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Abstract 

Over their lifetime, systems exist in many forms, such as instances of a system deployed in differ-
ent contexts or a system evolving over time. Variability may also occur in terms of functionality 
reflected in the domain architecture, nonfunctional properties (such as performance, reliability, 
and safety-criticality) that are realized in the runtime architecture, interfaces to the deployment 
environment with which the system interfaces, and mapping to computing platforms.  

The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language (AADL) 
is an industry-standard, architecture-modeling notation specifically designed to support a compo-
nent-based approach to modeling embedded systems. This technical note discusses how AADL 
can be used to model system families and configurations of system and component variants. It 
shows that AADL supports system families by providing component types that are used to specify 
component interfaces and multiple implementations for each component type. This report also 
shows that AADL uses properties to represent multiple dimensions of system variability ranging 
from variation through conditional compilation to variation through different sets of calibration 
parameters.  
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1 Introduction 

Over their lifetime, systems exist in many variations, such as instances of a system deployed in 
different contexts or a system evolving over time. Variability may also occur in terms of  
• functionality that is reflected in the domain architecture of the system 

• nonfunctional properties such as performance, reliability, and safety-criticality that are real-
ized in the runtime architecture of the system 

• interfaces to the deployment environment with which the system interfaces  

• mapping to computing platforms  

These variations can be represented as different application software, conditionally compiled ap-
plication software, calibration parameters to the application software, and different configurations 
of the computing platform and deployment context (where the deployment context is the actual 
deployment environment or a simulated deployment environment—in the simplest case in the 
form of realistic test data sets). A system can be configured in terms of these variations before it 
becomes operational and may support switching between multiple configurations during opera-
tion. 

The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language (AADL) 
international industry standard is an architecture modeling notation specifically designed to sup-
port a component-based approach to the modeling of embedded systems. Components provide an 
abstraction that separates the interface with other components from component implementations, 
allows multiple implementations to be specified as component variants, provides multiple inter-
face views for different users of a component, and supports the representation of a system hierar-
chy through composition of components. The application component view is a logical architecture 
view that organizes the domain functionality into manageable units; it primarily represents the 
static aspects of a system.  

AADL explicitly supports modeling of the runtime architecture through processes, threads, and 
interaction models between them—providing a concurrency view in terms of a task and commu-
nication architecture that models the active components of a system and their interaction. AADL 
provides the concepts of mode and mode-specific properties to capture dynamic aspects of a sys-
tem architecture. AADL provides component concepts of processor, memory, and bus to model 
the computing platform and the concept of device to model the operational environment. Also, the 
AADL provides properties to specify mappings of application components onto the execution 
platform, a capability that provides a deployment view of the system. 

In this report, we examine how system families (i.e., different configurations of systems) can be 
modeled with AADL.1 In particular, we discuss 
• the AADL language concepts for component-based system modeling (Section 2)  

 
1  Except where noted, we discuss the initial version of the AADL language standard. 
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• modeling system variations without changes to the system structure and interaction topology 
(Section 3)  

• modeling variation in the system hierarchy and component interaction topology (Section 4)  

• modeling of variation in component interfaces (Section 5)  

• modeling of variation in the deployed system (Sections 6 and 7)   

• modeling of a reference architecture (Section 8) 

• how capabilities of AADL V2, namely abstract components and parameterization of compo-
nent templates, improve modeling of configurable system architectures (Section 9) 
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2 Component-Based Modeling 

An AADL model is composed of component types, implementations, and instances. A component 
type defines the interface of the component to the other components. A component implementa-
tion defines the internal structure of the components. Both the component types and implementa-
tions represent classes of systems. The component instance represents a sample system (instanti-
ated from a specific implementation) amenable to analysis. AADL supports component-based 
modeling through the following categories of components: system, process, thread group, thread, 
data, subprogram, processor, memory, bus, and device. 

2.1 COMPONENT TYPES  

A component type specifies the features (such as data, event, and message output) the component 
provides to other components through output ports, access provided to (data, bus) components 
contained within the component, and provided subprogram services. A component type also spe-
cifies the features (such as data, events, and message) the component requires from other compo-
nents through its input ports, access the component requires to other components (data, bus), and 
subprogram services it requires. In addition, a component type provides a flow specification from 
the component’s input ports to its output ports. A component type may have a set of property val-
ues that apply to all implementations and instances of the component unless explicitly overwritten 
in the component implementation or subcomponent (component instance) declaration. 

Table 1 illustrates the specification of a thread type that has properties indicating that it is a 
periodic thread with a certain period. The features specify the interaction points with other 
components. The thread has data ports that communicate the latest value in a data stream, an 
event port to reset its computation, and data access declarations to indicate shared access to 
data components. 
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Table 1: Component Type Specification 

 
thread controller 
features 
  -- provided features 
  desiredValue: out data port BaseTypes::UInt16  
{ Typing::DomainType => data appTypes::angleValue ;  
  Typing::AngleRange => 0 degree .. 45 degree; };   
  calibrationParameter: provides data access ;   
  resetState: in event port;   
  -- required features 
  currentValue: in data port AppTypes::angleValue;   
  setPoint: requires data access AppTypes::angleValue  
{ Typing::BaseType => data BaseTypes::UInt32; }; 
flows 
  signalFlo
properties 

w: flow path currentValue -> desiredValue; 

  Dispatch_Protocol => Periodic; 
  Period => 20 ms; 
end controller; 
 
property set  is Typing
  BaseType: classifier (data) applies to ( data, port ); 
  DomainType: classifier (data) applies to ( data, port ); 
  AngleRange: aadlinteger units ( degree ) applies to ( data, port ); 
end Typing; 
   
 Source_Data_Size => 16 bits; 
  end UInt16; 
  data UInt32 
  properties package BaseTypes 
public 
  data UInt16 
  properties 
Source
  end UInt32; 

_Data_Size => 32 bits; 

end BaseTypes; 
 
package AppTypes 
public 
  -- a 
  data alue 

data type with base types as property values 
angleV

  properties 
    Typing::BaseType => data BaseTypes::UInt16;     
  end angleValue; 
end AppTypes; 
 

In Table 1, we illustrate the use of data types on ports and data access to model the base type and 
domain type of data being interchanged. For that purpose, we introduce a package BaseTypes 
that contains a collection of base type definitions and a package AppTypes that contains ap-
plication data type definitions. Furthermore, we introduce two properties that allow us to 
associate a base type or an application type with a port or access feature. The out data port 
desiredValue in the thread controller example in Table 1 has a data classifier 
that identifies the base type, while the domain type is recorded as Typing::DomainType 
property. This instance would be a direct reflection of component source code that does not use 
domain typing (e.g., Simulink models); in this case, domain types and other domain constraints, 
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such as a limit on the data value and its unit, are documented to support consistency checking in 
the AADL model.  

The requires data access feature called setPoint in the controller thread 
example specifies the classifier in terms of a domain type. In this case, the BaseType 
property is used to record the base data type with the feature. (Note that we have defined a default 
base type representation with the data component type declaration.) This base type is then over-
ridden by the BaseType property on the data access feature to indicate that this component 
makes a base type assumption different from the default value. Consistency between the base type 
specifications of both ends of a port or access connection can be checked on the AADL model, if 
not already checked by the application language. If the default base type is not overridden in the 
feature declaration, classifier matching of the endpoints of a connection already ensures that 
the base types match as well. 

2.2 COMPONENT IMPLEMENTATIONS  

A component implementation declaration specifies implementation-specific property values. It 
may specify subcomponent declarations (i.e., specification of component instances that are con-
tained in the component) and how subcomponents interact with each other and with external 
components through the features of the component as expressed by connection declarations.  

Properties in a component implementation may identify the source text that makes up the applica-
tion logic. This source text may be written in any application language (i.e., programming lan-
guages such as C, Ada, or Java, or modeling languages such a Matlab/Simulink). Other properties 
specify characteristics of the application component that are relevant to architecture analysis (e.g., 
timing properties or reliability properties). 

Subcomponent and connection declarations act as a blueprint for a component. Subcomponent 
declarations specify the parts of a component and their connections. The classifier of a subcom-
ponent declaration identifies the type of component to be used as subcomponent. A classifier may 
refer to a component type—where the interface of the subcomponent is known and its connection 
to other subcomponents can be specified. A classifier may also refer to a component implementa-
tion—where the interface and the content of the subcomponent are known (i.e., we have specified 
more than one level of the system hierarchy). In other words, we can specify partially complete 
component blueprints by identifying only a component type or a more fully specified system hier-
archy by identifying component types and implementations. We use the component extends 
concept to refine and extend a component type or implementation, as illustrated for the hybrid 
power train system implementation in Table 2. 
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Table 2: A Car System Architecture 

 
system car 
end car; 
system implementation car.singleengine  
subcomponents 
  PowerTrain: system power_train.singleengine; 
  ExhaustSystem: system exhaust_system; 
end car.singleengine; 
 
system power_train 
features 
  exhaustoutput: requires bus access Manifold; 
end power_train; 
system implementation power_train.singleengine  
subcomponents 
  ETC: system ThrottleController; 
  ABS: system AntilockBrakingSystem; 
  CruiseControl: system CruiseControl; 
  Transmission system Transmission; : 
  PowerPlant: device Engine; 
end power_train.singleengine; 
system implementation power_train.hybrid 
    extends power_train.singleengine 
subcomponents 
  PowerPlant: refined to device Engine.Gasoline; 
  AlternatePowerPlant: device Engine.Electric; 
end power_train.hybrid; 
 
system rottleController  Th
features 
  actualAngle: in data port; 
  desiredAngle: out data port; 
end ThrottleController; 
 
system tilockBrakingSystem  An
features 
  slip: in data port; 
  brakeActive: out data port; 
end AntilockBrakingSystem; 
 
system CruiseControl  
system Engine 
end Engine; 
system implementation Engine.Gasoline 
end  Engine.Gasoline;
system implementation Engine.Diesel 
end Engine.Diesel; 
system implementation Engine.Electric 
end Engine.Electric; 
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3 System Configuration by Properties 

3.1 TYPES OF PROPERTY-BASED CONFIGURATION 

In this section, we discuss how the following five forms of system variation can be modeled 
through property values:  
1. variation through alternative source code files 

2. variation through conditional compilation in source code 

3. variation of execution platform binding 

4. variation through application parameters that remain constant during the operation of a sys-
tem, such as calibration parameters 

5. variation of data sets used in the execution of system components 

3.1.1 Alternative Source Code Files  

The AADL standard defines a number of predeclared properties that specify mappings to applica-
tion component source code. One such property is Source_Text. This property specifies the 
file name(s) that contains the source code for a component specified in AADL. This source code 
can be written in one of a number of source languages, which can be specified through the 
Source_Language property.  

