=== Software Engineering Institute
Carnegie Mellon

Research, Tec/f’hnology, and
System Solutions Program

Effectively Serving the Changing
Needs of DoD Missions

Research, Technology, and System Solutions Program
Effectively Serving the Changing Needs of DoD Missions

Cyber-Physical and Ultra-Large-Scale Systems

Ensuring Safety in Cyber-Physical Systems 1
Toward Safe Optimization of Cyber-Physical Systems 3
Real-Time Scheduling on Heterogeneous Multicore Processors 5
Regression Verification for Real-Time Embedded Software Systems 7
Ultra-Large-Scale Systems: The Software Challenge of the Future................. 10

Edge-Enabled Tactical Systems

Equipping the Soldier with End-User Programming 13
A New Approach for Handheld Devices inthe Military 15
Cloud Computing for the Battlefield, 16
Cloud Computing atthe TacticalEdge i ... 17

Group-Context-Aware Mobile Applications 19

Cyber-Physical and
Ultra-Large-Scale Systems

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions

Ensuring Safety in Cyber-Physical Systems

In some key industries, such as defense,
automobiles, medical devices, and the
smart grid, the bulk of the innovations
focus on cyber-physical systems. A key
characteristic of cyber-physical systems is
the close interaction of software
components with physical processes,
which impose stringent safety and
time/space performance requirements on
the systems. This article describes research
and development we are conducting at the
Software Engineering Institute to optimize
the performance of cyber-physical systems
without compromising their safety.

Cyber-physical systems are often safety-
critical since violations of their
requirements, such as missed deadlines or
component failures, may have life-
threatening consequences. For example,
when a cyber-physical system in a car
detects a crash, the airbag must inflate in
less than 20 milliseconds to avoid severe
injuries to the driver. Industry
competitiveness, along with the urgency of
fielding cyber-physical systems to meet
rapidly evolving Department of Defense
(DoD) mission needs, are increasingly
pressuring manufacturers to implement
cost and system performance optimizations
without understanding their safety
consequences. The impact of this lack of
understanding on the commercial world
can be seen in recent automotive recalls,
delays in the delivery of new airplanes, and
airplane accidents.

Although optimizing a cyber-physical
system is hard, cost-reduction market
pressures and small-form factors (e.g.,

small, remotely piloted aircraft [RPA])
often demand optimizations. An additional
challenge faced by DoD cyber-physical
systems is the scheduling of real-time tasks
for which the amount of computation
performed is not fixed but depends on the
environment. For instance, the
computation time of collision avoidance
algorithms in RPA systems often varies in
proportion to the objects the RPA finds in
its path. This variation is hard to
accommodate in traditional real-time
scheduling theory, which assumes a fixed,
worst-case execution time. Nonetheless,
real-time scheduling is essential for RPAs
and other autonomous systems that must
function effectively in dynamic
environments with limited human
intervention.

As part of our research, we are
investigating a safe “double-booking” of
processing times between safety-critical
and non-safety-critical tasks that can
tolerate occasional timing failures
(deadline misses). This double-booking
approach helps reduce the over-allocation
of processing resources needed to ensure
the timing behavior of safety-critical tasks.
Timing assurance is possible in
conventional real-time systems by
reserving sufficient processing time for
tasks to execute for their worst-case
execution time. The typical execution time
of these tasks, however, is often less than
the worst-case execution time, which
occurs very rarely in practice. The
difference between the worst-case and
typical execution time of these tasks is thus
considered an over-allocation.

Our approach takes advantage of over-
allocation by packing safety-critical and
non-safety-critical tasks together, letting
the latter use the processing time that was
over-allocated to the former. This approach
essentially double-books processing time
to both the safety- and non-safety-critical
tasks. To assure the timing of the safety-
critical tasks, however, whenever these
tasks need to run for their worst-case
execution time, we stop noncritical tasks.
We identify this approach as an
asymmetric protection scheme since it
protects critical tasks from noncritical
ones, but does not protect noncritical tasks
from critical ones.

An example of where asymmetric
protection can be applied is an automotive
system. To continue with our earlier air
bag example, a car’s air bag inflator has a
task that continuously checks whether a
crash has occurred. Of the 20 milliseconds
allotted for airbag deployment, it may take
only 5 milliseconds to conduct the check.
If a crash has occurred, the airbag will
continue to inflate during the remaining 15
milliseconds. If no crash has occurred,
however, the remaining 15 milliseconds
that the processor was reserved for this
task will be available for non-safety-
critical tasks, such as fuel efficiency,
acceleration, and active suspension.

The deliverables from our project will

include a modified version of the Linux

operating system that implements the

temporal protection scheme for mixed-

criticality systems and the appropriate

analysis algorithms to verify the timing
1

Research, Technology, and System Solutions

behavior of the system. We will also
develop optimization algorithms to
maximize the utility that users can achieve
from different applications available in the
modified operating system. We are
collaborating with Jeffrey Hansen of the
Institute for Complex Engineered Systems,
which is part of Carnegie Mellon
University’s (CMU) Carnegie Institute of
Technology; John Lehoczky of CMU’s
Statistics Department; and Ragunathan
(Raj) Rajkumar of the Electrical and
Computer Engineering Department at
CMU.

By Dionisio de Niz, Senior Member of
the Technical Staff

4/25/2011

Related Web Sites
www.contrib.andrew.cmu.edu/~dionisio/

For General Information

For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 2

by Carnegie Mellon University.

http://www.stat.cmu.edu/
http://www.stat.cmu.edu/
http://www.ece.cmu.edu/~raj/
http://www.ece.cmu.edu/~raj/

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Toward Safe Optimization of Cyber-Physical Systems

Cyber-physical systems (CPS) are
characterized by close interactions between
software components and physical
processes. These interactions can have life-
threatening consequences when they
include safety-critical functions that are not
performed according to their time-sensitive
requirements. For example, an airbag must
fully inflate within 20 milliseconds (its
deadline) of an accident to prevent the
driver from hitting the steering wheel with
potentially fatal consequences.

Unfortunately, the competition of safety-
critical requirements with other demands to
reduce the cost, power consumption, and
device size also creates problems, such as
automotive recalls, new aircraft delivery
delays, and plane accidents. Our research
leverages the fact that failing to meet
deadlines doesn’t always have the same
level of criticality for all functions. For
instance, if a music player fails to meet its
deadlines, the sound quality may be
compromised, but lives are not threatened.
Systems whose functions have different
criticalities are known as mixed-criticality
systems. This article updates our earlier
one to describe the latest results of our
research on supporting mixed-criticality
operations by giving more central
processing unit (CPU) time to functions
with higher value while ensuring critical
timing guarantees.

During our research, we observed that
different functions provide different
amounts of utility or satisfaction to the
user. For instance, a GPS navigation
function may provide higher utility than a

music player. Moreover, if we give more
resources to these functions (for example,
more CPU time) the utility obtained from
them increases.

In general, however, the amount of utility
obtained from additional resources does
not grow forever, nor does it grow at a
constant rate. The additional increment in
utility for each additional unit of resource
instead decreases to a point where the next
increment in utility is insignificant. In such
cases, it is often more important to
dedicate additional computational
resources to another function that is
currently delivering lower utility and will
deliver a larger increment in utility for the
same amount of CPU time.

For example, assuming that we get a faster
route to our destination if more CPU time
is dedicated to the GPS functionality, it
seems obvious that the first route we get
from the GPS will give us the biggest
increment in utility. If we lack enough
CPU time (due to the execution of other
critical functions) to run both the GPS and
the music player, we will choose the GPS.
We may even prefer to give more CPU
time (if we discover that more time is
available) to the GPS to help avoid traffic
jams before we decide to run the music
player. Letting the GPS run even longer to
select a less traffic-clogged route, however,
may give us less utility than running the
music player.

At this point, we may prefer to start
running the music player if we have more
CPU time available. We thus change our

allocation preference because the
additional utility obtained by giving the
GPS more CPU time is less than the utility
obtained by giving the music player this
time. This progressive decrease in the
utility obtained as we give more resources
to a function is known as diminishing
returns, which can be used to allocate
resources to ensure we obtain the
maximum total utility possible considering
all functions in the system.

Our research uses both the diminishing
returns characteristics of low-criticality
functions and criticality levels to
implement a double-booking computation-
time reservation scheme. Traditional real-
time scheduling techniques consider the
worst-case execution time (WCET) of the
functions to ensure they always complete
before their deadlines by reserving CPU
time used only on the rare occasion that the
WCET occurs. We take advantage of this
fact and allocate the same CPU time for
functions of lower criticality. When both
functions request the CPU time reserved
for both at the same time, we favor the
higher-criticality function and let the
lower-criticality function miss its deadline.

Our double-booking scheme is analogous
to the strategies airlines use to assign the
same seat to more than one person. In this
case, the seat is given to the person with
preferred status (e.g., “gold members”).
Our project uses utility—in addition to
criticality—to ensure that the CPU time
that is double-booked is given to functions
providing the largest utility in case of a
conflict (both functions requesting the

3

Research, Technology, and System Solutions

double-booked CPU time). Our double-
booking scheme provides the following
two benefits:

« It protects critical functions, ensuring
that their deadlines are always met.

« It uses the unused time from the critical
functions to run the noncritical functions
that produce the highest utility.

Our research is aimed at providing real-
time system developers with an analysis
algorithm that accurately predicts system
behavior when it is running (runtime).
Developers use these algorithms during the
design phase (design time) to test whether
critical tasks will meet their deadlines
(providing assurance) and how much
overbooking is possible.

