
Research, Technology, and
System Solutions Program
Effectively Serving the Changing
Needs of DoD Missions

Research, Technology, and System Solutions Program
Effectively Serving the Changing Needs of DoD Missions

Cyber-Physical and Ultra-Large-Scale Systems

Ensuring Safety in Cyber-Physical Systems. . 1

Toward Safe Optimization of Cyber-Physical Systems. . 3

Real-Time Scheduling on Heterogeneous Multicore Processors 5

Regression Verification for Real-Time Embedded Software Systems 7

Ultra-Large-Scale Systems: The Software Challenge of the Future. 10

Edge-Enabled Tactical Systems

Equipping the Soldier with End-User Programming . . 13

A New Approach for Handheld Devices in the Military. . 15

Cloud Computing for the Battlefield. . 16

Cloud Computing at the Tactical Edge. . 17

Group-Context-Aware Mobile Applications . . 19

Cyber-Physical and
Ultra-Large-Scale Systems

Research, Technology, and System Solutions
Ensuring Safety in Cyber-Physical Systems

In some key industries, such as defense,
automobiles, medical devices, and the
smart grid, the bulk of the innovations
focus on cyber-physical systems. A key
characteristic of cyber-physical systems is
the close interaction of software
components with physical processes,
which impose stringent safety and
time/space performance requirements on
the systems. This article describes research
and development we are conducting at the
Software Engineering Institute to optimize
the performance of cyber-physical systems
without compromising their safety.

Cyber-physical systems are often safety-
critical since violations of their
requirements, such as missed deadlines or
component failures, may have life-
threatening consequences. For example,
when a cyber-physical system in a car
detects a crash, the airbag must inflate in
less than 20 milliseconds to avoid severe
injuries to the driver. Industry
competitiveness, along with the urgency of
fielding cyber-physical systems to meet
rapidly evolving Department of Defense
(DoD) mission needs, are increasingly
pressuring manufacturers to implement
cost and system performance optimizations
without understanding their safety
consequences. The impact of this lack of
understanding on the commercial world
can be seen in recent automotive recalls,
delays in the delivery of new airplanes, and
airplane accidents.

Although optimizing a cyber-physical
system is hard, cost-reduction market
pressures and small-form factors (e.g.,

small, remotely piloted aircraft [RPA])
often demand optimizations. An additional
challenge faced by DoD cyber-physical
systems is the scheduling of real-time tasks
for which the amount of computation
performed is not fixed but depends on the
environment. For instance, the
computation time of collision avoidance
algorithms in RPA systems often varies in
proportion to the objects the RPA finds in
its path. This variation is hard to
accommodate in traditional real-time
scheduling theory, which assumes a fixed,
worst-case execution time. Nonetheless,
real-time scheduling is essential for RPAs
and other autonomous systems that must
function effectively in dynamic
environments with limited human
intervention.

As part of our research, we are
investigating a safe “double-booking” of
processing times between safety-critical
and non-safety-critical tasks that can
tolerate occasional timing failures
(deadline misses). This double-booking
approach helps reduce the over-allocation
of processing resources needed to ensure
the timing behavior of safety-critical tasks.
Timing assurance is possible in
conventional real-time systems by
reserving sufficient processing time for
tasks to execute for their worst-case
execution time. The typical execution time
of these tasks, however, is often less than
the worst-case execution time, which
occurs very rarely in practice. The
difference between the worst-case and
typical execution time of these tasks is thus
considered an over-allocation.

Our approach takes advantage of over-
allocation by packing safety-critical and
non-safety-critical tasks together, letting
the latter use the processing time that was
over-allocated to the former. This approach
essentially double-books processing time
to both the safety- and non-safety-critical
tasks. To assure the timing of the safety-
critical tasks, however, whenever these
tasks need to run for their worst-case
execution time, we stop noncritical tasks.
We identify this approach as an
asymmetric protection scheme since it
protects critical tasks from noncritical
ones, but does not protect noncritical tasks
from critical ones.

An example of where asymmetric
protection can be applied is an automotive
system. To continue with our earlier air
bag example, a car’s air bag inflator has a
task that continuously checks whether a
crash has occurred. Of the 20 milliseconds
allotted for airbag deployment, it may take
only 5 milliseconds to conduct the check.
If a crash has occurred, the airbag will
continue to inflate during the remaining 15
milliseconds. If no crash has occurred,
however, the remaining 15 milliseconds
that the processor was reserved for this
task will be available for non-safety-
critical tasks, such as fuel efficiency,
acceleration, and active suspension.

The deliverables from our project will
include a modified version of the Linux
operating system that implements the
temporal protection scheme for mixed-
criticality systems and the appropriate
analysis algorithms to verify the timing

11

Research, Technology, and System Solutions
Ensuring Safety in Cyber-Physical Systems

4/25/2011 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

behavior of the system. We will also
develop optimization algorithms to
maximize the utility that users can achieve
from different applications available in the
modified operating system. We are
collaborating with Jeffrey Hansen of the
Institute for Complex Engineered Systems,
which is part of Carnegie Mellon
University’s (CMU) Carnegie Institute of
Technology; John Lehoczky of CMU’s
Statistics Department; and Ragunathan
(Raj) Rajkumar of the Electrical and
Computer Engineering Department at
CMU.

By Dionisio de Niz, Senior Member of
the Technical Staff

Related Web Sites
www.contrib.andrew.cmu.edu/~dionisio/

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

22

http://www.stat.cmu.edu/
http://www.stat.cmu.edu/
http://www.ece.cmu.edu/~raj/
http://www.ece.cmu.edu/~raj/

Research, Technology, and System Solutions
Toward Safe Optimization of Cyber-Physical Systems

Cyber-physical systems (CPS) are
characterized by close interactions between
software components and physical
processes. These interactions can have life-
threatening consequences when they
include safety-critical functions that are not
performed according to their time-sensitive
requirements. For example, an airbag must
fully inflate within 20 milliseconds (its
deadline) of an accident to prevent the
driver from hitting the steering wheel with
potentially fatal consequences.

Unfortunately, the competition of safety-
critical requirements with other demands to
reduce the cost, power consumption, and
device size also creates problems, such as
automotive recalls, new aircraft delivery
delays, and plane accidents. Our research
leverages the fact that failing to meet
deadlines doesn’t always have the same
level of criticality for all functions. For
instance, if a music player fails to meet its
deadlines, the sound quality may be
compromised, but lives are not threatened.
Systems whose functions have different
criticalities are known as mixed-criticality
systems. This article updates our earlier
one to describe the latest results of our
research on supporting mixed-criticality
operations by giving more central
processing unit (CPU) time to functions
with higher value while ensuring critical
timing guarantees.

During our research, we observed that
different functions provide different
amounts of utility or satisfaction to the
user. For instance, a GPS navigation
function may provide higher utility than a

music player. Moreover, if we give more
resources to these functions (for example,
more CPU time) the utility obtained from
them increases.

In general, however, the amount of utility
obtained from additional resources does
not grow forever, nor does it grow at a
constant rate. The additional increment in
utility for each additional unit of resource
instead decreases to a point where the next
increment in utility is insignificant. In such
cases, it is often more important to
dedicate additional computational
resources to another function that is
currently delivering lower utility and will
deliver a larger increment in utility for the
same amount of CPU time.

For example, assuming that we get a faster
route to our destination if more CPU time
is dedicated to the GPS functionality, it
seems obvious that the first route we get
from the GPS will give us the biggest
increment in utility. If we lack enough
CPU time (due to the execution of other
critical functions) to run both the GPS and
the music player, we will choose the GPS.
We may even prefer to give more CPU
time (if we discover that more time is
available) to the GPS to help avoid traffic
jams before we decide to run the music
player. Letting the GPS run even longer to
select a less traffic-clogged route, however,
may give us less utility than running the
music player.

At this point, we may prefer to start
running the music player if we have more
CPU time available. We thus change our

allocation preference because the
additional utility obtained by giving the
GPS more CPU time is less than the utility
obtained by giving the music player this
time. This progressive decrease in the
utility obtained as we give more resources
to a function is known as diminishing
returns, which can be used to allocate
resources to ensure we obtain the
maximum total utility possible considering
all functions in the system.

Our research uses both the diminishing
returns characteristics of low-criticality
functions and criticality levels to
implement a double-booking computation-
time reservation scheme. Traditional real-
time scheduling techniques consider the
worst-case execution time (WCET) of the
functions to ensure they always complete
before their deadlines by reserving CPU
time used only on the rare occasion that the
WCET occurs. We take advantage of this
fact and allocate the same CPU time for
functions of lower criticality. When both
functions request the CPU time reserved
for both at the same time, we favor the
higher-criticality function and let the
lower-criticality function miss its deadline.

Our double-booking scheme is analogous
to the strategies airlines use to assign the
same seat to more than one person. In this
case, the seat is given to the person with
preferred status (e.g., “gold members”).
Our project uses utility—in addition to
criticality—to ensure that the CPU time
that is double-booked is given to functions
providing the largest utility in case of a
conflict (both functions requesting the

33

Research, Technology, and System Solutions
Toward Safe Optimization of Cyber-Physical Systems

10/31/2011 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

double-booked CPU time). Our double-
booking scheme provides the following
two benefits:
• It protects critical functions, ensuring

that their deadlines are always met.
• It uses the unused time from the critical

functions to run the noncritical functions
that produce the highest utility.

Our research is aimed at providing real-
time system developers with an analysis
algorithm that accurately predicts system
behavior when it is running (runtime).
Developers use these algorithms during the
design phase (design time) to test whether
critical tasks will meet their deadlines
(providing assurance) and how much
overbooking is possible.