Source_Text property values (i.e., application source files) are typically associated with proc-
esses, threads, or subprograms called by threads. When a source file is specified, we assume that 
the application source code it contains complies with the AADL specification of the application 
component. We can check that compliance with tools that process both the source code and the 
component specification in AADL. 

We can initially specify a system architecture without source file names, or we can preconfigure it 
with a default set of source files. We can then specify source file selections for a system architec-
ture by declaring contained property associations in the properties section of the top-level system 
implementation in the same manner as we have specified the configuration selection of subcom-
ponent implementations. An example of the use of contained property associations to specify 
Source_Text files is shown in Table 3. 

Table 3: Two Configured Systems 

 
system implementation car.diesel_automatic_java 
  extends car.diesel_automatic 
properties 
  “Transmission_automatic.java” Source_Text => 
      applies to PowerTrain.Transmission; 
  -- other source files as configuration selections 
  Source_Text => “Engine_Diesel.java”  
      applies to PowerTrain.PowerPlant; 
end car.diesel_automatic_java; 
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3.1.2 Conditionally Compiled Source Files 

A single application source file can contain conditionally compiled code. In other words, portions 
of the source code are tagged, and this code is only included in the compilation if the appropriate 
tag value is set as one of the compilation parameters. 

Typically, these conditional compilation tags act as system-wide configuration parameters (i.e., 
different source files use the same set of tags if they contain code fragments that address a particu-
lar system characteristic). For example, a conditional compilation tag may specify that the power 
train includes a turbo, and as a result some of the source code files will contain code fragments 
that perform special processing. 

In the example in Table 4, we define an enumeration property type that introduces the tag values 
for a particular tag as literals, and we define a property whose enumeration literal value represents 
the tag value to be used for conditional compilation. In Table 4, the tag values are defined by 
TurboType, while the Turbo property represents the conditional compilation flag. If the values 
are Boolean, integer, or real, then we can use the corresponding built-in property types through 
the inherit concept. By doing so, we declare the property value of a tag property with the top-
level component in the system hierarchy, and the property value applies to all components in the 
system hierarchy. 

The conditional compilation property values can be utilized by a tool that generates build scripts 
from AADL models, populating a build script with the appropriate parameter values for the 
source code compiler. 

Table 4: Conditional Compilation through Tag Values 

 
property set CondComp is 
  TurboTy  type enumeration ( NoTurbo, Bosch, Eaton ); pe :
  Turbo : inherit oType applies to (all); Turb
  Cylinders : inherit aadlinteger applies to (all); 
end CondComp; 
 
 
system implementation car.diesel_automatic_GTD 
  extends car.diesel_automatic 
properties 
  CondComp::Turbo => Eaton; 
  Co
end car.diesel_automatic_GTD; 

ndComp::Cylinders => 6; 

 

 

8 | CMU/SEI-2007-TN-047 



 

In some source language systems, the presence of the conditional compilation tag itself indicates 
whether a code fragment should be included. In this case, we can use a simplified approach for 
representing the conditional compilation tags that make up a particular compilation configuration 
parameter set. In Table 5, we define an enumeration property type, whose enumeration literals are 
the names of the conditional compilation tags. We then define a property that accepts a list of 
those literals. This property is defined as inherit, and its values are declared in the top-level 
system implementation (i.e., the property value list applies to all components). Table 5 shows an 
example. 

Table 5: Conditional Compilation through Tags 

 
property set CondComp is 
  CondCompTags : type enumeration ( Turbo, ABS, SixCylinder ); 
  CondCompParameter : inherit list of CondCompTags applies to (all); 
end CondComp; 
 
system implementation car.diesel_automatic_GTD 
  extends car.diesel_automatic 
properties 
  CondComp::CondCompParameter => ( turbo, ABS ); 
end car.diesel_automatic_GTD; 

 

3.1.3 Deployment Configuration: Software/Hardware Mapping 

The AADL standard defines properties that specify the binding of application components to pro-
cessor, memory, and bus components. These properties define actual binding through 
Actual_<bindingtype>_Binding, where <bindingtype> is processor, memory, or 
connection.  

The binding is specified through contained property associations that are declared in the system 
implementation, the common root of the application system and the execution platform. The value 
of the binding refers to an execution platform component, and the applies to clause identifies 
the component the property value is associated with.  

In Table 6, we use the binding properties in conjunction with inheritance (extends construct) to 
separate the logical composition from the hardware binding. This separation allows us to define 
an implementation that chooses the desired implementation of the application system and the de-
sired implementation of the hardware platform. This system instance configuration is then tailored 
by specifying a software/hardware mapping through binding property values in the implementa-
tion extension. 
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Table 6: Alternative Deployment Configurations 

 
system carSystem 
end carSystem; 
system implementation carSystem.DualProcessor 
subcomponents  
    carApp: system car.diesel_automatic; 
    carECU: system ECU.DualProcessor; 
end carSystem.DualProcessor; 
 
system implementation carSystem.DualProcessorConfig1 
    extends carSystem.DualProcessor 
properties 
  nding =>  Actual_Processor_Bi
           reference carECU.ProcLeft applies to carApp.PowerTrain.ETC; 
  Actual_Processor_Binding =>  
           reference carECU.ProcRight applies to carApp.PowerTrain.ABS; 
end carSystem.DualProcessorConfig1; 
 
system implementation carSystem.DualProcessorConfig2 
    extends carSystem.DualProcessor 
properties 
  Actual_Processor_Binding =>  
           reference carECU.ProcLeft applies to carApp.PowerTrain.ABS; 
  nding =>  Actual_Processor_Bi
           reference carECU.ProcRight applies to carApp.PowerTrain.ETC; 
end carSystem.DualProcessorConfig2; 
 

3.1.4 Calibration Parameters and Other Constant System Parameters 

We can also configure application systems by setting certain application parameters during sys-
tem build, load, or start-up. In cases such as calibration parameters, these values may even be set 
through special tools while operation is suspended. We can model constant parameters such as 
those in AADL through property constants and property values. 

Each application parameter can be defined as a property constant as shown in Table 7. Parameter 
values can be Boolean, string, integer and real with and without measurement unit, range of val-
ues, user-defined values in the form of enumeration literals, and lists of any of these values.  

Property constants are not associated with specific components in a system architecture; instead, 
they provide global values. Property constants are defined in property sets. As a result, we must 
specify alternative configurations (in terms of different sets of values) as variants of the same 
property set. We can accomplish that by managing property sets through a version control system 
used on AADL models. In other words, we can select different parameter configurations by in-
cluding the appropriate version of the property set in the workspace of an AADL modeling envi-
ronment. Examples of system parameters as property constants are shown in Table 7. 
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Table 7: System Parameters as Property Constants 

 
property set SystemParameters is 
  Turbo: constant aadlboolean => false; 
  ThrottleSetting: inherit aadlreal => 0.576 applies to (all); 
  Speed: type units (kph); 
  TopSpeed: constant aadlinteger SystemParameters::speed => 250 kph; 
 
  TireType: type enumeration ( Touring, Winter, Offroad, Highspeed ); 
  Tires: constant SystemParameters::TireType => Touring; 

end SystemParameters; 

The parameters can also be modeled by properties. In this case, we define the properties in a 
property set and specify different configurations of parameter values through property associa-
tions in different implementations of the top-level system component. (For more information, see 
Section 3.2.1.) This process mirrors the approach taken for modeling conditional compilation tags 
or source file selection.  

Properties are associated with components (and other AADL model elements such as connections 
and ports) of the system architecture. Consequently, property values are accessible only in the 
context of constructs such as system components, connections, and ports. We can define proper-
ties to be globally applicable by defining a property as inherit and associating it with the top-
level system component, as shown in Table 8. When retrieving a property value for one of the 
system components, we follow the system hierarchy up to find a component that has the desired 
property value. Notice that the use of property sets for system parameters allows different prop-
erty values to be used for different system components (i.e., different subsystems). 