To evaluate the effectiveness of our
scheme, we developed a utility degradation
resilience (UDR) metric that quantifies the
capacity of a CPS to preserve the utility
derived from double-booking. This metric
evaluates all possible conflicts that can
happen due to double-booking and how
much total utility is preserved after the
conflict is resolved by deciding what
function gets the double-booked CPU time
and what functions are left without CPU
time. The utility derived from the
preserved functions is then summed to
compute the total utility that a specific
conflict resolution scheme can preserve.

In theory, a perfect conflict resolute
scheme should preserve the maximum
possible utility. In reality, however,
decisions must be made ahead of time
assuming that some critical functions will
run for their WCET (even though they may
not) to ensure that they finish before their
deadlines. Unfortunately, if they execute

10/31/2011

for less time, it may already be too late to
execute other functions.

Using the UDR metric, we compare our
scheme against the Rate-Monotonic
Scheduler (RMS) and a scheme called
Criticality-As-Priority Assignment that
uses the criticality as the priority. Our
experiments showed we can recover up to
88 percent of the ideal utility that we could
get if we could fully reclaim the unused
time left by the critical functions and if we
had perfect knowledge of exactly how
much time each function needed to finish
executing. In addition, we observed our
double-booking scheme can achieve up to
three times the UDR that RMS provides.

We implemented a design-time algorithm
to evaluate the UDR of a system and
generate the scheduling parameters for our
runtime scheduler that performs the
conflict resolutions of our overbooking
scheme (deciding which function gets the
overbooked CPU time). This scheduler
was implemented in the Linux operating
system as a proof of concept to evaluate
the practicality of our mechanisms. To
evaluate our scheme in a real-world
setting, we used our scheduler in a
surveillance unmanned aerial vehicle
application using the Parrot A.R. Drone
quadricopter with safety-critical functions
(flight control) and two noncritical
functions (video-streaming and vision-
based object-detection functions).

Our results confirmed that we can recover
more CPU cycles for noncritical tasks with
our scheduler than with the fixed-priority
scheduler (using rate-monotonic priorities)
without causing problems to the critical
tasks. For example, we avoided instability
in the flight controller that can lead to the

quadricopter turning upside down. In
addition, the overbooking between the
noncritical tasks performed by our
algorithm allowed us to adapt
automatically to peaks in the number of
objects to detect (and hence execution time
of the object detection function) by
reducing the frames per second processed
by the video-streaming function during
these peaks.

In future work we are extending our
investigation to multicore scheduling, for
which we plan to apply our scheme to
hardware resources (such as caches) shared
across cores.

This research is done in collaboration with
Jeffrey Hansen of Carnegie Mellon
University (CMU), John Lehoczky of
CMU?’s Statistics Department, and
Ragunathan (Raj) Rajkumar and Anthony
Rowe of the Electrical and Computer
Engineering Department at CMU.

By Dionisio de Niz, Senior Member of
the Technical Staff

Related Web Sites
www.contrib.andrew.cmu.edu/~dionisio/

For General Information

For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 4

by Carnegie Mellon University.

http://www.stat.cmu.edu/GSS/lehoczky.html
http://www.ece.cmu.edu/~raj/

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Real-Time Scheduling on Heterogeneous Multicore Processors

Many Department of Defense computing
systems—particularly cyber-physical
systems—are subject to stringent size,
weight, and power requirements. The
quantity of sensor readings and
functionalities is also increasing, and their
associated processing must fulfill real-time
requirements. This situation motivates the
need for computers with greater processing
capacity. For example, to fulfill the
requirements of nano-sized unmanned
aerial vehicles (UAVs), developers must
choose a computer platform that offers
significant processing capacity and use its
processing resources to meet its needs for
autonomous surveillance missions. This
article discusses these issues and highlights
our research that addresses them.

To choose a computer platform that offers
greater capacity, it is necessary to observe
the major trends among chip makers.
Historically, advances in semiconductor
miniaturization (a.k.a., Moore's Law)
periodically yielded microprocessors with
significantly greater clock speeds.
Unfortunately, microprocessor serial
processing speed is reaching a physical
limit due to excessive power consumption.
As a result, semiconductor manufacturers
are now producing chips without
increasing the clock speed, but instead are
increasing the number of processor cores
on a chip, which results in multicore
processors. For nearly a decade, the use of
homogeneous multicore processors (which
are chips with identical processing cores)
gave us some headroom in terms of power
consumption and allowed us to enjoy
greater computing capacity. This

headroom is diminishing, unfortunately,
and is about to vanish, forcing semi-
conductor manufacturers to seek new
solutions.

We are currently witnessing a shift among
semiconductor manufacturers from
homogeneous multicore processors with
identical processor cores to heterogeneous
multicore processors. The impetus for this
shift is that processor cores tailored to a
specific class of applications behavior can
offer much better power efficiency. AMD
Fusion and NVIDIA Tegra 3 are examples
of this shift. Intel Sandybridge, which has a
graphics processor integrated onto the
same chip as the normal processor, also
reflects this shift.

In a heterogeneous multicore environment,
the execution time of a software task
depends on which processor core it
executes on. For example, a software task
performing computer graphics rendering,
simulating physics, or estimating
trajectories of flying objects runs much
faster on a graphics processor than on a
normal processor. Conversely, some
software tasks are inherently sequential
and cannot benefit from the graphics
processor; they execute much faster on a
normal processor. For example, a software
task with many branches and no inherent
parallelism runs much faster on a normal
processor than on a graphics processor.
Ideally, each task would be assigned to the
processor where it executes with the
greatest speed, but unfortunately the
workload is often not perfectly balanced to
the types of processor cores available.

Efficient use of processing capacity in the
new generation of microprocessors
therefore requires that tasks are assigned to
processors intelligently. In this context,
“intelligently” means that the resources
requested by the program are the ones
possessed by the processor. Moreover, the
desire for short design cycles, rapid
fielding, and upgrades necessitates that
task assignment be done automatically—
with algorithms and associated tools.

The Task Assignment Problem

The problem of assigning tasks to
processors can be described as follows: A
task (such as computer graphics rendering
or a program determining whether the
process half-or-triple-plus-one reaches one
with a known starting value) is described
with its processor utilization, but it has
different processor utilizations for different
processors. For example, if a given task is
assigned to a graphics processor, then the
task will have a utilization of 10 percent. If
the task is assigned to a normal processor,
the task will have a utilization of 70
percent. We are interested in assigning
each task to exactly one processor such
that for each processor, the sum of
utilization of all tasks assigned to this
processor will not exceed 100 percent. If
we can find such an assignment, it is
known that if tasks have deadlines
described with the model implicit-deadline
sporadic tasks—and if the scheduling
algorithm Earliest-Deadline-First (EDF) is
used—then all deadlines will be met at
runtime (with a minor modification, we
can also use rate-monotonic scheduling).

Research, Technology, and System Solutions

Previous Approaches for Task
Assignment

The task assignment problem belongs to a
class of problems that are computationally
intractable, meaning that it is highly
unlikely to design an algorithm that finds a
good assignment and always runs fast. So
we should either create an algorithm that
always finds a good assignment or one that
always runs fast. To design an algorithm
that always finds a good assignment, we
model task assignment as integer-linear
programming (ILP) as follows:

Minimize z

subject to the constraints that for each
processor p: Xyp * Uyp + Xop * Ugp + ...
+ Xnp ¥ Unp <=1

and
for each task i: X1 + Xi2+ ... + Xim=1

and
for each pair (i,p) of task i and
processor p: Xip is either 0 or 1

In the optimization problem above, n is the
number of tasks, m is the number of
processors, and u;, is the utilization of task
i if it would be assigned to processor p. Xip
is a decision variable with the
interpretation that it is 1 if task i is
assigned to processor p and O otherwise.

Unfortunately, solving this integer linear
program takes a long time.

To design an algorithm that always runs
reasonably fast, there are several
algorithms, as described in a research
paper by Sanjoy K. Baruha, that transform
the ILP into a linear program (LP) and then
perform certain tricks. Although LPs runs
faster than ILPs, they still have to solve an
optimization problem, which can be time-
consuming. To design algorithms that run

11/13/2012

faster, we would like to perform task
assignment in a way that does not require
solving LP.

Our Approach for Task Assignment
Previous work on task assignment for
homogeneous multicore processors where
all processor cores are identical is based on
a framework called bin-packing heuristics.
Such algorithms work approximately as
follows:

1. Sort tasks according to some criterion.
2. for each task do
3. for each processor do
4 if the task has not yet been assigned
and it is possible to assign the task to
the processor so that the sum of
utilization of tasks on the processor
does not exceed 100 percent then
assign the task on the processor
end if
end for
end for

© N o g

Our approach involves adapting bin-
packing heuristics to heterogeneous
multicore processors. We believe it is
possible to modify the algorithm structure
outlined above so we can also assign tasks
to processors even when the utilization of a
task depends on the processor to which it is
assigned. One can show that bin-packing
performs poorly if processors and tasks are
not considered in any particular order.
Specifically, for a set of tasks that could be
assigned, such an approach can fail even
when given processors that are "infinitely"
faster. One of our main research challenges
is therefore to determine how to sort tasks
(Step 1) and in which order we should
consider processors (in Step 3). We are
evaluating our new algorithms in the
following ways:

We plan to prove mathematically the
performance of our new algorithms.
Specifically, we are interested in proving
that if it is possible to assign tasks to
processors, then our algorithm will succeed
in assigning tasks to a processor if a given
processor is X times as fast. Given that x is
our performance metric, the lower its
value, the better.

