Cavrmweie Millon

Software Engineering Institute

Pittsburgh, PA 15213-3890

Into the Black Box:

A Case Study in Obtaining
Visibility into Commercial
Software

Daniel Plakosh
Scott Hissam
Kurt Wallnau

March 1999

COTS-Based Systems Initiative

Technical Note
CMU/SEI-99-TN-010

Unlimited distribution subject to the copyright

The Software Engineering Institute is a federally funded research and devel opment center sponsored by the U.S.
Department of Defense.

Copyright 1999 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, ASTO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal useis
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

Please refer to http://www.sei.cmu.egolublications/pubweb.html for information about ordering paper copies of SEI
reports.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or
administration of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act
of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or
executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion,
creed, ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the
judgment of the Carnegie Mellon Human Relations Commission, the Department of Defense policy of, “Don’t ask, don't tell, don’t pursue,”
excludes openly gay, lesbian and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at
Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412)-268-2000.

Contents

Abstract

1 Introduction

2 Database

3 Certificate Database
4 Key Database

5 Summary
References

10

18

19

CMU/SEI-99-TN-010

CMU/SEI-99-TN-010

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

DBDump.c Code

Output of DBDump (key3.db File as Input)
Certificate Database Record Type Header
Certificate Database Record Types
Certificate Database Record Formats
Database Browsing Tool

Key Record Types

Private Key Database Record Formats
Private Key Record Header And Key

Code to Change the DB Encryption Algorithm
Password and Global Salt Hash Function
Key and IV Generation

Triple DES Decrypt Function

Certificate Fragment of Database Access Key
Private Key Record Access Key

O NO O P~ W

10
11
12

14
16
17
17
17

CMU/SEI-99-TN-010

CMU/SEI-99-TN-010

Abstract

We were recently involved with a project that faced an interesting and not uncommon
dilemma. The project needed to programmatically extract private keys and digital
certificates from the Netscape Communicator v4.5 database. Netscape documentation was
inadequate for us to figure out how to do this. Asit turns out, this inadequacy was
intentional—Netscape was concerned that releasing this information might possibly violate
export control laws concerning encryption technology. Since our interest wasin building a
system and not exporting cryptographic technology, we decided to further investigate how to
achieve our objectives even without support from Netscape. We restricted ourselves to the
use of Netscape-provided code and documentation, and to information available on the Web.
Our objective was to build our system, and to provide feedback to Netscape on how to
engineer their product to provide the capability that we (and others) need, while not making
the product vulnerable or expose the vendor to violations of export control laws. This paper
describes our experiences peering “into the black box.”

CMU/SEI-99-TN-010 %

vi

CMU-SEI-99-TN-010

1 Introduction

The use of commercial off-the-shelf (COTS) software products can reduce the time and cost
of developing software, assuming that devel opers know how to make full use of the product.
COTS product vendors often supply only user-level documentation. In most cases, this level
of documentation is adequate, but in some instances the developer may need information
about the internal operation of a product, its performance characteristics, and perhaps
internal data formats. COT S software vendors are often reluctant to release such information
because it may have proprietary value. Nevertheless, it is sometimes necessary for the
developer to probe into a COTS product to obtain needed functionality or understanding in
order to effectively use the product.

Such was the case in one of our projects. We needed to programmatically extract private
keys and certificates from the Netscape Communicator (version 4.5) internal databases. The
Netscape certificate database (cert7.db) and key database (key3.db) contain certificates and
private keys that are ultimately used to provide authentication and secure communication.
Netscape does not, however, make the format of their key database (key3.db) and certificate
database (cert7.db) publicly available because releasing this information could possibly
violate the International Trade and Export Regulations (ITAR) regarding key management in
cryptographic systems.

This report describes what we did to gain insight into Netscape’s Communicator databases,
the internal formats of the databases, and the password and encryption schemes used in the
key3.db database. Note that we didl disassemble any Netscape software products. We
limited ourselves to documentation and other resources provided by Netscape and to
resources that we could obtain from the Web. The results of our worloiche used in any
manner to subvert or crack the standard encryption algorithms used by Netscape Corporation
in the protection of certificate and key material stored in the Communicator’s databases.

The rest of this report is organized of as follows: In Section 2, we describe the database used
by Netscape. Section 3 describes the record formats of the certificate database. In Section 4
we describe the key database record formats and the encryption algorithm used to encrypt
private keys. Finally, we present our summary in Section 5.

CMU/SEI-99-TN-010 1

2 Database

Thefirst step in decoding these databases was to determine the type of database system that
Netscape used to store information. If Netscape used a proprietary database, this step was
going to be difficult. We recalled that Netscape rel eased some initial source code of their
Mozilla browser. Although the released source code did not contain support for security, we
suspected that Netscape used the same database to store more than just security-related
items. If this suspicion held true, we could take advantage of our knowledge of this
implementation detail to gain programmatic access to the Netscape databases.

We downloaded the Mozilla source, unzipped it and discovered a directory named “dbm.”
After a closer investigation, we discovered that the files in the dbm directory were the source
code files for the Berkeley DB 1.85 database. Next, we built a library from the source for the
Berkeley DB 1.85. We wrote a simple test program calkBDunp” (see Figure 1) to open

a database, dump all records, and access keys in binary form.

