITED

In this section, we illustrate how the abstract component category as well as classifier parameteri-
zation can be used to represent a system reference architecture and its instantiation.

9.2.1 The Conceptual Architecture
In Table 42, we define a conceptual model of the system through the use of the abstract cate-

gory.
Table 42: A Conceptual Model

component car
end car;component implementation car.generic

prototypes
power_train: abstract powertrain;
exhaust_system: abstract exhaustsystem;
subcomponents
PowerTrain: prototype power_train;
ExhaustSystem: prototype exhaust_system;
end car.generic; component powertrain

features
exhaustoutput: requires bus access Manifold;
end powertrain; component exhaust system

features

exhaustManifold: provides bus access Manifold;
end exhaust_system;component implementation exhaust_system.sporty
end exhaust_system.sporty;
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9.2.2 Refinement into a Runtime Architecture

When we want to turn the abstract model into a runtime architecture, we can make decisions
about which components require space partitioning (refinement into process) and which are active
components that can execute concurrently with other active components.

In the example shown in Table 43, we simply refine the classifier by referencing an abstract com-
ponent classifier and qualifying it with the concrete category process.

Table 43: Runtime Architecture

system carRT extends car
end carRT;
-- prototypes bound to actuals that are of the process category
system implementation carRT.impl
extends car.generic (
power_train => process powertrain;
exhaust_system => process exhaust_system; );
end carRT.impl;
-- prototypes restricted to the process category
system implementation carRT.impl
extends car.generic
prototypes
power_train : refined to process powertrain;
exhaust_system : process exhaust_system;
end carRT.impl;

In the example shown in Table 44, we go through an explicit step of defining classifiers of the
concrete category as named classifiers that then are referenced in the refinement of the whole car
architecture.

Table 44: Defining Classifiers as Named Classifiers

process powertrainProcess extends powertrain
end powertrainProcess ;

process exhaust_systemProcess extends exhaust_system

end exhaust_systemProcess;

system carRT extends car

end carRT;

system implementation carRT.impl

extends car.generic (

power_train => process powertrainProcess;
exhaust_system => process exhaust_systemProcess; );

end carRT. impl
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9.2.3 Specific Cars Based on Runtime Architecture

We can now define specific car types. We can do so with respect to the conceptual architecture or
the runtime architecture.

In Table 45, we assume that the process powertrain has been defined to consist of several
components, and each component classifier is specified as prototype. In the example, we supply a
concrete component category (thread group). Thread group allows those components to
consist of multiple threads, while the different components within the powertrain share an
address space.

Table 45:  Defining Specific Car Types

system Toyota extends car
-- bind the component category to be system
end Toyota;

process Toyota_powertrain extends powertrain
end Toyota_ powertrain;

process implementation Toyota_powertrain.hybrid

extends powertrain.dualengine (
TheEngine => device Engine.gasoline,
TheAlternateEngine => device Engine.Electric,
TheTransmission => thread group Transmission.Automatic,
Throttle_Controller => thread group ThrottleController.Bosch,
Antilock Braking_System => thread group AntilockBrakingSystem.Bosch,
Cruise_Control => thread group CruiseControl._Delphi );

end Toyota_powertrain.hybrid;

In Table 46 we define the specific car implementation (Toyota.Prius) in terms of the runtime
architecture (carRT. impl). In this case, the decision that parts of the power_train share an
address space by being threads inside a process has been made for us. When we specify
Toyota.Prius, we supply two processes (Toyota powertrain.hybrid and
exhaustsystem. sporty) for the prototypes of the runtime architecture carRT . impl.

Table 46:  Defining the Car Type in Terms of Runtime Architecture

system implementation Toyota.Prius
extends carRT.impl (
power_train => process Toyota_ powertrain.hybrid,
exhaust_system => process exhaustsystem.sporty );
end Toyota.Prius;
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9.24 Specific Cars in Terms of Conceptual Architecture

In Table 47, we define a specific car based on the conceptual architecture.

Table 47: Defining a Specific Car

system implementation Toyota.Prius
extends car.generic (
power_train => process Toyota powertrain.hybrid,
exhaust_system => process exhaustsystem.sporty );
end Toyota.Prius;

We can supply a power train that is a system of processes to indicate that we want address space
protection between ABS, cruise control, and so on within the power train. In this case, we utilize
the nested actual declaration notation to illustrate the example, as Table 48 shows.

Table 48: Defining a Power Train for the Specific Car

system implementation Toyota.Gasoline
extends car.generic (
power_train => system powertrain.singleengine (
TheEngine => device Engine.gasoline,
TheTransmission => process Transmission.Automatic,
Throttle_Controller => process ThrottleController.Bosch,
Antilock_Braking_System => process AntilockBrakingSystem.Bosch,
Cruise_Control => process CruiseControl._Delphi ),
exhaust_system => process exhaustsystem.sporty );
end Toyota.Gasoline;
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10 Summary

In this technical note, we discussed how AADL can be used to model system families and con-
figurations of system and component variants. We have shown that AADL supports system fami-
lies by providing component types to specify component interfaces and multiple implementations
for each component type. We have shown how multiple dimensions of system variability ranging
from variation through conditional compilation to variation through different sets of calibration
parameters can be represented by properties.

We illustrated several approaches for organizing these properties. We have shown how the ability
to define component types and implementations as extensions of previously defined component
types and implementations is used to manage variation along these dimensions. We discussed the
ability of AADL to support modeling of system configurations that change at runtime during sys-
tem operation. We illustrated how a system reference architecture and its instantiation can be ex-
pressed in AADL. Finally, we discussed proposed revisions to AADL that support component
implementation configuration through classifier parameterization.
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