We also plan to evaluate the performance
of our algorithms by applying the
algorithms on randomly generated task
sets. This will demonstrate the typical
behavior of the algorithms.

Conclusion

Most semiconductor manufacturers are
shifting toward heterogeneous multicore
processors to offer greater computing
capacity while keep power consumption
sufficiently low. But using a heterogeneous
multicore efficiently for cyber-physical
systems with stringent size, weight, and
power requirements requires that tasks are
assigned properly. This article has
discussed the state of the art and
summarized our ongoing work in this area.

By Bjorn Andersson
Senior Member of the Technical Staff

Related Web Sites

http://www.sei.cmu.edu/cyber-physical

For General Information
For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

The Software Engineering Institute (SEl) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 6

by Carnegie Mellon University.

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Real-Time Scheduling on Heterogeneous Multicore Processors

Many Department of Defense computing
systems—particularly cyber-physical
systems—are subject to stringent size,
weight, and power requirements. The
quantity of sensor readings and
functionalities is also increasing, and their
associated processing must fulfill real-time
requirements. This situation motivates the
need for computers with greater processing
capacity. For example, to fulfill the
requirements of nano-sized unmanned
aerial vehicles (UAVs), developers must
choose a computer platform that offers
significant processing capacity and use its
processing resources to meet its needs for
autonomous surveillance missions. This
article discusses these issues and highlights
our research that addresses them.

To choose a computer platform that offers
greater capacity, it is necessary to observe
the major trends among chip makers.
Historically, advances in semiconductor
miniaturization (a.k.a., Moore's Law)
periodically yielded microprocessors with
significantly greater clock speeds.
Unfortunately, microprocessor serial
processing speed is reaching a physical
limit due to excessive power consumption.
As a result, semiconductor manufacturers
are now producing chips without
increasing the clock speed, but instead are
increasing the number of processor cores
on a chip, which results in multicore
processors. For nearly a decade, the use of
homogeneous multicore processors (which
are chips with identical processing cores)
gave us some headroom in terms of power
consumption and allowed us to enjoy
greater computing capacity. This

headroom is diminishing, unfortunately,
and is about to vanish, forcing semi-
conductor manufacturers to seek new
solutions.

We are currently witnessing a shift among
semiconductor manufacturers from
homogeneous multicore processors with
identical processor cores to heterogeneous
multicore processors. The impetus for this
shift is that processor cores tailored to a
specific class of applications behavior can
offer much better power efficiency. AMD
Fusion and NVIDIA Tegra 3 are examples
of this shift. Intel Sandybridge, which has a
graphics processor integrated onto the
same chip as the normal processor, also
reflects this shift.

In a heterogeneous multicore environment,
the execution time of a software task
depends on which processor core it
executes on. For example, a software task
performing computer graphics rendering,
simulating physics, or estimating
trajectories of flying objects runs much
faster on a graphics processor than on a
normal processor. Conversely, some
software tasks are inherently sequential
and cannot benefit from the graphics
processor; they execute much faster on a
normal processor. For example, a software
task with many branches and no inherent
parallelism runs much faster on a normal
processor than on a graphics processor.
Ideally, each task would be assigned to the
processor where it executes with the
greatest speed, but unfortunately the
workload is often not perfectly balanced to
the types of processor cores available.

Efficient use of processing capacity in the
new generation of microprocessors
therefore requires that tasks are assigned to
processors intelligently. In this context,
“intelligently” means that the resources
requested by the program are the ones
possessed by the processor. Moreover, the
desire for short design cycles, rapid
fielding, and upgrades necessitates that
task assignment be done automatically—
with algorithms and associated tools.

The Task Assignment Problem

The problem of assigning tasks to
processors can be described as follows: A
task (such as computer graphics rendering
or a program determining whether the
process half-or-triple-plus-one reaches one
with a known starting value) is described
with its processor utilization, but it has
different processor utilizations for different
processors. For example, if a given task is
assigned to a graphics processor, then the
task will have a utilization of 10 percent. If
the task is assigned to a normal processor,
the task will have a utilization of 70
percent. We are interested in assigning
each task to exactly one processor such
that for each processor, the sum of
utilization of all tasks assigned to this
processor will not exceed 100 percent. If
we can find such an assignment, it is
known that if tasks have deadlines
described with the model implicit-deadline
sporadic tasks—and if the scheduling
algorithm Earliest-Deadline-First (EDF) is
used—then all deadlines will be met at
runtime (with a minor modification, we
can also use rate-monotonic scheduling).

Research, Technology, and System Solutions

Previous Approaches for Task
Assignment

The task assignment problem belongs to a
class of problems that are computationally
intractable, meaning that it is highly
unlikely to design an algorithm that finds a
good assignment and always runs fast. So
we should either create an algorithm that
always finds a good assignment or one that
always runs fast. To design an algorithm
that always finds a good assignment, we
model task assignment as integer-linear
programming (ILP) as follows:

Minimize z

subject to the constraints that for each
processor p: Xyp * Uyp + Xop * Ugp + ...
+ Xnp ¥ Unp <=1

and
for each task i: X1 + Xi2+ ... + Xim=1

and
for each pair (i,p) of task i and
processor p: Xip is either 0 or 1

In the optimization problem above, n is the
number of tasks, m is the number of
processors, and u;, is the utilization of task
i if it would be assigned to processor p. Xip
is a decision variable with the
interpretation that it is 1 if task i is
assigned to processor p and O otherwise.

Unfortunately, solving this integer linear
program takes a long time.

To design an algorithm that always runs
reasonably fast, there are several
algorithms, as described in a research
paper by Sanjoy K. Baruha, that transform
the ILP into a linear program (LP) and then
perform certain tricks. Although LPs runs
faster than ILPs, they still have to solve an
optimization problem, which can be time-
consuming. To design algorithms that run

11/13/2012

faster, we would like to perform task
assignment in a way that does not require
solving LP.

Our Approach for Task Assignment
Previous work on task assignment for
homogeneous multicore processors where
all processor cores are identical is based on
a framework called bin-packing heuristics.
Such algorithms work approximately as
follows:

1. Sort tasks according to some criterion.
2. for each task do
3. for each processor do
4 if the task has not yet been assigned
and it is possible to assign the task to
the processor so that the sum of
utilization of tasks on the processor
does not exceed 100 percent then
assign the task on the processor
end if
end for
end for

© N o g

Our approach involves adapting bin-
packing heuristics to heterogeneous
multicore processors. We believe it is
possible to modify the algorithm structure
outlined above so we can also assign tasks
to processors even when the utilization of a
task depends on the processor to which it is
assigned. One can show that bin-packing
performs poorly if processors and tasks are
not considered in any particular order.
Specifically, for a set of tasks that could be
assigned, such an approach can fail even
when given processors that are "infinitely"
faster. One of our main research challenges
is therefore to determine how to sort tasks
(Step 1) and in which order we should
consider processors (in Step 3). We are
evaluating our new algorithms in the
following ways:

We plan to prove mathematically the
performance of our new algorithms.
Specifically, we are interested in proving
that if it is possible to assign tasks to
processors, then our algorithm will succeed
in assigning tasks to a processor if a given
processor is X times as fast. Given that x is
our performance metric, the lower its
value, the better.

We also plan to evaluate the performance
of our algorithms by applying the
algorithms on randomly generated task
sets. This will demonstrate the typical
behavior of the algorithms.

Conclusion

Most semiconductor manufacturers are
shifting toward heterogeneous multicore
processors to offer greater computing
capacity while keep power consumption
sufficiently low. But using a heterogeneous
multicore efficiently for cyber-physical
systems with stringent size, weight, and
power requirements requires that tasks are
assigned properly. This article has
discussed the state of the art and
summarized our ongoing work in this area.

By Bjorn Andersson
Senior Member of the Technical Staff

Related Web Sites

http://www.sei.cmu.edu/cyber-physical

For General Information
For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

The Software Engineering Institute (SEl) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 8

by Carnegie Mellon University.

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Regression Verification for Real-Time Embedded Software Systems

The Department of Defense relies heavily
on mission- and safety-critical real-time
embedded software systems (RTESS),
which play a crucial role in controlling
systems ranging from airplanes and cars to
infusion pumps and microwaves. Since
RTESs are often safety critical, they must
undergo an extensive (and often expensive)
certification process before deployment.
This costly certification process must be
repeated after any significant change to the
RTES, such as migrating a single-core
RTES to a multicore platform, significant
code refactoring, or performance
optimizations. Our initial approach to
reducing recertification effort focused on
the parts of a system whose behavior was
affected by changes using a technique
called regression verification, which
involves deciding the behavioral
equivalence of two closely related
programs. This article describes our latest
research in this area, specifically our
approach to building regression
verification tools and techniques for static
analysis of RTESs.

Although there are many types of RTESs,
we concentrate on a class of periodic
programs, which are concurrent programs
that consist of tasks that execute
periodically. The tasks are assigned
priorities based on their frequency (higher
frequency = higher priority). The RTES
executes the tasks using a priority-based
preemptive scheduler. Each execution of a
task is called a job. Thus, from the
perspective of the scheduler, a system’s
execution is a constant periodic stream of

jobs of different priorities. In this article,
we use RTES to mean periodic programs.

In the beginning of the project, we
assumed that automated verification
techniques (such as static analysis and
model checking) for single-core RTESs
could be adapted for regression verification
since these techniques have been used for
sequential single-core programs. After
conducting an initial survey, however, we
found that existing automated verification
techniques that apply directly to a program
source (rather than to a manual abstract
model) are not applicable to periodic
programs. We therefore changed our
original approach to extend static analysis
to regression verification in the setting of
multicore RTES in two ways. First, in
Phase 1 of our project we developed a new
static analysis technique for reasoning
about bounded executions of periodic
programs. Second, in Phase 2 we extended
regression verification to multithreaded
programs, of which periodic programs are
a restricted subset.