The Berkeley DB 1.85 database supports three different types of databases files:
» DB_HASH- allows arbitrary key/data pairs to be stored in data files

 DB_BTREE - allows arbitrary key/data pairs to be stored in a sorted, balanced
binary tree

» DB_RECNO- allows both fixed-length and variable-length flat text files to be
manipulated using the same key/value pair interface BB iHASH and
DB_BTREE. ForDB_RECNQO, the key will consist of a record (line) number

The test program executed successfully on both the key (key3.db) and certificate (cert7.db)
databases. Thus, we determined that the Berkley DB 1.85 was the database system Netscape
used to create, access and modify the databases. Figure 2 shows the output from the
“DBDunp” program when given a key3.db file as input. Both the certificate and key

databases are in the DB_HASH format.

2 CMU-SEI-99-TN-010

e LR
#pragnma hdr st op

#i ncl ude <condefs. h>

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude "ntom db. h"

#pragma ar gsused
int main(int argc, char **argv) {
static HASH NFO hash_info = {16*1024,0,0, 0, 0, 0};

DB * db;

i nt st at us, recor d=R_FI RST, cnt =0;
DBT key, dat a;

if (argc!=2)

fprintf(stderr,"% <filenane>",argv[0]);
return(-1);

i f ((db=dbopen(argv[1], O RDONLY, 0644, DB HASH, &ash_i nf 0)) ==NULL) {
fprintf(stderr,"Database open error\n");
return(-1);

}

whi l e ((status=(*db->seq) (db, &ey, &dat a, record))==0) {
printf("Record %\ nKey Data: (%l bytes)\n", ++cnt, key. si ze);
dumphex((unsi gned char *)key. dat a, key. si ze);
printf("Record Data: (%l bytes)\n",data.size);
dumphex((unsi gned char *)data. dat a, dat a. si ze);
printf("\n\n");
recor d=R_NEXT,;

}

db- >cl ose(db);

if (status<0) {
fprintf(stderr,"Database sequence error");
return(-1);

}
return(0);

voi d dunphex(unsi gned char *dptr,int size) {
int cnt, counter=0;

whi | e(si ze>0)
(size>16)? cnt=16 :cnt=si ze;
printf("%®8l x ",counter);
for (int i=0;i<cnt;i++) printf("%2x ",dptr[counter+i]);
for (int i=0;i<16-cnt;i++) printf(" ")
printf(" ");
for (int i=0;i<cnt;i++)
(isprint(dptr[counter+i])) ? printf("%",dptr[counter+i]):printf(".");
printf(*\n");
count er +=16;
si ze- =16;

return;

Figure 1: DBDump.c Code

CMU/SEI-99-TN-010

Record 1

Key Data: (7 bytes)
00000000 56 65 72 73 69
Record Data: (1 bytes)
00000000 03

Record 2

Key Data: (11 bytes)
00000000 67 6¢ 6f 62 61
Record Data: (16 bytes)
00000000 d4 b4 e9 b8 d2
Record 3

Key Data: (14 bytes)
00000000 70 61 73 73 77
Record Data: (48 bytes)
00000000 03 10 01 ea f1
00000010 0d 52 6¢c 00 Ob
00000020 5e ed a0 c0 65
Record 4

Key Data: (65 bytes)
00000000 00 bl e0 ad 39
00000010 e6 fd ef d3 62
00000020 5c 81 a2 e6 2d
00000030 a9 a9 ea b0 4c
00000040 7b

Record Data: (436 bytes)
00000000 03 08 23 47 eb
00000010 20 41 20 48 69
00000020 53 69 67 6e 2c
00000030 01 82 30 1c 06
00000040 03 30 0d 04 08
00000050 04 82 01 60 bf
00000060 06 d6 le f8 b3
00000070 4c ff c3 81 8
00000080 b4 65 8b e8 5d
00000090 6e 79 d5 b4 2b
000000a0 31 1d 4b e3 de
000000b0 c8 cb f9 f4 46
000000c0 16 ca 9d 4d e6
000000d0 96 5a d7 88 26
000000e0 de fb fd f7 87
000000f0 27 40 36 a3 46
00000100 3a 96 71 33 7e
00000110 ac 03 18 37 da
00000120 35 d6 38 f2 8
00000130 94 53 9d 7b 78
00000140 03 c2 a6 9f 20
00000150 20 d4 a9 43 80
00000160 cO e0 7b 16 89
00000170 f7 48 d9 2e 89
00000180 be 5d d2 c7 c8
00000190 d2 9d e3 00 63
000001a0 89 9a 66 e4 f6
000001b0 5c df 87 24

6f

6¢C
6¢C

6f

02
2a
di

e7
34
b1l
7f

a8
73
20
Ob
47
3e
ec
be
6f

9a
ef

9e
e
la
01
23
98
87
cc
00
59
31
76
c2
22
72
a2

6e

2d
78

72
3f
39

73
ad

61
b9

2d

do
86
e3

6¢C
28

63

3c
f7
7a

74
el

68

3b
od
37

21
83
ba
a’

6b
73
20
f7
4b
94
ec
6a
39
66
86
8c
le
97
1b
f7
8b
ed
43
63
b2
b0
8f

ac
c9
ad
61

52

65

86
01
ed

36

48

6b

53
05
76

3b

3f
01
7b

b7

2d
03
1c

Ver si on

gl obal -sal t

...... ?..<;..S?-
R..* H.......
NoLo.el9..z7..0 v
9 AL X
....b4QW....Oh
V- 9
.L..UF.g.:

..#G ...K kScott

A Hissanmis Veri
Sign, Inc. IDO.
..0..

5.8 ..N..Co...
.S {x.M Mxn.e.L

Figure 2: Output of DBDump (key3.db File as Input)

CMU-SEI-99-TN-010

3 Certificate Database

The next step was to determine the format of the data and access keys for each database
record.

