Carnegie Mellon
——=—Software Engineering Institute

SElinteractive

Volume 2 . Issue 3 . September 1999

Full Issue In This Issue:
Feature

Product Line Practice:
An Effort Worth Making

Columns

The Perils and Joys of
Reconstructing Architectures

Eight Key Factors for
Successful Technology
Collaboration

COTS: Who's in Charge Here?

The Net Effects
of Product Lines

From Y2K to Security
Improvement:
A Critical Transition

Getting Management Support
for Process Improvement

http://interactive.sei.cmu.edu

SElinteractive

Messages

Features

&

Columns

About the SEI
3

From the Director
Steve Cross
4

From the Editor
Bill Thomas
7

Introduction

Product Line Practice:
An Effort Worth Making
9

Background

A Framework for Software
Product Line Practice

10

Spotlight 1

Software Product Lines:
A New Paradigm for the
New Century

29

Spotlight 2

Product Lines in Practice

at Three Major Corporations
36

Roundtable

A Scenario for Using
theProduct Line
Practice Framework
42

Links

Links to Product

Line Resources and
References to Product
Line Related Readings
60

The Architect
The Perils and Joys of
Reconstructing Architectures

Rick Kazman
71

The Business Edge
Eight Key Factors for
Successful Technology
Collaboration

Mike Mattison

83

The COTS Spot
Who's in Charge Here?

David Carney
92

Net Effects

The Net Effects of
Product Lines
ScottTilley

98

Security Matters
From Y2K to Security
Improvement:

A Critical Transition

Moira West-Brown
and Katherine Fithen
103

Watts New?
Getting Management Support
for Process Improvement

Watts S. Humphrey
110

SEl Interactive
Volume 2. Issue 3 . September 1999

Copyright © 1999 by Carnegie Mellon University

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

M Architecture Tradeoff Analysis Method, ATAM, CMM Integration, CMMI, IDEAL, Interim
Profile, Personal Software Process, PSP, SCE, Simplex, Team Software Process, and TSP are
service marks of Carnegie Mellon University.

® Capability Maturity Model, Capability Maturity Modeling, CERT, CERT Coordination Center,
and CMM are registered in the U.S. Patent and Trademark Office.

About the SEI

Mission

The SEI mission is to provide leadership in advancing the state of the practice of
software engineering to improve the quality of systems that depend on software.

The SEI expects to accomplish this mission by promoting the evolution of software
engineering from an ad hoc, labor-intensive activity to a discipline that is well managed
and supported by technology.

SEl Work

The SEI program of work is grouped into two principal areas:

» Software Engineering Management Practices

» Software Engineering Technical Practices

Within these broad areas of work, the SEI has defined specific initiatives that address
pervasive and significant issues impeding the ability of organizations to acquire, build,
and evolve software-intensive systems predictably on time, within expected cost, and
with expected functionality. Visit the initiative page on the SEI Web site
[http://www.sel.cmu.edu] for more information.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 3

From the Director

Product Lines: High-Quality Software Really Fast
Stephen E. Cross

A New Software Paradigm

The SEI's Paul Clements calls product line practice “a new paradigm for the new
century.” | could not agree more. As Clements points out, “If the pitfalls are
successfully negotiated, the result is an enviable capacity to deliver extremely large
systems on time and within budget.” Such a powerful approach can provide enormous
benefits to software engineers working on Department of Defense contracts or
commercial products.

The product line approach is in essence the strategic reuse of all of an organization’s
core assets to support the rapid development of similar systems from core assets. | say
strategic because the decision to employ the product line approach is both a business
and technical decision, as described in this issue. Core assets include not only reusable
software, but the system’s architecture, proven processes related to the development
and testing of systems, and all the knowledge related to the development of systems
(for example, test plans, requirement documents, etc.).

The organization that successfully employs product line approaches invests wisely in its
core assets. It invests in its people and puts its best people on the maintenance—the
stewardship—of its core assets. For example, over time the quality of architecture and
software-based core assets improves. This means that the overall quality of a new
system assembled from that architecture and those software components is of higher
quality. Experience has shown that much less time is then required in the system-
integration and test phases. Hence, the product line approach is a “product, process, and
people” improvement strategy for reusing an organization’s core assets for delivering
high-quality software with reduced cycle times.

Product Lines and the SEI's Work

Much of the work of the SEI supports organizations that seek to employ a product line
approach. Besides the SEI's Product Line Practice (PLP) initiative, consider the
following:

* Architecture Tradeoff Analysis (ATA). The software architecture is a critical core
asset, the “blueprint” that embodies the critical system attributes (for example,
performance, security, reliability, modifiability, etc.) The ATA initiative provides
guidance on how to analyze an architecture. Conducting an exercise that is part of the
architecture tradeoff analysis method (ATAM) typically consumes three calendar

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 4

days. Not a bad price for the peace of mind you get by knowing that your architecture
IS going to meet the needs of your product line.

* Process improvement. Turning out a product line requires a certain maturity of
process. People have to be disciplined. Product lines are about following established
channels of communication and feedback, especially between the core asset
developers and the consumers of those core assets—namely the product-producing
projects. In our experience, process improvement and the migration to product line
strategy go hand-in-hand, especially for those organizations with low process
maturity.

» Component-based systems. Product lines often epitomize component-based systems.
A product line architecture is built to accommodate variation and extension, and one
mechanism for achieving this is the ability to replace components quickly and easily
in order to achieve the special variations needed for different products.

The two Spotlight articles in this issue highlight some of the ways in which product line
practices cut across all areas of software development by focusing on the activities at
four companies with successful product line programs. Our Roundtable discussion
provides additional organizational contexts through a series of scenarios.

First Product Line Conference

To help further the widespread use of product line practices, we at the Software
Engineering Institute will sponsor the first Software Product Line Conference (SPLC1)
in Denver, Aug. 28-31, 2000. The conference will be open to the software community
at large, but the focus will be on achievements that are triggering the growing adoption
of product line practices.

We invite researchers and practitioners to contribute to SPLC1 by submitting refereed
archival technical papers, topical panels, tutorials, and/or workshops. The deadline for
submission of papers and proposals is Dec. 15, 1999. We hope you will join us for this
unique opportunity to exchange ideas and experiences related to software product lines
and to broaden the community interest in product line technology. For further
information, please visit the SPLC1 Web site at

http://www.sei.cmu.edu/plp/conf/SPLC.html

Improving Software in General

Product lines are, of course, just one area where the SEI is improving the practice of
software engineering. | am often asked questions such as: “What are you going to do
about bad software?” In fact, Martha Heller asked that very question in her recent

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 5

Sound Off column in CIO magazine (available online at

http://comment.cio.com/070699 sound.html). | told her: “Better software is a joint
responsibility of the buyer and the builder,” and | advised that dissatisfied ClIOs adopt
the best practices in the SEI's Software Acquisition Capability Maturity Model® (SW-
CMM®). She took my comment a step further, proposing as one solution that ClIOs
“could get together and refuse to upgrade unless the software adheres to management
practices developed by quality experts like Cross and his team at the SEI.”

Indeed, the SEI is currently working on ways to motivate or provide incentives for
organizations to use best practices, such as product line approaches, the CMM
Integration product suite (which embodies the practices described in the SW-CMM
2c), the Personal Software Process™, and other best practices. One way to provide
incentives would be the use of model contracting language that requires software
developers to adhere to these practices.

We expect to soon rel ease some of these ideas to the devel oper community. Look to

future issues of SEI Interactive for more on what is likely to be avery interesting
debate.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 6

From the Editor

Welcome to SEI Interactive

Welcome to the sixth installment of SEl Interactive.

One of the interesting tasks that comes with editing an online magazine is perusing our
anonymous Web statistics to try to glean information about our readers and their
approachesto reading SEI Interactive.

Sometimes the effort raises questions rather than answering them. Why, for example, is

our readership highest on Tuesdays? And why is 2:00-4:00 p.m. our busiest time of

day? Why, this past August, did we have three times as many requests for pages—or
“hits"—from readers in Finland as we had from readers in Norway?

For the most part, however, the Web statistics give us exciting and encouraging
insights. For example:

* Our readership has grown steadily since the laun&&lointeractive with the June
1998 issue. Since then, our readership has grown by 500 percent, and each new
release brings another large group of new readers. (We measure this by the statistic
“distinct hosts served,” meaning the number of unique IP addresses that access the
SEl Interactive server in a month.)

* We have readers in approximately 60 countries. After the United States, the countries
with the highest readership are Germany, Canada, the Netherlands, Australia, the
United Kingdom, and Japan.

» Every item inSEl Interactive has a long shelf life. Our Archives section is truly a
rich repository of information from which the software engineering community
frequently draws. Indeed, during some months, our archived articles and columns
receive almost as many hits as our current material.

* Our columnists have strong readership, led by Watts Humphrey and his “Watts New”
column, which is consistently one of the five most requested pages. The columns also
generate the strongest interaction with our discussion groups feature—and we’re
happy to say that our columnists themselves actively participate.

» Readers usgEl Interactive as an on-ramp to other SEI information. Our list of
recent SEI publications is consistently the third- or fourth-most-requested file, and
close behind is the “Announcements” page. Cle&y,Interactiveis a favorite
method for finding out about the SEI in general.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 7

With this issue we want to alert you to a new feature. In response to requests from
readers, we have gathered al the content of thisissue into one PDF file. So, in addition
to getting a PDF version of each article, you can also get the entire issue, with its own
cover and table of contents.

Bill Thomas
SEI Interactive editor-in-chief
Software Engineering Institute

The SEI Interactive Team:

Mark Paat, communication design
Bill McSteen

Jamie Teasdale

Barbara White

Thanks also to Paul Clements, the guest editor for this issue’s Features section, and to
all of our content reviewers, including Steve Cross, John Goodenough, and Linda
Northrop.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 8

Introduction

Product Line Practice: An Effort Worth Making

“Software developed as a product line promises to be a dominant development
paradigm for the new century,” according to Paul Clements of the SEI's Product Line
Practice Initiative. But the challenges involved cannot be taken lightly. “The successful
transition to product-line technology requires a careful blend of technology, process,
organization, and business factors improvement,” he says, but adds that the payoff is
worth it: “If the pitfalls are successfully negotiated, the result is an enviable capacity to
deliver extremely large systems on time and within budget.”

This issue ofEl Interactive examines in depth the high-stakes subject of product line
practice.

Our Background article, “A Framework for Software Product Line Practice,” provides a
slightly condensed version of the first two chapters of version 2.0 of this framework,
which was released by the SEI in July 1999. The framework is intended to be a living
document that will aid the software development and acquisition communities. Each
version represents an incremental attempt to capture information about successful
product line practices. This information has been gleaned from studies of organizations
that have built product lines, from direct collaborations on software product lines with
the SEI's customer organizations, and from leading practitioners in software product
lines.

In our first of two Spotlight articles, “Software Product Lines: A New Paradigm for the
New Century,” the SEI's Paul Clements discusses the advantages of product lines,
uncovers some of their pitfalls, and shows by example the kinds of successes that
organizations can enjoy. Our second Spotlight article presents further examples,
describing how product line programs have been handled at Cummins Engine,
Raytheon, and Hewlett-Packard. Those companies have all enjoyed substantial
reductions in time to market, cost, and risk, and significant gains in efficiency and
quality. But the leaders of those companies’ programs are quick to point out that large-
scale technical and cultural changes are required. They share some of the lessons that
they have learned.

This issue’s Roundtable captures a panel discussion from the 1999 Software
Engineering Symposium. The panelists, all members of the SEI technical staff, depict a
specific usage scenarios for the latest version of the product line practice framework
given a specific organizational context, and illustrating the use of practices in the areas
of launching a product line, scoping a product line, using commercial off-the-shelf
software in a product line, and defining a product line architecture.

Finally, our Links feature offers a guided tour of information available on the Web
about product line practice.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 9

Background

A Framework for Software Product Line Practice
Paul Clements, Linda M. Northrop

This article is excerpted from the first two chapters of A Framework for
Software Product Line Practice, Version 2.0. The framework is intended to be a
living document that will aid the software development and acquisition
communities. Each version represents an incremental attempt to capture
information about successful product line practices. This information has been
gleaned from studies of organizations that have built product lines, from direct
collaborations on software product lines with customer organizations, and from
leading practitioners in software product lines. In the full document, available on
the Web at http://www.sei.cmu.edu/plp/framework.html, Chapter 3 provides a
detailed description of how product line practices could be applied to software
engineering, technical management, and organizational management practice
areas. “Not all of the practice areas have been defined, but our goal is to
release the framework in increments to get the information out sooner and to
get feedback and contributions,” writes co-author Linda Northrop, director of the
Product Line Systems Program at the SEI. “Future versions will build upon the
current foundation by completing still other practice area descriptions, and by
describing a small number of product line scenarios involving the development,
acquisition, and/or evolution of a software product line.” Northrop requests that
readers provide feedback and make contributions to the framework by
contacting her at Imn@sei.cmu.edu.

Introduction

Software product lines are emerging as a new and important software development
paradigm. Companies are finding that the practice of building sets of related systems
from common assets can yield remarkable quantitative improvements in productivity,
time to market, product quality, and customer satisfaction. Organizations that acquire,
as opposed to build, software systems are finding that commissioning a set of related
systems as a commonly devel oped product line yields economiesin delivery time, cost,
simplified training, and streamlined acquisition. But along with the gains come risks.
Although the technical issues in product lines are formidable, they are but one part of
the entire picture. Organizational and management issues constitute obstacles that are at
least as critical to overcome, and may in fact add more risk because they are less
obvious.

Building a software product line and bringing it to market requires a blend of skillful
engineering as well as both technical and organizational management. Acquiring a
software product line also requires this same blend of skillsto position the user
organizations to effectively exploit the commonality of the incoming products, as well

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 10

asto lend sound technical oversight and monitoring to the development effort. These
skills are necessary to overcome the pitfalls that may bring disaster to an
unsophisticated organization.