Phase 1: Time-Bounded Verification
of Periodic Programs

In the first part of our work, we developed
an approach for time-bounded verification
of safety properties (user-specified
assertions) of periodic programs written in
the C programming language. Time-
bounded verification is the problem of
deciding whether a given program does not
violate any user-specified assertions in a
given time interval. Time-bounded
verification makes sense for RTESs
because of their intimate dependence on

real-time behavior. The inputs to our
approach are (1) a periodic program C, (2)
a safety property expressed via an assertion
A embedded in C, (3) an initial condition
Init of C, and (4) a time-bound W. The
output is either a counter-example trace
showing how C violates an assertion A, or
a message saying that the program is safe
because there is no execution that triggers
any user-specified assertions.

Our solution to time-bounded verification
is based on sequentialization, which
involves reducing verification of a current
program P to verification of a (non-
deterministic) sequential program P'. A
key feature of our approach is that P’ is
linear in the size of P, which means the
translation step is not computationally
intensive and adds little overhead to the
verification effort. The scalability of our
approach is therefore mostly driven by the
scalability of the underlying analysis
engine, and our approach automatically
benefits from constant improvements in the
verification area.

Our work builds on previous
sequentialization work for context-
bounded analysis (CBA) and bounded
model checking (BMC). Our approach
differs from prior work, however, since it
bounds the actual execution time of the
program, which is more natural to the
designer of an RTES than a bound on the
number of context switches (as done in
CBA) or a bound on the number of
instructions executed (as in BMC). We
bound the execution time by translating the
input time-bound W in our model to a

9

Research, Technology, and System Solutions

bound on the number of jobs. This
translation is a natural consequence of the
fact that the tasks are periodic and are
therefore activated a finite number of times
within W.

We implemented our approach in a tool
called REK. REK supports C programs
with tasks, priorities, priority ceiling locks,
and shared variables. It takes a concurrent
periodic program that cannot be analyzed
with standard tools for sequential
verification and converts it to become
analyzable with such tools. Although in
principle REK is compatible with any
analyzer for bounded (loop- and recursion-
free) C programs, in practice we rely on
the CBMC tool by Daniel Kroening, which
is one of the first and most mature bounded
model checkers for C. CBMC can
automatically analyze substantial C
programs by encoding assertion violation
to Boolean satisfiability queries. CBMC is
a mature and robust tool that has been
extensively applied to many industrial
problems.

How REK Works

The analysis problem that REK is designed
to solve is to check that a given periodic
program is safe under all legal scheduling
of tasks. REK solves a time-bounded
version of this problem, for example,
whether the program is safe in the first 100
ms, 200 ms, 300 ms, and so forth, starting
from some user-specified initial condition.
A time-bounded verification makes sense
in the context of periodic programs since
their execution can be naturally partitioned
by time intervals. Of course, in practice,
unbounded verification would be preferred,
so we are working on extending REK in
this direction.

11/13/2012

We briefly summarize the
sequentialization step done by REK. First,
we divide a time-bounded execution into
execution rounds (or rounds, for short).
The execution starts in Round 0; a new
round starts (and the old one stops)
whenever a job of some task finishes. An
execution with X jobs therefore requires X
execution rounds. The sequentialization
step simulates execution of each round
independently and then combines them
(using nondeterministic choice) into a
single legal execution.

In addition to the basic sequentialization,
we extended REK with the following
features to achieve scalability to realistic
programs:

Partial order reduction is a set of
techniques used in model checking to
reduce the number of interleavings that
must to be explored in a concurrent
system. For example, if there are two
independent actions a and b, then only one
of the two executions “a followed by b” or
“b followed by a” must be explored since
they both lead to the same destination
state. Although there are many approaches
for partial order reduction in explicit state
model checking (as opposed to symbolic
model checking used in this work),
extending them to symbolic verification is
an area of active research. In REK, we
developed a new partial order reduction
technique that restricts explored executions
only to those in which a read statement is
preempted by a write statement to the same
variable, or a write is preempted by a read
or a write. This reduction eliminates many
unnecessary interleavings and cuts the
search space significantly. Our
experiments show that the reduction is
quite effective in practice.

A limitation to our approach is that it does
not keep track of the actual execution time
of each instruction, each job, and each
task. As such, it is an over-approximation
since it explores more executions than
actually possible and can produce a false
positive by producing a counter-example
trace that is not possible on a given
hardware architecture due to timing
restrictions. To reduce the number of false
positives, we further constrain our
sequentialization by the information that
can be inferred from schedulability
analysis. Thus, if a periodic program is
schedulable, it satisfies the rate monotonic
analysis equations. Those equations can be
used to compute an upper bound on the
number of times any given low-priority job
can be preempted by any given high-
priority job. We call this the preemption
bound, which REK uses to further reduce
the number of interleavings by keeping
track how many times one task preempts
another and ensuring that this value never
exceeds the preemption bound for the jobs
of that task.

To deal with practical periodic programs,
REK provides support for two types of
commonly used lock primitives. In
particular, it supports preemption locks
(preemptions are disabled when the lock is
held) and priority ceiling locks
(preemption by any task with lower
priority than the lock is disabled when the
lock is held). We are extending REK to
support the third common type of locks,
priority-inheritance locks (regular blocking
locks, but the priority of a low-priority task
that holds a lock | is increased if a high-
priority task is waiting for).

As part of our research, we created a model
problem using the NXTway-GS, which is a

The Software Engineering Institute (SEl) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 10

by Carnegie Mellon University.

Research, Technology, and System Solutions

two-wheeled, self-balancing robot that
responds to Bluetooth commands. The
robot uses a gyroscope to balance itself
upright by applying power to left and right
wheels. It also uses a sonar sensor so that
when it comes to an obstacle, like a wall or
ditch, it can back up. We have used REK
to verify and fix several communication
consistency properties between the tasks of
the robot.

Phase 2: Regression Verification for
Multi-threaded Programs

In the second phase of our work, we
examined regression verification for multi-
threaded programs. We believe that that
once we have regression verification for
multithreaded programs, we can adapt it to
periodic programs as well.

Every instance of regression verification is
based on some underlying notion of
equivalence. The equivalence notion for
single-threaded software is called partial
equivalence: two functions are partially
equivalent if they produce the same output
for the same input. A multithreaded
program, conversely, is not partially
equivalent to itself by the above definition
since the same input can lead to different
outputs due to scheduling choices. Our first
challenge therefore involved creating a
notion of equivalence for multithreaded
software.

Our second challenge was to come up with
the right notion of decomposition to
establish equivalence of programs from
equivalence of their functions. Equivalence
of sequential programs is done using
Input/Output equivalence. Two sequential
programs are equivalent if it is possible to
show that their corresponding functions
have the same Input/Output behavior

11/13/2012

(produce the same output given the same
input). In the case of multithreaded
programs, however, functions from
different threads of a single program affect
one another, making simple decomposition
at the level of functions much harder
because it must take interference from
other threads into account.

To check whether two multithreaded
programs are partially equivalent (P = P")
we use a proof rule consisting of a set of
premises and a conclusion. Each premise
establishes the partial equivalence of a pair
of functions f and f' from P and P’,
respectively. A premise is established by
verifying a single-threaded program.

As part of this work, we developed two
separate proof rules:

The first rule attempts to show equivalence
of two programs by showing that their
corresponding functions are Input/Output
equivalent (produce the same output for a
given input) under arbitrary interference,
where “interference” means that the value
of shared variables can change between
execution of instructions of a thread. This
rule is “strong” (not widely applicable on
many equivalent programs) because in
practice the functions must be equivalent
only in the context of the given program
and not under arbitrary interference.

The second rule improves on the first rule
by attempting to show that two programs
are equivalent by restricting interference to
what is consistent with the other functions
in the program. For example, if there is no
other function in a program that can affect
a global variable x, then no interference
that modifies x is considered. This rule is
“weaker” (more widely applicable) than

the first one but is computationally harder
to automate.

Conclusion

The abilities to statically reason about
correctness of periodic programs and to
perform regression verification add the
following key capabilities to an RTES
developer’s toolbox:

« ability to check prior to deployment that
the program does not violate its
assertions

« ability to check that top-level application
programming interfaces (APIs) are not
affected by low-level refactoring or
performance optimizations

« ability to check that new APIs are
backward compatible with old APIs

« ability to perform impact analysis to
determine which function may possibly
be affected by a given source code
change and which unit tests must be
repeated

We believe these capabilities can lower the
cost of developing RTESs while increasing
their reliability and trustworthiness.

By Arie Gurfinkel
Senior Member of the Technical Staff

Related Web Sites

www.sei.cmu.edu/cyber-physical
www.andrew.cmu.edu/~arieg/Rek

For General Information
For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
customer-relations@sei.cmu.edu
www.sei.cmu.edu

The Software Engineering Institute (SEl) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 11

by Carnegie Mellon University.

—== Software Engineering Institute ‘ Carnegie Mellon

Ultra-Large-Scale Systems
The Software Challenge of the Future

Ultra-Large-Scale Systems: The Software Challenge of the Future is the
product of a 12-month study of ultra-large-scale (ULS) systems software.
The study brought together experts in software and other fields to answer

a question posed by the Office of the Assistant Secretary of the U.S.