Table 8: System Parameters as Component Property Values 

property set SystemParameters is 

  Turbo: inherit aadlboolean applies to (all); 
  ThrottleSetting: inherit aadlreal applies to (all); 
  TopSpeed: inherit aadlinteger units ( kph ) applies to (all); 
 
  TireTy  type enumeration ( Touring, Winter, Offroad, Highspeed ); pe:
  Tires: inherit SystemParameters::TireType applies to (all); 
end SystemParameters; 
 
system car 
end car; 
 
system implementation car.hybrid 
subcomponents 
-- the car p
connections 

arts 

-- the conn
properties 

ectivity between parts 

  SystemParameters::Turbo => false; 
  SystemParameters::ThrottleSetting => 0.576; 
 
 stemParameters::Tires => Touring; 
 SystemParameters::TopSpeed => 195 kph; 
 Sy
end car.hybrid; 
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Application parameters such as calibration parameters are part of the application data that gets 
loaded into the execution platform and consumes memory resources. A memory requirement may 
simply be specified for the application component through the Source_Data_Size property 
or Source_Code_Size property, depending on how programming language compilers include 
those constants in the code binaries. Therefore, it may not be necessary to explicitly model these 
parameters as data components of the application system architecture.  

If desirable, we can model this calibration data by declaring a data component in a process or sys-
tem, as illustrated in Table 9. We define the size of the calibration data area as a property of the 
data component type and apply it to all implementations. We can use the data implementation 
declaration to define a particular set of calibration data values. In the top-level system, the decla-
ration of the calibration data component instance chooses the desired data set by naming the ap-
propriate data component implementation. 

Table 9: System Parameters as Data Components 

system car 

end car; 
 
system implementation car.hybrid 
subcomponents 
  Calibration: data CalibrationData.config_1; 
-- the car parts 
connections 
-- t
end car.hybrid; 

he connectivity between parts 

 
data CalibrationData 
properties 
  urce_Data_Size => 40 B;    So
end CalibrationData; 
 
data implementation CalibrationData.Config_1 
properties 
  SystemParameters::Turbo => false; 
  SystemParameters::ThrottleSetting => 0.576; 
  SystemParameters::TopSpeed => 195 kph; 
  SystemParameters::Tires => Touring; 
end CalibrationData.Config_1; 
 

3.1.5 Modeling of Data Sets  

Data sets are used in simulation environments in two ways: (1) they represent data that is part of 
the application system, or (2) they represent a data stream from the embedded system environ-
ment such as sensors that are replayed for simulation runs. If the data is part of the application 
software, we can model the data set as a data component with the data set values as its values, as 
was done in Table 9.  

If the data set represents a sensor data stream for simulation runs, we can represent it through a 
property associated with the device port through which the data stream is communicated. When 
associated with an out port, the data stream represents data to be sent to other components. When 
associated with an in port, it represents data that is expected to be received from other compo-
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nents. This property may refer to a file that contains the data set or contain the data stream values, 
both of which are illustrated in Table 10. 

In Table 10, we show the respective property being declared in a device implementation. In this 
representation, we can select different data sets by choosing different implementations for an in-
stance of the device. Alternatively, we can use contained property associations that are declared at 
the top-level system component and apply to the appropriate port of the desired device instance. 
In the latter case, we select alternative data set configurations by choosing the appropriate top-
level system component with the desired configuration parameters. The benefits of each approach 
are discussed in the next section. 

Table 10: Simulated Device Data Set  

device WheelSensor 
features 
  gnal: out data port Common::Real; Si
end WheelSensor; 
 
device implementation WheelSensor.dataset1 
properties 
  mulation::DataSetFileName => “dataset1.csv” applies to Signal; Si
end WheelSensor.dataset1; 
 
device implementation WheelSensor.dataset2 
properties 
  ealDataStream => ( 0.111, 0.211, 0.321, 0.432) Simulation::R
    applies to Signal; 
end WheelSensor.dataset2; 

3.2 MANAGING CONFIGURATION PROPERTIES IN ARCHITECTURE MODELS  

In the examples of the previous sections, we have seen that properties representing the configura-
tion of a system apply to specific components of the system or to the system as a whole. We can 
declare component-specific properties as part of a component type declaration or a component 
implementation declaration. When we declare them in a component type declaration, all instances 
of the component have the same property values. Similarly, when we declare them in a compo-
nent implementation, all instances of that implementation have the same property values.  

In Table 11, we show an example in which a throttle control variant is defined as an explicit com-
ponent implementation by specifying a specific file as Source_Text property value. We can 
select alternative property values by choosing the appropriate component implementation in the 
subcomponent declaration of the parent component implementation declaration. In the next sec-
tion, we discuss how to model component implementation selection throughout the system hierar-
chy. 
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Table 11: Properties Represent Component Implementation Variants 

system ThrottleController 
features 
  actualAngle: in data port; 
  desiredAngle: out data port; 
end ThrottleController; 
 
system implementation ThrottleController.Regular 
properties 
  Source_Text => “ETCLowOctane.c”; 

end ThrottleController.Regular; 

Different instances of the same component might require different property values. For example, 
different instances of a simulated device might require different seed values. We can also declare 
component-specific properties through a contained property association placed with the top-level 
system component and declared to apply to a specific instance in the system hierarchy, as in the 
following: Simulation::SeedValue => 0.31415 applies to 
sys1.subsys1.process2.device3. 

In this section, we examine how these properties can be managed as part of the declarative AADL 
model through a collection of component implementations of the top-level, system component, 
XML-based system configuration files that are associated with XML-based instance model files. 

3.2.1 Properties as System Configuration Parameters 

Some properties can be viewed as parameters of a system configuration. In this case, we specify 
all property values that act as parameters of a system configuration in a single location (i.e., the 
properties section of the top-level component implementation). For example, the properties speci-
fying the binding of application components to the execution platform represent a particular run-
time configuration of the operational application system, as illustrated in Table 6 on page 10.  

Other properties apply to specific component instances in a system model. We can declare those 
properties in the top-level system implementation by indicating that they belong to a subcompo-
nent (or features, connection, or other model element) through the applies to clause. 

Table 12 illustrates the use of the extends construct on the top-level component implementation 
in defining a full system configuration in multiple steps. For this example, we declare a system 
implementation that chooses the application system implementation and the hardware platform 
implementation. Then extensions of this implementation specify the conditional compilation pa-
rameters. This implementation is the basis of two component implementation extensions that add 
alternative deployment configuration (processor binding) information. 
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Table 12: Partial and Full System Configurations 

system carSystem 
end carSystem; 
system implementation carSystem.DualProcessor 
subcomponents  
    carApp: system car.diesel_automatic; 
    carECU: system ECU.DualProcessor; 
end carSystem.DualProcessor; 
 
system implementation carSystem.DualProcessorCondCompConfig1 
  extends arSystem.DualProcessor c
properties 
  CondComp::CondCompParameter => ( turbo, ABS ); 
end carSystem.DualProcessorCondCompConfig1; 
 
system implementation carSystem.DualProcessorDeploymentConfig1 
    exends carSystem. DualProcessorCondCompConfig1 
properties 
  Actual_Processor_Binding =>  
           reference carECU.ProcLeft applies to carApp.PowerTrain.ETC; 
  nding =>  Actual_Processor_Bi
           reference carECU.ProcRight applies to carApp.PowerTrain.ABS; 
end carSystem. DualProcessorDeploymentConfig1; 
 
system implementation carSystem. DualProcessorDeploymentConfig2 
    exends carSystem. DualProcessorCondCompConfig1 
properties 
  Actual_Processor_Binding =>  
           reference carECU.ProcLeft applies to carApp.PowerTrain.ABS; 
  Actual_Processor_Binding =>  
           reference carECU.ProcRight applies to carApp.PowerTrain.ETC; 
end carSystem.DualProcessorDeploymentConfig2; 

The AADL standard does not prescribe how AADL models are stored as files in a file system. 
One possible mapping is to store each AADL package in a separate file. If it is desirable to store 
information about different configurations in separate files, each component implementation con-
tains a set of configuration parameters as property associations in a separate package. Table 13 
shows this circumstance, with the assumption that the DualProcessor system implementation 
is declared in a package car::Baseline. 

Table 13: System Configuration in Separate AADL Package 

package car::configuration2 

system carSystem extends car::Baseline::carSystem 

end carSystem; 
system implementation carSystem. DualProcessorDeploymentConfig2 
    exends car::Baseline::carSystem. DualProcessor 
properties 
  CondComp::CondCompParameter => ( turbo, ABS ); 
  Actual_Processor_Binding =>  
           reference carECU.ProcLeft applies to carApp.PowerTrain.ABS; 
  nding =>  Actual_Processor_Bi
           reference carECU.ProcRight applies to carApp.PowerTrain.ETC; 

end carSystem.DualProcessorDeploymentConfig2; 

end car::configuration2; 
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3.2.2 Instance Models and System Configurations 

AADL supports an XML-based persistent storage of AADL models. The AADL Meta Model and 
XML/XMI Interchange Representation Annex [SAE-AS5506/1 2006] defines an AADL-specific 
XML representation for declarative AADL models (i.e., those that correspond to the textual 
AADL representation), for AADL instance models (i.e., models that are instantiated from a speci-
fied system implementation as the root of an embedded system), and for system configurations 
(i.e., sets of property values that can be associated with AADL instance models).  