To evaluate the effectiveness of our
scheme, we developed a utility degradation
resilience (UDR) metric that quantifies the
capacity of a CPS to preserve the utility
derived from double-booking. This metric
evaluates all possible conflicts that can
happen due to double-booking and how
much total utility is preserved after the
conflict is resolved by deciding what
function gets the double-booked CPU time
and what functions are left without CPU
time. The utility derived from the
preserved functions is then summed to
compute the total utility that a specific
conflict resolution scheme can preserve.

In theory, a perfect conflict resolute
scheme should preserve the maximum
possible utility. In reality, however,
decisions must be made ahead of time
assuming that some critical functions will
run for their WCET (even though they may
not) to ensure that they finish before their
deadlines. Unfortunately, if they execute

for less time, it may already be too late to
execute other functions.

Using the UDR metric, we compare our
scheme against the Rate-Monotonic
Scheduler (RMS) and a scheme called
Criticality-As-Priority Assignment that
uses the criticality as the priority. Our
experiments showed we can recover up to
88 percent of the ideal utility that we could
get if we could fully reclaim the unused
time left by the critical functions and if we
had perfect knowledge of exactly how
much time each function needed to finish
executing. In addition, we observed our
double-booking scheme can achieve up to
three times the UDR that RMS provides.

We implemented a design-time algorithm
to evaluate the UDR of a system and
generate the scheduling parameters for our
runtime scheduler that performs the
conflict resolutions of our overbooking
scheme (deciding which function gets the
overbooked CPU time). This scheduler
was implemented in the Linux operating
system as a proof of concept to evaluate
the practicality of our mechanisms. To
evaluate our scheme in a real-world
setting, we used our scheduler in a
surveillance unmanned aerial vehicle
application using the Parrot A.R. Drone
quadricopter with safety-critical functions
(flight control) and two noncritical
functions (video-streaming and vision-
based object-detection functions).

Our results confirmed that we can recover
more CPU cycles for noncritical tasks with
our scheduler than with the fixed-priority
scheduler (using rate-monotonic priorities)
without causing problems to the critical
tasks. For example, we avoided instability
in the flight controller that can lead to the

quadricopter turning upside down. In
addition, the overbooking between the
noncritical tasks performed by our
algorithm allowed us to adapt
automatically to peaks in the number of
objects to detect (and hence execution time
of the object detection function) by
reducing the frames per second processed
by the video-streaming function during
these peaks.

In future work we are extending our
investigation to multicore scheduling, for
which we plan to apply our scheme to
hardware resources (such as caches) shared
across cores.

This research is done in collaboration with
Jeffrey Hansen of Carnegie Mellon
University (CMU), John Lehoczky of
CMU’s Statistics Department, and
Ragunathan (Raj) Rajkumar and Anthony
Rowe of the Electrical and Computer
Engineering Department at CMU.

By Dionisio de Niz, Senior Member of
the Technical Staff

Related Web Sites
www.contrib.andrew.cmu.edu/~dionisio/

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

44

http://www.stat.cmu.edu/GSS/lehoczky.html
http://www.ece.cmu.edu/~raj/

Research, Technology, and System Solutions
Real-Time Scheduling on Heterogeneous Multicore Processors

Many Department of Defense computing

systems—particularly cyber-physical

systems—are subject to stringent size,

weight, and power requirements. The

quantity of sensor readings and

functionalities is also increasing, and their

associated processing must fulfill real-time

requirements. This situation motivates the

need for computers with greater processing

capacity. For example, to fulfill the

requirements of nano-sized unmanned

aerial vehicles (UAVs), developers must

choose a computer platform that offers

significant processing capacity and use its

processing resources to meet its needs for

autonomous surveillance missions. This

article discusses these issues and highlights

our research that addresses them.

To choose a computer platform that offers

greater capacity, it is necessary to observe

the major trends among chip makers.

Historically, advances in semiconductor

miniaturization (a.k.a., Moore's Law)

periodically yielded microprocessors with

significantly greater clock speeds.

Unfortunately, microprocessor serial

processing speed is reaching a physical

limit due to excessive power consumption.

As a result, semiconductor manufacturers

are now producing chips without

increasing the clock speed, but instead are

increasing the number of processor cores

on a chip, which results in multicore

processors. For nearly a decade, the use of

homogeneous multicore processors (which

are chips with identical processing cores)

gave us some headroom in terms of power

consumption and allowed us to enjoy

greater computing capacity. This

headroom is diminishing, unfortunately,

and is about to vanish, forcing semi-

conductor manufacturers to seek new

solutions.

We are currently witnessing a shift among

semiconductor manufacturers from

homogeneous multicore processors with

identical processor cores to heterogeneous

multicore processors. The impetus for this

shift is that processor cores tailored to a

specific class of applications behavior can

offer much better power efficiency. AMD

Fusion and NVIDIA Tegra 3 are examples

of this shift. Intel Sandybridge, which has a

graphics processor integrated onto the

same chip as the normal processor, also

reflects this shift.

In a heterogeneous multicore environment,

the execution time of a software task

depends on which processor core it

executes on. For example, a software task

performing computer graphics rendering,

simulating physics, or estimating

trajectories of flying objects runs much

faster on a graphics processor than on a

normal processor. Conversely, some

software tasks are inherently sequential

and cannot benefit from the graphics

processor; they execute much faster on a

normal processor. For example, a software

task with many branches and no inherent

parallelism runs much faster on a normal

processor than on a graphics processor.

Ideally, each task would be assigned to the

processor where it executes with the

greatest speed, but unfortunately the

workload is often not perfectly balanced to

the types of processor cores available.

Efficient use of processing capacity in the

new generation of microprocessors

therefore requires that tasks are assigned to

processors intelligently. In this context,

“intelligently” means that the resources

requested by the program are the ones

possessed by the processor. Moreover, the

desire for short design cycles, rapid

fielding, and upgrades necessitates that

task assignment be done automatically—

with algorithms and associated tools.

The Task Assignment Problem

The problem of assigning tasks to

processors can be described as follows: A

task (such as computer graphics rendering

or a program determining whether the

process half-or-triple-plus-one reaches one

with a known starting value) is described

with its processor utilization, but it has

different processor utilizations for different

processors. For example, if a given task is

assigned to a graphics processor, then the

task will have a utilization of 10 percent. If

the task is assigned to a normal processor,

the task will have a utilization of 70

percent. We are interested in assigning

each task to exactly one processor such

that for each processor, the sum of

utilization of all tasks assigned to this

processor will not exceed 100 percent. If

we can find such an assignment, it is

known that if tasks have deadlines

described with the model implicit-deadline

sporadic tasks—and if the scheduling

algorithm Earliest-Deadline-First (EDF) is

used—then all deadlines will be met at

runtime (with a minor modification, we

can also use rate-monotonic scheduling).

5

Research, Technology, and System Solutions
Real-Time Scheduling on Heterogeneous Multicore Processors

11/13/2012 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

Previous Approaches for Task

Assignment

The task assignment problem belongs to a

class of problems that are computationally

intractable, meaning that it is highly

unlikely to design an algorithm that finds a

good assignment and always runs fast. So

we should either create an algorithm that

always finds a good assignment or one that

always runs fast. To design an algorithm

that always finds a good assignment, we

model task assignment as integer-linear

programming (ILP) as follows:

Minimize z

subject to the constraints that for each

processor p: x1,p * u1,p + x2,p * u2,p + …

+ xn,p * un,p <= z

and

for each task i: xi,1 + xi,2 + … + xi,m = 1

and

for each pair (i,p) of task i and

processor p: xi,p is either 0 or 1

In the optimization problem above, n is the

number of tasks, m is the number of

processors, and ui,p is the utilization of task

i if it would be assigned to processor p. xi,p

is a decision variable with the

interpretation that it is 1 if task i is

assigned to processor p and 0 otherwise.

Unfortunately, solving this integer linear

program takes a long time.

To design an algorithm that always runs

reasonably fast, there are several

algorithms, as described in a research

paper by Sanjoy K. Baruha, that transform

the ILP into a linear program (LP) and then

perform certain tricks. Although LPs runs

faster than ILPs, they still have to solve an

optimization problem, which can be time-

consuming. To design algorithms that run

faster, we would like to perform task

assignment in a way that does not require

solving LP.

Our Approach for Task Assignment

Previous work on task assignment for

homogeneous multicore processors where

all processor cores are identical is based on

a framework called bin-packing heuristics.

Such algorithms work approximately as

follows:

1. Sort tasks according to some criterion.

2. for each task do

3. for each processor do

4. if the task has not yet been assigned

and it is possible to assign the task to

the processor so that the sum of

utilization of tasks on the processor

does not exceed 100 percent then

5. assign the task on the processor

6. end if

7. end for

8. end for

Our approach involves adapting bin-

packing heuristics to heterogeneous

multicore processors. We believe it is

possible to modify the algorithm structure

outlined above so we can also assign tasks

to processors even when the utilization of a

task depends on the processor to which it is

assigned. One can show that bin-packing

performs poorly if processors and tasks are

not considered in any particular order.

Specifically, for a set of tasks that could be

assigned, such an approach can fail even

when given processors that are "infinitely"

faster. One of our main research challenges

is therefore to determine how to sort tasks

(Step 1) and in which order we should

consider processors (in Step 3). We are

evaluating our new algorithms in the

following ways:

We plan to prove mathematically the

performance of our new algorithms.