Army (Acquisition, Logistics & Technology): “Given the issues with today’s
software engineering, how can we build the systems of the future that are
likely to have billions of lines of code?” Increased code size brings with it
increased scale in many dimensions, posing challenges that strain current
software foundations. The report details a broad, multi-disciplinary research

agenda for developing the ultra-large-scale systems of the future.

What are ULS systems?

The U. S. Department of Defense (DoD) has a goal of
information dominance—to achieve and exploit superior
collection, fusion, analysis, and use of information to meet
mission objectives. This goal depends on increasingly complex
systems characterized by thousands of platforms, sensors,
decision nodes, weapons, and warfighters connected through
heterogeneous wired and wireless networks. These systems
will push far beyond the size of today’s systems and systems
of systems by every measure: number of lines of code; number
of people employing the system for different purposes;

amount of data stored, accessed, manipulated, and refined;
number of connections and interdependencies among software
components; and number of hardware elements. They will be
ultra-large-scale (ULS) systems.

How are ULS systems different?

The sheer scale of ULS systems will change everything. ULS
systems will necessarily be decentralized in a variety of ways,
developed and used by a wide variety of stakeholders with
conflicting needs, evolving continuously, and constructed from
heterogeneous parts. People will not just be users of a ULS
system; they will be elements of the system. Software and
hardware failures will be the norm rather than the exception.
The acquisition of a ULS system will be simultaneous with

its operation and will require new methods for control. These
characteristics are beginning to emerge in today’s DoD
systems of systems; in ULS systems they will dominate.
Consequently, ULS systems will place unprecedented demands
on software acquisition, production, deployment, management,
documentation, usage, and evolution practices.

Challenges of ULS systems

Fundamental gaps in our current understanding of software

and software development at the scale of ULS systems present
profound impediments to the technically and economically
effective achievement of the DoD goal of deterrence and
dominance based on information superiority. These gaps are
strategic, not tactical. They are unlikely to be addressed adequately
by incremental research within established categories. Rather,

we require a broad new conception of both the nature of such
systems and new ideas for how to develop them. We will need to
look at them differently, not just as systems or systems of systems,
but as socio-technical ecosystems. We will face fundamental
challenges in the design and evolution, orchestration and control,
and monitoring and assessment of ULS systems. These challenges
require breakthrough research.

The SEl's ULS research agenda
We propose a ULS systems research agenda for an interdisciplinary
portfolio of research in at least the following areas:

* Human Interaction: involves anthropologists, sociologists, and
social scientists conducting detailed socio-technical analyses of
user interactions in the field, with the goal of understanding how
to construct and evolve such socio-technical systems effectively.

» Computational Emergence: explores the use of methods and
tools based on economics and game theory (e.g., mechanism
design) to ensure globally optimal ULS system behavior and
explores metaheuristics and digital evolution to augment the
cognitive limits of human designers.

10

Ultra-Large-Scale Systems
The Software Challenge of the Future

* Design: broadens the traditional technology-centric definition
of design to include people and organizations; social, cognitive,
and economic considerations; and design structures such as
design rules and government policies.

* Computational Engineering: focuses on evolving the
expressiveness of representations to accommodate the semantic
diversity of many languages and focuses on providing
automated support for computing the evolving behavior of
components and their compositions.

* Adaptive System Infrastructure: investigates integrated
development environments and runtime platforms that will
support the decentralized nature of ULS systems as well as
technologies, methods, and theories that will enable ULS
systems to be developed in their deployment environments.

» Adaptable and Predictable System Quality: focuses on how
to maintain quality in a ULS system in the face of continuous
change, ongoing failures, and attacks and focuses on how to
identify, predict, and control new indicators of system health
(akin to the U.S. gross domestic product) that are needed
because of the scale of ULS systems.

* Policy, Acquisition, and Management: focuses on transforming
acquisition policies and processes to accommodate the rapid
and continuous evolution of ULS systems by treating suppliers
and supply chains as intrinsic and essential components of a
ULS system.

The proposed research does not supplant current, important
software research but rather significantly expands its horizons.
Moreover, because we are focused on systems of the future,

we have purposely avoided couching our descriptions in

terms of today’s technology. The envisioned outcome of the
proposed research is a spectrum of technologies and methods for
developing these systems of the future, with national-security,
economic, and societal benefits that extend far beyond ULS
systems themselves.

Though our research agenda does not prescribe a single,
definitive roadmap, we offer three structures that suggest ways
to cluster and prioritize groups of research areas mapping the
research areas and topics to (1) specific DoD missions and
required capabilities, (2) DoD research funding types required
to support them, and (3) estimates of the relative starting points
of the research. These structures can then be used to define one
or more roadmaps that could lead to one or more ULS systems
research programs or projects.

Recommendations

As a first step, we recommend the funding and establishment of a
ULS System Research Startup Initiative, which over the course of
the next two years would, among other things

» work with others to conduct new basic research in key areas

* foster the growth of a community of informed stakeholders and
researchers

 formulate and issue an initial Broad Agency Announcement
(BAA) to attract researchers with proven expertise in
the diverse set of disciplines (e.g., software engineering,
economics, human factors, cognitive psychology, sociology,
systems engineering, and business policy) that are collectively
required to meet the challenge of ULS systems

The United States needs a program that will fund the software
research required to sustain ongoing transformations in national
defense and achieve the DoD goal of information dominance. The
key challenge is the decision to move forward. The ULS System
Research Agenda presented in Ultra-Large-Scale Systems: The
Software Challenge of the Future provides the starting point for
the path ahead.

If you would like more information about ULS systems
and the ULS Systems Study, please contact Linda
Northrop at Imn@sei.cmu.edu.

www.sei.cmu.edu/uls/

13

Fdge-Enabled
Tactical Systems

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Equipping the Soldier with End-User Programming

Whether soldiers are on the battlefield or
providing humanitarian relief effort, they
need to capture and process a wide range
of text, image, and map-based information.
To support soldiers in this effort, the
Department of Defense (DoD) is beginning
to equip soldiers with smartphones to
allow them to manage that vast array and
amount of information they encounter
while in the field. Whether the information
gets correctly conveyed up the chain of
command depends, in part, on the soldier’s
ability to capture accurate data in the field.
This article, a follow-up to our initial one,
describes our work on creating a software
application for smartphones that allows
soldier end-users to program their
smartphones to provide an interface
tailored to the information they need for a
specific mission.

The software we developed is constructed
primarily in Java and operates on an
Android platform. We used an object
database (DB 4.0) as the underlying data
store because it provides flexible and
powerful application programming
interfaces that simplified our
implementation. For performance reasons,
our application is a native Android app—
it’s not running on a browser of an
Android smart phone.

Our app—called eMONTAGE (Edge
Mission-Oriented Tactical App
Generator)—allows a soldier to build
customized interfaces that support the two
basic paradigms that are common to
smartphones: maps and lists. For example,
soldiers could build interfaces that allow

them to construct a list of friendly
community members including names,
affiliations with specific groups,
information about whether the person
speaks English, and the names of the
person’s children. If soldiers also specify a
GPS location in the customized interface
they construct, the location of the friendly
community members could be plotted on a
map. Likewise, a soldier could build other
customized interfaces that capture specific
aspects of a threatening incident, or the
names and capabilities of nongovernmental
organizations (NGOs) responding to a
humanitarian crisis.

Challenges We Encountered

The software we built is intended for
soldiers who are well versed in their craft
but are not programmers. While we are
still conducting user testing, after we
developed a prototype, we asked several
soldiers to provide feedback. Not
surprisingly, we found that soldiers who
are Android users and relatively young
(i.e., digital natives) quickly learned the
software programming application and
could use it to build a new application on-
site. Conversely, non-digital natives had a
harder time. Since our goal is to make our
software accessible to every soldier, we are
simplifying, revising, and improving the
user interface.

As with any device used by our military,
security is a key concern. Through our
work with the Defense Advanced Research
Projects Agency’s Transformative Apps
program in the Information Innovation
office, we can take advantage of the

security strategies they conceive and
implement. We are also working to address
challenges associated with limited
bandwidth and battery consumption in this
work and other work at the Software
Engineering Institute.

Another area of our work involves
enabling our software to connect to back-
end data sources that the DoD uses. For
example, a soldier on patrol may need to
connect to TiGR and other information
systems to access current information
about people, places, and activities in an
area. Our software will enable these
soldiers to build customized interfaces to
such data sources by selecting fields for
display on the phone and by extending the
information provided by these sources with
additional, mission-specific information.
This capability will provide mash-ups that
support soldiers by capturing multiple
sources of information for display and
manipulation. Once our full capability is
available in spring 2012, it will become
much easier to build phone interfaces to
new data sources and extend these
interfaces with additional information.

Looking to the Future

Currently, eMONTAGE can handle the
basic information types that are available
on an Android phone, including images,
audio, and data. Technologies like
fingerprint readers and chemical sensors
are being miniaturized and will likely be
incorporated into future handheld devices.
With each new technology, we’ll need to
add that basic type to our capability.
Fortunately, this is a relatively

138

http://defensesystems.com/articles/2011/10/13/ausa-tactical-ground-reporting-system.aspx

Research, Technology, and System Solutions

straightforward programming operation,
but it does require engineering expertise.
As a new type becomes available,
professional engineers will add it to
eMONTAGE, thereby making the type
available to soldiers who may have little or
no programming expertise.