Decoding the certificate database was much easier than expected. We searched the Web and
newsgroups using most of the available search engines for information describing Netscape’s
certificate database. Combinations of the keywords sucér&sdb, decode, ASN.1, DER,
certificate-database, format, specification, certificate, security, andNetscape were used as

input into the search engines.

It turned out that some information describing the content and format of the Netscape
certificate database was available on the Internet. All records in the certificate database have
a common header that describes the type of record. This information was described in some
detail at the following Web sites (note that one of these sites was overseas, thus calling into
guestion whether export control laws are material insofar as Netscape’s product are
concerned):

e http://www.drh-cosultancy.demon.co.uk/cert7.html

e http://www.columbia.edu/~ariel/good-certs/

« http://www.netscape.com/eng/security/downloadcert.html

The information at these Web sites did not describe every field of the header or every field of
each record. We then obtained a copy of the Netscape Security Services (NSS) library from
Netscape. It turned out that Netscape documented, to a certain extent, the exact format of the
common header as well as the format for each possible type of record in the database. The
common header as shown in Figure 3 has the following fields:

1. aVersion field that indicates the database version (currently 7)

2. aType field that indicates thgpe of record

3. aFlags field (always zero)

CMU/SEI-99-TN-010 5

typedef struct
{

unsi gned char Versi on;
unsi gned char Type;
unsi gned char Fl ags;

} DBHeader;

Figure 3: Certificate Database Record Type Header

Using some of the NSS header files, we determined the list of possible record types (the
Typefield in Figure 3) in the certificate database as shown in Figure 4. Some of this
information was also defined in the Internet resources that we located.

/'l Record Types

#defi ne CERT7VERSI ON

#def i ne CERT7CERTI FI CATE
#defi ne CERT7NI CKNAVE
#def i ne CERT7SUBJECT

#defi ne CERT7REVOCATI ON
#def i ne CERT7KEYREVOCATI ON
#defi ne CERT7SM MEPROFI LE
#def i ne CERT7CONTENTVERSI ON 7

DU WNRFRO

Figure 4: Certificate Database Record Types

Then we focused on determining the format of each record. This task was simple thanks to

Netscape’s NSS header files. Figure 5 shows the C structures that define the format of each
record type in the database. These structures were derived using Netscape’s header files that
document the byte offsets of fields within a record and hexadecimal dumps from the
“DBDump” tool described earlier. Records in the certificate database are in big endian

format, so all fields that are of the type “unsigned short” must be byte swapped. Most of the
important information contained within a record is distinguished encoding rules (DER)
encoded.

Two records that are always in the database areER&7VERSI ON and
CERT7CONTENTVERSI ONrecords. These records have the access kéyer si on\ 0"
and"\ 7Cont ent Ver si on\ 0" respectively and may be used to identify a certificate
database.

Now that we had determined the record formats for the certificate database, a tool to browse
the database was constructed. This tool (shown in Figure 6) displays to the user a listing of
each record in the database. The user can then select a particular record and the tool will
display the key index for the record as well as its contents. Record fields that are DER
encoded can be displayed in abstract syntax notation one (ASN.1) or Hex/ASCII format.
Additionally, the tool allows the user to save a certificate to a file in DER format.

6 CMU-SEI-99-TN-010

#def i ne CERTI FI CATEHEADERFI XEDSI ZE 10
Il Fl ags for bject Signing, E-mail and SSL

#defi ne CERT7DB_VALI D_PEER (1<<0)
#def i ne CERT7DB_TRUSTED (1<<1)
#defi ne CERT7DB_SEND WARN (1<<2)
#defi ne CERT7DB_VALI D CA (1<<3)
#defi ne CERT7DB_TRUSTED CA (1<<4)
#defi ne CERT7DB_NS_TRUSTED CA (1<<5)
#def i ne CERT7DB_USER (1<<6)
#defi ne CERT7DB_TRUSTED CLI ENT_CA (1<<7)
#defi ne CERT7DB_I NVI S| BLE_CA (1<<8)

#define CERT7DB_GOVT_APPROVED CA (1<<9)
#define CERT7DB_PROTECTED OS CA (1<<10)

typedef struct

unsi gned short SSLFI ags;

unsi gned short EMil Fl ags;

unsi gned short Obj ect Si gni ngFl ags;

unsi gned short DERCertificatelLength;

unsi gned short N ckNanelLengt h;

unsi gned char *DERCertificate;

char *Ni cknane;
}CertificateHeader;

#def i ne NI CKNAMEHEADERFI XEDSI ZE 2
typedef struct

unsi gned short N ckNaneDERLengt h;
unsi gned char *N cknaneDER,
} N ckNanmeHeader ;

#defi ne SUBJECTHEADERFI XEDSI ZE 6
typedef struct
{

unsi gned short Nunber Of Certi fi cat es;
unsi gned short Ni cknanelLengt h;
unsi gned short Enai | Addr essLengt h;

char * Ni ckNane;

char * EMai | Addr ess;

unsi gned short * CertificateKeylLength;
unsi gned short * Keyl DLengt h;

unsi gned char * CertificateKeys;

unsi gned char * Keyl Ds;

} Subj ect Header ;

#defi ne M MEHEADERFI XEDSI ZE 6
typedef struct
{

unsi gned short DERSubj ect NanelLengt h;
unsi gned short M neOptionsLengt h;
unsi gned short OptionsDatelen;
unsi gned char * DERSubj ect Nane;
unsi gned char * M neOpti ons;
unsi gned char * OptionsDat e;