Specifically, we are interested in proving

that if it is possible to assign tasks to

processors, then our algorithm will succeed

in assigning tasks to a processor if a given

processor is x times as fast. Given that x is

our performance metric, the lower its

value, the better.

We also plan to evaluate the performance

of our algorithms by applying the

algorithms on randomly generated task

sets. This will demonstrate the typical

behavior of the algorithms.

Conclusion

Most semiconductor manufacturers are

shifting toward heterogeneous multicore

processors to offer greater computing

capacity while keep power consumption

sufficiently low. But using a heterogeneous

multicore efficiently for cyber-physical

systems with stringent size, weight, and

power requirements requires that tasks are

assigned properly. This article has

discussed the state of the art and

summarized our ongoing work in this area.

By Bjorn Andersson

Senior Member of the Technical Staff

Related Web Sites
http://www.sei.cmu.edu/cyber-physical

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

6

Research, Technology, and System Solutions
Real-Time Scheduling on Heterogeneous Multicore Processors

Many Department of Defense computing

systems—particularly cyber-physical

systems—are subject to stringent size,

weight, and power requirements. The

quantity of sensor readings and

functionalities is also increasing, and their

associated processing must fulfill real-time

requirements. This situation motivates the

need for computers with greater processing

capacity. For example, to fulfill the

requirements of nano-sized unmanned

aerial vehicles (UAVs), developers must

choose a computer platform that offers

significant processing capacity and use its

processing resources to meet its needs for

autonomous surveillance missions. This

article discusses these issues and highlights

our research that addresses them.

To choose a computer platform that offers

greater capacity, it is necessary to observe

the major trends among chip makers.

Historically, advances in semiconductor

miniaturization (a.k.a., Moore's Law)

periodically yielded microprocessors with

significantly greater clock speeds.

Unfortunately, microprocessor serial

processing speed is reaching a physical

limit due to excessive power consumption.

As a result, semiconductor manufacturers

are now producing chips without

increasing the clock speed, but instead are

increasing the number of processor cores

on a chip, which results in multicore

processors. For nearly a decade, the use of

homogeneous multicore processors (which

are chips with identical processing cores)

gave us some headroom in terms of power

consumption and allowed us to enjoy

greater computing capacity. This

headroom is diminishing, unfortunately,

and is about to vanish, forcing semi-

conductor manufacturers to seek new

solutions.

We are currently witnessing a shift among

semiconductor manufacturers from

homogeneous multicore processors with

identical processor cores to heterogeneous

multicore processors. The impetus for this

shift is that processor cores tailored to a

specific class of applications behavior can

offer much better power efficiency. AMD

Fusion and NVIDIA Tegra 3 are examples

of this shift. Intel Sandybridge, which has a

graphics processor integrated onto the

same chip as the normal processor, also

reflects this shift.

In a heterogeneous multicore environment,

the execution time of a software task

depends on which processor core it

executes on. For example, a software task

performing computer graphics rendering,

simulating physics, or estimating

trajectories of flying objects runs much

faster on a graphics processor than on a

normal processor. Conversely, some

software tasks are inherently sequential

and cannot benefit from the graphics

processor; they execute much faster on a

normal processor. For example, a software

task with many branches and no inherent

parallelism runs much faster on a normal

processor than on a graphics processor.

Ideally, each task would be assigned to the

processor where it executes with the

greatest speed, but unfortunately the

workload is often not perfectly balanced to

the types of processor cores available.

Efficient use of processing capacity in the

new generation of microprocessors

therefore requires that tasks are assigned to

processors intelligently. In this context,

“intelligently” means that the resources

requested by the program are the ones

possessed by the processor. Moreover, the

desire for short design cycles, rapid

fielding, and upgrades necessitates that

task assignment be done automatically—

with algorithms and associated tools.

The Task Assignment Problem

The problem of assigning tasks to

processors can be described as follows: A

task (such as computer graphics rendering

or a program determining whether the

process half-or-triple-plus-one reaches one

with a known starting value) is described

with its processor utilization, but it has

different processor utilizations for different

processors. For example, if a given task is

assigned to a graphics processor, then the

task will have a utilization of 10 percent. If

the task is assigned to a normal processor,

the task will have a utilization of 70

percent. We are interested in assigning

each task to exactly one processor such

that for each processor, the sum of

utilization of all tasks assigned to this

processor will not exceed 100 percent. If

we can find such an assignment, it is

known that if tasks have deadlines

described with the model implicit-deadline

sporadic tasks—and if the scheduling

algorithm Earliest-Deadline-First (EDF) is

used—then all deadlines will be met at

runtime (with a minor modification, we

can also use rate-monotonic scheduling).

7

Research, Technology, and System Solutions
Real-Time Scheduling on Heterogeneous Multicore Processors

11/13/2012 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

Previous Approaches for Task

Assignment

The task assignment problem belongs to a

class of problems that are computationally

intractable, meaning that it is highly

unlikely to design an algorithm that finds a

good assignment and always runs fast. So

we should either create an algorithm that

always finds a good assignment or one that

always runs fast. To design an algorithm

that always finds a good assignment, we

model task assignment as integer-linear

programming (ILP) as follows:

Minimize z

subject to the constraints that for each

processor p: x1,p * u1,p + x2,p * u2,p + …

+ xn,p * un,p <= z

and

for each task i: xi,1 + xi,2 + … + xi,m = 1

and

for each pair (i,p) of task i and

processor p: xi,p is either 0 or 1

In the optimization problem above, n is the

number of tasks, m is the number of

processors, and ui,p is the utilization of task

i if it would be assigned to processor p. xi,p

is a decision variable with the

interpretation that it is 1 if task i is

assigned to processor p and 0 otherwise.

Unfortunately, solving this integer linear

program takes a long time.

To design an algorithm that always runs

reasonably fast, there are several

algorithms, as described in a research

paper by Sanjoy K. Baruha, that transform

the ILP into a linear program (LP) and then

perform certain tricks. Although LPs runs

faster than ILPs, they still have to solve an

optimization problem, which can be time-

consuming. To design algorithms that run

faster, we would like to perform task

assignment in a way that does not require

solving LP.

Our Approach for Task Assignment

Previous work on task assignment for

homogeneous multicore processors where

all processor cores are identical is based on

a framework called bin-packing heuristics.

Such algorithms work approximately as

follows:

1. Sort tasks according to some criterion.

2. for each task do

3. for each processor do

4. if the task has not yet been assigned

and it is possible to assign the task to

the processor so that the sum of

utilization of tasks on the processor

does not exceed 100 percent then

5. assign the task on the processor

6. end if

7. end for

8. end for

Our approach involves adapting bin-

packing heuristics to heterogeneous

multicore processors. We believe it is

possible to modify the algorithm structure

outlined above so we can also assign tasks

to processors even when the utilization of a

task depends on the processor to which it is

assigned. One can show that bin-packing

performs poorly if processors and tasks are

not considered in any particular order.

Specifically, for a set of tasks that could be

assigned, such an approach can fail even

when given processors that are "infinitely"

faster. One of our main research challenges

is therefore to determine how to sort tasks

(Step 1) and in which order we should

consider processors (in Step 3). We are

evaluating our new algorithms in the

following ways:

We plan to prove mathematically the

performance of our new algorithms.

Specifically, we are interested in proving

that if it is possible to assign tasks to

processors, then our algorithm will succeed

in assigning tasks to a processor if a given

processor is x times as fast. Given that x is

our performance metric, the lower its

value, the better.

We also plan to evaluate the performance

of our algorithms by applying the

algorithms on randomly generated task

sets. This will demonstrate the typical

behavior of the algorithms.

Conclusion

Most semiconductor manufacturers are

shifting toward heterogeneous multicore

processors to offer greater computing

capacity while keep power consumption

sufficiently low. But using a heterogeneous

multicore efficiently for cyber-physical

systems with stringent size, weight, and

power requirements requires that tasks are

assigned properly. This article has

discussed the state of the art and

summarized our ongoing work in this area.

By Bjorn Andersson

Senior Member of the Technical Staff

Related Web Sites
http://www.sei.cmu.edu/cyber-physical

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

8

Research, Technology, and System Solutions
Regression Verification for Real-Time Embedded Software Systems

The Department of Defense relies heavily

on mission- and safety-critical real-time

embedded software systems (RTESs),

which play a crucial role in controlling

systems ranging from airplanes and cars to

infusion pumps and microwaves. Since

RTESs are often safety critical, they must

undergo an extensive (and often expensive)

certification process before deployment.

This costly certification process must be

repeated after any significant change to the

RTES, such as migrating a single-core

RTES to a multicore platform, significant

code refactoring, or performance

optimizations. Our initial approach to

reducing recertification effort focused on

the parts of a system whose behavior was

affected by changes using a technique

called regression verification, which

involves deciding the behavioral

equivalence of two closely related

programs. This article describes our latest

research in this area, specifically our

approach to building regression

verification tools and techniques for static

analysis of RTESs.

Although there are many types of RTESs,

we concentrate on a class of periodic

programs, which are concurrent programs

that consist of tasks that execute

periodically. The tasks are assigned

priorities based on their frequency (higher

frequency = higher priority). The RTES

executes the tasks using a priority-based

preemptive scheduler. Each execution of a

task is called a job. Thus, from the

perspective of the scheduler, a system’s

execution is a constant periodic stream of

jobs of different priorities. In this article,

we use RTES to mean periodic programs.