Our current focus is on ensuring that the
software is reliable and does not fail, but
we are also looking to extend it to provide
features that we believe are essential, such
as better support for collections of objects.
For example, soldiers may need to classify
a single individual into different groups: a
family member, translator, or member of
an organization. Each group is a collection.
Soldiers will have the ability to list and
search through collections (e.g., list all
members of an NGO who work for
Doctors Without Borders) and plot the
members of a collection on a map (e.g.,
display all members of Doctors Without
Borders who are within 10 miles of my
current position).

While we can provide access to military
iconology, eMONTAGE is not DoD-
specific by design. This application can be
used by other government organizations—

11/21/2011

or even NGOs— that want a user-
customizable way to capture information
about any variety of people, places, and
things and share this information
effectively in the enterprise.

Part of our ongoing research involves
testing our applications with soldiers
through the Naval Postgraduate School’s
Center for Network Innovation and
Experimentation (CENETIX). In our initial
tests with the soldiers, they told us what
capabilities they need and what did not
work. These collaborations tie our work
firmly into both the research and military
communities and keep us focused on
providing a useful and cutting-edge
capability. In addition to continuing our
collaboration with CENETIX, we are
working with Dr. Brad Myers of the
Carnegie Mellon University Human
Computer Interaction Institute. Dr. Myers
is helping us define an appropriate
interface for soldiers to use the handheld
software in the challenging situations they
face.

By Edwin Morris, Senior Member of the
Technical Staff

Related Web Sites

http://blog.sei.cmu.edu/post.cfm/a-new-
approach-for-handheld-devices-in-the-
military

For General Information

For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 18

by Carnegie Mellon University.

http://www.cs.cmu.edu/~bam/

=== Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
A New Approach for Handheld Devices in the Military

Many people today carry handheld computing
devices to support their business, entertainment,
and social needs in commercial networks. The
Department of Defense (DoD) is increasingly
interested in having soldiers carry handheld
computing devices to support their mission needs in
tactical networks. Not surprisingly, however,
conventional handheld computing devices (such as
iPhone or Android smartphones) for commercial
networks differ in significant ways from handheld
devices for tactical networks. For example,
conventional devices and the software that runs on
them do not provide the capabilities and security
needed by military devices, nor are they configured
to work over DoD tactical networks with severe
bandwidth limitations and stringent transmission
security requirements. This article describes
exploratory research we are conducting at the
Software Engineering Institute (SEI) to (1) create
software that allows soldiers to access information
on a handheld device and (2) program the software
to tailor the information for a given mission or
situation.

To motivate the need for tactical handheld devices,

imagine a U.S. soldier on patrol, deployed abroad,

and walking into an unfamiliar village. Many pieces
of information would be useful to that soldier in that
situation. For example, it would be useful to know
who the village elders are and to have pictures to
identify them. It would also be useful to access
information about previous improvised explosive
device (IED) attacks, reports detailing the results of
other contact that soldiers have had with villagers,
and whether any friendly villagers speak English.

We face the following challenges when creating

software for tactical handheld computing devices

that can provide this information:

o Developing applications that can support the full
range of military missions. In recent years,
soldiers have provided humanitarian assistance
to victims of natural disasters in Haiti and
countries in Asia, patrolled our country’s borders,
protected global waterways from piracy, and
performed many types of military operations in
Iraq and Afghanistan. These missions are
sufficiently diverse that a one-size-fits-all
software solution is not practical. For example,
consider the different goals of clearing a route in
a combat zone versus delivering humanitarian
supplies in a relief effort or the different
information required to protect from IED attacks
versus treat a critically ill child. Not only is
different information required, but also the rules

for sharing it can vary. In a combat environment,
security concerns require limiting access, while
information in a relief mission may be shareable
with nongovernmental organizations responding
to the crisis.

e Processing large amounts of data available
through the rapid computerization and
internetworking of various military missions. For
example, the military employs hundreds of
unmanned aerial vehicles that generate large
amounts of data. There are also increases in the
number of sensors, such as auditory, biological,
chemical, and nuclear, that are network enabled.
All the data generated from these devices makes
it hard to pinpoint the right information for a given
mission and situation.

Our goal is to ensure the capabilities provided on
tactical handheld computing devices are flexible
enough to allow solders to control the amount and
type of data that they receive and adaptive enough
to meet the needs of particular missions. To achieve
this goal, we are exploring the integration of end-
user programming techniques, active data filtering
and formatting, and confidence-building strategies.
End-user programming techniques enable soldiers
to program software on tactical handheld devices
without requiring them to be professional software
developers. Filtering incoming information and
displaying it in intuitive formats helps avoid
inundating soldiers on patrol with too much data.
Confidence-building strategies promote trust that
applications programmed by soldiers work correctly
and safely. We are currently developing software for
Android devices, but the fundamental concepts are
applicable to other mobile platforms as well.

A key concern is designing software that has an
intuitive and simple-to-use interface since the
soldiers customizing these capabilities are not
programmers; they are war fighters. The software
we build must therefore help them readily find and
assemble the types of information they need. It
should reduce the soldier’'s workload by filling in
(auto-complete) as much information for the soldier
as possible. The software should require soldiers to
learn only a few different types of screens (for
example, screens for entering data and for
establishing filters should be substantially the
same). In addition, confidence-building feedback
should be integrated into the interface so that
soldiers are sure that what they build will work and
are informed early if it will not.

Our work also focuses on ensuring that the
information—whether from central command or a
local unit—makes its way quickly and efficiently to
the handheld computing device used by soldiers.
For example, user-programmable data filtering
allows soldiers to specify what information is
important. Likewise, optimized protocol
implementations ensure this information is
exchanged quickly.

Last year, we conducted a research project that
involved taking a service-oriented architecture
approach to provide real-time situational awareness
data to Android smartphones. We worked with
soldiers through the Naval Postgraduate School's
Center for Network Innovation and Experimentation
(CENETIX) to test our applications. They told us
what capabilities they need, and what did not work.
These collaborations tie our work firmly into both the
research and military communities and keep us
focused on providing a useful and cutting-edge
capability. In addition to continuing our collaboration
with CENETIX, we are working with Dr. Brad Myers
of the Carnegie Mellon University Human Computer
Interaction Institute. Dr. Myers is helping us define
an appropriate interface for soldiers to use the
handheld software in the challenging situations they
face.

By Edwin Morris, Senior Member of the
Technical Staff

Related Web Sites

http://blog.sei.cmu.edu/post.cfm/a-new-approach-
for-handheld-devices-in-the-military

For General Information
For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

13

=== Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Cloud Computing for the Battlefield

The Department of Defense (DoD) is increasingly
interested in having soldiers carry handheld mobile
computing devices to support their mission needs.
Soldiers can use handheld devices to help with
various tasks, such as speech and image
recognition, natural language processing, decision
making, and mission planning. Three challenges,
however, present obstacles to achieving these
capabilities. The first challenge is that mobile
devices offer less computational power than a
conventional desktop or server computer. A second
challenge is that computation-intensive tasks, such
as image recognition or even global positioning
systems, take heavy tolls on battery power. The third
challenge is dealing with unreliable networks and
bandwidth. This article explores our research to
overcome these challenges by using cloudlets,
which are localized, lightweight servers running one
or more virtual machines (VMs) on which soldiers
can offload expensive computations from their
handheld mobile devices, thereby providing greater
processing capacity and conserving battery power.

Leveraging external resources to augment the
capabilities of resource-limited mobile devices is a
techniqgue commonly known as cyber-foraging. The
use of VM technology provides greater flexibility in
the type and platform of applications and also
reduces setup and administration time, which is
critical for systems at the tactical edge. The term
tactical edge refers to systems used by soldiers or
first responders that are close to a mission or
emergency executing in environments characterized
by limited resources in terms of computation, power,
and network bandwidth, as well as changes in the
status of the mission or emergency.

Cloudlets are located within proximity of handheld
devices that use them, thereby decreasing latency
by using a single-hop network and potentially
lowering battery consumption by using WiFi instead
of broadband wireless, which consumes more
energy. For example, a cloudlet might run in a
Tactical Operations Center (TOC) or a Humvee.
From a security perspective, cloudlets can use WiFi
networks to take advantage of existing security
policies, including access from only specific
handheld devices and encryption techniques.

Related work on offloading computation to conserve
battery power in mobile devices relies on the
conventional Internet or environments that tightly
couple applications running on handheld devices
and servers on which computations are offloaded. In

contrast, cloudlets decouple mobile applications
from the servers. Each mobile app has a client
portion and an application overlay corresponding to
the computation-intensive code invoked by the
client. On execution, the overlay is sent to the
cloudlet and applied to one of the VMs running in the
cloudlet, which is called dynamic VM synthesis. The
application overlay is pre-generated by calculating
the difference between a base VM and the base VM
with the computation-intensive code installed. The
only coupling that exists between the mobile app
and the cloudlet is that the same version of the VM
software on which the overlay was created must be
used. Since no application-specific software is
installed on the server, there is no need to
synchronize release cycles between the client and
server portions of apps, which simplifies the
deployment and configuration management of apps
in the field.

Dynamic VM synthesis is particularly useful in
tactical environments characterized by unreliable
networks and bandwidth, unplanned loss of cyber
foraging platforms, and a need for rapid deployment.
For example, imagine a scenario where a soldier
needs to execute a computation-intensive app
configured to work with cloudlets. At runtime, the
app discovers a nearby cloudlet located on a
Humvee and offloads the computation-intensive
portion of code to it. Due to enemy attacks, network
connectivity, or exhaustion of energy sources on the
cloudlet, however, the mobile app is disconnected
from the cloudlet. The mobile app can then locate a
different cloudlet (e.g., in a TOC) and—due to
dynamic VM synthesis—can have the app running in
a short amount of time, with no need for any
configuration on the app or the cloudlet. This
flexibility enables the use of whatever resources
become opportunistically available, as well as
replacement of lost cyber-foraging resources and
dynamic customization of newly acquired cyber-
foraging resources.