} M neHeader;

#def i ne REVOCATI ONHEADERFI XEDSI ZE 4
typedef struct
{

unsi gned short DERCertificatelength;
unsi gned short URLLengt h;
unsi gned char *DERCertificate;
char *URL;
} Revocati onHeader;

#def i ne CERTVERS|I ONHEADERFI XEDS| ZE 0
typedef struct

/1 Contains just the comon header
} Cert Versi onHeader;

#define CERTCONTENTVERS|I ONHEADERFI XEDSI ZE 1
typedef struct

unsi gned char Cont ent Ver si on;
} Cert Cont ent Ver si onHeader ;

Figure 5: Certificate Database Record Formats

CMU/SEI-99-TN-010

The database key information shown in Figure 6 at the beginning of the record content is
used by the database to quickly retrieve arecord. A record is typically retrieved using the key
information as shown in the code fragment bel ow:

DBT key, data;

key.data=(void *)"Version”;

key.size=strlen(“Version”)+1;

if ((db->get)(db,&key,&data,0)==RET_SUCCESS) DisplayRecord(&data);

In the above exampl e the key and data variable are the type DBT (data base thang [sic]) as
described in the Berkley 1.85 documentation.

The exact details of how Netscape selects keys for each particular type of record are
unknown. In some cases the database key appears to contain DER encoded information while
in other cases the key appearsto be just a string. Additional information regarding database
index keys will be discussed in the next section.

8 CMU-SEI-99-TN-010

etzcape DB Smiffer - E:\Metscape DBANS_Snoopi\cert?.db [Cert? Databaze with 105 Records]

Eile

Database Controls Select Yiewable Record Types -
| 4| | H | v Unknown Record Tupes il Save Biivate key |

[w Cert 7 Database Wersion

v Display ASM.1 v Cert 7 Centificate
v Cert 7 Mickname Save Certificate
[V Show DE Key [¥ Cert 7 Subject . |
Fecord Number | Record Tyupe | Hint Infomation

RE_Lhl o CTE ST P A

g
10 MickMame GTE CyberTrust Root Ca LI

Size 1= :117 bytes
0 014C E28F DFeC FEFE 1CEA 1094 AAZD 2D9D F730 6231 L...1. .. Z.. —. .0bl
20 1130 OF06 D355 0407 1308 496E 7465 726E 6574 3117 0., 7. .. . Internetl.
40 3015 0603 5504 0A13 DES6 6572 B953 6967 6E2ZC 2049 o...0... VeriSign, I
&0 EEF3 2E31 3430 3206 0355 040B 132B S6A5 7269 G369 nc. 1402, U, . +VeriSi
a0 676E 2043 6CE1 7373 2031 2043 4120 2D20 498E 6469 gn Clas=s 1 Ch — Indi

100 7669 6475 616C 2053 7562 7363 7269 &2eb5 V2 widual Subscriber
Record:
Size: 1095 bytes
Version: 7
Type: Certificate
Flags: 0=00
SSL Flags o O=40
. U=zer
E-Hail Flags © o 0=41
;. Walid Peer
. U=zer
Object Signing Flags=s: 0=40
. Uzer

Cerificate Size: 1047
HickHame Length: 3t
HickHane:Scott A Hissam's VeriSign. Inc. ID
Certificate Data: Length 1047 bytes
0 30 1043 SEQUEHCE {
4 30 892 SEQUENCE

g Al 3 [01 {
10 0z 1: INTEGER 2
: T
13 02 16 INTEGER
: AC E2 BF DF &C FE FE 1C S5A 10 94 AA 2D 2D 9D F7
31 30 13: SEQUEHCE
33 06 9. OBJECT IDENTIFIER
: mdSwithRSAEncryption (1 2 840 113549 1 1 4)
: (PECS #1)
44 05 0. HULL
: I
46 30 LR SEQUEHCE {

43 31 17: SET

i
50 20 15: SEQUENCE —ILI
1| | »

Figure 6: Database Browsing Tool

CMU/SEI-99-TN-010 9

4 Key Database

Decoding the key database was significantly more difficult than was the case for the
certificate database. This difficulty was mainly due to the lack of documentation available,
and the fact the private key record in the data are encrypted with a password. Unlike the
certificate database, the Netscape NSS does not provide any information describing the
format of this database or the encryption used.

In trying to decode this database, we first dumped all of the recordsin the database. We
discovered that there are only four different types of recordsin the key database and only
two records contained the common header mentioned in Section 3. Records that use the
common header have the record types shown in Figure 7.

/1 Record Types
#defi ne PRI VATEKEY 8
#def i ne PASSWORDCHECK 16

Figure 7: Key Record Types

The other two records which do not contain the common header are the Ver si on record and
thed obal Sal t * record. These records can be easily identified by their access keys,
“Version " and "global-salt" respectively. The key database can be identified by the
existence of the version record. Additionally, if the key database contains any private key
recordsit will aso contain a password check record, which can be accessed using
“password-check” for the database access key.

As in the certificate database, records in the key database are in big endian format. The key
database record formats shown in Figure 8 were actually easy to determine. However,
determining how to use this information to decrypt a private key was a different story.
Determining the role of each record in the decryption of a private key was going to be a
challenge.

We started this task by first dumping a private key record header and data (ASN.1 encoded)
as shown in Figure 9. The software used to decode the ASN.1 encoded information was

written by Peter Gutmann and may be download from his Web site at

http://lwww.cs.auckland.ac.nz/~pgut001/

L A string of random bits concatenated with a key or password to foil pre-computation attacks.