In the beginning of the project, we

assumed that automated verification

techniques (such as static analysis and

model checking) for single-core RTESs

could be adapted for regression verification

since these techniques have been used for

sequential single-core programs. After

conducting an initial survey, however, we

found that existing automated verification

techniques that apply directly to a program

source (rather than to a manual abstract

model) are not applicable to periodic

programs. We therefore changed our

original approach to extend static analysis

to regression verification in the setting of

multicore RTES in two ways. First, in

Phase 1 of our project we developed a new

static analysis technique for reasoning

about bounded executions of periodic

programs. Second, in Phase 2 we extended

regression verification to multithreaded

programs, of which periodic programs are

a restricted subset.

Phase 1: Time-Bounded Verification

of Periodic Programs

In the first part of our work, we developed

an approach for time-bounded verification

of safety properties (user-specified

assertions) of periodic programs written in

the C programming language. Time-

bounded verification is the problem of

deciding whether a given program does not

violate any user-specified assertions in a

given time interval. Time-bounded

verification makes sense for RTESs

because of their intimate dependence on

real-time behavior. The inputs to our

approach are (1) a periodic program C, (2)

a safety property expressed via an assertion

A embedded in C, (3) an initial condition

Init of C, and (4) a time-bound W. The

output is either a counter-example trace

showing how C violates an assertion A, or

a message saying that the program is safe

because there is no execution that triggers

any user-specified assertions.

Our solution to time-bounded verification

is based on sequentialization, which

involves reducing verification of a current

program P to verification of a (non-

deterministic) sequential program P. A

key feature of our approach is that P is

linear in the size of P, which means the

translation step is not computationally

intensive and adds little overhead to the

verification effort. The scalability of our

approach is therefore mostly driven by the

scalability of the underlying analysis

engine, and our approach automatically

benefits from constant improvements in the

verification area.

Our work builds on previous

sequentialization work for context-

bounded analysis (CBA) and bounded

model checking (BMC). Our approach

differs from prior work, however, since it

bounds the actual execution time of the

program, which is more natural to the

designer of an RTES than a bound on the

number of context switches (as done in

CBA) or a bound on the number of

instructions executed (as in BMC). We

bound the execution time by translating the

input time-bound W in our model to a

9

Research, Technology, and System Solutions
Regression Verification for Real-Time Embedded Software Systems

11/13/2012 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

bound on the number of jobs. This

translation is a natural consequence of the

fact that the tasks are periodic and are

therefore activated a finite number of times

within W.

We implemented our approach in a tool

called REK. REK supports C programs

with tasks, priorities, priority ceiling locks,

and shared variables. It takes a concurrent

periodic program that cannot be analyzed

with standard tools for sequential

verification and converts it to become

analyzable with such tools. Although in

principle REK is compatible with any

analyzer for bounded (loop- and recursion-

free) C programs, in practice we rely on

the CBMC tool by Daniel Kroening, which

is one of the first and most mature bounded

model checkers for C. CBMC can

automatically analyze substantial C

programs by encoding assertion violation

to Boolean satisfiability queries. CBMC is

a mature and robust tool that has been

extensively applied to many industrial

problems.

How REK Works

The analysis problem that REK is designed

to solve is to check that a given periodic

program is safe under all legal scheduling

of tasks. REK solves a time-bounded

version of this problem, for example,

whether the program is safe in the first 100

ms, 200 ms, 300 ms, and so forth, starting

from some user-specified initial condition.

A time-bounded verification makes sense

in the context of periodic programs since

their execution can be naturally partitioned

by time intervals. Of course, in practice,

unbounded verification would be preferred,

so we are working on extending REK in

this direction.

We briefly summarize the

sequentialization step done by REK. First,

we divide a time-bounded execution into

execution rounds (or rounds, for short).

The execution starts in Round 0; a new

round starts (and the old one stops)

whenever a job of some task finishes. An

execution with X jobs therefore requires X

execution rounds. The sequentialization

step simulates execution of each round

independently and then combines them

(using nondeterministic choice) into a

single legal execution.

In addition to the basic sequentialization,

we extended REK with the following

features to achieve scalability to realistic

programs:

Partial order reduction is a set of

techniques used in model checking to

reduce the number of interleavings that

must to be explored in a concurrent

system. For example, if there are two

independent actions a and b, then only one

of the two executions “a followed by b” or

“b followed by a” must be explored since

they both lead to the same destination

state. Although there are many approaches

for partial order reduction in explicit state

model checking (as opposed to symbolic

model checking used in this work),

extending them to symbolic verification is

an area of active research. In REK, we

developed a new partial order reduction

technique that restricts explored executions

only to those in which a read statement is

preempted by a write statement to the same

variable, or a write is preempted by a read

or a write. This reduction eliminates many

unnecessary interleavings and cuts the

search space significantly. Our

experiments show that the reduction is

quite effective in practice.

A limitation to our approach is that it does

not keep track of the actual execution time

of each instruction, each job, and each

task. As such, it is an over-approximation

since it explores more executions than

actually possible and can produce a false

positive by producing a counter-example

trace that is not possible on a given

hardware architecture due to timing

restrictions. To reduce the number of false

positives, we further constrain our

sequentialization by the information that

can be inferred from schedulability

analysis. Thus, if a periodic program is

schedulable, it satisfies the rate monotonic

analysis equations. Those equations can be

used to compute an upper bound on the

number of times any given low-priority job

can be preempted by any given high-

priority job. We call this the preemption

bound, which REK uses to further reduce

the number of interleavings by keeping

track how many times one task preempts

another and ensuring that this value never

exceeds the preemption bound for the jobs

of that task.

To deal with practical periodic programs,

REK provides support for two types of

commonly used lock primitives. In

particular, it supports preemption locks

(preemptions are disabled when the lock is

held) and priority ceiling locks

(preemption by any task with lower

priority than the lock is disabled when the

lock is held). We are extending REK to

support the third common type of locks,

priority-inheritance locks (regular blocking

locks, but the priority of a low-priority task

that holds a lock l is increased if a high-

priority task is waiting for l).

As part of our research, we created a model

problem using the NXTway-GS, which is a

10

Research, Technology, and System Solutions
Regression Verification for Real-Time Embedded Software Systems

11/13/2012 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

two-wheeled, self-balancing robot that

responds to Bluetooth commands. The

robot uses a gyroscope to balance itself

upright by applying power to left and right

wheels. It also uses a sonar sensor so that

when it comes to an obstacle, like a wall or

ditch, it can back up. We have used REK

to verify and fix several communication

consistency properties between the tasks of

the robot.

Phase 2: Regression Verification for

Multi-threaded Programs

In the second phase of our work, we

examined regression verification for multi-

threaded programs. We believe that that

once we have regression verification for

multithreaded programs, we can adapt it to

periodic programs as well.

Every instance of regression verification is

based on some underlying notion of

equivalence. The equivalence notion for

single-threaded software is called partial

equivalence: two functions are partially

equivalent if they produce the same output

for the same input. A multithreaded

program, conversely, is not partially

equivalent to itself by the above definition

since the same input can lead to different

outputs due to scheduling choices. Our first

challenge therefore involved creating a

notion of equivalence for multithreaded

software.

Our second challenge was to come up with

the right notion of decomposition to

establish equivalence of programs from

equivalence of their functions. Equivalence

of sequential programs is done using

Input/Output equivalence. Two sequential

programs are equivalent if it is possible to

show that their corresponding functions

have the same Input/Output behavior

(produce the same output given the same

input). In the case of multithreaded

programs, however, functions from

different threads of a single program affect

one another, making simple decomposition

at the level of functions much harder

because it must take interference from

other threads into account.

To check whether two multithreaded

programs are partially equivalent (P = P)

we use a proof rule consisting of a set of

premises and a conclusion. Each premise

establishes the partial equivalence of a pair

of functions f and f from P and P,

respectively. A premise is established by

verifying a single-threaded program.

As part of this work, we developed two

separate proof rules:

The first rule attempts to show equivalence

of two programs by showing that their

corresponding functions are Input/Output

equivalent (produce the same output for a

given input) under arbitrary interference,

where “interference” means that the value

of shared variables can change between

execution of instructions of a thread. This

rule is “strong” (not widely applicable on

many equivalent programs) because in

practice the functions must be equivalent

only in the context of the given program

and not under arbitrary interference.

The second rule improves on the first rule

by attempting to show that two programs

are equivalent by restricting interference to

what is consistent with the other functions

in the program. For example, if there is no

other function in a program that can affect

a global variable x, then no interference

that modifies x is considered. This rule is

“weaker” (more widely applicable) than

the first one but is computationally harder

to automate.

Conclusion

The abilities to statically reason about

correctness of periodic programs and to

perform regression verification add the

following key capabilities to an RTES

developer’s toolbox:

 ability to check prior to deployment that

the program does not violate its

assertions

 ability to check that top-level application

programming interfaces (APIs) are not

affected by low-level refactoring or

performance optimizations

 ability to check that new APIs are

backward compatible with old APIs

 ability to perform impact analysis to

determine which function may possibly

be affected by a given source code

change and which unit tests must be

repeated

We believe these capabilities can lower the

cost of developing RTESs while increasing

their reliability and trustworthiness.

By Arie Gurfinkel

Senior Member of the Technical Staff

Related Web Sites
www.sei.cmu.edu/cyber-physical
www.andrew.cmu.edu/~arieg/Rek

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
customer-relations@sei.cmu.edu
www.sei.cmu.edu

11

Ultra-Large-Scale Systems
The Software Challenge of the Future

Ultra-Large-Scale Systems: The Software Challenge of the Future is the
product of a 12-month study of ultra-large-scale (ULS) systems software.
The study brought together experts in software and other fields to answer
a question posed by the Office of the Assistant Secretary of the U.S.
Army (Acquisition, Logistics & Technology): “Given the issues with today’s
software engineering, how can we build the systems of the future that are
likely to have billions of lines of code?” Increased code size brings with it
increased scale in many dimensions, posing challenges that strain current
software foundations. The report details a broad, multi-disciplinary research
agenda for developing the ultra-large-scale systems of the future.