The AADL XML representation allows AADL instance models to be stored in separate files. It 
also allows system configuration information in the form of property values that are associated 
with a specific AADL model instance to be stored in files separate from the AADL instance mod-
el file. These sets of property values can be specified to apply to specific modes of system opera-
tion. 
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4 Configuration of System Structure and Connection  
Topology 

We might need to configure a system through component implementation selection for two rea-
sons: (1) component variants are represented by different property values recorded in different 
component implementations, and (2) component variants represent variation in the system struc-
ture and connection topology (i.e., they differ in the set of subcomponents and connections, which 
are declared in component implementations). 

In this section, we use extends declarations to express the classifier selection in subcomponents 
and to add connections. In Section 9, we explore the use of parameterized component classifier 
declarations, a feature of Version 2 of the AADL language, to model a reference architecture and 
its variants and instantiations. 

4.1 IMPLEMENTATION SELECTION THROUGH COMPONENT EXTENSION 

In this approach, we model the component blueprint by specifying component implementations 
that identify the classifier of a subcomponent by its component type. This identification allows us 
to specify connections between subcomponents and with the features of the component itself. 
However, the implementations of the subcomponent have not been chosen yet. In other words, we 
have not yet identified the substructure of the subcomponents, as illustrated in Table 14. 

Table 14: A Common System Architecture 

 
system car 
end car; 
system implementation car.common 
subcomponents 
  PowerTrain: system power_train; 
  ExhaustSystem: system exhaust_system; 
connections 
  bus access ExhaustSystem.exhaustManifold -> PowerTrain.exhaustManifold; 
end car.common; 
 
system power_train 
features 
  exhaustManifold: requires bus access Manifold; 
end power_train; 
 
system implementation power_train.singleengine 
subcomponents 
  ETC: system ThrottleController; 
  ABS: system AntilockBrakingSystem; 
  CruiseControl  system CruiseControl; :
  Transmission: system Transmission; 
  PowerPlant: system Engine; 
end power_train.singleengine; 
system implementation power_train.twoengine      
extends power_train.singleengine 
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Table 14:  A Common System Architecture (cont.) 

 
subcomponents 
  A
end power_train.twoengine; 

lternatePowerPlant: system Engine; 

 
system ThrottleController 
features 
  actualAngle: in data port; 
  d
end r; 

esiredAngle: out data port; 
 ThrottleControlle

system implementation ThrottleController.bosch 
end ThrottleController.bosch; 
 
system tilockBrakingSystem  An
features 
  slip: in data port; 
  brakeActive: out data port; 
end AntilockBrakingSystem; 
system implementation AntilockBrakingSystem.bosch 
end AntilockBrakingSystem.bosch; 
 
system CruiseControl 
end CruiseControl; 
system implementation CruiseControl.delphi 
end CruiseControl.delphi; 
 
system Transmission 
end Transmission; 
system implementation Transmission.automatic 
end Transmission.automatic; 
 
system Engine 
end Engine; 
system implementation Engine.Gasoline 
end Engine.Gasoline; 
system implementation Engine.Diesel 
end Engine.Diesel; 
system implementation Engine.Electric 
end Engine.Electric; 
 
system exhaust_system 
features 
  exhaustManifold: provides bus access Manifold; 
end exhaust_system; 
system implementation exhaust_system.sporty 
end exhaust_system.sporty; 
 
bus Manifold 
end Manifold; 
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These component implementations will be refined through a component implementation exten-
sion. The refined to construct in AADL allows the addition of detail in the component classi-
fiers (i.e., the component type in the classifier reference may be refined to identify a specific im-
plementation of the given component type), as shown in Table 15.  

Table 15: A Specific System Configuration 

 
system implementation power_train.diesel 
    extends power_train.singleengine 
subcomponents 
  ETC: refined to system ThrottleController.bosch; 
  AntilockBr
  CruiseControl: refined to system CruiseControl.delphi; 
ABS: refined to system akingSystem.bosch; 

  Transmission: refined to system Transmission.automatic; 
  PowerPlant: refined to device Engine.Diesel; 
end power_train.diesel; 
 
system implementation car.diesel 
    extends car.common 
subcomponents 
  PowerTrain: refined to system power_train.diesel; 
  haustSystem: refined to system exhaust_system.sporty; Ex
end car.diesel; 
 

If we want to specify a different car configuration, one with a gasoline engine, we select a differ-
ent implementation of the engine for the engine subcomponent in the power train implementation. 
This is illustrated in Table 16.  

Notice in Table 16 that we had to introduce a new power train implementation and a new car im-
plementation to reflect this configuration. We document implementation selections as configura-
tion choices, as part of a component implementation. We had to document, for instance, a change 
to a selection at the leaf node of the system hierarchy in the enclosing component as a new im-
plementation. Also, we had to record this new implementation in its enclosing component. This 
degree of documentation results in a proliferation of a new set of component implementations up 
the system hierarchy. In the next section, we will discuss how to address this issue by utilizing a 
property that specifies the desired component implementation as its classifier value and associates 
this value with the appropriate subcomponent in the system hierarchy. 
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Table 16: Configuration Change in one Component  

 
system implementation power_train.gasoline 
    extends power_train.singleengine 
subcomponents 
  ETC: refined to system ThrottleController.bosch; 
  ABS: refined to system akingSystem.bosch; AntilockBr
  CruiseControl: refined to system CruiseControl.delphi; 
  Transmission: refined to system Transmission.automatic; 
  PowerPlant: refined to system Engine.Gasoline; 
end power_train.gasoline; 
 
system implementation car.gasoline 
    extends car.common 
subcomponents 
  PowerTrain: refined to system power_train.gasoline; 
  haustSystem: refined to system exhaust_system.sporty; Ex
end car.gasoline; 
 

Notice also in Table 16 that we had to repeat the implementation choices of the other components. 
We can address this issue by specifying partially bound configurations of components. In other 
words, we can define a power train implementation with the implementation of all subcomponents 
specified, except for the engine. This component implementation can then be refined to a com-
pletely configured power train, as illustrated in Table 17. 

Table 17: A Partially Bound System Configurations 

 
system implementation power_train.selectEngine 
    extends power_train.singleengine 
subcomponents 
  ETC: refined to system ThrottleController.bosch; 
  ABS: refined to system akingSystem.bosch; AntilockBr
  CruiseControl  refined to system CruiseControl.delphi; :
  Transmission: refined to system Transmission.automatic; 
end power_train.selectEngine; 
 
system implementation power_train.gasoline 
    extends wer_train.selectEngine po
subcomponents 
  PowerPlant: refined to system Engine.Gasoline; 
end power_train.gasoline; 
 

In the scenarios in this section, the modeler chooses an implementation of the top-level system 
component (in our example the car) as the root of a system instance. The implementation name 
acts as the desired configuration of the system. At each level in the system hierarchy, configura-
tions are explicitly named. Including a new variant introduced to one of the leaf components in 
the system hierarchy in a configuration results in a new component implementation declaration 
(acting as an explicitly named configuration) for each enclosing component in the system hierar-
chy.  
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In summary, AADL supports partially configured systems by refining a subset of the classifiers. 
The resulting component implementation is then further refined. The fact that a component type 
or implementation is partially configured is inferred from incomplete subcomponent declarations. 
Implementation selection through component extension is achieved as follows:  
1. Subcomponents are declared with component types as classifiers.  

2. They are then refined to the desired implementation selection in extends declarations of 
the enclosing component implementation and refined to constructs of the subcompo-
nent. If default implementations are specified, the current AADL standard does not allow 
their refinement in extends declarations.  

In this approach, every configuration at each level of the system hierarchy is explicitly modeled 
by a named component implementation.  
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5 Modeling of Component Interface Variation 

Component types can be declared as extensions of other component types, allowing interfaces to 
be refined and extended. Some features may be incompletely specified (i.e., may not name a com-
ponent type or implementation in a classifier reference). 

5.1 COMPONENT INTERFACE TEMPLATES 

Component type declarations can represent a pattern of component interfaces. For example, the 
component type declaration shown in Table 18 specifies a set of interaction points through feature 
declarations without classifier references. In this case, the intended type of component interaction 
is reflected in the feature category, but specifics of the information being communicated are not 
committed yet. This component type declaration can be referenced in subcomponent declarations, 
allowing interactions with this component to be specified through connection declarations. 

Table 18: Controller Component Type Template 

 
thread ntrollerTemplate co
features 
  -- provided features 
  desiredValue: out data port; 
  -- required features 
  currentVa  in data port   lue: ; 
   requires data access; setPoint:
properties 
  Dispatch_Protocol => Periodic; 
  riod => 20 ms; Pe
end controllerTemplate; 
 

If the specific set of interaction points varies between different variants of a component family, 
we can use a port group feature to specify a collection of interaction points as a single feature. By 
using a port group feature, we can specify that this component will interact with other components 
through a port group connection without specifying the number and types of interactions yet. This 
flexibility is useful when specifying patterns of architectural structures and interactions.  
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Table 19 shows an example of a generic component interface with a port group for each of the 
inputs and outputs through collections of ports. 

Table 19: Component Type with Port Group Interaction Points 

 
thread genericComponentTemplate 
features 
  providedValues: port group; 
  requiredValues: port group; 
end genericComponentTemplate; 
 

5.2 COMPONENT INTERFACE REFINEMENT 

These templates can be refined into more completely specified component interfaces through the 
use of the component type extension mechanism. This mechanism allows the modeler to refine an 
existing component type declaration and to extend its set of features.  

We first look at the refinement of component types into more completely specified interfaces. 
This form of component type extension acts as a specialization of the component type. Table 20 
refines the previously declared controllerTemplate into a throttle controller by refining the 
previously declared features to have specific domain data types. 