10 CMU-SEI-99-TN-010

Decoding the ASN.1 key data revealed the object identifier (OID)? of (06 0B 2A 86 48 86 F7
0D 01 0C 05 01 03) that has description string of

pkcs-12- PBEW t hShalAndTri pl eDESCBC

indicating the specific encryption technique used to encrypt the private key. This OID
description specifies password-based encryption (PBE) with secure hash version one (SHA1)
and the Triple Data Encryption Standard (DES) in cipher block chaining mode (CBC). The
OCTET String and the integer contained in the sequence following the OID are the salt and
iterator value for the PBE scheme. Finally, thelast OCTET STRING is the encrypted private

key.

typedef struct

unsi gned char d obal Sal t[16];
} d obal Sal t Header ;

typedef struct

/1 Contains just the common header
} KeyVersi onHeader ;

#defi ne KEYPASSCHKFI XEDSI ZE 18
typedef struct
{

unsi gned char Salt[16];

unsi gned short Crypt Al gLengt h;

unsi gned char *Al gl nfo;

unsi gned char *Encrypt edAccessKey; // "password-check" Encrypted 16 bytes
} Passwor dCheckHeader ;

#def i ne KEYHEADERFI XEDSI ZE 8
typedef struct

unsi gned char Salt[8];

char * Ni ckNang;
unsi gned char * Keyl nf oDER,
} KeyHeader ;

Figure 8: Private Key Database Record Formats

2 A concept defined by the ASN.1 specification.

CMU/SEI-99-TN-010 11

Record:

Si ze: 436 bytes
Version: 3

Type: Private Key
Fl ags: 0x23

Initial Vector: 47 EB A8 CE FC 4B C0 6B
Key Nane: Scott A Hi ssamis VeriSign, Inc. ID
Name Lengt h: 34
Encrypted ASN.1 Private Key
0 30 386: SEQUENCE {
4 30 28: SEQUENCE {
6 06 11: OBJECT | DENTI FI ER
: pkcs- 12- PBEW t hShalAndTri pl eDESCBC (1 2 840 113549 1 12 5 1
3)
(PKCS #12 O D PBEID (1 2 840 113549 1 12 5 1). Deprecated,
use the inconpati bIe but simlar (1 2 840 113549 1 12 1 3) or (1 2 840 113549 1 12 1

4) instead)
19 30 13: SEQUENCE {
21 04 8: OCTET STRI NG
: 47 EB A8 CE FC 4B CO 6B

31 02 1: I NTEGER 1

: }
34 04 352: OCTET STRI NG
: BF 3E 52 71 3E 07 94 73 25 F2 28 8D 06 D6 1E F8
B3 EC FA 59 17 06 EC F9 8F 92 19 FE 4C FF C3 81
F8 BE FO 12 A2 DD 6A D3 17 DA 56 5A B4 65 8B E8
5D 6F 4B AE 6F 5F 39 DC 1F EF BF 56 6E 79 D5 B4
2B 9A 6E 20 98 4D 66 98 79 4C 85 98 31 1D 4B E3
DE EF C3 07 54 76 86 50 A8 22 9E 94 C8 CB F9 F4
46 9E 52 26 F8 20 8C 51 E8 52 6E 95 16 CA 9D 4D
E6 7E 90 69 96 1E 1E DF CC 67 FE AB 96 5A D7 88
26 1A A9 CC 52 F6 97 OF 28 FC 52 96 DE FB FD F7
87 01 AE 71 EO 88 1B C6 7D 01 C8 83 27 40 36 A3
46 23 DD 64 86 64 F7 64 73 46 04 30 3A 96 71 33
7E 98 F1 BE 18 B9 8B 10 DA FF FA 32 AC 03 18 37
DA 87 32 5F EB F7 ED 0D 37 B2 1B 97 35 D6 38 F2
F8 CC 4E 2D 00 E2 43 F1 6F 02 B2 FD 94 53 9D 7B
78 00 4D FB 4D 47 63 6E B9 65 92 4C 03 C2 A6 9F
20 59 80 D5 A0 D4 B2 79 51 6E 31 B6 20 D4 A9 43
80 31 CE C6 93 0C BO 1E 2F 13 3F C3 CO EO 7B 16
89 76 88 DD 38 D6 8F 2B 5F 6F 50 1D F7 48 D9 2E
89 C2 04 1F 78 6B AC 85 97 55 OF 71 BE 5D D2 C7
C8 22 41 B6 C9 AO C9 81 CD 93 55 83 D2 9D E3 00
63 72 4F 79 D4 E9 AD 1D 1E CD 79 3F 89 9A 66 E4
F6 A2 1D EC A0 3E 61 35 81 CC B8 83 5C DF 87 24

}

Figure 9: Private Key Record Header And Key

We needed to find a document that described the PBEWithShalAndTripleDESCBC
password-based encryption technique. An initial search of the Web did not reveal any
additional information about the OID. However, we located documentation that described the
password-based encryption technique for asimilar OID called PBEWithShalAnd3-
KeyTripleDESCBC in the RSA laboratories PK CS#12 Personal Information Exchange
Standard [RSA 97]. We thought there was a good chance that both object identifiers used the
same password-based encryption technique.