What are ULS systems?
The U. S. Department of Defense (DoD) has a goal of
information dominance—to achieve and exploit superior
collection, fusion, analysis, and use of information to meet
mission objectives. This goal depends on increasingly complex
systems characterized by thousands of platforms, sensors,
decision nodes, weapons, and warfighters connected through
heterogeneous wired and wireless networks. These systems
will push far beyond the size of today’s systems and systems
of systems by every measure: number of lines of code; number
of people employing the system for different purposes;
amount of data stored, accessed, manipulated, and refined;
number of connections and interdependencies among software
components; and number of hardware elements. They will be
ultra-large-scale (ULS) systems.

How are ULS systems different?
The sheer scale of ULS systems will change everything. ULS
systems will necessarily be decentralized in a variety of ways,
developed and used by a wide variety of stakeholders with
conflicting needs, evolving continuously, and constructed from
heterogeneous parts. People will not just be users of a ULS
system; they will be elements of the system. Software and
hardware failures will be the norm rather than the exception.
The acquisition of a ULS system will be simultaneous with
its operation and will require new methods for control. These
characteristics are beginning to emerge in today’s DoD
systems of systems; in ULS systems they will dominate.
Consequently, ULS systems will place unprecedented demands
on software acquisition, production, deployment, management,
documentation, usage, and evolution practices.

Challenges of ULS systems
Fundamental gaps in our current understanding of software
and software development at the scale of ULS systems present
profound impediments to the technically and economically
effective achievement of the DoD goal of deterrence and
dominance based on information superiority. These gaps are
strategic, not tactical. They are unlikely to be addressed adequately
by incremental research within established categories. Rather,
we require a broad new conception of both the nature of such
systems and new ideas for how to develop them. We will need to
look at them differently, not just as systems or systems of systems,
but as socio-technical ecosystems. We will face fundamental
challenges in the design and evolution, orchestration and control,
and monitoring and assessment of ULS systems. These challenges
require breakthrough research.

The SEI’s ULS research agenda
We propose a ULS systems research agenda for an interdisciplinary
portfolio of research in at least the following areas:

•	� Human Interaction: involves anthropologists, sociologists, and
social scientists conducting detailed socio-technical analyses of
user interactions in the field, with the goal of understanding how
to construct and evolve such socio-technical systems effectively.

•	� Computational Emergence: explores the use of methods and
tools based on economics and game theory (e.g., mechanism
design) to ensure globally optimal ULS system behavior and
explores metaheuristics and digital evolution to augment the
cognitive limits of human designers.

101012

•	� Design: broadens the traditional technology-centric definition
of design to include people and organizations; social, cognitive,
and economic considerations; and design structures such as
design rules and government policies.

•	� Computational Engineering: focuses on evolving the
expressiveness of representations to accommodate the semantic
diversity of many languages and focuses on providing
automated support for computing the evolving behavior of
components and their compositions.

•	� Adaptive System Infrastructure: investigates integrated
development environments and runtime platforms that will
support the decentralized nature of ULS systems as well as
technologies, methods, and theories that will enable ULS
systems to be developed in their deployment environments.

•	� Adaptable and Predictable System Quality: focuses on how
to maintain quality in a ULS system in the face of continuous
change, ongoing failures, and attacks and focuses on how to
identify, predict, and control new indicators of system health
(akin to the U.S. gross domestic product) that are needed
because of the scale of ULS systems.

•	� Policy, Acquisition, and Management: focuses on transforming
acquisition policies and processes to accommodate the rapid
and continuous evolution of ULS systems by treating suppliers
and supply chains as intrinsic and essential components of a
ULS system.

The proposed research does not supplant current, important
software research but rather significantly expands its horizons.
Moreover, because we are focused on systems of the future,
we have purposely avoided couching our descriptions in
terms of today’s technology. The envisioned outcome of the
proposed research is a spectrum of technologies and methods for
developing these systems of the future, with national-security,
economic, and societal benefits that extend far beyond ULS
systems themselves.

Though our research agenda does not prescribe a single,
definitive roadmap, we offer three structures that suggest ways
to cluster and prioritize groups of research areas mapping the
research areas and topics to (1) specific DoD missions and
required capabilities, (2) DoD research funding types required
to support them, and (3) estimates of the relative starting points
of the research. These structures can then be used to define one
or more roadmaps that could lead to one or more ULS systems
research programs or projects.

Recommendations
As a first step, we recommend the funding and establishment of a
ULS System Research Startup Initiative, which over the course of
the next two years would, among other things

•	� work with others to conduct new basic research in key areas

•	� foster the growth of a community of informed stakeholders and
researchers

•	� formulate and issue an initial Broad Agency Announcement
(BAA) to attract researchers with proven expertise in
the diverse set of disciplines (e.g., software engineering,
economics, human factors, cognitive psychology, sociology,
systems engineering, and business policy) that are collectively
required to meet the challenge of ULS systems

The United States needs a program that will fund the software
research required to sustain ongoing transformations in national
defense and achieve the DoD goal of information dominance. The
key challenge is the decision to move forward. The ULS System
Research Agenda presented in Ultra-Large-Scale Systems: The
Software Challenge of the Future provides the starting point for
the path ahead.

If you would like more information about ULS systems
and the ULS Systems Study, please contact Linda
Northrop at lmn@sei.cmu.edu.

www.sei.cmu.edu/uls/

Ultra-Large-Scale Systems
The Software Challenge of the Future

111113

Edge-Enabled
Tactical Systems

121214

Research, Technology, and System Solutions
Equipping the Soldier with End-User Programming

Whether soldiers are on the battlefield or
providing humanitarian relief effort, they
need to capture and process a wide range
of text, image, and map-based information.
To support soldiers in this effort, the
Department of Defense (DoD) is beginning
to equip soldiers with smartphones to
allow them to manage that vast array and
amount of information they encounter
while in the field. Whether the information
gets correctly conveyed up the chain of
command depends, in part, on the soldier’s
ability to capture accurate data in the field.
This article, a follow-up to our initial one,
describes our work on creating a software
application for smartphones that allows
soldier end-users to program their
smartphones to provide an interface
tailored to the information they need for a
specific mission.

The software we developed is constructed
primarily in Java and operates on an
Android platform. We used an object
database (DB 4.0) as the underlying data
store because it provides flexible and
powerful application programming
interfaces that simplified our
implementation. For performance reasons,
our application is a native Android app—
it’s not running on a browser of an
Android smart phone.

Our app—called eMONTAGE (Edge
Mission-Oriented Tactical App
Generator)—allows a soldier to build
customized interfaces that support the two
basic paradigms that are common to
smartphones: maps and lists. For example,
soldiers could build interfaces that allow

them to construct a list of friendly
community members including names,
affiliations with specific groups,
information about whether the person
speaks English, and the names of the
person’s children. If soldiers also specify a
GPS location in the customized interface
they construct, the location of the friendly
community members could be plotted on a
map. Likewise, a soldier could build other
customized interfaces that capture specific
aspects of a threatening incident, or the
names and capabilities of nongovernmental
organizations (NGOs) responding to a
humanitarian crisis.

Challenges We Encountered
The software we built is intended for
soldiers who are well versed in their craft
but are not programmers. While we are
still conducting user testing, after we
developed a prototype, we asked several
soldiers to provide feedback. Not
surprisingly, we found that soldiers who
are Android users and relatively young
(i.e., digital natives) quickly learned the
software programming application and
could use it to build a new application on-
site. Conversely, non-digital natives had a
harder time. Since our goal is to make our
software accessible to every soldier, we are
simplifying, revising, and improving the
user interface.

As with any device used by our military,
security is a key concern. Through our
work with the Defense Advanced Research
Projects Agency’s Transformative Apps
program in the Information Innovation
office, we can take advantage of the

security strategies they conceive and
implement. We are also working to address
challenges associated with limited
bandwidth and battery consumption in this
work and other work at the Software
Engineering Institute.

Another area of our work involves
enabling our software to connect to back-
end data sources that the DoD uses. For
example, a soldier on patrol may need to
connect to TiGR and other information
systems to access current information
about people, places, and activities in an
area. Our software will enable these
soldiers to build customized interfaces to
such data sources by selecting fields for
display on the phone and by extending the
information provided by these sources with
additional, mission-specific information.
This capability will provide mash-ups that
support soldiers by capturing multiple
sources of information for display and
manipulation. Once our full capability is
available in spring 2012, it will become
much easier to build phone interfaces to
new data sources and extend these
interfaces with additional information.

Looking to the Future
Currently, eMONTAGE can handle the
basic information types that are available
on an Android phone, including images,
audio, and data. Technologies like
fingerprint readers and chemical sensors
are being miniaturized and will likely be
incorporated into future handheld devices.
With each new technology, we’ll need to
add that basic type to our capability.
Fortunately, this is a relatively

1315

http://defensesystems.com/articles/2011/10/13/ausa-tactical-ground-reporting-system.aspx

Research, Technology, and System Solutions
Equipping the Soldier with End-User Programming

11/21/2011 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

straightforward programming operation,
but it does require engineering expertise.
As a new type becomes available,
professional engineers will add it to
eMONTAGE, thereby making the type
available to soldiers who may have little or
no programming expertise.