Organizations that have succeeded with product lines vary widely in

» thenature of their products

» their market or mission

» their organizationa structure

» their culture and policies

» their software process maturity

» thematurity and extent of their legacy artifacts

Nevertheless, there are universal essential activities and practices that emerge, having
to do with the ability to construct new products from a set of core assets while working
under the constraints of various organizational contexts and starting points.

Every organization is different and comes to the product line approach with different
goals, missions, assets, and requirements. Practices for a product line developer will be
different from those for a product line acquirer, and different still for a component
vendor. Appropriate practices will vary according to

the type of system being built

» the depth of domain experience

* thelegacy assets on hand

» theorganizational goals

» the maturity of artifacts and processes

» theskill level of the personnel available

* many other factors

Thereis no one correct set of practices for every organization, but this document
contains practices that we have seen work successfully in practice.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 11

What is a Software Product Line?

A software product lineis a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission.

Substantial economies can be achieved when the systems in a software product line are
developed from a common set of core assets, in contrast to being developed one at a
time in separate efforts. Using common assets, a new product is formed by taking
applicable components from the asset base, tailoring them as necessary through pre-
planned variation mechanisms such as parameterization, adding any new components
that may be necessary, and assembling the collection under the umbrella of a common,
product line-wide architecture. Building a new product (or system) becomes more a
matter of generation than creation; the predominant activity isintegration rather than
programming.

Organizations routinely produce new releases and versions of products. Each of these
new versions and releases is typically constructed using the architecture, components,
test plans, etc. from the prior releases. Why are product lines different? Two elements
of product lines capture the essence of the answer: the production of arelated set of
products and their production from a core asset base. The production itself is specified
in a production plan.

Within a product line, an organization has multiple products, each of whichis going
through its own cycles of release and version simultaneously. Thus, the evolution of a
single product must be considered within a broader context, i.e. the evolution of the
product line as awhole.

The second essential aspect of the definition is the production of instances from a core
asset base. Thus, we are concerned in this document with the means of production and
the structure of the producing organization. How a customer might view a collection of
products and interact with the producersis only of ancillary interest. It is difficult to
discern from an examination of the behavior of a system (or a collection of systems)
whether they were constructed from a core asset base. In fact, most customers care only
about price, schedule, function, and quality. Our focusis on what it means for a
producer to be producing, or for an acquirer to be acquiring, multiple products from the
same asset base simultaneoudly.

Benefits and Costs of a Product Line

A product line epitomizes strategic reuse. Core assets extend far beyond mere code
reuse. Each product in the product line can be turned out by taking advantage of
analysis, design, code, testing, planning, training, and a host of other activities that have
aready been performed for previous products in the product line. For each reuse

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 12

benefit, however, there is usually an associated cost and a caveat to achieving the
benefit. The items that affect both the product line and new products as well as their
benefits and costs are shown in the following table:

Asset

Benefit

Costs

Architecture, architecture
specification, architecture
evaluation: The architecture for
the product line is the blueprint for
how each product is assembled from
the components in the asset base.
The right architecture provides for all
of the quality attributes of the
products; the wrong architecture
precludes achieving desired quality.

Architecture represents a significant
design investment by the
organization’s most talented
engineers. Leveraging this
investment across all products in the
product line means that for
subsequent products, the most
important design step is completed.

The architecture must support the variation
inherent in the product line, which imposes
an additional constraint on it.

Software components: The
software components that populate
the asset base form the building
blocks for each product in the
product line.

The design decisions, data
structures, algorithms,
documentation, reviews, code, and
debugging effort can all be
leveraged across all products in the
product line.

The components must be designed to be
robust and applicable across a wide range
of product contexts, possibly complicating
their design. Often, components must be
designed to be more general without loss
of performance. Variation points must be
built in.

Performance modeling and
analysis: For products that must
meet real-time constraints, analysis
must be performed to show that the
system’s performance will be
adequate.

A new product can be fielded with
high confidence that real-time and
distributed-systems problems have
already been worked out because
the analysis and modeling can be
reused from product to product.
Process scheduling, network traffic
loads, deadlock elimination, data
consistency problems, and the like
will all have been modeled and
analyzed.

Reusing the analysis may impose
constraints on moving processes among
processors, on the creation of new
processes, or on synchronization among
existing processes.

Tools and processes for
software development, and
process for making changes:
The infrastructure for turning out a
software product requires a
substantial investment.

Configuration control boards,
configuration management tools and
procedures, management
processes, and the overall software
development process are in place
and have been used before. Tools
and environments purchased for one
product can be amortized across the
entire product line.

The boards, tools, and procedures must be
more robust to account for the differences
between managing a product line and
managing a single product.

People, skills, training: Ina
product line organization, the
development staff works on the
entire product line, not just a single
product (although some people will
work on a single product at a time).

Because of the commonality of the
applications, personnel can be
transferred among projects as
required. Their expertise is
applicable across the entire product
line. Their productivity, when
measured by the number of
products to which their work applies,
rises dramatically.

Personnel must be trained beyond general
software engineering and corporate
procedures to ensure that they understand
and can use the assets and procedures
associated with the product line. New
personnel must be much more specifically
trained for the product line. Training
materials must be created that address the
product line. As product lines mature, the
skills required in an organization tend to
change, away from programming and
systems engineering and toward relevant
domain expertise and technology

SE Interactive, September 1999

http://interactive.sei.cmu.edu

13

forecasting. This transition must be
managed.

Table 1: Costs and Benefits of Product Lines

For each of these assets, the investment cost is usually much less than the benefit. Also,
most of the costs are one-time costs but the benefits accrue with each new product

release. However, an organization that attempts to institute a product line without being
aware of the costsis likely to abandon the product line concept before seeing it through.

In workshops on product line practice conducted by the Software Engineering Institute,

workshop participants shared some of the specific quantified benefits of product line
practice. These included the following:

» being able to use one person to handle the integration and testing of a1.5M SLOC
Adareal-time safety-critical shipboard command and control system

* increasing productivity (as measured by feature density per shipped product per
engineer per unit time) six-fold over a period of three years

* building a software system capable of running anew diesel engine over a weekend,
as opposed to the full year that it used to take

» being able to join amilitary simulation exercise 12 months ahead of the schedule
predicted without asset reuse

These workshops have also revealed examples of the costs:
» canceling three large projects to devote resources to building the base of core assets
* reassigning staff who could not adjust to the product line way of doing business

» suspending product output for a year while the new practices were put into place

Companies who bore these costs and made the successful transition to product line
practice all agree that the payoff more than compensated for the effort, but these costs
underscore the point that product line practice is often uncharted territory. A framework
such as this one can provide the necessary insights and guidance.

Starting Versus Running a Product Line

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 14

Many of the practice areas in this framework are written from the point of view of
describing an in-place product line capability. Of course, we recognize that the
framework will be used to help an organization put that capability in place, and
ramping up to a product line isin many ways different from running one on a day-to-
day basis.

We felt it was important to describe the end or “steady state” so that readers could
understand the goals. However, to address the issues of starting (rather than running) a
product line shop, the reader is referred to the “Launching and Institutionalizing a
Product Line” practice area in the full document. (See
http://lwww.sei.cmu.edu/activities/plp/framework.html)

Product Line Essential Activities

At its essence, fielding a product line involwese asset devel opment or acquisition,
andproduct development or acquisition using core assets. These two activities can
occur in either order (new products are built from core assets, or core assets are
extracted from existing products). Often, products and core assets are built in concert
with each other. Core asset development has been traditionally called domain
engineering. Product development from core assets is often called application
engineering. The entire effort is staffed, orchestrated, tracked, and coordinated by
management. The following figure illustrates this triad of essential activities. The
iteration symbol at the center represents the decision processes that coordinate the
activities.

Hrociict Lirg Davalgareni / AceLisiiion Procass
Core Asset Product
Development Develqp_m_ent
/ Acguisition / Acquisition
Management |
Domain Engineering Application Engineering

Figure 1: Essential Product Line Activities

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 15

The bi-directional arrows indicate not only that core assets are used to develop

products, but that revisions to or even new core assets might, and most often do, evolve

out of product development. The diagram is neutral about which part of the effort is
launched first. In some contexts, already-existing products are mined for generic
assetsl] a requirements specification, an architecture, software components, etc.(] that
are then migrated into the product line's asset base. In other cases, the core assets may
be developed or procured first to produce a set of products that is merely envisioned

and does not yet exist.

Thereis astrong feedback loop between the core assets and products. Core assets are
refreshed as new products are developed. In addition, the value of the core assetsis

realized through the products that are developed from them. As aresult, the core assets
are made more generic by considering potential new products on the horizon. Thereisa

constant need for strong, visionary management to invest resources into the

development of the core assets. Management must also precipitate the cultural change

to view new products in the context of the available assets. New products must either

align with the existing assets, or the assets must be updated to reflect the new products

that are being marketed. Both the core asset development and acquisition and the
product development or acquisition are themselves iterative in nature as illustrated in
the following figure. Iteration isinherent in product line activities, in turning out core

assets, in turning out products, and in the coordination of the two.

Fraelet Ligjg Dievelggrgri / AceUisiion Frocess

Product
% Development
[Acquisition

Core Asset
Development

/' Acquisition

Management |

Domain Engineering Application Engineering

Figure 2: Iteration in Product Line Activities

Core Asset Development and/or Acquisition

SEI Interactive, September 1999 http://interactive.sei.cmu.edu

16

The goal of the core asset activity isto produce or to acquire a product production
capability, which requires the following three things:

1

Product space. A product space is adescription of theinitial products that
constitute the product line. This description istypically cast in terms of the things
that the products all have in common, and the ways in which they vary from one
another (as opposed to an enumerated list of product names). Thisoutput isa
description of the space of products that the product line is capable of including. It
expresses the product line's scope, which is discussed below. Of course, the
product space evolves as market conditions change, as the organization's plans
change, or as new opportunities arise. Evolving the product space is the starting
point for evolving the product line to keep it current.

Core assets. Core assets are the basis for production of productsin the product line.
These assets almost certainly include an architecture that the productsin the
product line will share, as well as software components that are designed (or
reengineered from existing systems) for systematic reuse across the product line.
Software components also bring with them test plans, test cases, integration plans,
and all manner of design documentation. Other assets, as mentioned previoudly,
also populate this set. Commercial off-the-shelf (COTS) components, if adopted,
also constitute core assets. Although every core asset will not necessarily be used
in every product in the product line, all are used in enough of the products to make
their coordinated development, maintenance, and evolution pay off.

Production plan. A production plan describes how the products are produced from
the core assets.

These three outputs feed the product development or acquisition activity, which turns
out products that serve a particular customer or market niche. The products are built
with the core assets using the production plan.

Inputs to the development and acquisition of core assets include the following:

1

Product constraints: What are the commonalities and variations among the
products that will constitute the product line? What are their behavioral and quality
requirements? What features do the market and technology forecasts say will be
beneficial in the future?

Production constraints: What commercial, military, or company-specific standards
apply to the productsin the product line? Is there an underlying infrastructure that
these products must be built on top of ? What are the time-to-market or time-to-
initial-operating-capability requirements for each? What off-the-shelf components
should be used? Which legacy components could/should be reused?

Syles, patterns, and frameworks: What are the relevant architectural building
blocks that can be applied toward meeting the product and production constraints?

Production strategy: Will the product line be built from the top down (starting with
aset of core assets and spinning off products from those) or bottom up (starting
with aset of products and generalizing their components to produce the product

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 17

line assets)? What will the transfer pricing strategy be (i.e., how will the cost of
producing the generic components be divided among the cost centers for the
products)? Will generic components be produced internally or purchased on the
open market? Will products be automatically generated from the assets or will they
be assembled?

5. Inventory of pre-existing assets: What are the software and organizational assets
available at the outset of the product line effort? Are there libraries, frameworks,
algorithms, tools, and components that should be utilized?

The following figure illustrates the process of developing or acquiring the core asset
base and product line production capability. This activity is iterative, as suggested by
the iteration symbol in the center. Again, the arrows are double-headed to suggest that
there is no one-way causal relationship from inputs to outputs; rather, the inputs and
outputs of this activity affect each other. For example, slightly expanding the product
space may admit whole new classes of systems to examine as possible sources of
legacy assets. Similarly, a production constraint (such as mandating the use of
CORBA) may lead to restrictions on the architectural styles and patterns that will be
considered for the product line as a whole (such as the message-passing distributed
object style). Thisrestriction, in turn, will determine which pre-existing assets are
candidates for reuse or mining.

Defining the Product Space

Defining the product space is a matter of determining the scope of, or scoping the
product line. The scope of the product line determines how many products the product
line comprises. The scope defines the commonality that every member shares and the
ways in which they vary from each other. For a product line to be successful, its scope
must be carefully defined. If product members vary too widely, then the core assets will
be strained beyond their ability to accommodate the variability, economies of
production will be lost, and the product line will collapse into the old-style one-at-a-
time product development effort. If the scope istoo small, then the core assets might
not be built in a generic enough fashion to accommodate future growth, and the product
line will stagnate.

Further, the scope of the product line must target the right products, as determined by
prevailing or predicted market factors, the nature of competing efforts, or the
organization’s business goals for embarking on a product line approach (such as
merging a set of similar but currently independent product devel opment projects).

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 18

Core Asset Development /
Product Acquisition Product =
&> Constraints Space!
Styles, Patterns,
Frameworks c _
r
Production ore
Constraints Assets
Production
; Strategy
Inventory of Production
Pre-existing Plan ‘
Assets

Figure 3: Core Asset Development/Acquisition

Membership in the product line can serve more than one purpose. Perhaps an
organization is building or acquiring several systemsthat are similar to each other but
do not take advantage of that similarity. They wish to merge the effortsto gain
economies of scope, in which case membership is defined by an enumerated list of
products. Perhaps the organization is aiming to capture or penetrate a market segment;
they wish to establish a flexible, quick-response capability for launching new products
in that market. In this case, membership is afunction of marketing projections and is
defined to include not only an initial set of products but also an abstract set of products
that have not yet been built or completely defined, but the possibility is being
considered or planned. In most cases, the scoping must continue after the initial scope
has been defined; new market opportunities may arise, or new opportunities for
strategic reuse and merging of projects may make themselves known.