As part of our research, we are focusing on face

recognition applications. Thus far we have created

an Android-based facial recognition app that

performs the following actions:

1. It locates a cloudlet via a discovery protocol.

2. It sends the application overlay to the cloudlet
where dynamic VM synthesis is performed.

3. It captures images and sends them to the facial
recognition server code that now resides in the
cloudlet.

4. The application overlay is a facial recognition
server written in C++ that processes images from
a client for training or recognition purposes. When
in recognition mode, it returns coordinates for the
faces it recognizes as well as a measure of
confidence. The first version of the cloudlet is a
simple HTTP server that receives the application
overlay from the client, decrypts the overlay,
decompresses the overlay, and performs VM
synthesis to dynamically set up the cloudlet.

The first phase of our work has focused on creating
the cloudlet prototype described above. In the
second phase, we will conduct measurements to
see if computations in a cloudlet provide significant
reductions in device battery power. In addition, we
will gather measurements related to bandwidth
consumption of overlay transfer and VM synthesis to
focus on optimization of cloudlet setup time.
Assuming we are successful, our third phase will
create a cloudlet in the RTSS Concept Lab to
explore other ways to take computation to the
tactical edge.

As part of our research, we are collaborating with
Mahadev Satyanarayanan, the creator of the
cloudlet concept and a faculty member at Carnegie
Mellon University’s School of Computer Science.

By Grace Lewis, Senior Member of the Technical
Staff

Related Web Sites
www.sei.cmu.edu/sos/research/cloudcomputing
www.sei.cmu.edu/library/abstracts/webinars/Cloud-
Computing.cfm
http://blog.sei.cmu.edu/archives.cfm/category/cloud-
computing

For General Information
For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

18

http://www.cs.cmu.edu/~satya/

=== Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Cloud Computing at the Tactical Edge

Cloudlets, which are lightweight servers
running one or more virtual machines (VMs),
allow soldiers in the field to offload resource-
consumptive and battery-draining
computations from their handheld devices to
nearby cloudlets. This architecture decreases
latency by using a single-hop network and
potentially lowers battery consumption by
using WiFi instead of broadband wireless.
This article extends our original one by
describing how we are using cloudlets to help
soldiers perform various mission capabilities
more effectively, including facial, speech,
and imaging recognition, as well as decision
making and mission planning.

An initial goal of our research was to create a
prototype application that located cloudlets
within close proximity of handheld devices
using them. We initially focused on off-
loading computations to cloudlets to extend
device battery life. In addition to this benefit,
we also found cloudlets significantly reduce
the amount of time needed to deploy
applications to handheld devices because
clients are not tied to a specific server that
can take a long time to provision in tactical
environments.

Our work together with Mahadev “Satya”
Satyanarayanan (the creator of the cloudlet
concept and a faculty member at Carnegie
Mellon's School of Computer Science)
originally focused on face recognition
applications as an example of a computation-
intensive mission capability. Thus far we
have created an Android-based facial
recognition application that

« locates a cloudlet via a discovery protocol

« sends the application overlay to the
cloudlet, where dynamic VM synthesis is
performed

e captures the images and sends them to the
facial recognition server code that now
resides in the cloudlet

In the context of cloudlets, the application
overlay corresponds to the computation-
intensive code invoked by the client, which
in this case is the face recognition server
written in C++, and processes images from a
handheld device client for training or
recognition purposes. On execution, the
overlay is sent to the cloudlet and applied to
one of the VMs running in the cloudlet,
which is called dynamic VM synthesis. The
application overlay is pre-generated by
calculating the difference between a base VM
and the base VM with the computation-
intensive code installed.

The first version of the cloudlet we created is
a simple HTTP server. When this server
receives the application overlay from the
client, it decrypts and decompresses the
overlay and performs VM synthesis to
configure the cloudlet dynamically. It
subsequently returns coordinates for the faces
it recognizes, along with a measure of
confidence to the client device.

Constructing the Cloudlet Prototype
The original cloudlet prototype built by
Satya’s team used a simple Virtual Network
Computer (VNC) client to see what was
executing inside the VM. Our cloudlet
prototype extended Satya’s work to use a
thick mobile client that provides a better user

experience for users at the edge and allows
incorporation of sensor information that
would not be possible with the original VNC
cloudlet approach. We constructed this
prototype in the Software Engineering
Institute’s Concept Lab.

Our design was tricky because the face
recognition client needs to know the IP
address and the port on which the face
recognition server is listening so that it can
connect to it. The client uses an HTTP
request to start the cloudlet setup and expects
an HTTP response from the cloudlet server
that includes the face recognition server IP
address and port. Since the IP address is
assigned by the Dynamic Host Configuration
Protocol server because the VM is executing
in bridged mode, however, the host server
has no visibility into that assignment, so there
was no simple way to obtain the IP address
and port.

To solve this problem, we included a
Windows service in the VM that runs on
startup. The Windows service invokes a
Python script that performs the following
three tasks:

1. Start the face recognition server
executable in a separate thread inside a
Python script.

2. Read the face recognition server
configuration file that contains the IP
address and port that the face
recognition server is listening on.

3. Write this information to a file that is
accessible by the cloudlet.

Although the Windows service creates

additional complexity on the cloudlet server,
19

http://www.cs.cmu.edu/~satya/
http://www.cs.cmu.edu/~satya/

Research, Technology, and System Solutions

it reduces the complexity cloudlet setup in
the field. During field operation, servers
residing within the Tactical Operation Center
and Humvees are provisioned with a set of
prepackaged cloudlets to support a range of
applications and versions to avoid
provisioning servers for each supported
application platform and version. The
handheld devices of soldiers participating in
the mission are then loaded with application
overlays that are necessary for a particular
mission. A soldier running a computation-
expensive application can discover a
compatible cloudlet within minutes and
offload the expensive computation to the
cloudlet running on a server.

What We've Learned

Our research has identified the following two
types of applications that can be deployed in
a cloudlet setting:

o Data-source-reliant applications that rely
on a particular data source to work. For
example, if soldiers need to launch the
facial recognition application, they need a
database of faces to match images with. In
addition, if soldiers want to compare
fingerprints, they need a database of
fingerprints to match with. In this setting,
the cloudlet must be configured to connect
the cloudlet to a particular data source.

« Non-data-source-reliant applications that
are computationally intensive but don’t
require a large data source to work. For
example, imagine soldiers encountering a
sign with characters they don’t understand.
They can take a picture of the sign and
submit it to a cloudlet to determine the
language in which the sign is written. In
this case, the computationally-intensive
code residing on the cloudlet relies on
complex character recognition algorithms
instead of a large database.

11/14/2011

As expected, our experiments demonstrated
that the size of the overlay increases overlay
transmission time (which in turn consumes
more battery) as well as VM synthesis time.
If the data source is included inside the
overlay, this would create a large overlay,
which indicates that the cloudlet concept is
better fit for non-data-source-reliant
applications. We overcame this problem by
specifying the location of the data source in a
configuration file. The location could be the
local server or a server accessible over a
network or the Internet. Although this
approach requires additional configuration, it
is done only once (when the cloudlet is
packaged by IT experts), rather than each
time a server is configured in the field
(potentially by non-IT experts).

Future Work

When testing the cloudlet prototype in the

RTSS Concept Lab, we discovered that a

reduced deployment time makes it easier to

deploy an application in a tactical
environment. We are working to capture
those measurements and are developing the
following applications to support our
findings:

« fingerprint recognition: Fingerprints are
captured using a fingerprint scanner
connected to a handheld device and sent to
the cloudlet for processing.

 character recognition: Pictures of a
written sign are taken with a camera on the
handheld device and sent to the cloudlet
for character identification and translation.

« speech recognition: A voice speaking a
foreign language is captured using the
voice recorder on the handheld device and
sent to the cloudlet for translation; the
same application can be used to translate a
response back to the identified foreign
language.

o model checking: An app is generated on
the handheld on-the-fly using end-user
programming capabilities and sent to a
model checker in a cloudlet to ensure it
does not violate any security (or other)
policies and constraints.

We will use these new applications to gather
measurements related to bandwidth
consumption of overlay transfer and VM
synthesis to focus on optimization of cloudlet
setup time.

Our future research and collaboration will
position cloudlets to both reduce battery
consumption and simplify application
deployment in the field. For example, our
goal is to use dynamic VM synthesis to slash
the time needed to deploy applications,
thereby shielding operators from unnecessary
technical details, while also communicating
and responding to mission-critical
information at an accelerated operational
tempo.

By Grace Lewis, Senior Member of the
Technical Staff

Related Web Sites

http://blog.sei.cmu.edu/post.cfm/cloud-
computing-for-the-battlefield

For General Information

For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
info@sei.cmu.edu

www.sei.cmu.edu

The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 28

by Carnegie Mellon University.

Software Engineering Institute

Carnegie Mellon

Research, Technology, and System Solutions
Group-Context-Aware Mobile Applications

Our modern data infrastructure has become
very effective at getting the information
you need, when you need it. It has become
so effective that we rely on having instant
access to information in many aspects of
our lives. Unfortunately, there are still
situations in which the data infrastructure
cannot meet our needs due to various
limitations at the tactical edge, which is a
term used to describe hostile environments
with limited resources, from war zones in
Afghanistan to disaster relief in countries
like Haiti and Japan. This article describes
ongoing research at the SEI in edge-
enabled tactical systems to address
problems at the tactical edge.