Our current focus is on ensuring that the
software is reliable and does not fail, but
we are also looking to extend it to provide
features that we believe are essential, such
as better support for collections of objects.
For example, soldiers may need to classify
a single individual into different groups: a
family member, translator, or member of
an organization. Each group is a collection.
Soldiers will have the ability to list and
search through collections (e.g., list all
members of an NGO who work for
Doctors Without Borders) and plot the
members of a collection on a map (e.g.,
display all members of Doctors Without
Borders who are within 10 miles of my
current position).

While we can provide access to military
iconology, eMONTAGE is not DoD-
specific by design. This application can be
used by other government organizations—

or even NGOs— that want a user-
customizable way to capture information
about any variety of people, places, and
things and share this information
effectively in the enterprise.

Part of our ongoing research involves
testing our applications with soldiers
through the Naval Postgraduate School’s
Center for Network Innovation and
Experimentation (CENETIX). In our initial
tests with the soldiers, they told us what
capabilities they need and what did not
work. These collaborations tie our work
firmly into both the research and military
communities and keep us focused on
providing a useful and cutting-edge
capability. In addition to continuing our
collaboration with CENETIX, we are
working with Dr. Brad Myers of the
Carnegie Mellon University Human
Computer Interaction Institute. Dr. Myers
is helping us define an appropriate
interface for soldiers to use the handheld
software in the challenging situations they
face.

By Edwin Morris, Senior Member of the
Technical Staff

Related Web Sites
http://blog.sei.cmu.edu/post.cfm/a-new-
approach-for-handheld-devices-in-the-
military

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

1416

http://www.cs.cmu.edu/~bam/

Research, Technology, and System Solutions
A New Approach for Handheld Devices in the Military

Many people today carry handheld computing
devices to support their business, entertainment,
and social needs in commercial networks. The
Department of Defense (DoD) is increasingly
interested in having soldiers carry handheld
computing devices to support their mission needs in
tactical networks. Not surprisingly, however,
conventional handheld computing devices (such as
iPhone or Android smartphones) for commercial
networks differ in significant ways from handheld
devices for tactical networks. For example,
conventional devices and the software that runs on
them do not provide the capabilities and security
needed by military devices, nor are they configured
to work over DoD tactical networks with severe
bandwidth limitations and stringent transmission
security requirements. This article describes
exploratory research we are conducting at the
Software Engineering Institute (SEI) to (1) create
software that allows soldiers to access information
on a handheld device and (2) program the software
to tailor the information for a given mission or
situation.

To motivate the need for tactical handheld devices,
imagine a U.S. soldier on patrol, deployed abroad,
and walking into an unfamiliar village. Many pieces
of information would be useful to that soldier in that
situation. For example, it would be useful to know
who the village elders are and to have pictures to
identify them. It would also be useful to access
information about previous improvised explosive
device (IED) attacks, reports detailing the results of
other contact that soldiers have had with villagers,
and whether any friendly villagers speak English.
We face the following challenges when creating
software for tactical handheld computing devices
that can provide this information:
• Developing applications that can support the full

range of military missions. In recent years,
soldiers have provided humanitarian assistance
to victims of natural disasters in Haiti and
countries in Asia, patrolled our country’s borders,
protected global waterways from piracy, and
performed many types of military operations in
Iraq and Afghanistan. These missions are
sufficiently diverse that a one-size-fits-all
software solution is not practical. For example,
consider the different goals of clearing a route in
a combat zone versus delivering humanitarian
supplies in a relief effort or the different
information required to protect from IED attacks
versus treat a critically ill child. Not only is
different information required, but also the rules

for sharing it can vary. In a combat environment,
security concerns require limiting access, while
information in a relief mission may be shareable
with nongovernmental organizations responding
to the crisis.

• Processing large amounts of data available
through the rapid computerization and
internetworking of various military missions. For
example, the military employs hundreds of
unmanned aerial vehicles that generate large
amounts of data. There are also increases in the
number of sensors, such as auditory, biological,
chemical, and nuclear, that are network enabled.
All the data generated from these devices makes
it hard to pinpoint the right information for a given
mission and situation.

Our goal is to ensure the capabilities provided on
tactical handheld computing devices are flexible
enough to allow solders to control the amount and
type of data that they receive and adaptive enough
to meet the needs of particular missions. To achieve
this goal, we are exploring the integration of end-
user programming techniques, active data filtering
and formatting, and confidence-building strategies.
End-user programming techniques enable soldiers
to program software on tactical handheld devices
without requiring them to be professional software
developers. Filtering incoming information and
displaying it in intuitive formats helps avoid
inundating soldiers on patrol with too much data.
Confidence-building strategies promote trust that
applications programmed by soldiers work correctly
and safely. We are currently developing software for
Android devices, but the fundamental concepts are
applicable to other mobile platforms as well.

A key concern is designing software that has an
intuitive and simple-to-use interface since the
soldiers customizing these capabilities are not
programmers; they are war fighters. The software
we build must therefore help them readily find and
assemble the types of information they need. It
should reduce the soldier’s workload by filling in
(auto-complete) as much information for the soldier
as possible. The software should require soldiers to
learn only a few different types of screens (for
example, screens for entering data and for
establishing filters should be substantially the
same). In addition, confidence-building feedback
should be integrated into the interface so that
soldiers are sure that what they build will work and
are informed early if it will not.

Our work also focuses on ensuring that the
information—whether from central command or a
local unit—makes its way quickly and efficiently to
the handheld computing device used by soldiers.
For example, user-programmable data filtering
allows soldiers to specify what information is
important. Likewise, optimized protocol
implementations ensure this information is
exchanged quickly.

Last year, we conducted a research project that
involved taking a service-oriented architecture
approach to provide real-time situational awareness
data to Android smartphones. We worked with
soldiers through the Naval Postgraduate School’s
Center for Network Innovation and Experimentation
(CENETIX) to test our applications. They told us
what capabilities they need, and what did not work.
These collaborations tie our work firmly into both the
research and military communities and keep us
focused on providing a useful and cutting-edge
capability. In addition to continuing our collaboration
with CENETIX, we are working with Dr. Brad Myers
of the Carnegie Mellon University Human Computer
Interaction Institute. Dr. Myers is helping us define
an appropriate interface for soldiers to use the
handheld software in the challenging situations they
face.

By Edwin Morris, Senior Member of the
Technical Staff

Related Web Sites
http://blog.sei.cmu.edu/post.cfm/a-new-approach-
for-handheld-devices-in-the-military

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

151517

Research, Technology, and System Solutions
Cloud Computing for the Battlefield

The Department of Defense (DoD) is increasingly
interested in having soldiers carry handheld mobile
computing devices to support their mission needs.
Soldiers can use handheld devices to help with
various tasks, such as speech and image
recognition, natural language processing, decision
making, and mission planning. Three challenges,
however, present obstacles to achieving these
capabilities. The first challenge is that mobile
devices offer less computational power than a
conventional desktop or server computer. A second
challenge is that computation-intensive tasks, such
as image recognition or even global positioning
systems, take heavy tolls on battery power. The third
challenge is dealing with unreliable networks and
bandwidth. This article explores our research to
overcome these challenges by using cloudlets,
which are localized, lightweight servers running one
or more virtual machines (VMs) on which soldiers
can offload expensive computations from their
handheld mobile devices, thereby providing greater
processing capacity and conserving battery power.

Leveraging external resources to augment the
capabilities of resource-limited mobile devices is a
technique commonly known as cyber-foraging. The
use of VM technology provides greater flexibility in
the type and platform of applications and also
reduces setup and administration time, which is
critical for systems at the tactical edge. The term
tactical edge refers to systems used by soldiers or
first responders that are close to a mission or
emergency executing in environments characterized
by limited resources in terms of computation, power,
and network bandwidth, as well as changes in the
status of the mission or emergency.

Cloudlets are located within proximity of handheld
devices that use them, thereby decreasing latency
by using a single-hop network and potentially
lowering battery consumption by using WiFi instead
of broadband wireless, which consumes more
energy. For example, a cloudlet might run in a
Tactical Operations Center (TOC) or a Humvee.
From a security perspective, cloudlets can use WiFi
networks to take advantage of existing security
policies, including access from only specific
handheld devices and encryption techniques.

Related work on offloading computation to conserve
battery power in mobile devices relies on the
conventional Internet or environments that tightly
couple applications running on handheld devices
and servers on which computations are offloaded. In

contrast, cloudlets decouple mobile applications
from the servers. Each mobile app has a client
portion and an application overlay corresponding to
the computation-intensive code invoked by the
client. On execution, the overlay is sent to the
cloudlet and applied to one of the VMs running in the
cloudlet, which is called dynamic VM synthesis. The
application overlay is pre-generated by calculating
the difference between a base VM and the base VM
with the computation-intensive code installed. The
only coupling that exists between the mobile app
and the cloudlet is that the same version of the VM
software on which the overlay was created must be
used. Since no application-specific software is
installed on the server, there is no need to
synchronize release cycles between the client and
server portions of apps, which simplifies the
deployment and configuration management of apps
in the field.

Dynamic VM synthesis is particularly useful in
tactical environments characterized by unreliable
networks and bandwidth, unplanned loss of cyber
foraging platforms, and a need for rapid deployment.
For example, imagine a scenario where a soldier
needs to execute a computation-intensive app
configured to work with cloudlets. At runtime, the
app discovers a nearby cloudlet located on a
Humvee and offloads the computation-intensive
portion of code to it. Due to enemy attacks, network
connectivity, or exhaustion of energy sources on the
cloudlet, however, the mobile app is disconnected
from the cloudlet. The mobile app can then locate a
different cloudlet (e.g., in a TOC) and—due to
dynamic VM synthesis—can have the app running in
a short amount of time, with no need for any
configuration on the app or the cloudlet. This
flexibility enables the use of whatever resources
become opportunistically available, as well as
replacement of lost cyber-foraging resources and
dynamic customization of newly acquired cyber-
foraging resources.