Table 20: Component Type Refinement 

 
thread rottleController extends controllerTemplate Th
features 
  -- provided features 
  desiredValue: refined to out data port appTypes::voltageValue; 
  -- required features 
  currentVa  refined to in data port ypes::angleValue;   lue: appT
  setPoint: refined to requires data access appTypes::angleValue; 
end ThrottleController; 
 

In a second step, we refine this component interface to make use of specific base types for the 
data. We do this through a component type extension to the throttle controller type (see 
ThrottleControllerUInt16 in Table 21). We introduce an additional component type as 
an extension for each desired base type combination for the features to allow base type matching 
on connections to be performed without having selected an implementation for a subcomponent. 

Table 21: Type Selection for Ports 

 
-- base type selection via type extension 
thread ThrottleControllerUInt16 extends ThrottleController 
features 
  -- provided features 
  desiredValue: refined to out data port appTypes::voltageValue.UInt16; 
  -- required features 
  currentValue: refined to in data port appTypes::angleValue.UInt16;   
  setPoint: refined to requires data access appTypes::angleValue.UInt16; 
end ThrottleControllerUInt16; 
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5.3 COMPONENT INTERFACE EXTENSION 

An incompletely specified component type can also be viewed as a common interface as the basis 
for multiple component interface variants. Variants can be defined as component type extensions 
with additional features. This form of component type extension acts as a subclass of the compo-
nent type being extended. Table 22 shows a variant of the throttle controller interface that permits 
calibration. The calibration parameter does not have its implementation specified; this allows the 
details of the calibration parameters to be supplied through refinement of the classifier to a data 
component implementation. 

Table 22: Extended Component Interface 

 
thread ThrottleControllerWithCalibration extends ThrottleController 
features 
  -- A component variation that permit calibration 
  calibrationParameter: provides data access ThrottleCalibration;   
end ThrottleController; 
 

5.4 CONFIGURING COMPONENT INTERFACE VARIANTS 

Component types are named in classifier references of features and subcomponent declarations. 
They may be named with an implementation name or by themselves. When making use of com-
ponent interface specifications that are incomplete, the modeler should be aware that a component 
type reference cannot be refined into a different component type in the AADL standard, even if 
that component type is an extension of the original component type. Table 23 illustrates such an 
example. A generic control process is defined to consist of a controller, whose classifier is the 
generic controller template. Since this component type has ports specified, the component imple-
mentation can include connection declarations. 

Table 23: Use of Generic Component Type 

 
process ontrolProcess C
features 
  Signalin: in data port; 
  Signalout:  out data port; 
end ControlProcess; 
process implementation ControlProcess.impl 
subcomponents 
  -- A component variation that permits calibration 
  controller: thread controllerTemplate;   
connections 
  data port SignalIn -> controller.currentValue; 
  data port controller.desiredValue -> Signalout; 
end ControlProcess.impl; 
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6 Variation in Deployment Configurations 

AADL supports modeling of execution platform components through the component types of 
processor, memory, bus, and device. An AADL model of a system consists of an instance of an 
application system, an instance of an execution platform, and a specification of bindings of appli-
cation components to execution platform components. 

A processor component is an abstraction for an execution platform component that schedules and 
executes application threads bound to it. A processor type can be defined to represent processor 
hardware (as an abstraction of the hardware details) or processor hardware together with an oper-
ating system. For example, a dual core processor may be represented by a processor type that 
hides the fact that two CPUs are contained if the application has no awareness of and ability to 
bind to the individual CPU. A processor can have multiple implementations, where each imple-
mentation represents a different variant in a processor family. The models of the variants may 
only differ in the property values associated with each processor implementation.  

In a similar fashion, the memory component can represent various types of storage media, and the 
bus component can be used to model entities that connect execution platform components (e.g., 
buses, networks, and wired and wireless connections). These physical connections may include 
connection protocols as part of their abstraction. The device component models a component of 
the physical target environment of an embedded system (e.g., sensors and actuators or a physical 
plant being controlled) where the device ports represent sensor and actuator inputs or outputs. 

The system component configures individual execution platform components into systems. A sys-
tem may have one or more than one system interface specification (system type declaration). Mul-
tiple system implementations can be defined for each system interface. 

Modelers can define a family of embedded system configurations by specifying a top-level system 
that contains an application system subcomponent and an execution platform component. Differ-
ent top-level system implementations may choose different execution platforms for the same ap-
plication system. 

First, we introduce the AADL package concept; then, we define hardware platforms and varia-
tions embedded systems configurations. 

6.1 USE OF AADL PACKAGES 

AADL packages2 allow users to group collections of component type and implementation decla-
rations into related groupings. AADL packages are named, and nested package names are sup-
ported. For example, a package may be named SEI::Avionics::Classes. Name nesting allows 
name uniqueness to be relative to the enclosing package name. AADL package declarations are 
not nested inside other AADL packages. However, tools may present a view that allows users to 
navigate a collection of packages in a user’s workspace according to the package hierarchy. 

 
2  AADL packages are similar to Java packages. 
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There is no restriction imposed by AADL on the visibility of packages. However, AADL pack-
ages do restrict the visibility of component classifier declarations by providing public and private 
sections of the package. This allows classifiers in a given package to be referenced by any other 
package, as long as they are declared in the public section as shown in Table 24.  

Table 24: Visibility of Packages 

 
package BasicTypes 
public 
  data integer 
  end integer; 
  data implementation integer.u16 
  properties 
    Source_Data_Size => 16 bits; 
  end integer.u16; 
  data implementation integer.u32 
  properties 
    urce_Data_Size => 32 bits; So
  end integer.u32; 
 
  data real 
  end eal; r
  data string 
  end string; 
end BasicTypes; 
 
package CarDomain::Engine 
public 
  data Engine 
  features 
    getRPM: subprogram getTheRPM; 
  end Engine; 
  subprogram getTheRPM 
  features 
    rpm: out parameter integer.u16; 
  end getTheRPM; 
end CarDomain::Engine; 
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6.2 THE HARDWARE PLATFORM 

Execution platform components—such as processors, memory, and network components—as well 
as components that represent the physical environment of an embedded system are represented by 
processor, memory, bus, and device component type and implementation declarations. These 
hardware component declarations represent a library of components; modelers can organize them 
into different packages, each representing a different supplier, and through nested package names 
into different product families. Table 25 illustrates the nested-package-name concept. 

Table 25: Nested Package Names 

 
package IBM::PowerPC 
public 
  processor PowerPC7XX 
  end PowerPC7XX; 
  processor PowerPC970 
  end PowerPC970; 
  processor implementation PowerPC970.Basic 
  end PowerPC970.Basic; 
end IBM::PowerPC; 
 

If a component product family is large, we can organize it through a combination of component 
classifier extensions and multiple packages. In Table 26, we use the preceding example to define 
members of the FX family in a separate package. 

Table 26: Defining Family Members in a Separate Package 

 
package IBM::PowerPC::FX 
public 
  -- make th r type na
  processor PowerPC970 extends IBM::PowerPC::PowerPC970 

e processo me locally visible 

  end PowerPC970; 
  -- introduce the FX varia
  processor implementation PowerPC970.FX  

nt as an extension of the basic one 

      extends IBM::PowerPC::PowerPC970.Basic 
  -- add any FX specific properties 
  end PowerPC970.FX; 
end IBM::PowerPC::FX; 
 

These hardware components make up standardized modular motherboards, which themselves are 
configured into computing platforms for different embedded system platforms. In other words, we 
now define system types and implementations that represent different boards. These system com-
ponents require or provide access to buses to model the fact that the board may be plugged into a 
PCI bus or connected to a 1553 bus, a CAN bus, or high-speed Etherswitch.  

We can keep the board system declarations in one set of packages and the airframe-specific hard-
ware architectures in other packages. The hardware architectures themselves can be defined as a 
family that is configurable by using the classifier extensions, explicit parameterization of compo-
nent classifier declarations (an AADL Version 2 capability, see Section 9), and properties—as 
illustrated in Section 3.  
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In Table 27, we show packages that define motherboards with slots and components of certain 
types and that contain specific configurations of the populated motherboard. In this instance, we 
do not take advantage of the explicit parameterization of component classifier declarations. A 
model with explicit parameterization would require a separate prototype declaration for each sub-
component classifier, which increases the size of the model.3  

Table 27: Package Families 

 
package IBM::Motherboard 
public 
    the processor type name locally visible -- make
  system Motherboard 
  features 
    pci: requires bus access PCI; 
    s1553: requires bus access BUS1553; Bu
  end Motherboard; 
  -- introduce the FX variant as an extension of the basic one 
  system implementation Motherboard.PPC 
  subcomponents 
    pr 

 processor; oc :
    mem1: memory; 
    mem2: memory; 
    mem3: memory; 
    dma1: bus DMA; 
  connections 
    m1: bus access dma1 -> mem1.dma; 
    m2: bus access dma1 -> mem2.dma; 
    m3: bus access dma1 -> mem3.dma; 
    p1: bus access dma1 -> proc.dma; 
  end Motherboard.PPC; 
end IBM::Motherboard; 
 
package IBM::Motherboard::Populated 
public 
  system implementation Motherboard.PPC970 
    extends Motherboard.PPC 
  subcomponents 
    proc : refined to processor IBM::PowerPC::PowerPC970; 
    mem1: refined to memory DRAM; 
    mem2: refined to memory DRAM; 
    m3: refined to memory DRAM; me
  end Motherboard.PPC970; 
end IBM::Motherboard::Populated; 
 
package IBM::Motherboard::Configured 
public 
  system implementation Motherboard.PPC970HighPerformance 
    extends IBM::Motherboard::Populated::Motherboard.PPC970 
  properties 
    Hardware::ProcessorSpeed => 1.4 GHZ applies to proc;  
    Hardware::MemoryCapacity => 512 MB applies to mem1; 
    Hardware::MemoryCapacity => 512 MB applies to mem2; 
    Hardware::MemoryCapacity => 512 MB applies to mem3; 
  end Motherboard.PPC970HighPerformance; 
end IBM::Motherboard::Configured; 

 
3  In AADL, subcomponents can be independently refined with a classifier. Although the language allows for a mix of explicit 

parameterization and incomplete subcomponent declarations, it may be desirable to establish a modeling rule requiring 
prototypes for parameterization.  
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In Table 28, we illustrate descriptions of target platform-specific computer hardware configura-
tions. 