Scoping the product line must account for any existing product constraints, such as a set
of computing platforms on which the products must run or the set of features that the
products must provide. Knowledge of similar products or systemsis essential.
Marketing and technology forecasts are used to determine what features the product set

should make available both now and in the future.
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 19

Practice areas relevant to determining the product space include the following:

product line scoping

e domainanalysis

market analysis
* requirements, elicitation, analysis, and management

» technology forecasting

Producing the Core Assets

Core assets for a software product line include the system and software architectures*
that all of the products will share, and more tangible assets such as software
components and their supporting artifacts.

Architectureis acritical output of the core asset activity. The architect’s responsibility
includes choosing (or crafting) the architecture that will satisfy the needs of the product
linein general and the individual products in particular. Equally important, the architect
must communicate the architecture to those who will be building core assets (software
components, supporting documentation, etc.) and those who will be building products.
The architecture defines those software components that are candidates to become core
assets. Conformance rules must be put in place for ensuring that the productsin the
product line conform to the architecture; that is, that no product begins to go its own
way and depart from the overall architectural scheme. The architect is also responsible
for ensuring that the architecture remains viable over the life of the product line; this
responsibility may require technology forecasting.

The architect must account for the intended scope of the product line before the
architect can produce an architecture to satisfy it. The commonality defined by the
scope will tend to become embedded in the architecture; the variability in the scope will
tend to become embedded in the tailorable or replaceable components.

! Software architecture is the structure or structures of the system, which comprise software

components, the externally visible properties of these components, and the relationships among them
[Bass 98a).

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 20

To produce an architecture for a product line requires three main elements:

1. Product space. Thisisthe product space that defines the product line scope
(although, in fact, the architecture may influence the product space).

2. Relevant styles, patterns and frameworks. Architectures these days are seldom built
from scratch; rather, they evolve from previousy-applied solutions to similar
problems. Architectural styles represent a current approach to re-using architectural
design solutions. Architectural style catalogs exist that explain the properties of a
particular style, including how well-suited each is for achieving specific quality
attributes such as security or high performance [Bass 984]. Patterns occupy the
same role at afiner granularity of design. Whereas architectures prescribe how
large-grained components (subsystems) interact with each other, patterns usually
suggest ways to implement individual (or groups of finer-grained) components.

3. Knowledge of legacy systems. Components may be mined from legacy systems.
Such components become prime candidates for components in the core asset base.

Of course, an architecture is but one of the core assets that constitute the reusable
portion of a product line. These assets include (but are not limited to) those artifacts
associated with reusabl e software components: requirements specifications,
design/interface specifications, code, test plans/cases/procedures, performance
engineering models, review forms and procedures, and so forth.

Component production or acquisition requires the architecture, which defines the
components that will comprise each product. The architecture will also determine
which components are common across all products (or at least across subsets of the
product line) and define the necessary variations among instances of those components.
Also required is an inventory of pre-existing assets, including commercia off-the-shelf
software, to help determine whether components are to be reengineered, purchased, or
built afresh.

Finally, part of creating the core asset base is defining how that core asset base will be
updated as the product line evolves, as more resources become available, as fielded
products are maintained, and as technological changes or market transitions affect the
product scope.

Practice areas that are relevant to producing the product line architecture, core
components, and other core assets include the following:

» architecture exploration and definition
» architecture evaluation

* requirements elicitation, analysis, and management

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 21

* COTSutilization

* make/buy/mine/outsource anaysis

* mining existing assets

» process modeling and implementation
» software systems integration

» technical risk management

* component development

* testing

» tool support

» developing and implementing an acquisition strategy

Developing the Production Plan

Successful product line practice depends on awell-understood, effective set of practices
and procedures for building products, as well as for building and evolving the
architecture, the other core assets, and the individual products. The overal integrity of
the product line construction and maintenance stepsis critical. Some organizations
maintain acommon set of devel opment tools or environments. The production plan
takes these and other considerations into account. The production plan has to determine
whether the product line will be built from the top down (starting with a set of core
assets and spinning off products from those) or bottom up (starting with a set of
products and generalizing their components to produce the product line assets).
Moreover, each of the core assets will likely have an attached process that prescribesits
tailorability and use in product development. The production plan is the overarching
scheme that links these individual processes.

Another part of the production plan is the definition of metrics to measure
organizationa improvement as aresult of the product line (or other process
Improvement) practices, and plan for collecting the data to feed those metrics.

Finally, amajor part of the production plan is the Product Line Concept of Operations,
which defines the product line organization and its responsibilities and processes.

For the production plan to be put in place, the following information is necessary:

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 22

* The organization’s business goals for moving to a product line approach must be
understood. Organizational goals must first be known so that appropriate measures
can be determined, taken, and tracked to learn whether the goals are being achieved.

* Production constraints must be identified. What commercial-, military-, or
company-specific standards apply to the productsin the product line? What are the
time-to-market or time-to-initial-operating-capability requirements for each? What
off-the-shelf components should be used? What legacy components could or should
be reused? Production constraints catal og the requirements for producing products
in the product line. They include the use of enterprise standards, in-house software
development environments, and requirements for how expensiveit is (in terms of
resources used or time it takes) to produce a product in the product line.

Practice areas relevant to producing the production plan include the following:

data collection, metrics, and tracking

» process modeling and implementation

e planning and tracking

» configuration management

e operations

» technical risk management

» developing and implementing an acquisition strategy
» tool support

» software system integration

Product Development or Acquisition

The activity of turning out productsis the ultimate product line goal; core asset

development is only one means toward that end. The product development/acquisition

activity depends on the three outputs described above—the product space, the core
asset list, and the production plan—plus the requirements for individual products. The
following figure illustrates these relationships. Once more, the arrows are double-
headed to indicate intricate relationships, and the circular arrow chain represents
iteration. For example, the existence and availability of a particular product may well
affect the requirements for a subsequent product. As another example, building a
product that has previously unrecognized commonality with another product already in
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 23

the product line will create pressure to update the core assets and provide abasis to
exploit that commonality for future products.

_I@%E

1

1 3

Product Development /
Acquisition

Products

Core Assets

Production Plan

Figure 4: Product Developments/Acquisition

A product lineis, fundamentally, a set of related products. Each product is produced by

agroup we call the product group. There may be one product group for several

products or one product group per product. If separate, they may fall under the same
organizational structure or be distributed widely across an enterprise. Sometimes a

product line is commissioned—that is, one organization pays another organization to
develop the core assets and one or more resulting products. The commissioning
organization may or may not develop products itself once the core assets are in place. If
it does, and the core asset organization also develops products, then the product groups
may be distributed across entirely separate enterprises.

The creation of products may have a strong effect on the product space, core assets,
production plan, and even the requirements for specific products. The ability to quickly
turn out a particular member of the product line, perhaps one that was not originally
SEl Interactive, September 1999 http://interactive.sei.cmu.edu 24

envisioned by the people responsible for defining the scope, will affect the product
space. Each new product may have similarities with other products that can be
exploited by creating new core assets. As more products enter the field, efficiencies of
production may dictate new system generation procedures, causing the production plan
to be updated. And, in one of the most telling effects of a product line on its client base,
acustomer may change his requirements to bring them in line with the product line
scope to take advantage of the quick time-to-market, reliability, and lower cost
available with products in the product line.

Inputs for product production include the following:

» therequirementsfor any particular product, often expressed as a delta or variation
from some generic product description contained in the product space. (Such a
generic description isitself a core asset.)

* thecore assets

» theproduction plan

Relevant practice areas include the following:

* requirements elicitation, analysis, and management

» architecture evaluation

» developing and implementing an acquisition strategy
» configuration management

e datacollection, metrics, and tracking

» software system integration

» technical risk management

* testing
» tool support
Management

Management plays a critical role in the successful fielding of a product line. Activities
must be provided with resources, coordinated, and supervised. Organizational

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 25

management must set in place the right organizational structure that makes sense for the
enterprise, and must make sure that the organizational units receive the proper
resources (e.g., well-trained personnel) in sufficient amounts. Organizational
management is the authority that is responsible for the ultimate success or failure of the
product line effort.

Organizational management also contributes to the core asset list, by making available
for reuse those management artifacts (especially schedules and budgets) for producing
products in the product line.

If the product line is being commissioned, then the acquiring organization must also
have an organizational management function that holds the responsibility for the
success or failure of the product line acquisition effort. This management function must
bear the responsibility for meeting or failing to meet the enterprise goals of the product
lineitself. The responsibility of organizational management in an acquiring
organization is to oversee the contractor (the developing organization), and to ensure
that the delivered assets and products are suitable and of high quality. If the acquiring
organization actually takes over the core assets from the devel oping organization,
and/or it produces products from those assets, then the acquiring organization also must
have an architecture, core assets, and product groups.

Another kind of management that is required for product lines is the management of the
organization’s external interfaces. Product lines tend to engender different relationships
with an organization’s customers and suppliers, and these new relationships must be
introduced, nurtured, and strengthened.

One of the most important things that management must do is create an adoption plan
that describes the desired state of the organization (i.e., routinely producing productsin
the product lines), and a strategy for achieving that state. The adoption plan should lay
out phase-in activities for various organizational units, prescribe training and skill
development that will be necessary, launch a measurement program to gauge progress
and success, and describe the eventual organizational structure that will be adopted.

Finally, management must either act as or find and empower a product line champion.
This person isastrong, visionary leader who keeps the organization squarely pointed
toward the product line goals, especialy when the going gets rough in the transition
stages. Every successful product line we have observed has an identifiable champion;
most (but not all) failed product lines that we have seen lacked one.

In the area of management, relevant practice areas include the following:
e planning and tracking

» achieving the right organizationa structure
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 26

* funding

* building and communicating a business case

e training

» organizational risk management

e operations

» developing and implementing an acquisition strategy
* customer and supplier interface management

» launching and institutionalizing a product line

» technology forecasting

References

[Bass 984 Bass, L.; Clements, P.; Kazman, R.; Software Architecture in Practice.
Reading, Massachusetts.: Addison-Wesley Longman, Inc., 1998.

About the Authors

Paul Clementsis a senior member of the technical staff at the Software Engineering
Institute. A graduate of the University of North Carolina and the University of Texas,
heis aproject leader in the SEI's Product Line Systems Program. His work includes
collaborating with organizations that are launching product line efforts. Heis aco-
creator of the Software Architecture Analysis Method (SAAM), which alows
organizations to evaluate architectures for fitness of purpose. He and others are working
on an extension to SAAM, which will allow analysis of quality attribute trade-offs at
the architectural level. He is co-author of Software Architecture in Practice (Addison-
Wesley-Longman, 1998) and more than three dozen papers and articles about software
engineering.

Linda Northrop has more than 25 years experience in the software development field as
practitioner, manager, consultant, and educator. Her primary interests and contributions
in the last decade have been in product line engineering, software architecture, object

technology, and software engineering education. She has been with the SEI for the past

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 27

five years. Prior to assuming the management of the Product Line Systems Program,
she was lead for the Software Architecture Project, manager of the Education Process
Project, and Chair of the SEI Education and Training Review Board. Lindais co-
developer of the SEI Improvement Planning Workshop, and has taught software
engineering at Carnegie Mellon University.

Before joining the SEI, she was associated with both the United States Air Force
Academy and the State University of New Y ork as professor of computer science, and
with both the Eastman Kodak Company and IBM as software engineer. As a private
consultant, Linda also worked for an assortment of companies on software devel opment
projects, assessed and recommended software process. She has developed and delivered
awide variety of software engineering and object-oriented training programs and
seminars.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 28

Spotlight 1
Software Product Lines:

A New Paradigm for the New Century
Paul Clements

Software developed as a product line promises to be a dominant development
paradigm for the new century, one that the Department of Defense (DoD) can
leverage when acquiring software-intensive systems. This article discusses the
advantages of product lines, uncovers some of their pitfalls, and shows by
example the kinds of successes that the organizations can enjoy.

Imagine turning out a 1.5 million-line Ada command and control system for a Navy

frigate warship. The system is hard real-time, fault-tolerant, and highly distributed,

running on 70 separate processors on 30 different local area network nodes scattered all

over the ship. It must interface with radar and other sensors, missile and torpedo

launchers, and other complicated devices. The human—computer interface is complex
and highly demanding. In this application, quality is everything: The system must be
robust, be reliable, and avoid a host of performance, distribution, communication, and
other errors.

Now suppose that you have not one of these systems to build but several. Your
marketing department has succeeded beyond your wildest dreams. Navies from all over
the world have ordered your command and control system. Now, your software must
run on almost a dozen different ship classes including a submarine, and the systems are
drastically separate in numerous ways:

The end users speak different languages, and therefore the human—computer interface
requirements are extremely different.

» The ships are laid out differently, have different numbers of processors and nodes,
and different fault tolerance requirements.

The ships employ different weapons systems and sensors.
» The ships utilize different computers and operating systems.
For all their differences, however, quality remains crucial in every system.

Suppose you are the manager for this megaproject. Do you panic? Do you resign? Run
to a third-world country? What if you could produce each one of the systems for a
fraction of the cost and in a fraction of the time that one would normally expect? And
what if you could do it so that quality was improved and reliability and customer

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 29

satisfaction increased with each new system? What if creating a new ship system were
merely a matter of combining large, easily tailorable components under the auspices of
a software architecture that was generic across the entire domain (in this case, of
shipboard command and control systems)?

Isthis afantasy? No, it isnot. It isthe story of CelsiusTech Systems AB, along-time
European defense contractor. In the 1980s, CelsiusTech was confronted with the
dilemma outlined above. It had to build two large command and control systems, each
larger than anything that the company had attempted before, and it had barely enough
resources to build one. Because necessity stimulates invention (and determination
implements it), CelsiusTech realized that its only hope was to build both systems at
once using the same assets and resources. And in avisionary stroke, CelsiusTech knew
that its future lay in exploiting these assets for not only the first two systems but also
for awhole family of products that the company hoped and expected would follow.