We performed a Web search for an encryption package that supported the hashing function
SHA1 and Triple DES CBC encryption. This resulted in the discovery of a package called
SSLEAY that contains cryptographic libraries and certificate support software. Additionally,
we located a software package that enhanced the certificate support software in SSLEAY by
adding support for the PK CS12 standard [RSA 97]. Thiswas fantastic because we found all
of the software needed to decrypt a Netscape private key record on the Web.

12 CMU-SEI-99-TN-010

We examined the source code from the downloaded software and incorporated into our
browsing tool the portions that were needed to decrypt a private key. We then attempted to
decrypt a private key using the code extracted from the implementation of the PKCS12
standard. This attempt ended in failure.

Because of our failed attempt, we decided to take a closer ook at the Netscape NSS
software. Upon examination, we noticed the function call
SECKEY_ChangeKeyDBPasswor dAl g. ThisAPI call appeared to change the password-
based encryption algorithm used to encrypt the database. This was a guess because the NSS
documentation only describes the higher level API calls necessary for using SSL and NSPR,
it does not include (other than undocumented C header files) any documentation describing
the lower level APIs. Examination of the header files yielded two password-based
encryption algorithm identifiers that were of particular interest:

1. SEC O D PKCS12_PBE W TH SHA1_AND TRI PLE_DES CBC
2. SEC O D _PKCS12_V2_PBE_W TH_SHA1_AND 3KEY_TRI PLE_DES CBC

Thefirst algorithm identifier appeared to be the same as the OID that we were unable to find
any information about, while the second algorithm appeared to be the same as the OID that
we had obtained documentation as well was an implementation. Possibly, our assumption
that both OID’s were compatible was incorrect.

We then proceeded to write a program to change the database encryption algorithm to
SEC_OID_PKCS12 V2 _PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBfter

much trial and error in trying to figure out the semantics of Netscape's undocumented
interface, we were successful using code shown in Figure 10. This exercise turned out to be
very informative. We learned that the global salt record was used in combination with the
password (exact details were not known at this time) and that, contrary to what we had
thought, the two OID’s wereot compatible.

Next, we tried to decrypt a private key record in the converted base database. Initially we
were unsuccessful, but after some trial and error, with different password formats (unicode
or non-unicode), we discovered that we could decrypt a private key. The output from the
NSS API callSECKEY_HashPasswor d needed to be the input password to the PBE
PKCS12 decryption software that we obtained from the Web. After further trial and error
(really a wild guess), we determined that 8#CKEY_HashPasswor d actually performs

the hashing function shown in Figure 11. This was determined by first noticing that all
password were always 20 bytes long, indicating that the user input password and salt were
most likely being used as input to SHA-1 (since SHA1 is a hashing function that always
returns a twenty-byte digest).

CMU/SEI-99-TN-010 13

On our first attempt, we used the SHA1 Updat e call in the hash function shown in Figure
11 to concatenate salt onto the password; this failed, however. Next we changed the order
(salt then password); this worked.?

Almost incidentally, we also determined that key databases do not always contain a “Global
Salt” record, which is reason for thlaved obal Sal t flag in the password hashing
function, which explains the “if” statement in the hash function. The hashed password,
however, isalways 20 bytes in length.

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <secitem h>

#i ncl ude <key. h>

int main (int argc, char **argv)

{
SECKEYKeyDBHandl e *Handl e;
SECI tem *st;
char passwd[512] ;
if (argc!=2) {
printf("usage: changedb <database file>\n");
return -1;

}

i f ((Handl e=SECKEY_OpenKeyDBFi | enanme(argv[1], 0))==NULL) {
printf("database open error\n");
return -1;

printf("Enter Password:");

f get s(passwd, si zeof (passwd), stdin);

if (strlen(passwd)) passwd[strlen(passwd)-1]="\0";

st =SECKEY_HashPasswor d(passwd, Handl e- >gl obal _salt);

i f (SECKEY_CheckKeyDBPasswor d(Handl e, st) ! =SECSuccess) {
printf("lIncorrect Password\n");
SECKEY_Cl oseKeyDB(Handl e) ;
return -1;

gi nal Database format was SEC O D PKCS12_PBE W TH SHA1_AND TRI PLE DES CBC
(SECKEY_ChangeKeyDBPasswor dAl g(Handl e, st, st,

EC_O D PKCS12_V2_PBE_W TH _SHA1_AND 3KEY_TRI PLE_DES_CBC) ==SECSuccess)
rintf("Database Format Change Success\n");
i ntf("Database Fornmat Change Falied\n");

SECKEY_Cl oseKeyDB(Handl e) ;
return O;

Figure 10: Code to Change the DB Encryption Algorithm

Unsi gned char HashPasswor d[20] ;

void __fastcall TForml:: Set HashPasswor d(char *Passwor d)

{
SHA CTX c;
SHAL I nit(&c);
i f (Haved obal Salt) SHA1l_Updat e(&c, d obal Salt, 16);
SHA1_Updat e(&c, (unsigned char *)Password, strlen(Password));
SHA1_Fi nal (HashPasswd, &c) ;

}

Figure 11: Password and Global Salt Hash Function

At this point, our tool could decrypt all of the records in private key database that had been
converted to use theEc_a D PKCS12_V2_PBE W TH SHA1_AND_3KEY_TRI PLE_DES_CBC encryption
algorithm. However, requiring a database conversion was unsatisfactory to us—we were too
close to stop here. So we needed to determine the details of the
PBEWithShalAndTripleDESCBC encryption algorithm. An exhaustive search of the Web

% Sometimes, good clean living pays off.