As part of our research, we are focusing on face
recognition applications. Thus far we have created
an Android-based facial recognition app that
performs the following actions:
1. It locates a cloudlet via a discovery protocol.
2. It sends the application overlay to the cloudlet

where dynamic VM synthesis is performed.
3. It captures images and sends them to the facial

recognition server code that now resides in the
cloudlet.

4. The application overlay is a facial recognition

server written in C++ that processes images from
a client for training or recognition purposes. When
in recognition mode, it returns coordinates for the
faces it recognizes as well as a measure of
confidence. The first version of the cloudlet is a
simple HTTP server that receives the application
overlay from the client, decrypts the overlay,
decompresses the overlay, and performs VM
synthesis to dynamically set up the cloudlet.

The first phase of our work has focused on creating
the cloudlet prototype described above. In the
second phase, we will conduct measurements to
see if computations in a cloudlet provide significant
reductions in device battery power. In addition, we
will gather measurements related to bandwidth
consumption of overlay transfer and VM synthesis to
focus on optimization of cloudlet setup time.
Assuming we are successful, our third phase will
create a cloudlet in the RTSS Concept Lab to
explore other ways to take computation to the
tactical edge.

As part of our research, we are collaborating with
Mahadev Satyanarayanan, the creator of the
cloudlet concept and a faculty member at Carnegie
Mellon University’s School of Computer Science.

By Grace Lewis, Senior Member of the Technical
Staff

Related Web Sites
www.sei.cmu.edu/sos/research/cloudcomputing
www.sei.cmu.edu/library/abstracts/webinars/Cloud-
Computing.cfm
http://blog.sei.cmu.edu/archives.cfm/category/cloud-
computing

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

161618

http://www.cs.cmu.edu/~satya/

Research, Technology, and System Solutions
Cloud Computing at the Tactical Edge

Cloudlets, which are lightweight servers
running one or more virtual machines (VMs),
allow soldiers in the field to offload resource-
consumptive and battery-draining
computations from their handheld devices to
nearby cloudlets. This architecture decreases
latency by using a single-hop network and
potentially lowers battery consumption by
using WiFi instead of broadband wireless.
This article extends our original one by
describing how we are using cloudlets to help
soldiers perform various mission capabilities
more effectively, including facial, speech,
and imaging recognition, as well as decision
making and mission planning.

An initial goal of our research was to create a
prototype application that located cloudlets
within close proximity of handheld devices
using them. We initially focused on off-
loading computations to cloudlets to extend
device battery life. In addition to this benefit,
we also found cloudlets significantly reduce
the amount of time needed to deploy
applications to handheld devices because
clients are not tied to a specific server that
can take a long time to provision in tactical
environments.

Our work together with Mahadev “Satya”
Satyanarayanan (the creator of the cloudlet
concept and a faculty member at Carnegie
Mellon's School of Computer Science)
originally focused on face recognition
applications as an example of a computation-
intensive mission capability. Thus far we
have created an Android-based facial
recognition application that

• locates a cloudlet via a discovery protocol

• sends the application overlay to the
cloudlet, where dynamic VM synthesis is
performed

• captures the images and sends them to the
facial recognition server code that now
resides in the cloudlet

In the context of cloudlets, the application
overlay corresponds to the computation-
intensive code invoked by the client, which
in this case is the face recognition server
written in C++, and processes images from a
handheld device client for training or
recognition purposes. On execution, the
overlay is sent to the cloudlet and applied to
one of the VMs running in the cloudlet,
which is called dynamic VM synthesis. The
application overlay is pre-generated by
calculating the difference between a base VM
and the base VM with the computation-
intensive code installed.

The first version of the cloudlet we created is
a simple HTTP server. When this server
receives the application overlay from the
client, it decrypts and decompresses the
overlay and performs VM synthesis to
configure the cloudlet dynamically. It
subsequently returns coordinates for the faces
it recognizes, along with a measure of
confidence to the client device.

Constructing the Cloudlet Prototype
The original cloudlet prototype built by
Satya’s team used a simple Virtual Network
Computer (VNC) client to see what was
executing inside the VM. Our cloudlet
prototype extended Satya’s work to use a
thick mobile client that provides a better user

experience for users at the edge and allows
incorporation of sensor information that
would not be possible with the original VNC
cloudlet approach. We constructed this
prototype in the Software Engineering
Institute’s Concept Lab.

Our design was tricky because the face
recognition client needs to know the IP
address and the port on which the face
recognition server is listening so that it can
connect to it. The client uses an HTTP
request to start the cloudlet setup and expects
an HTTP response from the cloudlet server
that includes the face recognition server IP
address and port. Since the IP address is
assigned by the Dynamic Host Configuration
Protocol server because the VM is executing
in bridged mode, however, the host server
has no visibility into that assignment, so there
was no simple way to obtain the IP address
and port.

To solve this problem, we included a
Windows service in the VM that runs on
startup. The Windows service invokes a
Python script that performs the following
three tasks:

1. Start the face recognition server
executable in a separate thread inside a
Python script.

2. Read the face recognition server
configuration file that contains the IP
address and port that the face
recognition server is listening on.

3. Write this information to a file that is
accessible by the cloudlet.

Although the Windows service creates
additional complexity on the cloudlet server,

1719

http://www.cs.cmu.edu/~satya/
http://www.cs.cmu.edu/~satya/

Research, Technology, and System Solutions
Cloud Computing at the Tactical Edge

11/14/2011 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

it reduces the complexity cloudlet setup in
the field. During field operation, servers
residing within the Tactical Operation Center
and Humvees are provisioned with a set of
prepackaged cloudlets to support a range of
applications and versions to avoid
provisioning servers for each supported
application platform and version. The
handheld devices of soldiers participating in
the mission are then loaded with application
overlays that are necessary for a particular
mission. A soldier running a computation-
expensive application can discover a
compatible cloudlet within minutes and
offload the expensive computation to the
cloudlet running on a server.

What We’ve Learned
Our research has identified the following two
types of applications that can be deployed in
a cloudlet setting:

• Data-source-reliant applications that rely
on a particular data source to work. For
example, if soldiers need to launch the
facial recognition application, they need a
database of faces to match images with. In
addition, if soldiers want to compare
fingerprints, they need a database of
fingerprints to match with. In this setting,
the cloudlet must be configured to connect
the cloudlet to a particular data source.

• Non-data-source-reliant applications that
are computationally intensive but don’t
require a large data source to work. For
example, imagine soldiers encountering a
sign with characters they don’t understand.
They can take a picture of the sign and
submit it to a cloudlet to determine the
language in which the sign is written. In
this case, the computationally-intensive
code residing on the cloudlet relies on
complex character recognition algorithms
instead of a large database.

As expected, our experiments demonstrated
that the size of the overlay increases overlay
transmission time (which in turn consumes
more battery) as well as VM synthesis time.
If the data source is included inside the
overlay, this would create a large overlay,
which indicates that the cloudlet concept is
better fit for non-data-source-reliant
applications. We overcame this problem by
specifying the location of the data source in a
configuration file. The location could be the
local server or a server accessible over a
network or the Internet. Although this
approach requires additional configuration, it
is done only once (when the cloudlet is
packaged by IT experts), rather than each
time a server is configured in the field
(potentially by non-IT experts).

Future Work
When testing the cloudlet prototype in the
RTSS Concept Lab, we discovered that a
reduced deployment time makes it easier to
deploy an application in a tactical
environment. We are working to capture
those measurements and are developing the
following applications to support our
findings:

• fingerprint recognition: Fingerprints are
captured using a fingerprint scanner
connected to a handheld device and sent to
the cloudlet for processing.

• character recognition: Pictures of a
written sign are taken with a camera on the
handheld device and sent to the cloudlet
for character identification and translation.

• speech recognition: A voice speaking a
foreign language is captured using the
voice recorder on the handheld device and
sent to the cloudlet for translation; the
same application can be used to translate a
response back to the identified foreign
language.

• model checking: An app is generated on
the handheld on-the-fly using end-user
programming capabilities and sent to a
model checker in a cloudlet to ensure it
does not violate any security (or other)
policies and constraints.

We will use these new applications to gather
measurements related to bandwidth
consumption of overlay transfer and VM
synthesis to focus on optimization of cloudlet
setup time.

Our future research and collaboration will
position cloudlets to both reduce battery
consumption and simplify application
deployment in the field. For example, our
goal is to use dynamic VM synthesis to slash
the time needed to deploy applications,
thereby shielding operators from unnecessary
technical details, while also communicating
and responding to mission-critical
information at an accelerated operational
tempo.

By Grace Lewis, Senior Member of the
Technical Staff

Related Web Sites
http://blog.sei.cmu.edu/post.cfm/cloud-
computing-for-the-battlefield

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

1820

a

Research, Technology, and System Solutions
Group-Context-Aware Mobile Applications

Our modern data infrastructure has become

very effective at getting the information

you need, when you need it. It has become

so effective that we rely on having instant

access to information in many aspects of

our lives. Unfortunately, there are still

situations in which the data infrastructure

cannot meet our needs due to various

limitations at the tactical edge, which is a

term used to describe hostile environments

with limited resources, from war zones in

Afghanistan to disaster relief in countries

like Haiti and Japan. This article describes

ongoing research at the SEI in edge-

enabled tactical systems to address

problems at the tactical edge.