At the tactical edge, the people who need
the information most—warfighters, first
responders, or other emergency
personnel—depend on timely and valuable
information to perform their tasks, or even
to survive. Unfortunately, access to the
information they need can be hard to
achieve, for the following reasons:

« information overload stemming from
too much information, coupled with an
inability to locate truly vital information

« information obscurity due to a lack of
awareness of the available information

« resource scarcity manifested as
insufficient bandwidth, central
processing unit (CPU) power, battery
power, or even attention to get the
needed information and continue to
process, exploit, and disseminate it for
as long as needed

We are tackling the information overload
and information obscurity aspects of this

problem by developing context-aware
mobile applications.

A Different Approach to Context-
Aware Mobile Applications

Context awareness in the mobile
environment is not a new field of research.
Most mobile devices come preloaded with
applications that use location or time to
account for user context. There is certainly
no shortage of similar applications
available for download. We decided,
therefore, to explore alternative sources of
data that would not only push the limit of
what could be done with user context but
also focus on the challenging environment
at the tactical edge.

Our “eureka” moment came when we
realized that when warfighters or first
responders are at the tactical edge, they
almost never operate alone. The most
important contextual information to
warfighters or first responders is the
context of the people in the group, and how
they relate to that context. This realization
drove us to explore group context-aware
mobile applications. These applications
would, if built correctly, first consider
individual user context and then relate that
information to the group context, thereby
helping users understand both their own
states and the state of the group in which
they participate.

Group context-aware mobile applications
clearly have value at the tactical edge. For
example, warfighters are well served by
having access to positions of friends and
foes on the battlefield. They could also

benefit from supportive applications that
monitor resources such as food,
ammunition, or vital signs. With sufficient
data and processing power, these
applications could use historical trends to
determine dynamically if a squad is
walking into a possible ambush situation.

In other tactical environments, such as
tsunami disaster areas, the ability to share
information about resource needs,
dangerous situations, or health
emergencies in a structured way is also
valuable. Such applications could tailor
information to managers, construction
workers, doctors, and other emergency
personnel to help coordinate an effective
emergency response.

Our research project, called Information
Security to the Edge (ISE), explores the
structure, applications, and implementation
of a context model that includes group
information. We have constructed a
prototype application on the Android
platform that implements the essential
components needed by group context-
aware mobile applications.

App Architecture: Logic and Data
The ISE prototype application follows the
common model-view-controller (MVC)
pattern, which decomposes an application
into the following parts:

« The model is the data. This data is the
information processed by the
application. For example, the words
typed by the user into a word processing
application are data.

29

Research, Technology, and System Solutions

« The view is the user interface. For a
word processing application, the view is

the buttons, menus, scroll bars, and other

visual effects provided by the
application to help a user write a
document.

« The controller is the logic. In the word
processing application, the controller is
the rules the application uses to save,
present, filter, and otherwise modify the
text. The function provided by each
button or menu item can also be part of
the controller.

Consistent with the MV C pattern, the ISE
prototype has a central control mechanism
that forms the “brains” of the application
and manages data flow through it. The

central controller coordinates data flow and

processing through the following primary
application elements:

« The context engine is the central

processor for all context information
used by the application. As device
sensors report new data and applications
on external devices send data to the local
application, all data passes through the
engine so that new events are detected as
they occur. For example, if an external
user sends GPS coordinates that indicate
he is within 100 feet of a warfighter,
then the device can alert the warfighter
to his presence. Expanding on this
concept, if a group task must be
performed but everyone is working
individually on other tasks, the local
device can monitor task status and user
position and report to the leader when all
group members are ready and close by
so the group task can be performed.

» The sensor manager accepts data from
sensors that reside upon the mobile
device. A typical smartphone contains
position sensors, movement sensors, and

11/13/2012

in some cases, light and proximity
sensors. The application captures data
from these sensors and passes it through
the sensor manager. The sensor manager
enables the sensors and controls their
sample rate, so the application can tailor
usage to the situation and avoid
overwhelming the system.

« The communications manager acts as
the gateway to all external
communications within the system. This
gateway currently includes Bluetooth
and TCP/IP communications but can
include other communication
mechanisms that are available to the
device. Any messages to and from users
on other devices are passed through the
communications manager.

The sensor and communications manager
architecture consolidates all sensor and
communication concerns into a single
location. This consolidation approach
enabled us to build a standardized interface
that simplifies integration of an arbitrary
sensor (for example, a radiation sensor) or
an arbitrary communication mechanism
(for example, a line-of-sight radio that
communicates with UAVSs) with the
application. We tested this feature through
a collaboration with Joao Sousa of George
Mason University. This testing resulted in
the development of an alternative
communication mechanism that integrates
with the prototype with only a few weeks
of effort, instead of months or years. We
anticipate leveraging these standardized
interfaces to collaborate with a variety of
external groups and organizations as new
sensor technologies and communication
mechanisms become available.

App Architecture: User Interface (Ul)
The ISE app, through the use of Android
Ul screens called Activities, reflects the
view part of the MV C pattern. There are
currently only three supported Uls in ISE:

« User: Allows users to look at the people
with whom they are or can be connected,
as well as the context data associated
with each person.

o Task View: Allows users to create their
own tasks, receive updates about other
users’ tasks, and mark their tasks
complete or incomplete.

« Alerts View: As events occur, some will
automatically appear in the alerts view
along with a list of the considerations the
context engine has identified as items of
importance for users. The alerts
presented will be tailored to the needs
and context of individual users.

We are upgrading the ISE architecture to
support any Ul that subscribes to
standardized updates from the data
services.

Challenges

One challenge we face involves accounting
for the lack of network infrastructure. In
particular, limited bandwidth exists for the
available communication channels. We are
building atop communication capacities
that other organizations are field testing in
Afghanistan to tailor our solution to
practical field situations.

A second challenge involves providing
warfighter access to backend data sources.
Soldiers told us that important information
is available in such sources, but they can’t
readily find the relevant information.
Moreover, they can’t access the database in
the field. Other Advanced Mobile Systems

The Software Engineering Institute (SEl) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 20

by Carnegie Mellon University.

Research, Technology, and System Solutions

work is investing ways to provide access to
critical data through the use of cloudlets.

A third challenge involves reducing the
user’s cognitive load by limiting the
amount of interaction and attention
required of the user. Residents in a
metropolitan area can use smartphones
without undue concern with distraction, as
long as they are not engaging in tasks that
demand undivided attention. A soldier in
Haiti, on the other hand, must be cognizant
of crumbling buildings, while a warfighter
on the ground in Afghanistan might need
to digest information while taking enemy
fire. Our goal is to use hardware that
allows the warfighter to capture and
process information seamlessly, without
sacrificing valuable time and resources.

We are also addressing the challenge of
resource scarcity. Resources are limited at
the tactical edge and warfighters are
typically limited to the power and
bandwidth of whatever devices they can
carry. We are therefore exploring resource
optimization based on our expanded model
of context. For example, if a warfighter’s
assignment involves driving through a
known safe area, it may not be necessary
for the smartphone to activate the GPS
capability. By optimizing the system to use
sensors only when needed, warfighters can
save battery power, CPU cycles, and
communication bandwidth that can be used
to support other mission-critical needs.

Finally, our work will not have the desired
impact if we cannot meet the challenge of
relevance. Warfighters made it clear to us
that if a device or application is not
directly useful to their immediate task, it
will be ignored. In any given day, a
warfighter in Afghanistan may be asked to

11/13/2012

determine if a particular individual is a
threat, sweep a village to establish
identities of residents, deliver food to
children, or check for a weapons cache.
These different missions affect the type of
information that interests soldiers and the
type of information a software application
should consider. Solving this problem
requires a deep understanding of the needs
of soldiers and the missions in which they
engage. We are leveraging this domain
knowledge so our ISE application can
tailor information processing to a particular
mission, thereby ensuring relevance to the
current mission and the ability to change
mission parameters as needed.

Looking Ahead

The ISE prototype is just one part of our
strategy to address the problems of
information overload, information
obscurity, and resource scarcity. The
Advanced Mobile Systems initiative is also
engaged in other projects that address the
three problems of information overload,
information obscurity, and resource
scarcity from different perspectives. We
intend to integrate each project after they
have matured, thereby providing an end-to-
end solution to warfighters and first
responders at the tactical edge.

By Marc Novakouski
Member of the Technical Staff

Related Web Sites

www.sei.cmu.edu/mobilecomputing
www.sei.cmu.edu/

For General Information
For information about the SEI and its
products and services, contact
Customer Relations

Phone: 412-268-5800

FAX: 412-268-6257
customer-relations@sei.cmu.edu
www.sei.cmu.edu

The Software Engineering Institute (SEl) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated 23

by Carnegie Mellon University.

22

	EnsuringSafetyinCyberPhysicalSystems.pdf
	Related Web Sites
	For General Information

	TowardSafeOptimizationofCyberPhysicalSystems.pdf
	Related Web Sites
	For General Information

	EquippingtheSoldierwithEndUserProgramming.pdf
	Challenges We Encountered
	Looking to the Future
	For General Information

	NewApproachforHandheldDevicesintheMilitary.pdf
	Related Web Sites
	For General Information

	CloudComputingfortheBattlefield.pdf
	Related Web Sites
	For General Information

	CloudComputingattheTacticalEdge.pdf
	Constructing the Cloudlet Prototype
	What We’ve Learned
	Future Work
	For General Information