Software Product Lines

In short, CelsiusTech launched a software product line. A product lineis a set of

products that together correspond to a particular market segment or fulfill a particular
mission. Product lines promise to become the dominating production-software

paradigm of the new century. Product flexibility is the new anthem of the marketplace,

and product lines fulfill the promise of tailor-made systems built specifically for the

needs of particular customers or customer groups. What makes product lines succeed

from the vendor’s (and developer’s) point of view is that the commonalities shared by
the products can be exploited to achieve economies of production.

Product lines are nothing new in manufacturing. Boeing builds one, so does Ford, IBM,
and even McDonald’s. Each of these companies exploits commonality in different
ways. Boeing, for example, developed the 757 and 767 transports in tandem, and the
parts lists of these two decidedly different aircraft overlap by about 60 percent.

But software product lines based on interproduct commonality are a relatively new

concept, and the community is discovering that this path to success contains more than
its share of pitfalls.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 30

The Software Engineering Institute has a technical program to identify and promul gate
the best practices for product line production and help organizations negotiate the
hurdles of adopting a product line approach. The Product Line Systems Program
focuses on the following essential technology areas for product line production:

» domain engineering; revealsthe commonalities and variations among a set of
products

» architecture; the foundation for a product line, it provides the framework into
which tailorable components plug

» architecture-based development; the disciplined derivation or generation of
product components (and once the components are ready, whole products) from the
architectural skeleton

* reengineering; helps mine reusable assets from legacy assets

The result is atechnology infrastructure that can produce large custom systems quickly
and reliably by checking out components from the asset repository, tailoring those
components for their particular application (CelsiusTech uses compile-time parameters
to instantiate different versions of a component), and beginning the integrate-and-test
cycle asin normal system development.

Product Line Benefits

Once the product line repository is established, consider what is saved each time a
product is ordered:

* Requirements. Most of the requirements are common with earlier systems and
therefore can be used. Requirements analysisis saved; feasibility is assured.

* Architectural design. An architecture for a software system represents alarge
investment in time from the organization’s most talented engineers. The quality
goals for a system—performance, reliability, modifiability, etc.—are largely
allowed or precluded once the architecture is in place. If the architecture is wrong,
the system cannot be saved. For a new product, however, this most important
design step is already done and need not be repeated.

« Components. The detailed (internal) designs for the architectural components are
reused from system to system, as is the documentation of those designs. Data
structures and algorithms are saved and need not be reinvented.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 31

* Modeling and analysis. CelsiusTech reports that the real-time distributed headache
associated with the kinds of systems that it builds (real-time distributed) has al but
vanished. When the company fields a new product in its product line, it has
extremely high confidence that the timing problems have been worked out, and the
challenges associated with distributed computing—synchronization, network
loading, and absence of deadlock—have been eliminated.

* Testing. Test plans, test processes, test cases, test data, test harnesses, and the
communication paths required to report and fix problems are already available.

* Planning. Budgets and schedules can be reused from previous projects, and they
are much more reliable.

» Processes. Configuration control boards, configuration management tools and
procedures, management processes, and the overall software development process
are in place, have been used before, and are robust, reliable, and responsive to the
organization’s special needs.

» People. Because of the commonality of the applications, personnel can be fluidly
transferred among projects as required. Their expertise is applicable across the
entire line.

Product lines enhance quality. Each new system takes advantage of all of the defect
elimination in its forebearers; both developer and customer confidence rise with each
new instantiation. The more complicated the system, the higher the payoff for solving
the vexing performance, distribution, reliability, and other engineering issues only once
for the entire family.

Clearly, product lines benefit the developing organization, but they also benefit
acquirers of systems as well. Acquiring a family of related systems using a product line
acquisition approach (as opposed to acquiring each system separately and
independently) clearly falls within the realm of Department of Defense (DoD) reuse
initiatives and policies, and it promises to accrue significant benefits for the DoD,
including

» streamlined acquisition processes

higher product quality

* lower acquisition costs

simplified training

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 32

* reduced maintenance costs

Organizational Maturity Needs

It takes a certain maturity in the devel oping organization to successfully field a product
line. Technology is not the only barrier to successful product line adoption. Experiences
observed by the Product Line Systems Program show that it is equally vital to master
organization, process, and business issues.

For instance, traditional organizational structures that have one business unit per

product are generally not appropriate for product lines. Who will build and maintain the

core reusable assets—the architecture, the reusable components, and so forth? If these
assets are under the control of a business unit associated with one product or one large
customer, the assets may evolve to serve that business unit, that product, and that
customer to the exclusion of the others. On the other hand, to establish a separate
business unit to work on the core assets but be divorced from working on individual
products carries the danger that this unit will produce assets that emphasize beauty and
elegance over practicality and utility. In either case, producing and managing the
reusable assets means establishing processes to make the assets satisfy the needs of all
of the business units that use them. This is a crucial role that requires staff skilled in
abstraction, design, negotiation, and creative problem solving. The question of funding
the core asset development is crucial.

Customer Management

Customer management becomes an important product line function. Customers interact
with a product line organization in a different way. Marketers can no longer agree to
anything customers want but must instead nudge customers to set their requirements so
that they can be fulfilled by a version of the product line within the planned scope of
variation.

Contrary to intuition, this often makes the customer much happier than before. Under
the new paradigm, the marketer can point to specific requirements that would put the
customer’s new system outside the scope of the product line, which would increase the
cost and delivery time, lower the system’s reliability, and keep that customer out of a
community of customers to which the vendor pays a lot of attention. Thus, the customer
could clearly (and probably for the first time) see the real cost of those "special”
requirements and make an informed decision about their real value. If the customer
decides that a variant of the “standard” or product line system will suffice, so much the

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 33

better. If not, the customer can still order a system to satisfy particular requirements but
with a better idea of where the risks may be hiding.

The customer community should not be underestimated. In CelsiusTech’s case, the
naval customers around the world banded together to form a users’ group. They did this
in their self-interest—to provide a forum in which they could jointly derive new
requirements for their evolving systems and drive CelsiusTech to supply new systems
more economically than it otherwise might. But it does not take much to realize how
beneficial this is to CelsiusTech as well: Its customer base is jointly defining the next
generation of products and is effectively buying in to CelsiusTech’s approach, thus
guaranteeing the vitality of the product line for years to come.

The users’ group provides a clear lesson for DoD acquisitions: It pays to collaborate (or
at least communicate) when it comes to commissioning or purchasing similar systems.

Conclusion

The successful transition to product line technology requires a careful blend of
technology, process, organization, and business factors improvement. The Product Line
Systems Program is attempting to codify these practices and understand how they vary
with the type of organization involved and the kind of systems being built. Through a
series of workshops, case studies, and collaborative engagements, the SEI is helping to
build a community of organizations interested in moving to a product line approach for
their software products.

We believe that product lines will be the predominant software paradigm at the
beginning of the new century. The history of programming can be viewed as an upward
spiral in which the abstractions manifested by components have grown larger and more
application meaningful, with resulting increases in the reuse and applicability of those
components. From subroutines in the 1960s to modules in the 1970s to objects in the
1980s to component-based systems in the 1990s, software product lines will perpetuate
the upward spiral by accomplishing previously unheard-of levels of reuse from system
to system.

If the pitfalls are successfully negotiated, the result is an enviable capacity to deliver
extremely large systems on time and within budget.

For more information about the Product Line Systems Program and its technology
initiatives, as well as other product line information, see

http://lwww.sei.cmu.edu/programs/pls/pl_program.htmi

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 34

Y ou can download the full report that details the CelsiusTech product line case study,
which includes data about the company’s dramatic results in time-to-market, levels of
reuse, and required staffing, at

http://lwww.sei.cmu.edu/publications/documents/96.reports/96tr016/96tr016chap01.htm

About the Author

Paul Clements is a senior member of the technical staff at the Software Engineering
Institute. A graduate of the University of North Carolina and the University of Texas,

he is a project leader in the SEI's Product Line Systems Program. His work includes
collaborating with organizations that are launching product line efforts. He is a co-
creator of the Software Architecture Analysis Method (SAAM), which allows
organizations to evaluate architectures for fithess of purpose. He and others are working
on an extension to SAAM, which will allow analysis of quality attribute tradeoffs at the
architectural level. He is co-author &iftware Architecture in Practice (Addison-
Wesley-Longman, 1998) and more than three dozen papers and articles about software
engineering.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 35

Spotlight 2

Product Lines in Practice at Three Major Corporations
Bill Thomas

Cummins Engine, Raytheon, and Hewlett-Packard all knew that they had alot to gain
from product line practice, and they were right: The companies have enjoyed
substantial reductionsin time-to-market, cost, and risk, and significant gainsin
efficiency and quality. But significant technical and cultural changes are also required,
and all three companies have learned some valuable lessons from their product line
programs.

Cummins Slashes Development Time, Costs

Cummins Engine Company launched a product line program for software in 1994,
beginning with one legacy system for adiesel engine and modifying the software to
extend it over several other engines.

Using product line practices presented difficult challenges on several fronts, says
Joseph Gahimer, director of the Core Controls Group, which develops all core assets
for embedded controls software and hands them off to application teams that apply the
core assets to specific products.

First there is the complexity of Cummins’s mix of engines, which range from light-duty
engines (less than 200 horsepower) to high-horsepower engines (6,000 horsepower)
used in a variety of applications, such as pickup trucks, large trucks, mining, rail,
construction, power generation, and the military. Cummins, which has annual sales of
more than $6 billion, sells to a variety of original-equipment manufacturers who all
require varying degrees of customization to meet particular specifications. In addition,
Cummins engines must conform to varying emissions regulations throughout its
worldwide markets.

Prior to 1994, one team would develop each engine, including all the software for that
engine. At that time, Cummins managers looked at the company’s projections for new
engine products and new features and calculated that it would need far too many
engineers to develop enough new products to satisfy the expected demand. “The
company realized that it would need to do something to get a lot of reuse” from one
product to the next, Gahimer says.

Cummins wanted not only to develop many new engines; it also wanted to improve its
time to market with those engines. A common reuse base would help that, too. Finally,

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 36

customers were asking for more uniformity in the look and feel of Cummins’s engines,
while still demanding customization for different products.

Five years later, Cummins has declared its original product line program a huge
success. Before using product lines, it took Cummins 150-250 person-months of effort
to develop software for the electronic control module (ECM) just to run an engine.

“It's an embedded system, and we had to reinvent everything. Using core software
assets, a lot of building blocks are available, and it's a matter of assembling the

building blocks and modifying them.” Cummins can now develop new ECM software

to run an engine in less than 10 person-months. “In one instance, where we were
applying the same fuel system across engines, we were able to build the software to run
the new engine in just three days,” Gahimer says.

“Seventy-five percent of our product software originated from the core assets,” he adds.
“That’s an incredible amount of reuse and it has saved a lot of cost across the company.
Also, the reliability and quality are very good.”

Now that product line practices have proven so successful for software, Cummins is
embarking on a second-generation effort, and is extending the product line concept to
other areas of the company. “The company has seen the benefit and is saying, ‘Hey,
where else can we apply this?”” Gahimer says.

Government Project Leads to Commercial System at Raytheon

Managers in Raytheon Company’s Space Systems Division examined the company's
satellite command and control systems and saw that there was a high degree of overlap
in software capabilities. Although the company did not have a product lines program in
place at the time, Raytheon believed it could significantly reduce cycle time, cost, and
risk by developing software only once and using it across its government and
commercial markets.

Raytheon’s first product line effort, begun in August 1997, was a joint initiative with a
U.S. government agency and was named the Control Channel Toolkit (CCT) program.
The goal was to develop a reference architecture, extendible components, and reuse
documentation that would cover most software requirements for satellite command and
control on government satellite ground-system programs. In fall 1997, the CCT
program brought in technical staff from the Software Engineering Institute’s Product
Line Practice Initiative to serve as consultants on the program.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 37

The effort was proven successful on the first reuse of the CCT product. Compared with

its original bid, which called for largely creating the new system from traditional “code
cloning” reuse, Raytheon reduced by 80 percent the lines of code engineers had to
write. “That was a reaffirmation that by coming up with a common core set of
capabilities—if we do the domain engineering right—a large majority of the capability
should be there,” says Jeffrey Shaw, who served as program manager for CCT.

Shaw says thorough domain analysis is critical—not just for identifying common
capabilities but also the hotspots where things tend to always vary among spacecraft
and missions. Knowing about the variability helps Raytheon engineers develop well-
engineered “variation points” that can be easily adapted to new applications, which
helps to further reduce costs and cycle time.

Shaw points out that in reusing CCT, Raytheon engineers spend significantly more time
on software architecture and design work, but afterward the implementation work
proceeds relatively quickly. Based on that experience, Raytheon is beginning to adjust
its cost and bidding models.

From the beginning, Raytheon planned to extend the experience it gained with CCT by
applying that experience later to commercial products.

Shaw has since moved on from the CCT project to become product line manager of
Eclipse, which, as Raytheon intended, will be a commercial application of the
principles learned with CCT. The existing Eclipse software architecture, which is
object-oriented and modular, will be migrated to a true product line architecture.

Unlike CCT, which is a toolkit with a reference architecture, Eclipse is an end-to-end
system. Raytheon'’s transition plans call for moving components from the existing
system, one at a time, into a product line architecture. “One key in any product line plan
Is to get the common baseline under control, and to then have a well-planned strategy
for migration.”

Evolving Platforms at Hewlett-Packard

Hewlett-Packard Company has long developed hardware products on common
platforms, but platform development for software is relatively new—within the past 10
years for many applications, says Emil Jandourek, the Practice Area Section Manager
within HP’s Product Generation Solutions (PGS) group. PGS partners with HP’s
product divisions to help them evolve their product-generation capabilities and
competencies.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 38

The company’s product line approach for software involves whole products, such as
families of printers, and tends to be very effective when it drives products that have
multiple simultaneous releases and involves rapid time-to-market schedules.

As of 1997, core assets made up 89 percent of the software in one line of HP printers.
The other 11 percent consisted mostly of adaptations that matched the software to a
particular printer in the line.

A common Hewlett-Packard strategy is to evolve new features into an existing
platform. For example, duplexing (printing on both sides) was originally enabled on
only one printer, but is now available to all printers, though not all printers use it
because they lack the necessary hardware.