Table 28: Example Target Platform-Specific Hardware Configurations 

 
package Lockheed::ComputePlatforms 
public 
  system ComputePlatform 
  end ComputePlatform; 
  system implementation ComputePlatform.F16 
  subcomponents 
    proc1 : system IBM::Motherboard::Motherboard; 
    proc2 : system IBM::Motherboard::Motherboard; 
    pci1: bus PCI; 
    can1: bus BUS1553; 
    can2:
  connections 

 bus BUS1553; 

    p1: bus access pci1 -> proc1.pci; 
    p2: bus access pci1 -> proc2.pci; 
    b1: bus access can1 -> proc1.Bus1553; 
     bus access proc2.Bus1553; b2: can2 -> 
  end ComputePlatform.F16; 
end Lockheed::ComputePlatforms; 
 
package Lockheed::ComputePlatformConfigurations 
public 
  system implementation ComputePlatform.F16HiPerf 
    extends Lockheed::ComputePlatforms::ComputePlatform.F16; 
  subcomponents 
    proc1 : refined to  
      system board::Motherboard.PPC970HighPerformance; IBM::Mother
    proc2 : refined to  
      system IBM::Motherboard::Motherboard.PPC970HighPerformance; 
    pci1: refined to bus PCI.HighPerformance; 
    can1: refined to bus BUS1553.V2; 
    n2: refined to bus BUS1553.V2; ca
  end ComputePlatform.F16HiPerf; 
end Lockheed::ComputePlatformConfigurations; 
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6.3 EMBEDDED SYSTEM CONFIGURATIONS 

We can now define configurations of the complete embedded system (i.e., the embedded applica-
tion software and the execution platform). The simplest form of such a configuration is a system 
implementation declaration that combines an instance of the application system and an instance of 
the computing platform (see Table 29). Again, we can define a generic configuration that is then 
refined into specific configuration variants. 

Table 29: Configuration of an Embedded System 
 
 
package Lockheed::F16EmbeddedSystem 
public 
  System implementation F16.GenericConfiguration 
  subcomponents 
    App:  system Lockheed::Avionics::F16Avionics; 
    ComputePlatform: system Lockheed::ComputePlatformConfigurations::  
      ComputePlatform; 
  end F16.GenericConfiguration; 
 
  System implementation F16.BaseConfiguration 
    Extends F16.GenericConfiguration 
  subcomponents 
    App:  refined to system Lockheed::Avionics::F16Avionics.Baseline; 
    ComputePlatform: system Lockheed::ComputePlatformConfigurations::  
      ComputePlatform.Baseline; 
  end F16.BaseConfiguration;  

end Lockheed::F16EmbeddedSystem; 

Given a specific system configuration, we can now define system variations that differ in how the 
application software is to be bound onto the computing platform hardware. AADL offers a set of 
predeclared properties to specify binding constraints as well as properties that record the actual 
binding decisions regarding binding of threads and processes to processors and memory, and con-
nections to buses. The binding constraints are expressed through Allowed_<type>_Binding 
and Allowed_<type>_Binding_Class properties, where <type> is processor, memory, or 
connection. The former identifies specific instances of processors, memory, and buses to which an 
application component can be bound. The latter identifies the types of processors, memory, and 
buses that are acceptable targets of binding decisions.  

It is expected that modelers take these constraints into consideration when making actual binding 
decisions. The actual binding decisions are then recorded (by a tool or a person) in the 
Actual_<type>_Binding properties. The actual binding properties can be recorded as addi-
tional system implementation declarations—as shown in the following example (see Table 30). 
Or the property values can be associated with the AADL instance model and stored as part of a 
modified instance model XMI file or as an XMI-based configuration file separate from the in-
stance model. (See the instance model description of the AADL Meta Model and XML/XMI In-
terchange Format Annex AS-5506/1 [SAE-AS5506/1 2006].)  Some toolsets may choose to limit 
users to specify binding constraints only and let tools store the actual bindings in the instance 
model. In this case, users may specify binding constraints to limit the choice to a single compo-
nent.  
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Table 30: Binding Properties Recorded as Additional System Implementation Declarations  

 
package Lockheed::F16EmbeddedSystem::Configurations 
public 
  System implementation F16.BaselineConfiguration extends  
    :F16EmbeddedSystem::F16.BaseConfiguration Lockheed:
  properties 
    Allowed_Memory_Binding_Class => classifier nonvolatileDRAM  
       applies to App.FlightManager.CriticalData; 
    Allowed_Processor_Binding => reference ComputePlatform.proc1  
       applies to App.FlightDirector.FDProcess;  
  end F16.BaselineConfiguration; 
end Lockheed::F16EmbeddedSystem::Configurations; 
 
package Lockheed::F16EmbeddedSystem::BoundConfigurations 
public 
  System implementation F16.Baseline1 extends 

EmbeddedSystem::Configurations::F16.BaselineConfiguration Lockheed::F16
  properties 
    Actual_Memory_Binding => reference ComputePlatform.mem1  
       applies to App.FlightManager.CriticalData; 
    or_Binding => reference ComputePlatform.proc1  Actual_Process
       applies to App.FlightDirector.FDProcess;  
  end F16.Baseline1; 
end Lockheed::F16EmbeddedSystem::BoundConfigurations; 
 

The example in Table 30 shows the composition of embedded application software with the 
hardware at the top-level of the system hierarchy. AADL does not prescribe or limit modelers to 
compose systems that way. A system defined to consist of software and hardware components can 
itself become a component of a larger system. In other words, systems with hardware and soft-
ware components may have an external interface that is documented in the root level system type. 
An instance of such a system can be integrated with another system by declaring both of them as 
subcomponents of a system of systems. They may be integrated by connecting them directly in 
terms of the application logic (port/connections) and the hardware platform (bus access). This 
integration may require additional integration infrastructure components, such as a network that 
ties the systems together. 
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7 Runtime Variation of System Configurations 

The mode concept in AADL allows modelers to represent dynamic characteristics of embedded 
system architectures. We can define any component to have multiple modes. Transitions that are 
triggered by port events can be defined for modes.  

Modelers can associate mode-specific property values with those components. For example, a 
thread may represent an algorithm that can calculate a trajectory at several levels of precision. A 
different execution time value can be associated with this thread for each of the levels of precision 
that the thread can operate in; this example is illustrated in Table 31. A second property may spec-
ify the level of precision that is achieved in each of the modes. When an instance of a component 
is connected to other components, the system instance model can be analyzed for possible incon-
sistencies in the levels of precision provided by one component and expected by another compo-
nent under various mode combinations, if both components have modes. 

Table 31: Mode-Specific Variation of System Components  

 
thread implementation GPS.Deluxe 
modes 
  Normal : initial mode ; 
  HiDef : mode ; 
  properties 
    Compute_Execution_Time => 10 ms in modes (Normal)  ;
    Compute_Execution_Time => 15 ms in modes (HiDef);  
end GPS.Deluxe; 
 

Modelers can also declare that the processor binding of application components can have mode-
specific property values—as illustrated in Table 32. In this example, we have modeled the in-
stance where an application component may execute on one processor and later, during operation, 
on a different processor. This modeling technique can be used to represent the migration of appli-
cation components between processors to balance the workload or to adapt to hardware failures. 

Table 32: Mode-Specific Variation of Application Binding  

properties 
  nding =>  Actual_Processor_Bi
           reference carECU.ProcLeft applies to carApp.PowerTrain.ETC in 
modes nominal; 
  nding =>  Actual_Processor_Bi
           reference carECU.ProcRight applies to carApp.PowerTrain.ETC in 
modes backup; 

Finally, modelers can specify that subcomponents and connections are active only in certain mod-
es. In other words, they can specify different application configurations of active treads and com-
munication connections. Mode transitions represent runtime changes from one such runtime con-
figuration to another. This allows us to represent different operational modes in which different 
subsystems may be active and in which they communicate in different ways. The example in 
Table 33 illustrates two runtime configurations of a hybrid car. In one operational mode, it runs 
on the diesel engine only, in the other operational mode it runs both engines as a hybrid. 
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Table 33: Mode-Specific Subcomponent Configuration  

system implementation carSystem.DualProcessor 
subcomponents  
    carApp: system car.diesel_automatic in modes DieselOnly; 
    carApp: system car.Hybrid_automatic in modes Hybrid; 
    carECU: system ECU.DualProcessor; 
modes 
    DieselOn initial mode; ly: 

Hybrid: mode;     
end carSystem.DualProcessor; 
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8 A Car System Reference Architecture 

In this section, we illustrate how the current version of the AADL standard can be used to repre-
sent an abstracted system description. In Section 9, we revisit this example to illustrate how the 
classifier parameterization feature in the next version of AADL (i.e., AADL Version 2) can im-
prove the conceptual and runtime representation and the instantiation of this reference architec-
ture. 