14 CMU-SEI-99-TN-010

was performed and the following information was discovered about this uncommon OID
(note again the overseas addresses in one of the sources):

* Persona Information Exchange Syntax and Protocol Standard Version 0.020 27, January
1997 Microsoft Corporation

e aPFX software program (pfx-012.tar.gz) written by Dr. Stephen Henson shenson@drh-
consultancy.demon.co.uk

* PKCS#1 RSA Cryptography Specifications Version 2.0

* RFC 2104 HMAC: Keyed-Hashing for Message Authentication

the TLS Protocol Version 1.0

Using the above resources and still more trial and error, this time to figure out the semantics
of the above terse documentation, we finally were able to decrypt the private key information
in the database without using NSS to change to the database password encryption algorithms.
The private keys were decrypted as follows:

1. Theuser input password and global salt (if present) are used to generate a hash password
using the Set HashPasswor d method shown in Figure 11.

2. The "Key” and the “Initial Value” for Triple Des Cipher are generated by calling the
BEPCGet Keyl V method shown in Figure 12 using tHeshPasswor d for the
password value, salt and iterator from the ASN.1 object. A 24-byte key and 16-byte
initial value are returned.

3. Next, the decrypt function shown in Figure 13 is called usingnitial value and key
generated in step 2 and the encrypted data portion of ASN.1 object. If decryption is
successful, a pointer to decrypted data as well as its length is returned.

This software was then incorporated into our browsing tool. This tool now had the capability
to examine and decrypt all the records in Netscape’s certificate and key databases.

Next, we investigated Netscape’s password check record. After some trial and error, we
determined that this record contained a sixteen-byte salt, an encryption algorithm OID, and
sixteen bytes of encrypted data. When the encrypted data is decrypted correctly, the plain
text turns out to be the string “password-check.” This is how Netscape determines if a
password is correct without decrypting a private key record.

Now our database-browsing tool was robust enough to allow us to easily examine the
Netscape databases. We investigated how Netscape uses database keys to link certificates in

CMU/SEI-99-TN-010 15

the certificate database to the private key database. We studied a certificate and private key

record that was known to match and noticed that Netscape included an octet string (see

Figure 14), the certificate record which was the database access key to obtain the private key

record from the private database (see Figure 15). Additional information about Netscape’s

use of database access keys can be determined through studying database records using the
browsing tool. Such information is beyond the scope of this report.

void __fastcall TForml:: PBEGet Keyl V(unsi gned char *Password,
unsi gned char *Salt,
i nt Sal t Lengt h,
i nt Iterator,
unsi gned char *Key,
unsi gned char *1V)

unsi gned char Di gest[20],
SecondDi gest [20] ,
DK[40] ;
SHA CTX c;
HVAC SHA1 _CTX hmac_ctx;
nenset (SecondDi gest, 0, 20);
nencpy (SecondDi gest, Salt, Saltlength);
SHAL Init(&c);
SHA1_Updat e(&, Password, 20);
SHA1 Update(&c, Salt, SaltlLength);
SHA1_Fi nal (Di gest, &c);
for (int i =1; i < Iterator; i++)

SHAL Init(&c);
SHA1_Updat e(&c, Di gest, 20);
SHA1_Fi nal (Di gest, &c);
}

for (int i =0; i < 2; i++)

{
HVAC_SHA1 | nit (&hnmac_ctx, Digest, 20);
HVAC_SHA1_Updat e(&nmac_ct x, SecondDi gest, 20);
HVAC_SHA1_ Updat e(&nac_ctx, Salt, Saltlength);
HMAC_SHA1_Fi nal (&hmac_ctx, &DK[i*20], NULL);
HVAC_SHA1 | nit (&hnmac_ctx, Digest, 20);
HVAC_SHA1_Updat e(&nmac_ct x, SecondDi gest, 20);
HVAC_SHA1_Fi nal (&nac_ctx, SecondDi gest, NULL);

}
nencpy (Key, DK 24);
mencpy (1V, DK + 32, 8);

Figure 12: Key and IV Generation

16 CMU-SEI-99-TN-010

unsi gned char * _ fastcall TFornil:: Tri ppl eDESDecrypt (unsi gned char *Crypt Dat a,

int CryptDatalen,

unsi gned char *Key,
unsi gned char *I1V,
int *Decrypt Dat alLen)

{
DES_EDE3_CBC Type ci pher_ctx;
unsi gned char *Decrypt Dat a;
int tnp;
if ((DecryptData = (unsigned char *)malloc (CryptDatalen + 8))==NULL)

*Decr ypt Dat aLen=0;
return(NULL);

}
DES EDE_3_CBC | ni t (&ci pher _ctx, Key, |V, DECRYPT);
DES EDE_3_CBC Updat e(&ci pher _ct x, Decr ypt Dat a, Decr ypt Dat aLen, Crypt Dat a,
Crypt Dat aLen) ;
if (!DES_EDE_3_CBC Final (&ci pher _ctx, Decrypt Dat a+*Decrypt Dat aLen, & np))

{
free(DecryptData);
*Decr ypt Dat aLen=0;
return(NULL);
(*Decrypt Dat aLen) +=t np;

return(DecryptData);

Figure 13: Triple DES Decrypt Function

470 03 75: BI T STRING O unused bits, encapsul ates {
473 30 72: SEQUENCE {

475 02 65: | NTEGER

00 B1 EO AD 39 E7 09 41 B9 D3 21 90 9B OF 95 78
E6 FD EF D3 62 34 51 4D 79 02 83 17 9F 4F 09 68
5C 81 A2 E6 2D Bl F7 BB E6 69 BA 39 A5 F4 17 0B
A9 A9 EA BO 4C 7F FF 55 A5 46 A7 67 10 3A 1F E1

: 7B
542 02 3: | NTEGER 65537
: }
}

Figure 14: Certificate Fragment of Database Access Key

Key Dat a:
Size is :65 bytes
0 00B1 EOAD 39E7 0941 B9D3 2190 9BOF 9578 E6FD EFD3 L 90 AT

20 6234 514D 7902 8317 9F4F 0968 5C81 A2E6 2DBL F7BB b4QW....Oh\...-...