“We're doing things on the hardware side, coupled with the software,” Jandourek says.
“An overall platform approach is emerging in both disciplines: one that leverages what
you have and extends it forward. In multiple simultaneous releases, you can reduce
effort between products and have a shorter time to market.”

The next step in HP’s product line approach involves “an overall shift from a more
monolithic, integrated, and tightly coupled asset base to a modular component-based
architecture with corresponding assets,” Jandourek says. This component-based
approach is more efficient and gives developers more flexibility. The challenge is to
correctly establish the boundaries for the components.

No Universal Prescription

Jandourek points out that the product line approach “is not a universal prescription.”
For example, there would be too many unknowns with a startup product for a new
customer base. It would be a poor strategy to delay that product in order to develop a
product line platform because the product could fail—and perhaps take the entire
organization down with it. “But when it's a product category that is well established,
even if it's new, you could design it to be platform-based.”

For Cummins, the greatest challenge has been to conduct good domain analysis—a
process that only comes with experience. “With product-line engineering, until you do

it for the first time, you don’t have a feel for what it takes to do it,” Gahimer says. “Our
domain experts conducted domain analysis based on their experience, but we identified
many improvements later. So the lesson is that you need thorough domain analysis to
help you anticipate future needs. Still, you can’t forecast or project all the different uses
for the product line until you go through it.”

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 39

Cummins also learned that it isimportant to get the workflows and rules established,
and the necessary tools and training in place for the product line effort, which Gahimer
says make up the infrastructure that keeps the effort moving over the long term.

The product line effort also requires discipline. “There are a lot of conflicting pressures
during development,” Gahimer says. There could be a desire to quickly get software
written for a specific application, and some members of the organization might not
want to take the extra time to make that software available for common use. But unless
the software is available for common use, the next group will also have to start from
scratch.

Finally, Gahimer says, the architecture for software product lines has to be portable and
able to move between different products and technologies because the lead time to
create a new architecture is often longer than the company’s ability to predict the
market's needs.

Raytheon’s Shaw also emphasizes the importance of the product line’s software
architecture. “The whole key is architecture,” Shaw says. “We’ve gone through object
modeling, object orientation, component-based reuse—but those were baby steps. It's
not until you have a reusable architecture that provides a context for all those enabling
technologies that you can reap the benefits that everyone’s been trying to get for 20
years.” With that architecture now in place, Shaw says, “we’re excited. We're seeing
the bottom-line business numbers.”

Management Champions and Cultural Change

Gahimer also points out that Cummins’s program might have failed without a
champion in senior management, which for Cummins was the vice president of
electronics. “He had the vision, the authority, and the persistence to establish the first
generation concept and keep it flowing.”

Raytheon has also learned that the organization and its culture have to change to
support product line practices. Shaw explains that with Eclipse, Raytheon is marrying
two architectures: a high-end system architecture and an underlying product
architecture. On one hand, the product line organization is looking for core assets to be
used across products, but on the other hand, individual programs are used to developing
“stove-piped” systems, with a single end use in mind. “The biggest question is: How do
we integrate processes and have cultural change to get the overall efficiencies that we
need from product line practice?” Shaw says.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 40

Such efforts can expose underlying concerns, even at the best companies. “Stove pipes
typically involve someone’s sphere of control,” Shaw says. “Despite everyone’s desire

to be good company people, there is a lot vested in the current organization.” Shaw says
the solution is to have alignment at the senior-management level. “It flows down from
there. Everyone has to see that there are incentives to adopting the new culture. If they
think they will end up as losers, they'll fight it.”

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 41

Roundtable

A Scenario for Using the
Product Line Practice Framework

The following discussion was part of a panel presentation on the SEI Product
Line Practice Framework, Version 2 (please see this issue’s Background
article) at the 1999 Software Engineering Symposium, Aug. 30-Sept. 2, in
Pittsburgh. The participants, all senior members of the SEI technical staff in the
Product Line Systems Program, were:

» Linda Northrop, Product Line Systems Program director

e Larry Jones,

¢ Sholom Cohen

¢ Dennis Smith

 Paul Clements

The topics discussed in this Roundtable include:

* launching a product line
e scoping a product line
» the use of commercial off-the-shelf (COTS) software in a product line

e product line architecture

Northrop. The SEI's Product Line Practice Framework is a static body of knowledge.

It is impossible to provide a univeral prescription as to how all organizations should
apply this knowledge, since each organization’s context and starting point are different.
So we decided to help you get an idea of how you might use the framework in your
organization, and give you a dynamic -- and dramatic -- look at the framework. We're
actually going to provide you with a scenario that suggests how to use the framework in
your product line activities. In order to add this dynamism, we’re going to do some
interactive discussion. | won’t go so far as to say that this is drama. There’s a real

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 42

reason why we have day jobs. Our dramatic skills are not nearly as good as our
technical skills, I might add.

My name is Ms. P.L. Wannabe and I'm a program manager. | have business goals; |
know what my business needs to do, but I'm having difficulty addressing those goals
with the technologies and processes that we employ. Now, I've seen this SEI Product
Line Practice Framework that looks promising, but I'm clueless as to how to use it. |
consulted my favorite book on how to manage and | still didn’t come up with the
answers on how I'm actually supposed to solve this product line problem. So, | decided
to hire some consultants. These consultants are going to help me sort through this
product line practice framework and see how | might be able to apply it. In a word, |
want to start using software product lines. | have four experts with me who will talk
about launching a product line, scoping, architecture, and COTS [commercial off-the-
shelf software].

My company is a consumer electronics company. Basically, | have some business
goals. | want to improve my time to market and | want to increase productivity. We
have an excellent reputation. We are world renowned for the quality of our products
and we have greatly satisfied customers. | don’t want to do anything to mess with a
good situation to improve time to market. But if | don’t improve time to market, I'm
going to be out of business. My problem is that I've got a lot of software in my
products and I never used to have a lot of software in my products. And software in my
products seems to be more complex. These software costs are killing me. So, you
know, | thought about adding more people, but the fact is if | add more of these
software people they're expensive, it eats my profits. And secondly, there aren’t enough
of them out there. So, even if | -did- have the money to hire them, | can’t seem to be
able to hire them. I've currently got about 250 people in my organization and that’s
what I’'m going to have to work with. I've been thinking about what we could do with
reuse because it seems we build a lot of similar systems. We’ve tried libraries of code,
but they just didn’t work. We didn’t get any significant reuse and we didn’t get any
payoff from the reuse we did get. So, | read this SEI stuff about product lines and | got
this framework document, but | don’t know how to sort through it. So, I'm asking you

if you would help me start a product line.

Cohen. | think my colleagues would agree with me, we need to know more about the
company and the kind of products you produce. So give us some more background
information about the company.

Northrop. I'd be glad to do that. We build audio systems -- all kinds of audio systems -
- personal, home, automotive.

Jones. How are you structured in order to build these products?

Northrop. My organization is divided into projects and each project builds a product.
SE Interactive, September 1999 http://interactive.sei.cmu.edu 43

Clements. You're suspecting that there’s commonality among these products. Is there
currently any reuse?

Northrop: | know there’s commonality. Actually, any reuse is opportunistic. It's up to
the project managers and if they want to do reuse they do it; if they don't, | guess they
don’t. And mostly they don't.

Smith. Have you heard of the software CMM?
Northrop. Who hasn’t?
Smith. Have you been assessed or have you assessed yourself?

Northrop. Well, we actually haven’t been officially assessed, but we did a self-
assessment and | think we’re about Level 2.

Smith. Let me test my understanding of what you’ve been telling us. Your company
builds consumer electronics. You have a great reputation and you've got about 250
people who work for you in the software area. You've read what the SEI and others say
about product lines and you see opportunities for achieving economies of scale and
increasing quality through product lines. You have three main audio products, for the
home, for cars, and personal products. Your projects now are all organized around
individual products so | imagine that very little sharing of information goes on between
those products.

Northrop. Yes, probably not.

Smith. Your reuse is opportunistic, at the discretion of the individual project manager.
And you have been self-assessed at CMM Level 2.

Northrop. You have the picture. Now, how do | start a new product line?

Jones. First of all, you need to understand that launching a product line effort requires
many of the practice areas that you’re going to find throughout the framework.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 44

Software Engineering Practice Areas:

* Domain Anaysis

* Mining Existing Assets

» Architecture Exploration and Definition

» Architecture Evaluation

* Component Development

e Testing

* Requirements Elicitation, Analysis, and Tracking
e COTS Utilization

» Software System Integration

Technical Management Practice Areas

» DataCollection, Metrics and Tracking
* Product Line Scoping

» Configuration Management

* Process Modeling and Implementation
* Planning and Tracking

* Make, Buy, Mine, Outsource Analysis
* Technica Risk Management

* Tool Support

Organizational Management Practice Areas

* Achieving the Right Organizational Structure

e Building and Communicating a Business Case

* Funding

* Market Analysis

» Developing and Implementing an Acquisition Strategy
* Operations

e Traning

» Customer and Supplier Interface Management

» Technology Forecasting

» Launching and Institutionalizing a Product Line
* Organizational Risk Management

Northrop. | haveto use all of those practice areas?

SEI Interactive, September 1999 http://interactive.sei.cmu.edu

45

Jones. Well, many of them. But the depth and degree to which you have to go into
each of these is going to depend on the scope of your effort.

Northrop. What exactly does that mean?

Jones: Well, you ought to really try to treat launching your product line as a special

type of technology change effort. You'll see that you're not alone in the approach to
this. There’s been a lot of work that's been done on technology change. Our colleagues
in the adjoining sessions working on process improvement have done this for years. So
| want to encourage you to, first of all, draw upon this existing body of knowledge.
Among this is the fact that you need to account for the human aspects of change. It's
not all going to be technological. You've got to treat technology change, itself, as a
project. Lastly, I'd like to suggest that you follow some sort of iterative technology
change model.

Northrop. Could you suggest such a model?

Jones: Yes, there has been some pretty good work done by the Software Engineering
Institute in Pittsburgh. They've come up with a model that has had a great deal of
success in process improvement. It's called the IDEAL model. With a little bit of
artistic license, it's very easily adaptable to any type of change project. So let me very
briefly run you through the kinds of steps that are involved. First of all, recognize that it
is iterative and that you will do each of these steps -- perhaps to some degree -- more
robustly than others, depending on where you’ve started on this technology change.
The Initiating phase of this model requires you and your organization to recognize that
you have the need to change and to establish appropriate infrastructures to deal with
this and allocate resources. In Diagnosing, we take a look at where we stand at a
particular point in time and what we might be able to do by way of possible
improvement. In the Establishing phase, we plan, based on the priorities determined in
our diagnosis. In the Acting phase, we execute those plans. Lastly, we want to learn
lessons in the Learning phase, and apply them to future IDEAL cycles.

Northrop. This all sounds wonderful, but how am | going to do this in my
organization?

Jones: Let me try to give you some specifics. First of all, | suggest that you try a
limited cycle of the IDEAL model, and devote it to concept exploration.

Northrop. How would that go?

Jones: This should be an inexpensive try at this. First of all, you want to commit some
limited resources to explore the applicability of the product line approach. You might
designate a person to go out there and gather data and run this concept exploration.
Next, a diagnosis would be somewhat simple. You might do a sort of back-of-the-

SE Interactive, September 1999 http://interactive.sei.cmu.edu 46

envelope sketch of what product line technologies are available and how that might

relate to your organization in particular. In our establishing phase, we’re going to take
the interesting case, which is to assume that you've made a “go” decision, and plan for
the next round since we’ll assume you've decided that further exploration is warranted.
Typically at this stage, the acting and learning phases are truncated or are rolled into the
next IDEAL cycle.

Northrop. So, what do | do after this Exploration stage? Clearly this doesn’t launch the
product line.

Jones: No. But we could try another round with IDEAL, which we might call concept
refinement and initial implementation. In this case, we start to beef up the steps that go
in each phase. In the Initiating phase there would be more awareness-building and
advocacy-building. This should be broader than just the few people who were involved
during the Concept Exploration cycle. You would have to commit more resources and
you might want to establish more structure in order to tackle this. Your Diagnosis

would be more elaborate too, in which you review your existing organizational
environment, your assets and culture and the things that you might want to take stock
of. In your Establishing phase, you're going to start off with putting your toes in the
water, and developing visions, goals, strategies, and objectives for the product line. You
want to take a look at some of the commonalities, scope the product line, and develop
the preliminary operating concept, in which you describe how this is going to play out.
This can be a significantly useful activity for risk mitigation. You will also then worry
about preliminary architecture definitions, preliminary mining of your existing assets,
which you say are out there, and you will work on developing a business case that’s
going to establish why you would do this. Our Acting phase is then to execute that plan.
And then in Learning you will select lessons learned from what you’ve done in that first
cycle, refine your approach, and take another look at whether you proceed.

Northrop. How do | make sense of this Learning phase? How do | go ahead with it
after that?

Jones. Let’s say we’re going to proceed with this, that a product line approach has
some viability in your organizational context. | won't belabor yet another cycle of
IDEAL, but you can consider that to be superimposed over this. You might beef up
some structures and possibly do some rediagnosis, based on the first cycle of learning.
But we want to refine our approach to create what | call a product line adoption or
implementation plan.

Northrop. What might be in a product line adoption or implementation plan?

Jones. You're going to have refinement of your initial architecture definition and
you've learned some lessons about that, based on the first cycle. You want to have
some further mining of your legacy assets. You can refine your concept of operations
SEl Interactive, September 1999 http://interactive.sei.cmu.edu 47

and get more details on how you’ll actually tackle that. The details of how to migrate
then from the current organizational state to the future state is what'’s really going to be
described in this concept of operations.

Northrop. | just don'’t like the whole word "migration.” It sounds like a tremendous
amount of upheaval. Can't | use this product line approach without upheaval in my
organization?