8.1 THE CONCEPTUAL ARCHITECTURE 

In Table 34, we define an abstract model of the system by using the system component to repre-
sent a general component concept.  

Table 34: A Conceptual Model 

 
system car 
end car; 
 
system implementation car.generic 
subcomponents 
  PowerTrain: system ertrain; pow
  haustSystem: system exhaustsystem; Ex
end car.generic;  
 
system powertrain 
features 
  haustoutput: requires bus access Manifold; ex
end powertrain;  
system exhaustsystem 
features 
  exhaustManifold: provides bus access Manifold; 
end exhaustsystem; 
 

8.2 REFINEMENT INTO A RUNTIME ARCHITECTURE 

To turn the abstract model into runtime architecture, we make decisions about which components 
require space partitioning (refinement into process) and which components are active components 
that can execute concurrently with other active components.  

In the example shown in Table 35, we simply refine the classifier by replacing the system key-
word with process as appropriate. The two subsystems, PowerTrain and ExhaustSys-
tem, are redefined as process classifiers. Within powertrainProcess, we choose 
thread group as the component category. The thread group allows those components to 
consist of multiple threads, while the different components within powertrainProcess share 
an address space. 
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Table 35: A Runtime Architecture 

 
system carRT  
end carRT; 
-- prototypes bound to actuals that are of the process category 
system implementation carRT.impl  
subcomponents 
  PowerTrain: process powertrainProcess; 
  ExhaustSystem: process exhaustsystemProcess; 
end carRT.impl; 
 
process powertrainProcess  
end powertrainProcess ; 
 
process implementation powertrainProcess.dualengine  
subcomponents 
    TheEngine: device E  ngine;  
    TheAlternateEngi  device ine;   ne: Eng
    TheTransmission: thread group Transmission; 
    Throttle_Controller: thread group ThrottleController; 
    Antilock_Braking_System: thread group AntilockBrakingSystem; 
    Cruise_Control: thread group CruiseControl; 
end powertrainProcess.dualengine; 
 
process exhaustsystemProcess  
end exhaustsystemProcess; 
 

8.3 SPECIFIC CARS BASED ON RUNTIME ARCHITECTURE 

We can now define specific car types. We can do so with respect to the conceptual architecture or 
the runtime architecture. In Table 36, we refine the reference runtime architecture for cars into a 
specific brand. We also refine the power_train reference architecture into a specific instance, 
namely a hybrid gas/electric configuration. It is used to refine the reference implementation of the 
car runtime architecture into the specific brand Toyota Prius. The table does not show the refine-
ment of the exhaust system into its sporty implementation. 
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Table 36: Defining Specific Car Types 

 
system Toyota extends carRT 
-- bind the component category to be system 
end Toyota; 
 
system implementation Toyota.Prius 
extends carRT.impl  
subcomponents 
   power_train: refined to process powertrainProcess.Toyota_hybrid; 
     exhaust_system: refined to process exhaustsystemProcess.sporty; 
end Toyota.Prius; 
 
process implementation powertrainProcess.Toyota_hybrid 
 extends powertrainProcess.dualengine  
subcomponents 
    TheEngine: refined to device soline;   Engine.ga
    TheAlternateEngi  refined to device ine.Electric;   ne: Eng
    TheTransmission: refined to thread group Transmission.Automatic; 
    Throttle_Controller: refined to thread group ThrottleController.Bosch; 
    Antilock_Braking_System: refined to thread group 
AntilockBrakingSystem.Bosch; 
    Cruise_Control: refined to thread group CruiseControl.Delphi; 
end powertrainProcess.Toyota_hybrid; 
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9 Modeling with AADL Version 2 

The SAE AADL standards committee is making improvements to the AADL notation based on 
user feedback. These improvements are in review and will go into ballot in 2007 and be published 
as SAE AADL Version 2 in early 2008. In this section, we present two of these improvements 
intended to improve the way reference architectures and their instantiations can be modeled. 

The first of two new capabilities is the ability to declare component types and implementations 
without choosing a specific concrete component category. In other words, we can declare compo-
nents with the keyword abstract and later refine it into any of thread, thread group, process, 
system, data, subprogram, processor, memory, bus, and device. 

The second capability is the ability to explicitly specify parameters for component type and im-
plementation declarations that must be supplied to complete the classifier specification. We spec-
ify the classifier parameter as a prototype.  

In Table 37, we explicitly specify the parameterization of the component type through 
prototypes declarations for two data types to be supplied. One prototype is used in two 
features declarations. This ensures that both features have the same data type. 

Table 37: A Parameterized Component Type 

 
thread controllerTemplate 
prototypes 
  dt : data; 
   data; sd :
features 
  -- provided features 
  desiredValue: out data port prototype dt; 
  -- required features 
  currentVa  in data port prototype    lue: dt;
  setPoint: requires data access prototype sd; 
end controllerTemplate; 
 

In Section 9.1, we illustrate the use of classifier parameterization to configure system architec-
tures by supplying the desired classifiers for subcomponents throughout the hierarchy of the sys-
tem architecture. Then, in Section 9.2, we revisit the exercise of modeling a conceptual architec-
ture, the runtime architecture, and their instantiation into actual system architectures. 
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9.1 IMPLEMENTATION SELECTION BY CLASSIFIER PARAMETERIZATION 

The prototypes declaration acts as an explicit parameter specification for a component type 
and component implementation declaration. This declaration may specify  
• a component category, indicating that a component classifier of the specified category must 

be supplied 

• a component type, indicating that a component implementation of the specified type must be 
supplied 

• an abstract component type, indicating that component classifiers of any category that can be 
instances of this prototype (i.e., whose features, flows, and properties match those of the tem-
plate) can be supplied   

• an abstract component implementation, indicating that component classifiers of any category 
that can be instances of the template implementation (i.e., whose features, flows, and proper-
ties match those of the generic component type and whose subcomponents and connections 
match those of the generic component implementation) can be supplied 

We illustrate the use of prototypes in two ways. In the first approach, we define the complete sys-
tem hierarchy with selectable component implementations to be used as subcomponent classifiers 
specified as prototypes. These prototypes of lower level components are recursively de-
clared as prototypes in the enclosing component. In other words, all component implementa-
tion selections of a system configuration are prototypes of the top-level system implementation. In 
the second approach, we define subcomponent classifiers as prototypes of the directly enclos-
ing component implementation only. In this case, we select classifiers at one level of the system 
hierarchy at a time. The second approach is similar to the use of component extensions discussed 
in Section 4.1.  

9.1.1 A Configurable Car System Architecture 

Table 38 illustrates the use of prototypes to specify the car example as a configurable architecture. 
In this example, we make all implementation selections of the system accessible as prototypes of 
the top-level system component. A number of the top-level prototypes are passed on as actual 
prototypes values for the classifier of a subcomponent, while one prototype is used as a clas-
sifier of the subcomponent itself. 
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Table 38: Parameterization via AADL Prototypes 

system r ca
end car; 
system implementation car.single 
prototypes 
  tc: system ThrottleController; 
  abs  system AntilockBrakingSystem; :
  cc: system CruiseControl; 
  tm: system Transmission; 
  en: device Engine; 
  exhaust_system: system exhaustsystem; 
subcomponents 
   system powertrain.singleePowerTrain: ngine( 
                 Throttle_Controller => prototype tc, 
                 Antilock_Braking_System => prototype abs, 
                 Cruise_Control => prototype cc, 
                 TheTransmiss  prototype tm, ion =>
                 => prototype en); TheEngine 
  ExhaustSystem: prototype exhaust_system; 
end car.single; 
system implementation car.dual extends car.single 
prototypes 
   device ngine; se: E
subcomponents 
  PowerTrain: system powertrain.dualengine( 
          Throttle_Controller => prototype tc, 
          Antilock_Braking_System => prototype abs, 
          Cruise_Control => prototype c, c
          TheTransmission => prototype tm, 
          TheEngine => prototype en, 
          TheAlternateEngine => prototype se); 
  ExhaustSystem: prototype exhaust_system; 
end car.dual; 
 
system powertrain 
features 
  exhaustoutput: requires bus access Manifold; 
end powertrain; 
 
system implementation powertrain.singleengine 
prototypes 
  Throttle_Controller: system ThrottleController; 
  Antilock_Braking_System: system AntilockBrakingSystem; 
  Cruise_Control: system CruiseControl; 
  TheTransmission: system Transmission; 
  TheEngine: device Engine; 
subcomponents 
  ETC: prototype Throttle_Controller; 
  ABS: prototype Antilock_Braking_System; 
  CruiseControl: prototype Cruise_Control; 
  Transmission: prototype TheTransmission; 
  PowerPlant: prototype TheEngine; 
end powertrain.singleengine; 
 
system implementation powertrain.dualengine 
    extends power_train.singleengine 
prototypes 
  Engine: device Engine; TheAlternate
subcomponents 
  AlternatePowerPlant: prototype TheAlternateEngine; 
end powertrain.dualengine; 
-- throttle controller etc. as before 
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Table 39 illustrates a configured car system architecture by supplying classifiers as actuals for all 
prototypes. 