At the tactical edge, the people who need

the information most—warfighters, first

responders, or other emergency

personnel—depend on timely and valuable

information to perform their tasks, or even

to survive. Unfortunately, access to the

information they need can be hard to

achieve, for the following reasons:

 information overload stemming from

too much information, coupled with an

inability to locate truly vital information

 information obscurity due to a lack of

awareness of the available information

 resource scarcity manifested as

insufficient bandwidth, central

processing unit (CPU) power, battery

power, or even attention to get the

needed information and continue to

process, exploit, and disseminate it for

as long as needed

We are tackling the information overload

and information obscurity aspects of this

problem by developing context-aware

mobile applications.

A Different Approach to Context-

Aware Mobile Applications

Context awareness in the mobile

environment is not a new field of research.

Most mobile devices come preloaded with

applications that use location or time to

account for user context. There is certainly

no shortage of similar applications

available for download. We decided,

therefore, to explore alternative sources of

data that would not only push the limit of

what could be done with user context but

also focus on the challenging environment

at the tactical edge.

Our “eureka” moment came when we

realized that when warfighters or first

responders are at the tactical edge, they

almost never operate alone. The most

important contextual information to

warfighters or first responders is the

context of the people in the group, and how

they relate to that context. This realization

drove us to explore group context-aware

mobile applications. These applications

would, if built correctly, first consider

individual user context and then relate that

information to the group context, thereby

helping users understand both their own

states and the state of the group in which

they participate.

Group context-aware mobile applications

clearly have value at the tactical edge. For

example, warfighters are well served by

having access to positions of friends and

foes on the battlefield. They could also

benefit from supportive applications that

monitor resources such as food,

ammunition, or vital signs. With sufficient

data and processing power, these

applications could use historical trends to

determine dynamically if a squad is

walking into a possible ambush situation.

In other tactical environments, such as

tsunami disaster areas, the ability to share

information about resource needs,

dangerous situations, or health

emergencies in a structured way is also

valuable. Such applications could tailor

information to managers, construction

workers, doctors, and other emergency

personnel to help coordinate an effective

emergency response.

Our research project, called Information

Security to the Edge (ISE), explores the

structure, applications, and implementation

of a context model that includes group

information. We have constructed a

prototype application on the Android

platform that implements the essential

components needed by group context-

aware mobile applications.

App Architecture: Logic and Data

The ISE prototype application follows the

common model-view-controller (MVC)

pattern, which decomposes an application

into the following parts:

 The model is the data. This data is the

information processed by the

application. For example, the words

typed by the user into a word processing

application are data.

191921

Research, Technology, and System Solutions
Group-Context-Aware Mobile Applications

11/13/2012 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

 The view is the user interface. For a

word processing application, the view is

the buttons, menus, scroll bars, and other

visual effects provided by the

application to help a user write a

document.

 The controller is the logic. In the word

processing application, the controller is

the rules the application uses to save,

present, filter, and otherwise modify the

text. The function provided by each

button or menu item can also be part of

the controller.

Consistent with the MVC pattern, the ISE

prototype has a central control mechanism

that forms the “brains” of the application

and manages data flow through it. The

central controller coordinates data flow and

processing through the following primary

application elements:

 The context engine is the central

processor for all context information

used by the application. As device

sensors report new data and applications

on external devices send data to the local

application, all data passes through the

engine so that new events are detected as

they occur. For example, if an external

user sends GPS coordinates that indicate

he is within 100 feet of a warfighter,

then the device can alert the warfighter

to his presence. Expanding on this

concept, if a group task must be

performed but everyone is working

individually on other tasks, the local

device can monitor task status and user

position and report to the leader when all

group members are ready and close by

so the group task can be performed.

 The sensor manager accepts data from

sensors that reside upon the mobile

device. A typical smartphone contains

position sensors, movement sensors, and

in some cases, light and proximity

sensors. The application captures data

from these sensors and passes it through

the sensor manager. The sensor manager

enables the sensors and controls their

sample rate, so the application can tailor

usage to the situation and avoid

overwhelming the system.

 The communications manager acts as

the gateway to all external

communications within the system. This

gateway currently includes Bluetooth

and TCP/IP communications but can

include other communication

mechanisms that are available to the

device. Any messages to and from users

on other devices are passed through the

communications manager.

The sensor and communications manager

architecture consolidates all sensor and

communication concerns into a single

location. This consolidation approach

enabled us to build a standardized interface

that simplifies integration of an arbitrary

sensor (for example, a radiation sensor) or

an arbitrary communication mechanism

(for example, a line-of-sight radio that

communicates with UAVs) with the

application. We tested this feature through

a collaboration with Joao Sousa of George

Mason University. This testing resulted in

the development of an alternative

communication mechanism that integrates

with the prototype with only a few weeks

of effort, instead of months or years. We

anticipate leveraging these standardized

interfaces to collaborate with a variety of

external groups and organizations as new

sensor technologies and communication

mechanisms become available.

App Architecture: User Interface (UI)

The ISE app, through the use of Android

UI screens called Activities, reflects the

view part of the MVC pattern. There are

currently only three supported UIs in ISE:

 User: Allows users to look at the people

with whom they are or can be connected,

as well as the context data associated

with each person.

 Task View: Allows users to create their

own tasks, receive updates about other

users’ tasks, and mark their tasks

complete or incomplete.

 Alerts View: As events occur, some will

automatically appear in the alerts view

along with a list of the considerations the

context engine has identified as items of

importance for users. The alerts

presented will be tailored to the needs

and context of individual users.

We are upgrading the ISE architecture to

support any UI that subscribes to

standardized updates from the data

services.

Challenges

One challenge we face involves accounting

for the lack of network infrastructure. In

particular, limited bandwidth exists for the

available communication channels. We are

building atop communication capacities

that other organizations are field testing in

Afghanistan to tailor our solution to

practical field situations.

A second challenge involves providing

warfighter access to backend data sources.

Soldiers told us that important information

is available in such sources, but they can’t

readily find the relevant information.

Moreover, they can’t access the database in

the field. Other Advanced Mobile Systems

202022

Research, Technology, and System Solutions
Group-Context-Aware Mobile Applications

11/13/2012 The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated
by Carnegie Mellon University.

work is investing ways to provide access to

critical data through the use of cloudlets.

A third challenge involves reducing the

user’s cognitive load by limiting the

amount of interaction and attention

required of the user. Residents in a

metropolitan area can use smartphones

without undue concern with distraction, as

long as they are not engaging in tasks that

demand undivided attention. A soldier in

Haiti, on the other hand, must be cognizant

of crumbling buildings, while a warfighter

on the ground in Afghanistan might need

to digest information while taking enemy

fire. Our goal is to use hardware that

allows the warfighter to capture and

process information seamlessly, without

sacrificing valuable time and resources.

We are also addressing the challenge of

resource scarcity. Resources are limited at

the tactical edge and warfighters are

typically limited to the power and

bandwidth of whatever devices they can

carry. We are therefore exploring resource

optimization based on our expanded model

of context. For example, if a warfighter’s

assignment involves driving through a

known safe area, it may not be necessary

for the smartphone to activate the GPS

capability. By optimizing the system to use

sensors only when needed, warfighters can

save battery power, CPU cycles, and

communication bandwidth that can be used

to support other mission-critical needs.

Finally, our work will not have the desired

impact if we cannot meet the challenge of

relevance. Warfighters made it clear to us

that if a device or application is not

directly useful to their immediate task, it

will be ignored. In any given day, a

warfighter in Afghanistan may be asked to

determine if a particular individual is a

threat, sweep a village to establish

identities of residents, deliver food to

children, or check for a weapons cache.

These different missions affect the type of

information that interests soldiers and the

type of information a software application

should consider. Solving this problem

requires a deep understanding of the needs

of soldiers and the missions in which they

engage. We are leveraging this domain

knowledge so our ISE application can

tailor information processing to a particular

mission, thereby ensuring relevance to the

current mission and the ability to change

mission parameters as needed.

Looking Ahead

The ISE prototype is just one part of our

strategy to address the problems of

information overload, information

obscurity, and resource scarcity. The

Advanced Mobile Systems initiative is also

engaged in other projects that address the

three problems of information overload,

information obscurity, and resource

scarcity from different perspectives. We

intend to integrate each project after they

have matured, thereby providing an end-to-

end solution to warfighters and first

responders at the tactical edge.

By Marc Novakouski

Member of the Technical Staff

Related Web Sites
www.sei.cmu.edu/mobilecomputing
www.sei.cmu.edu/

For General Information
For information about the SEI and its
products and services, contact
Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
customer-relations@sei.cmu.edu
www.sei.cmu.edu

212123

222224

	EnsuringSafetyinCyberPhysicalSystems.pdf
	Related Web Sites
	For General Information

	TowardSafeOptimizationofCyberPhysicalSystems.pdf
	Related Web Sites
	For General Information

	EquippingtheSoldierwithEndUserProgramming.pdf
	Challenges We Encountered
	Looking to the Future
	For General Information

	NewApproachforHandheldDevicesintheMilitary.pdf
	Related Web Sites
	For General Information

	CloudComputingfortheBattlefield.pdf
	Related Web Sites
	For General Information

	CloudComputingattheTacticalEdge.pdf
	Constructing the Cloudlet Prototype
	What We’ve Learned
	Future Work
	For General Information