Jones. I'm afraid not. Execution of this plan is going to really rely upon you and your
leadership skills. Let me give you some practical advice on how you might tackle some
of these things that might otherwise be overwhelming. You're going to have to show
leadership in establishing the goals, communicating, and being an advocate and
cheerleader for these things. You're going to have to allocate more resources. You're
going to have to set up proper organizational structures and modify the reward system
to support the effort. You're going to have to pay a great deal of attention to those
initiating phase activities, particularly if they’'ve been somewhat short- circuited while
you tried to feel your way around the first couple of cycles.

Northrop. Are you suggesting that | have to personally become actively involved?
Jones. Yes, you most certainly do.
Northrop. I'm overwhelmed.

Jones. Let me see if | can take some of the pressure off by giving you this whale
sandwich a few bites at a time. You've already said that you're a pretty good planner
because you're Level 2 CMM. So, if we actively manage this change as a project and
don't just let it happen, you'll be a lot happier with it. Part of that is based on your
excellent reputation in the hardware industry; you might be able to manage your risks
pretty well. A way to keep the scope down, and to learn your lessons in a small way
before making big mistakes, is to use pilot projects actively as part of your risk
mitigation strategy. Initially, don’t go too hard and fast on some of your processes and
organizational structures. Some organizations find a great deal of success using what
you might call “lightweight” processes and organizational structures to tackle this
initially. Keep things flexible and less formal to learn what works in your organization
before you put a great deal of turmoil on yourself and your organization.

Northrop. That makes me feel a little better. I'm actually thinking that | know how we
can come up with a goal, a vision and a strategy because we have a total-quality
environment and | have people who | can enlist to help me. But I'm really perplexed.
One of the things you said to plan, which I didn’t understand at all, is “commonality
analysis and scoping.” Early on, you also said that the whole impact of the effort is
really going to be dictated by the scope of the product line. | have a problem. What's
the scoop with this scope business?

SE Interactive, September 1999 http://interactive.sei.cmu.edu 48

Cohen. Let me help you learn alittle bit about scoping and some things you might

want to consider. Y ou mentioned that you know what it means to establish a vision and

set goals. With product lines, you have to go back and do the same thing: What's your
vision for the product line? What do you want your company to achieve? What are the
goals that you've set for yourself? So, if you've set the vision, you probably want to
consider the things you want from the product line: What should it accomplish in
business or technical terms? You mentioned up front that you need to reduce costs and
control your growing workforce. These are pretty good goals that a company would
want to achieve by taking on this product line work.

You also need to know what steps you want to follow to make those things happen.
Again, with launching a product line, you need a strategy, a concept of operations.
What steps are you going to take up front in order to make this play out and work
successfully from day one? At that point you know where you're headed, you know
what your vision is long-term, and you know what things to do to get started. At this
point it's appropriate to start defining the product line, or possibly product lines.

Northrop. OK, I get this. Is this scoping?

Cohen. Well, scoping is actually about determining boundaries. What's inside the
product line and what'’s outside. How do the products differ based on personal, car, or
home use? You need to know who your end users are. What service is the product
going to provide to users? Looking at some of the products, some have built-in radios,
some have playback and also record.

Northrop. So essentially, | have to look at the variations.

Cohen. What you really want to look at in terms of the scope is: What issues or
decisions will drive the architecture? You're going to make a product line architecture
for some products and not others. So what are some of the issues that come up here?
For example, something that a person could carry is not going to be as integrated as
something that is used in the home. Those are things that are going to affect the
architecture of the system. You have things that are going to be able to pick up a
broadcast at home or in the car. Or you may be talking about an interface to pick up live
broadcasts over the Web, or the capability to download Web source material and play
that back. You may be able to download that off the Web and take it with you. What

are the external entities to support that and what are the interfaces?

Another problem to consider during scoping is: Who is going to distribute these
products? For the auto version, is it going to be the original equipment manufacturers --
GM, Ford, or Daimler-Benz? Will you work with after-sales organizations? Then you
want to look at future plans. We’ve been looking under the microscope at these
products, but you also need to take a longer vision, and see where in the future these
products might go. The Web might be one thing that affects that.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 49

Northrop. Y ou brought up an excellent point. How wide is this scope?

Cohen. When you do product line scoping, you really want to look at scoping the

products we’ve already mentioned. Then try to pin down exactly what the product line

or lines are going to be. You might have one product line of entertainment products and
develop an architecture that covers all the products in that product line. That
accomplishes one goal. You might be able to use one kind of user interface across all of
those. We call that “economies of scope” because one architecture encompasses a broad
scope. The tuners and playback devices may be able to be reused. On the other hand,
there’s probably a longer upfront development effort. You're going to have to do

scoping or architecture work and look at a broad range of products before you'll be able
to implement your first one.

On the other hand, you may want to look at a separate product line for each market, so
that would mean different product lines for home entertainment systems, car systems,
and personal products. There may be easier adoption, or earlier upfront kinds of
implementation. This approach may lead to possible fragmentation, so you may lose
some of the economies of scope we mentioned earlier. There could be other
segmentations. You could develop a tuner product line or amplifier product line, and so
on. You may want to consider outsourcing some of the development.

Northrop. All of those things are internal. Should I look outside my company?

Cohen. Yes, | suggest you consider some of the things that are going on out in the field
so you don'’t lose sight of what other people are doing. Market studies are appropriate
to see what the competition is doing. Your competitors may be doing some things you
want to look at. You may want to look at opportunities for shared development,
collaborations, opportunities to combine Web-based products with things you're doing
right now. COTS [commercial off-the-shelf software] is another piece of information

you may want to look at: how to incorporate off-the-shelf capabilities into your
products. And then there are other interactions. How do you do upgrades? Is it possible
to download new software for a system or for the vendor to send a new disk or CD?
Media types may include digital CD, DVD, or other compact-disk formats. Those are
the kind of considerations you want to make.

Northrop. Hmm. So after | do all this scoping, what's the result?

Cohen. We hope that you've identified what product line you want to invest in, or
product lines. You should have an understanding of the kinds of services that you'll
provide to users and what kind of product integration you’re going to be able to
accomplish. And you really want to bound your variability. You want to be able to say,
“These are the products we’re going to do and these are the variations that we might be
able to accommodate.” You might want to say, in the future, that you know that
products will be integrated with the Web. You may not be able to do that today. So you
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 50

may want to leave that as an opportunity for future growth, and you want to set a plan
for product line devel opment, common features, variations, architecture drivers, and so
on. The SEI has produced guidelines for developing a product line concept of
operations that should help you get started. [Please see Guidelines for Developing a
Product Line Concept of Operations.]

Northrop. Thisis beginning to take shape in my mind, but something you said back
when you were talking about market studies is bothering me. Y ou said something about
COTS. Now I'm confused. Why and how would | want to use COTS in my product
line?

Smith. You've already seen that product lines offer tremendous examples of
economies of scale. For example, organizations such as Hewlett-Packard and Motorola
have achieved economies of scale and they have shortened their time to market to give
themselves an edge in today’s fast paced world.

Let's now add COTS to the equation. COTS gives you a good news/bad news scenario.
First for the good news. | can go down to a computer store and buy a COTS product
that costs me $89.95. If your organization were to build the same product from scratch,
it would probably take about two years and cost about $3 million. COTS lets you
multiply the leverage that you gain by moving to a product line approach.

Northrop. While it makes sense, and dollar savings really appeal to me, isn't it kind of
risky?

Smith. Absolutely. That’s the bad-news part. You really don’t know what's inside the
box of a COTS product, and you certainly have no control over what'’s inside of it. You
can see what the vendor says on the outside and there may or may not be a manual to
expose what'’s in there and, especially, to let you know what the interfaces really do.
So, it's a black box and you're certainly taking risks. In addition to that, you don’t have
control over the evolution of where the product is headed. Also, in general, when
you're dealing with COTS products in a product line, you need to develop your own
requirements very flexibly. Your architecture needs to be flexible so that you can
handle a wide variety of interfaces.

Northrop. That's way too general. How exactly do | do this?

Smith. Well, if you want to use COTS successfully, first of all, you need to really
understand your own architecture, especially the points of variability and flexibility.

You need to consider the policies and procedures that your organization uses for
acquiring software. So, for example, you may be able to go down and simply buy a
product from a computer store, or it may take you six months to be able to do that,
depending on your organization. You need to also have a set of documented approaches
for scanning the marketplace. There may be dozens of competing products that have

SE Interactive, September 1999 http://interactive.sei.cmu.edu 51

some potential to work as components for you. These products will most likely all be

imperfect fits, and they may or may not get better. Y ou need to have a very good way

to evaluate these products and not just take the blurb that's on the back of the box, or
what a vendor happens to be telling you. Once you acquire a product, you also need to
perform very extensive integration testing.

Northrop. Are there more things | need to consider?

Smith. There sure are. If you want to really use COTS successfully in a product line,
once you've qualified the potential components you’re going to need to do a fair
amount of adaptation. Despite what your favorite vendor may say, these will not simply
plug and play into your product line. You may need to adapt them to work within your
architecture through wrappers, software, middleware, or other glue code. In addition,
once you've done that, you need to assemble these components. You need to account
for interactions between the COTS components and other components of yours,
including your middleware. In addition to that, the COTS people are going to make
periodic updates. You may want to move to a later release or you may not. That’'s going
to depend on the goals of your product line, as well as where the COTS products are
headed. It's also going to depend on your assessment of this vendor. They may not be
in business in five years, or their evolution strategy may be in direct conflict to your
product line approach.

Northrop. I'm confused. This seems like a lot of information about COTS, but how
does this all relate to my product line?

Smith. Specifically, a bunch of potential COTS products could become core assets in
your product line. For example, COTS databases, graphical user interfaces, or
middleware all represent potential candidates for core assets. | was recently working on
a project on which we found a graphics component available on the Web that cost $50.
We were integrating a set of legacy modeling components into the architecture. Most of
these components had their own graphics packages, resulting in inconsistent and
confusing representations of the outputs. By investing $50 -- and with quite a few
adaptations, | might add -- we were able to have a common set of graphics that went
across all of these components.

Other issues when dealing with core assets include things like stability and maturity of
the particular product and vendor. You want to know how long a product has been
around, and what its reliability is. You also want to understand how it interoperates
with the other components that are in your architecture and how its interfaces and
protocols compare to your own standards and protocols.

Northrop. So, what you're telling me is that | can use some of these COTS pieces as
core assets, but | need to pick out my own architecture and dictate how it all fits
together. Is that true?

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 52

Smith. Yesitis.

Northrop. But now | want to build products. How do | apply COTS when I'm building
products?

Smith. COTS products could very well become components for your products. But,

there is a whole set of questions that you need to examine. Certainly one issue is that of
functionality. What does the COTS product actually do? Not only what does the vendor
say it does but what does it actually do, how does this meet your needs, and how does it
compare to other products in meeting your needs? There’s the issue of looking at
quality attributes, such as availability, performance, security, or modifiability. You

need to be able to articulate the most important quality attributes for your system, and
see how well these potential components enable you to meet these requirements.

Another issue is cost. There’s certainly a strong cost avoidance up front, but you need
to look at the whole set of lifecycle issues. A package may fit 80% of your actual needs,
but how important are those other 20%? So, you may be giving up something with
COTS also. When you look at a COTS product, you need to also consider the flexibility
of fitting the product into your architecture or updating it. Many vendors will tell you

that their product is plug and play, but that’s not necessarily the case. You need to
know specific mechanisms for how it interacts with your system.

Northrop. That’s a big risk. Are there other risks?

Smith. There sure are. COTS components will have unknown interactions with other
COTS products and with your software. So, you certainly need to worry about how
well behaved that piece of software is. The updates of different COTS components are
not synchronized -- they’re going to be coming at very different times and they will be
doing very different things. You need to consider that. When you replace a COTS
product, you’re not going to replace the components on a one-for-one basis because the
components are built for very different purposes and they do very different things.
You're not going to have exact matches when you do your updates. As we all know,
configuration management is critical for product line approaches, and certainly when
using COTS within product lines. As | said before, COTS products also need to be
adapted to fit into your architecture.

Northrop. Everybody’s talking about architecture. What is it and why is it so
important?

Clements. Software architecture is, in my view, one of the most important—ithsot

most important—core assets that you’re going to build when prosecuting a product line.
We like to say that software architecture is the structure or structures of the system.
These structures comprise software components, the external divisible properties of
those components, and the relationships among them. Remember that the product line’s
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 53

scope defines the commonality that all the products will share and the variability that

the different products will feature. Architecture goes hand-in-hand with that scope. It is

the carrier of the commonality. We build so that al the productsin the product line will
share the same architecture, the variation mechanisms that we’ve built into the
architecture. We build products by using the variability mechanisms of the standard
architecture to achieve instance architectures for the individual products.

Architecture is the carrier of the quality attributes in a system. By "quality attributes” |
mean things like performance, security, and modifiability. So, every product in the
system must meet the basic quality requirements, but the scope may identify different
products that have different quality requirements. You might have a high-security
product, a low-security product, a high-performance product, a low-performance
product, all within the same family. You need an architecture that’s flexible enough to
permit all of those things.

Architecture is the basis for flexible assignment of personnel among your projects. You
have 250 people right now working on individual assignments, and their expertise is
probably limited in large part to the product that they’re working on right now.

Wouldn't it be nice if you could swap those people back and forth flexibly? A common
architecture will let you do that because when people learn and are fluent with the
common architecture, then they’re automatically fluent with the different products that
use it. So architecture is, again, the embodiment of the product line’s commonality. The
right architecture is going to help you achieve success in this product line. The wrong
architecture is a recipe for disaster.

Northrop. The thought of being able to leverage my people in a better way is really
appealing. As | told you, | just can’t hire any more people, so I've got to make use of
my 250 people in a much more productive way. It occurs to me that I've got to have
some really special people to do architecture. What kind of people and how many
people do | pick to build this architecture?