40 E669 BA39 AS5F4 170B A9A9 EABO 4C7F FF55 A546 A767 9
60 103A 1FEl1 7B

Figure 15: Private Key Record Access Key

CMU/SEI-99-TN-010

17

5 Summary

Netscape’s certificate database is straightforward and easy to decode. The key database was
somewhat difficult to decode because of the difficulty in obtaining information about the
obsolete PFX format that is used to encrypt the private key data. This PFX specification
defined the uncommon PBEWithShalAndTripleDESCBC OID. The ability to decode the key
and certificate databases stems from Netscape’s use of standards such as ASN.1 and PKCS.
Knowledge of these standards allowed us to more easily interpret information within
Netscape databases. While the use of Netscape’s NSS provided some information, we
believe that the information provided in this document could have been determined without
NSS. However, if Netscape did not use standards in the development of the databases,
records, and encryption schemes, this task would have been nearly impossible.

The major lessons to be learned from this case study are the following:

1. If you need to peer inside a product (a black box), you must know what you are looking
for. In this case study deep and detailed knowledge of computer security was necessatry.
Without this knowledge it is doubtful that progress could have been made.

2. For good and sufficient reasons, vendors such as Netscape will make use of standards in
building their products (for example, ASN.1). Knowledge of these standards is also
crucial for developers who want to peer inside a product. From a vendor’s perspective,
this shows the use of standards to be a two-edged sword.

3. Asignificant degree of systems expertise is needed by developers who will peer inside a
product. Programs must be written, raw data dumps must be interpreted, networks
“sniffed,” and so forth in order to crack the puzzle. Moreover, strong problem solving
skills and perseverance are needed since there is rarely just one puzzle to be cracked.

All of this tends to support the observation that building systems from commercial software
product often requires more, rather than less, technical sophistication on the part of software
developers.

18 CMU-SEI-99-TN-010

References

Dierks 98

Krawczyk 97

Microsoft 97

RSA 98

RSA 97

RSA 88

Dierks, T. & Allen, C. “The TLS Protocol Version 1.0,” internet draft
<draft-ieft-tls-protocol-05.txt> [online]. Available FTP: <URL.:
ftp://ds.internic.net/internet-drafts/draft-ietf-tls-protocol-05.txt>
(November 12, 1997).

Krawczyk, H.; Bellare, M.; & Canetti, R. “HMAC: Keyed-Hashing for
Message Authentication,” request for comments <rfc2104.txt> [online].
Available WWW:

<URL: http://www.ietf.org/rfc/rfc2104.txt> (February 1997).

Microsoft CorporationPFX: Personal |nformation Exchange Syntax
and Protocol Sandard, Version 0.020. Microsoft Developers Network
(MSDN) Library. Seattle, Wa.: Microsoft Corporation, January 1997.

RSA LaboratoriesPKCS#1 RSA Cryptography Specification Version
2.0 [online]. Available FTP:

<URL.: ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-1v2.asc>
(September 1998).

RSA LaboratoriesPKCS#12 Personal |nformation Exchange Syntax
Sandard Version 1.0, draft [online]. Available WWW: <URL:
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-12.html>
(April 30, 1997).

RSA LaboratoriesPKCS#5: Password-Based Cryptography Sandard
\ersion 2.0, second draft [online]. Available WWW:

<URL: http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-5.html>
(December 10, 1988).

CMU/SEI-99-TN-010

19

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES
March 1999 COVERED
Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Into the Black Box: A Case Study in Obtaining Visibility into Commercial Software C — F19628-95-C-0003

6. AUTHOR(S)
Daniel Plakosh, Scott Hissam, Kurt Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER
Carnegie Mellon University

Pittsburgh, PA 15213 CMU/SEI-99-TN-010
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/DIB AGENCY REPORT NUMBER

5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS
13. ABSTRACT (MAXIMUM 200 WORDS)

We were recently involved with a project that faced an interesting and not uncommon dilemma. The project
needed to programmatically extract private keys and digital certificates from the Netscape Communicator v4.5
database. Netscape documentation was inadequate for us to figure out how to do this. As it turns out, this
inadequacy was intentional—Netscape was concerned that releasing this information might possibly violate export
control laws concerning encryption technology. Since our interest was in building a system and not exporting
cryptographic technology, we decided to further investigate how to achieve our objectives even without support
from Netscape. We restricted ourselves to the use of Netscape-provided code and documentation, and to
information available on the Web. Our objective was to build our system, and to provide feedback to Netscape on
how to engineer their product to provide the capability that we (and others) need, while not making the product
vulnerable or expose the vendor to violations of export control laws. This paper describes our experiences peering
“into the black box.”

14. SUBJECT TERMS 15. NUMBER OF PAGES
commercial off-the-shelf (COTS), component integration, netscape, security 19 pp.

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Contents
	List of Figures
	Abstract
	1 Introduction
	2 Database
	3 Certificate Database
	4 Key Database
	5 Summary
	References