Table 39: Configuration Selection via AADL Prototype Actuals 

 
system implementation Toyota.Prius 
extends car.dualengine ( 
   en => device Engine.gasoline,   
   se => device Engine.Electric,   
   tm => system Transmission.Automatic, 
   tc => system ThrottleController.Bosch, 
   abs => system AntilockBrakingSystem.Bosch, 
   cc => system CruiseControl.Delphi, 
  exhaust_system => system exhaustsystem.sporty ); 

end Toyota.Prius; 

With this approach, we can also limit the selection to preconfigured subsystem configurations by 
not exposing their subcomponent classifiers as prototypes. In our example, we could have precon-
figured the power train with two fully configured component implementation descriptions. In that 
case, the top-level system implementation would have a prototype for the power train, replacing 
the prototypes for the classifiers to be supplied to the power train declaration within the car im-
plementation. The powertrain.Hybrid declaration of Table 40 defines the power train as a 
named system implementation, which is a refinement of the powertrain.dualengine tem-
plate. This system implementation is then referenced in the Toyota.Prius declaration, which 
is refined from the car.generic template. 

Table 40: Preconfigured Subsystems as Prototype Actuals 

 
system car 
end car; 
 
system implementation car.generic 
prototypes 
  power_train: system ertrain; pow
  exhaust_system: system exhaustsystem; 
subcomponents 
  PowerTrain: prototype power_train; 
  ExhaustSystem: prototype exhaust_system; 
end car.generic; 
 
system implementation powertrain.Hybrid 
extends powertrain.dualengine ( 
   PowerPlant => device Engine.gasoline,   
   AlternatePowerPlan  device Engine.Electric,   t =>
   TheTransmission => system Transmission.Automatic, 
   Throttle_Controller => system ThrottleController.Bosch, 
   Antilock_Braking_System => system AntilockBrakingSystem.Bosch, 
   Cruise_Control => system CruiseControl.Delphi); 
end powertrain.Hybrid; 
 
system implementation Toyota.Prius 
extends car.generic ( 
   PowerTrain => system powertrain.Hybrid,   
  haustSystem => system exhaustsystem.sporty ); Ex
end Toyota.Prius; 
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9.1.2 Configuration by Nested Prototype Actual Specifications 

In this scenario, we leverage the car.generic declaration of Table 40. However, we do not 
assume to have preconfigured power train configurations. Instead, we define the power train con-
figuration at the time it is supplied with specific component classifiers for the prototypes. This 
approach results in nested prototype specifications shown in Table 41. 

Table 41: Configuration Nested Prototype Actuals 

system Toyota extends car 
end Toyota; 
system implementation Toyota.Prius 
    extends car.generic ( 
          power_train => system powertrain.dualengine (  
                  TheEngine => device Engine.gasoline,   
                  TheAlternateEngine => device Engine.Electric,   
       TheTransmission => system smission.Automatic, Tran
       Throttle_Controller => system ttleController.Bosch, Thro
       Antilock_Braking_System => system AntilockBrakingSystem.Bosch, 
       Cruise_Control => system CruiseControl.Delphi ), 
    exhaust_system => system exhaustsystem.sporty ); 
end Toyota.Prius; 

We can also work with predeclared configurations of subsystems. If we do that for the power 
train, the result is the example shown in Table 40 on page 40. 

9.2 A CAR SYSTEM REFERENCE ARCHITECTURE REVISITED 

In this section, we illustrate how the abstract component category as well as classifier parameteri-
zation can be used to represent a system reference architecture and its instantiation.  

9.2.1 The Conceptual Architecture 

In Table 42, we define a conceptual model of the system through the use of the abstract cate-
gory.  
Table 42: A Conceptual Model 

component car 
end car;component implementation car.generic 

prototypes 
  power_train: abstract powertrain; 
  em: abstract exhaustsystem; exhaust_syst
subcomponents 
  PowerTrain: prototype power_train; 
  ExhaustSystem: prototype exhaust_system; 
end car.generic; component powertrain 

features 
  exhaustoutput: requires bus access Manifold; 
end powertrain; component exhaust_system 

features 
  exhaustManifold: provides bus access Manifold; 
end exhaust_system;component implementation exhaust_system.sporty 
end exhaust_system.sporty; 
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9.2.2 Refinement into a Runtime Architecture 

When we want to turn the abstract model into a runtime architecture, we can make decisions 
about which components require space partitioning (refinement into process) and which are active 
components that can execute concurrently with other active components.  

In the example shown in Table 43, we simply refine the classifier by referencing an abstract com-
ponent classifier and qualifying it with the concrete category process.  

Table 43: Runtime Architecture 

 
system carRT extends car 
end carRT; 
-- prototypes bound to
system implementation carRT.impl  

 actuals that are of the process category 

   extends car.generic ( 
       power_train => process powertrain; 
       exhaust_system => process exhaust_system; ); 
end carRT.impl; 
-- prototypes restricted to the process category 
system implementation carRT.impl  
   extends car.generic  
   prototypes 
       power_train : refined to process powertrain; 
       exhaust_system : process exhaust_system;  
end carRT.impl; 
 

In the example shown in Table 44, we go through an explicit step of defining classifiers of the 
concrete category as named classifiers that then are referenced in the refinement of the whole car 
architecture. 

Table 44: Defining Classifiers as Named Classifiers 

 
process powertrainProcess extends powertrain 
end powertrainProcess ; 
 
process exhaust_systemProcess extends exhaust_system 
end exhaust_systemProcess; 
system carRT extends car 
end carRT; 
system implementation carRT.impl  
   extends car.generic ( 
       power_train => process powertrainProcess; 
       exhaust_system => process exhaust_systemProcess; ); 

end carRT.impl 
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9.2.3 Specific Cars Based on Runtime Architecture 

We can now define specific car types. We can do so with respect to the conceptual architecture or 
the runtime architecture.  

In Table 45, we assume that the process powertrain has been defined to consist of several 
components, and each component classifier is specified as prototype. In the example, we supply a 
concrete component category (thread group). Thread group allows those components to 
consist of multiple threads, while the different components within the powertrain share an 
address space.  

Table 45: Defining Specific Car Types 

 
system Toyota extends car 
-- b
end Toyota; 

ind the component category to be system 

 
process Toyota_powertrain extends powertrain 
end Toyota_powertrain; 
 
process implementation Toyota_powertrain.hybrid 
 extends powertrain.dualengine ( 
    TheEngine => device Engine.gasoline,   
    TheAlternateEngine => device Engine.Electric,   
    TheTransmission => thread group Transmission.Automatic, 
    Throttle_Controller => thread group ttleController.Bosch, Thro
    Antilock_Braking_System => thread group AntilockBrakingSystem.Bosch, 
    Cruise_Control => thread group CruiseControl.Delphi ); 
end Toyota_powertrain.hybrid; 
 

In Table 46 we define the specific car implementation (Toyota.Prius) in terms of the runtime 
architecture (carRT.impl). In this case, the decision that parts of the power_train share an 
address space by being threads inside a process has been made for us. When we specify 
Toyota.Prius, we supply two processes (Toyota_powertrain.hybrid and 
exhaustsystem.sporty) for the prototypes of the runtime architecture carRT.impl. 

Table 46: Defining the Car Type in Terms of Runtime Architecture 

 
system implementation Toyota.Prius 
extends carRT.impl ( 
   wer_train => process ta_powertrain.hybrid, po Toyo
     exhaust_system => process exhaustsystem.sporty ); 
end Toyota.Prius; 
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9.2.4 Specific Cars in Terms of Conceptual Architecture 

In Table 47, we define a specific car based on the conceptual architecture.  

Table 47: Defining a Specific Car 

 
system implementation Toyota.Prius 
extends car.generic ( 
   power_train => process a_powertrain.hybrid, Toyot
     exhaust_system => process exhaustsystem.sporty ); 
end Toyota.Prius; 
 

We can supply a power train that is a system of processes to indicate that we want address space 
protection between ABS, cruise control, and so on within the power train. In this case, we utilize 
the nested actual declaration notation to illustrate the example, as Table 48 shows. 

Table 48: Defining a Power Train for the Specific Car 

 
system implementation Toyota.Gasoline 
extends car.generic ( 
  n => system power_trai powertrain.singleengine (  
            TheEngine => device gasoline,   Engine.
            TheTransmission => process Transmission.Automatic, 
            Throttle_Controller => process ThrottleController.Bosch, 
            Antilock_Braking_System => process AntilockBrakingSystem.Bosch, 
            Cruise_Control => process CruiseControl.Delphi ), 
  haust_system => process exhaustsystem.sporty ); ex
end Toyota.Gasoline; 
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10 Summary 

In this technical note, we discussed how AADL can be used to model system families and con-
figurations of system and component variants. We have shown that AADL supports system fami-
lies by providing component types to specify component interfaces and multiple implementations 
for each component type. We have shown how multiple dimensions of system variability ranging 
from variation through conditional compilation to variation through different sets of calibration 
parameters can be represented by properties.  

We illustrated several approaches for organizing these properties. We have shown how the ability 
to define component types and implementations as extensions of previously defined component 
types and implementations is used to manage variation along these dimensions. We discussed the 
ability of AADL to support modeling of system configurations that change at runtime during sys-
tem operation. We illustrated how a system reference architecture and its instantiation can be ex-
pressed in AADL. Finally, we discussed proposed revisions to AADL that support component 
implementation configuration through classifier parameterization. 
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