Clements. You want to work inside of your organization if you can. We find that one

of the essential qualities for product line success is long, deep, domain experience, and
you probably have that in your organization. Bringing people in from the outside is
probably not the thing to do. Ideally, you will have senior designers in your

organization who have domain experience. You should choose from among them. And,
ideally, you'd like to identify a single, gifted individual or a small, cohesive, integrated
design team to turn out the architecture for the product line. We tend to be suspicious of
architecture by committee as a modus operandi, though | guess there are some
successful examples of that. Conceptual integrity is one of the most important qualities
of the products in the system. You'd like that to flow from the mind of a single

architect, or a small group of architects with a clear leader.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 54

So, you should look for people in your organization who are gifted in this area. They

need special skills. First of all, they have to be technically savvy. Y ou want them to be

able to understand the | atest technology. Thiswill let you survive and move into new

markets as the technology changes. They have to have really good communication

skills—both input and output. For input, they have to listen to competing requirements
and desires on the part of all the product manufacturers. They have to understand what
is needed and expected of the architecture. They have to gather all the inputs necessary
to make that architectural decision. On the output side, they have to be able to clearly
communicate the vision to people and to make them understand why the architecture is
going to solve the problem at hand. Thirdly, the architects all have to have people
skills. Architecture is the medium through which tradeoffs and conflicts are negotiated.
One person is going to want really high security, but another won'’t want to pay for that
because he or she doesn’t need it and instead wants more performance. Those
conflicting needs have to be negotiated, so the architect is often at the center of the
whirlwind of controversies. The architects have to remain calm and communicative.

Northrop. I'm picturing an individual in my organization who could be the architect. |
would need to give her more information about a product line architecture. So, given
that she has the right set of skills, what extra would she have to know about a product
line architecture to be able to do the job?

Clements. Well, product line architectures are not so unlike ordinary system
architectures in that there are requirements that they must meet. They must allow their
systems to meet behavioral and quality requirements. For a product line architecture,
there’s a plurality of products for which that must be true. So, each architecture must
allow the systems to meet their behavioral requirements: They must allow you to play
music, tell what time it is, get songs off the Web -- whatever functionality is required.
The architecture must also let the systems meet their quality requirements:
performance, security, and modifiability in particular. The architecture must meet the
developing organization’s ambitions. The model that we all learned in software
engineering class -- where somebody writes down the requirements for a system and
then tosses that document over the transom where it lands with a thud on the architect’s
desk, and that's where the architecture comes from -- that model’'s wrong; it's a lie. The
developing organization has a lot of subtle influence on an architecture that will decide
whether it's successful or not. You might have a group of underutilized people that
you'd really like to put to work. The architect may need to take that into account. You
may have a tool environment that you've already built. It would be a bad architecture
that wasn’t compatible with that tool environment. In particular, your ambition is to
have a product line, so the architecture needs to be able to encompass the commonality
and account for the variability across all the products to satisfy that organizational
ambition. Finally and critically, and I think obviously, the architecture must be

buildable. The most elegant architecture isn't much use if it takes 300 people and six
years to turn out a product line.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 55

Northrop. This may sound like areally naive question, but do architects inherently
know how to do this?

Clements. What | think you're asking is this: "Do they have to do this anew each

time?" The answer to that is almost certainly no. One of the reasons that architects are
senior people is that they have experience over the years designing similar systems. The
architecture of a product line is probably not going to be created from scratch; that
would be highly risky. Architecture typically comes out of the architect’s prior
experience. We see architects who have had great experiences with certain design
approaches, and those things can be used again. We also see architects who have had
bad experiences with design approaches, and you're not going to see them repeat that
for a while, even if they might be the right answer for the next system. The architect
should also be familiar with other similar systems in the domain, which is one reason
you would pick that person: her long, deep experience in the domain. She will bring
that experience, and those observations to bear on solving this problem.

The community is now actually coming to the rescue with architectural patterns and
architectural styles. The subject of attribute-based architectural styles is something the
SEl is working on. These give architects the beginnings of a kitbag that they can bring
to bear to solve a particular problem. The architecture is also going to be heavily
influenced by whether or not we want to bring in components that we have mined from
legacy systems.

In addition, there’s one other factor that the architecture needs to have. We often talk
about architecture in a descriptive fashion -- it describes the system. But architectures
need to be prescriptive as well.

Northrop. What exactly do you mean by prescriptive?

Clements. The product line is only going to work if the people building the products
use the architecture that's been laid out for them. In that sense, the architecture is
prescriptive -- it's before the fact. It's not just what was done and how the products
were built, it's the marching orders for the product organization. The people working
on the product line have to be comfortable with architecture-based or architecture-
driven development. They have to understand how to take the specifications and write
code that conforms to it, because that’s how commonality comes to be exploited.

Northrop. Documentation must be really important.

Clements. Documentation is critical, especially in a product line architecture.
Architecture in any system is a vehicle for communication. It lets the stakeholders
communicate with each other. That only happens in a disciplined manner if the
architecture is well documented. In a single system, you could imagine that an architect
could take his or her vision to the product builders and sit with them and coach them,
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 56

talk to them, and make sure that al of their questions were answered. A ot of architects
spend their time doing that. In a product line, there are going to be 8, 10, 12, 15 projects

all using the architecture. It's just not viable for the architect to be like a butterfly
pollenating all the flowers. So in this case, the documentation is especially crucial. It's
going to have to be clear and unambiguous, and it's going to let the product builders
know enough to be able to do their jobs.

An architecture is also the vehicle for analysis. A system has to meet its quality
attributes, but in a product line all the systems have to meet all their quality attributes.
So architecture becomes very important as the basis for analysis of a product line.

Northrop. | do have a lot to think about, but | certainly have a much better
understanding than | had before.

About the Panelists

Linda Northrophas 30 years of experience in the software development field as a
practitioner, manager, consultant, and educator. She is currently director of the Product
Line Systems Program at the Software Engineering Institute (SEI). The Product Line
Systems Program works in the areas of software architecture, reengineering, and
product line engineering. Northrop is the former chair of the SEI Education and
Training Review Board and co-developer of the SEI Improvement Planning Workshop,
and has taught software engineering at Carnegie Mellon University. She is a frequently
invited speaker at technical conferences and most recently was featured in a television
special on object technology aired by the British Broadcasting Company.

Before joining the SEI, Northrop was associated with both the United States Air Force
Academy and the State University of New York as a professor of computer science, and
with both Eastman Kodak and IBM as a software engineer. As a private consultant,
Northrop also worked for an assortment of companies covering a wide range of
software systems. She has developed and delivered countless software engineering and
object-oriented traning programs and seminars. She is a member of the ACM and the
IEEE Computer Society, the Computer Sciences Accreditation Commission, the
ACM/IEEE Joint Committee on Software Engineering, and the OOPSLA Organizing
Committee, and is the OOPLSA '99 Technical Program Chair.

Lawrence G. Jonds a senior member of the technical staff in the Product Line
Systems Program of the SEI. In addition to his product line duties, Jones is also a
member of the Capability Maturity Model Integration (CMMI) team. Before joining the
SEl, Jones served as principal scientist at the SHAPE Technical Centre in The Hague,
Netherlands. He is also the former chair of the Computer Science Department at the
U.S. Air Force Academy.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 57

Jones s active in the computing profession and has membership on the ACM
Accreditation Committee, |EEE, the Executive Committee of the Computing Sciences
Accreditation Commission, and the Colorado SPIN Steering Committee. He holds a

PhD in Computer Science from Vanderbilt University and master’s and bachelor’s
degrees in industrial engineering from the University of Arkansas.

Sholom Coheiis a senior member of the technical staff at the SEI and has been at the
SEI for more than 10 years. Cohen is a member of the Product Line Systems Program
and has authored major technical reports, conference papers on domain analysis and
domain engineering methods, and an annotated bibliography of domain analysis. He is
a contributor to the Product Line Framework and is also the author of reports on
Product Line Concept of Operations for the Air Force Electronic Systems Center, the
National Reconnaissance Office, and DoD test and training ranges. Besides domain
engineering, Cohen's current research activities include object technology, software
product line practices, and product line introduction.

Prior to joining the staff of the SEI, Cohen was a member of the software engineering
technology branch of the McDonnell Douglas Astronautics Company. In that position,
he was a key developer of the Common Ada Missile Packages components and tools.
Cohen received his BS from the Massachusetts Institute of Technology, an MA in
Library and Information Science from the University of Michigan, and an MS in
computer science from Columbia University.

Dennis Smiths a senior member of the technical staff in the Product Line Systems
Program at the SEI. He is the technical lead for the work in reengineering and mining
of core assets for product line systems. This work has developed a framework for
program understanding, integrated trends toward the use of distributed object
technology and Web-based program understanding, and developed an enterprise
framework for analyzing reengineering problems.

Before taking on this role, Smith was project leader for the CASE environments

project. This project examined the underlying issues of CASE integration, process
support for environments, and the adoption of technology. Smith has conducted studies
of “lessons learned” from previous efforts at developing large environments and
adopting CASE tools. His work includes the development of a CASE adoption strategy
and process, a framework for selection of tools and environments, and an analysis of
the state of the practice of environment integration.

Smith is a co-author of the bo&kinciples of CASE Tool Integration, Oxford

University Press, 1994. In addition he has published a number of articles and technical
reports, and has presented papers at a number of professional conferences. He is co-
editor of the IEEE recommended practice on CASE adoption. Smith is active in both
ACM and IEEE and is currently general chair for STEP 99 and for IWPC ’99. Smith
has an MA and PhD from Princeton University, and a BA from Columbia University.

Paul Clementss a senior member of the technical staff at the Software Engineering
Institute. A graduate of the University of North Carolina and the University of Texas,
he is a project leader in the SEI's Product Line Systems Program. His work includes
collaborating with organizations that are launching product line efforts. He is a co-

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 58

creator of the Software Architecture Analysis Method (SAAM), which alows
organizations to evaluate architectures for fitness of purpose. He and others are working
on an extension to SAAM, which will allow analysis of quality attribute trade-offs at
the architectural level. He is co-author of Software Architecture in Practice (Addison-
Wesley-Longman, 1998) and more than three dozen papers and articles about software
engineering.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 59

Links
Links to Product Line Resources

References to Product Line Related Readings
The links and bibliography entries below provide information

about Product Line Systems research efforts, publications,

and general resources.

Links

Product Line Practice Workshop Report
http://www.sei.cmu.edu/publications/documents/
97.reports/97tr003/ 97tr003abstract.html

Product Line Case Studies
http://www.sei.cmu.edu/plp/plp_case_studies.html

A Case Study in Successful Product Line Development
http://www.sei.cmu.edu/publications/documents/
96.reports/96.tr.016.html

Report of the Reuse and Product Lines Working Group of WISR8

http://www.sei.cmu.edu/publications/documents/
97.reports/97sr010/97sr010abstract.html

Software Product Lines: The New Paradigm for the New Millennium
http://www.utexas.edu/coe/sqi

Concept of Operations for the ESC Product Line Approach
http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.018.html

Developing Architecture through Reuse
http://www.sigs.com

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 60

A Model for Platform Development
http://www.hp.com

The Economics of Product Line Development
http://www.owego.com/~poulinj

Software Architectures, Product Lines, and DSSASs:
Choosing the Appropriate Level of Abstraction

http://www.owego.com/~poulinj

Investment Analysis of Software Assets for Product Lines
http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.010.html

Related Readings

Process Centered Environments for Software Product Lines:
Requirements and Proposal for Cooperation Support
Alloui, llhquendo, Flavio

(Proceedings, 10th International Software Process Wor kshop, Dijon France,
17-19 June 1996)

Annotation: This four-page position paper for the workshop emphasizes the interactions
among participants in large-scal e reuse-based projects and the meansto facilitate those
interactions. The s are with (separate) universitiesin France.

Supporting Product Line Development
Balzer, Robert

(Proceedings, 10th International Software Process Workshop, Dijon France,
17-19 June 1996)

Annotation: Thisis ashort position paper for the workshop that is oriented towards
program (application) generators as a key enabling technology for product line
development. The iswith the Information Sciences Institute.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 61

Exploiting the Synergism Between Product-Line Focus and Software
Maturity
Besselman, Joe; Rifkin, Stan

(Proceedings, 1995 Acquisition Research Symposium, sponsored by the Deputy Under
Secretary of Defense for Acquisition Reform; co-hosted by the Defense Systems Mgt.
College and the National Contract Management Association [Washington, D.C.

chapter])

Abstract: Using emerging evidence of the benefits of software process improvement,
we present a theory for why the software development community is witnessing
differential results from its software process improvement efforts. Our theory predicts
that firms organized around product lines are more likely to possess higher levels of
maturity. Using the results of 51 software evaluations and assessments, a statistical test
failsto rgect the theory. Our findings lead us to recommend that the government
should offer incentives for software process improvement in software intensive
procurements, embrace, where appropriate, a product-line approach procurement, and
refrain from placing software quality requirements in contracts.

Dividing the Software Pie
Cleaveland, J. Craig; Fertig, Janet A.; Newsome, George W.

(AT&T Technical Journal, March/April 1996)

Abstract: Systematic software reuse, or multi-use, is akey to increasing the
productivity and quality of software development. In the past 20 years, reuse has
experienced many failures and afew successes. Many technological, organizational,
and cultural obstacles have been placed in its path. A critical step to increasing software
reuse is to recognize that a new division of labor is required, one in which component
developers create reusable components and product devel opers compose products from
these components. Changing organizational structure and software devel opment
processes to nurture these rolesis challenging. Once these roles are recognized and
established, however, standard abstraction techniques and other software reuse

technol ogies can help separate the concerns of component developers and product
developers. This paper illustrates the separation of concerns by examining its
application to interfaces, a particularly difficult areain which these concerns are
traditionally intertwined.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 62

Successful Product Line Engineering Requires More Than
Code Reuse
Clements, Paul

(Proceedings, 1997 International Wor kshop on Software Reuse [W SR8], Columbus
Ohio)

Annotation: Thisfive-page paper isare-telling of the CelsiusTech experience, and
emphasizes that organizational, managerial, process, and cultural issues are all as (if not
more) important than technical approachesto reuse in order to successfully deploy a
software product line.

Program Families: Some Requirements Issues for Process Languages
Cugola, Gianpaolo; Ghezzi, Carlo

(Proceedings, 10th International Software Process Workshop, Ermitage Frere Joseph,
Ed., Ventron, France June 17-19, 1996)

Abstract: In this position paper, we address the workshop theme by discussing issues
concerning process support for product families. In particular, we discuss how the
particular problem of supporting product family developments affects the notation used
for process representation and enactment. Based on our current understanding of the
problem, our conclusion is that the devel opment of program families does not introduce
new requirements, but stress some of the requirements that are intrinsic to most
software processes to their extreme. That is, they do not demand new language
mechanisms, but require specific processes to be put into place.

Product lines: What are the Issues?
Di Nitto, Elizabeth; Fuggetta, Alfonso

(Proceedings, 10th International Software Process Workshop, Ermitage Frere Joseph,
Ed., Ventron, France, June 17-19, 1996)

Annotation: Thisis a short position paper from the referenced conference. The authors
point out that information in the literature is quite sketchy about thisfield. They offer
the following two definitions: (1) A product family is"a set of software products, each
of them offering the same basi ¢ functionality with some significant variations.”
Example: FrameMaker for different computing platforms. (2) A product lineis "a set of
software products, each of them offering complementary features, and that are
conceived, designed, and implemented to jointly operate in supporting user’s

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 63

activities." Example: Microsoft Office. All told, thisisanice little paper that lays out
some of the conceptual ground and technical areas of interest related to product lines.

Applying Software Product-Line Architecture
Dikel, David; Kane, David; Ornburn, Steve; Loftus, William; Wilson, Jim

(Computer, August 1997, pp. 49-55)

Abstract: Software product-line architecture is a powerful way to control the risks and
take advantage of the opportunities of complex customer requirements, business
constraints, and technology, but its success depends on more than technica excellence.

Applying Domain Analysis and Modeling: An Industrial Experience
France, Robert B.; Horton, Thomas B.

(Proceedings, Symposium on Software Reuse, Sesitle WA, 1995,
pp. 205-214)

Abstract: In this paper we describe our experience in applying domain analysis within a
company that devel ops personal electronic devices. We describe how we tailored the
DSSA method to suit our needs and then present the process and representations that
we found most useful for this situation. The conclusions and lessons learned are useful
because few studies published at this time provide detail s about applications of domain
engineering in commercial development environments.

Notable quote: "An organization that view experience as an organizational asset, rather

than as an attribute of an individual, is better able to learn from its collective

experiences, and thusisin abetter position to improve its process and products.” The

project described is Motorola’s Paging Products Group (PPG). While this article is
mostly about domain analysis and thus not squarely within the scope of a product line
bibliography, it does describe building a generic requirements document, clearly an
essential task in PL development.

A Meta-Process for the Discovery and Evolution of Software-Reuse
Processes
Garg, Pankaj; Jazayeri, Mehdi

(Proceedings, 10th International Software Process Workshop, Dijon France, 17-19
1996)

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 64

Abstract: New reuse-oriented approaches to software development require software
processes different from traditional ones. Our goal isto develop process models for
domain-specific kit-based software production and consumption so that an appropriate
process model can be packaged as one of the components of the kit. Discovery of
process models, especially for nontraditional devel opment methods, is a challenging
task. We have explored approaches for: (1) empirically discovering and validating
software processes; and (2) monitoring and optimizing (evolving) such aprocess. In
this paper we present an iterative meta-process that represents afirst step in this
direction. We also report on some early usage of the meta-process for an experimental
domain- specific kit production process.

Inside A Hollowed-out Mountain, Software Fiascoes—And A Signal
Success
Gibbs, W. Wayt

(News and Analysis, Scientific American, August 1997, pp. 33-34)

Abstract: Thisisavery short, light-weight article about the Cheyenne Mountain
Upgrade program. Notable quote: "Perhaps the most important difference between
ATAMS and conventional systemsisthat it will be updated every year, rather than
replaced once a decade. And it was designed to be just the first in a product line of
related systems. Like aline of car models, its relatives will look and perform
differently, but share an underlying design and many of the same innards.”

Software Product Lines and their Support by Process Clusters
Gruhn, Volker

(Proceedings, 10th International Software Process Workshop, Ermitage Frere Joseph,
Ed., Ventron, France, June 17-19, 1996)

Abstract: This position paper discusses software process support for product lines. The
underlying assumption is that software products are not developed as isolated entities,
but that software products tend to be related. Versions and variants as well as
customized subproducts are related to a product kernel. The development of product
lines can be supported by clusters of related software processes.

Software Reuse: Architecture, Process and Organization for Business
Success
Jacobson, lvar; Griss, Martin; Jonsson, Patrik

(Addison Wesley Longman; New Y ork, New Y ork, 1997)
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 65

Configuring Designs for Reuse
Karhinen, Anssi; Ran, Alexander; Tallgren, Tapio

(Proceedings 1997 Symposium on Software Reusability, in Software Engineering Notes,
vol. 22, no. 3, pp. 199-208)

Abstract: The main problem in developing software product familiesis how to share
effort and reuse parts of design and implementation while providing variation of
features and capabilities in the products. We discuss the mechanisms that are
commonly used to achieve reuse and sharing in product families, and the kind of
variance each is best suited for. Our analysis motivates a need for a new mechanisms to
deal with ad hoc variation of features found in different members of afamily. We argue
that higher level abstraction and parameterization techniques are not well suited for this
task. We propose an alternative approach that enables sufficiently detailed designs for
every variant and at the same time achieves alevel of design reuse without making
designs unnecessarily complex or implementations inefficient.

Integrating and Applying Processes and Methods for Product Line
Management
Klingler, Carol Diane; Creps, Richard

(Proceedings, 10th International Software Process Workshop, Dijon France, 17-19
June 1996)

Annotation: This short position paper details an "integrated set of concepts, processes,
methods, and tools, called ReuseWorks, which supports the product line approach...and
has been validated through usage on the Army START Demonstration Project.”

Creating Reusable Architectures: Initial Experience Report
Lam, W.

(Software Engineering Notes, vol. 22, no. 4, July 1997, pp. 39-43)

Abstract: Achieving systematic reuse of software designs requires the creation of a
reusabl e software architecture. This paper describes initial experience of creating
reusabl e architectures in the avionics domain. A case-study is presented which
illustrates the RACE (Reusable Architecture Creation and Employment) process. In
RACE, avariability anaysisis used to identify possible variations in afamily of
systems, which then guides the creation of a generic architecture and a set of
architectural "plug-ins.” This paper concludes with a set of RACE guidelines which
summarizes our initial experience.

Managing Domain-Specific Product-Line Development
Macala, Randall R.; Stuckey, Lynn D.; Gross, David C.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 66

(IEEE Software, May 1996, pp. 57-67)

Abstract: A $14 million demonstration project revealed that product-line devel opment
requires a mature process and a sophisticated support environment. The results indicate
that it will demonstrate a return on investment for lines of three or more systems.

The Product Family and the Dynamics of Core Capability
Meyer, Marc H.; Utterback, James M.

(Yoan Management Review 34, [Spring 1993]: 29-47)

Abstract: Individual products are the offspring of product platforms that are enhanced

over time. Product families and their successive platforms are themselves the applied

result of a firm’s underlying core capabilities. In well-managed firms, such core
capabilities tend to be of much longer duration and broader scope than single product
families or individual products. The authors recommend a longer run focus on
enhancing core capabilities, which includes identifying what they are and how they are
applied and synthesized in new products.

The Design and Development of Information Products
Meyer, Mark H.; Zack, Michael H.

(Soan Management Review, Spring 1996, pp. 43-58)

Abstract: Companies that produce information in printed or electronic form can learn
much from research on physical products, including the development of product and
process platforms to enhance design and development. The authors provide a
framework for the architecture of information products and apply it to two companies
that are creating competitive advantage by refining information through product and
process technologies. The authors also consider ways that companies can design
information products in the future to focus on customers’ implied needs and to take
advantage of new interactive technologies.

Notable quote: "Every product has an architecture. That architecture has the potential to
become a platform... Rather than product architecture constraining product variety,
Black & Decker's common subsystems enabled variety, allowing engineers to focus on
the other features of their power tools, such as new types of bits, sanding surfaces, or
blades. Product variety increased over time. The company’s cost advantage drove
dozens of competitors out of business..."

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 67

Metrics for Managing Research and Development in the Context of the
Product Family
Meyer, Mark H.

(Management Science, 1997)

Abstract: The paper proposes methods to measure the research and development in new
product development. We frame these measures in the context of evolving product
families in the technology-based firm. Our goal isto more clearly understand the

dynamics of platform renewal and derivative product generation and their

consequences for long term success. We explore the utility of the proposed methods

with data gathered from alarge measurement systems manufacturer. We find that the
methods and measures can help management assess the technological and market

leverage achieved from the firm’s present and past product platforms. This provides a
foundation for transforming single product, single period planning processes into a
multi-product, multi-period form that embraces the product family and the renewal of
product architecture. The research also shows the need to integrate data from
engineering, manufacturing, and sales organizations to product information for
managing the growth of the firm’s product families.

Annotation: A thorough and scholarly treatment of product family metrics at the
organizational level. Manuscript is approximately 40 pages. Notable quote: "When
should a firm renew the underlying technologies and designs of its products? How
much will these efforts cost and how long may they be expected to take? What types of
engineering and commercial benefits can the firm expect to gain from product
redesign? How can a firm improve its approaches and strategies for product
development?"

On the Design and Development of Program Families
Parnas, D. L.

(IEEE Transactions on Software Engineering, SE-2, 1, pp.1-8, 1976)

Annotation: This is a foundation work of the field, and one of Parnas’s more important
papers. In it, he shows how program development is essentially a path down a decision
tree, with each node corresponding to a design decision. Decisions towards the top of
the tree are the hardest to change (because they require more back-tracking), whereas
decisions near the leaves of the tree are much easier to change. The leaves of the tree
form a program family, which Parnas defines as a set of programs for which it is useful
to consider as a group rather than individually. The moral of the paper is that it pays
handsomely to pay careful attention to the order in which design decisions are made,
deferring the ones most likely to change until the end.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 68

Experiences Developing and Maintaining Software in a Multi-Platform
Environment
Pearse, T. Troy; Oman, Paul W.

(Proceedings, International Conference on Software Maintenance, Bari Italy
September/October 1997)

Abstract: The computer market demands that companies develop families of software
products that can be scale to meet the functional and performance needs of the personal
and business computer markets. To support afamily of LaserJet printer products,
Hewlett-Packard defined the multi-platform parallel development model for software
development. This model allows HP to simultaneously develop a family of LaserJet
printers that have different features and run on different processors, while shortening
the development. In this paper we discuss our experiences using atechnique called
conditional compilation, within the multi-platform parallel development model, to
create portable, scaleable software systems. We describe and share anew tool that was
developed to help understand code containing conditional compilation. Examples of
using the tool on industrial source code, and lessons learned while managing
conditional compilation complexity, are provided.

Product-Line Reuse Delivers a System for One-Fifth the Cost in One-Half
the Time
Randall, Richard L.; Bristow, David; Foster, Jesse; Kaip, Dennis

(Crosstalk: The Journal of Defense Software Engineering, August 1996, pp. 25-26)

Abstract: This article summarizes the Automated Tracking and Monitoring System
(ATAMYS) project and technol ogies the team integrated to make the project a
resounding success, it tells why the Space and Warning Systems Center believes the
resulting product-line approach is a promising metaphor to produce and maintain its
family of software-intensive systems.

Reuse-Driven Software Processes Guidebook
Software Productivity Consortium

(Software Productivity Consortium report, SPC-92019-CMC, Version 02.00.03, 1993.
Available through the Software Productivity Consortium, Herndon, Virginia)

Reuse Contracts: Managing the Evolution of Reusable Assets
Steyaert, Patrick; Lucas, Carine; Mens, Kim; D’Hondt, Theo

(Proceedings, OOPS_A 1996)
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 69

Abstract: A critical concern in the reuse of software isthe propagation of changes made
to reusable artifacts. Without techniques to manage these changes, multiple versions of
these artifacts will propagate through different systems and reusers will not be able to
benefit from improvements to the original artifact. We propose to codify the
management of change in a software system by means of reuse contracts that record the
protocol between managers and users of areusable asset. Just as real world contracts
can be extended, amended, and customized, reuse contracts are subject to parallel
changes encoded by formal reuse operators. extension, refinement, and concretization.
Reuse contracts and their operators serve as structured documentation and facilitate the
propagation of changes to reusable assets by indicating how much work is needed to
update previously built applications, where and how to test and how to adjust these
applications.

Software Asset Management and Domain Engineering
Subramanian, Satish

(Proceedings, 21st. Annual International Computer Software and Applications
Conference [COMPSAC], 1997.)

Annotation: Thisis a short (two-page) position paper for a panel presentation. The
opening text follows:. "Promoting reusability by managing software assets can greatly
benefit companies that develop afamily of similar products, where products are
evolving from another. One of the main goals of domain engineering isto identify and
document the commonalities across the various products in a particular domain...
Guidant corporation has been involved in the development of medical devices... These
devices and related products are constantly evolving as technology and market needs
change. The systems being developed... at thus afamily of products and share many
functionalities among them."

Product Families and Process Families
Sutton, Stanley M. Jr.; Osterweil, Leon J.

(Proceedings, 10th International Software Process Workshop, Dijon France, 17-19
1996)

Notable quote: "Our work in software processes has led us to conclude that software
processes a so can be usefully viewed in terms of families.”

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 70

The Architect

The Perils and Joys of Reconstructing Architectures
Steven G. Woods, S. Jeromy Carriere, Rick Kazman

A documented, analyzed software
architecture is a key ingredient in achieving
quality in large software-intensive systems.
But the system that is implemented must

A\ p A conform to its architecture for the qualities of
the design to carry over into the implementation. To ensure that systems
conform to their architectures, and remain in conformance throughout their
lifetimes, we need to reconstruct architecture from source artifacts. To do this
properly, a wide variety of tools that provide both static and dynamic
information are needed. Thus, we advocate a workbench approach to
architecture reconstruction tools.

Why Reconstruct Software Architectures?

Evaluation of an architecture’s properties is critical to successful system development
[1]. However, reasoning about a systemtended architecture must be recognized as
distinct from reasoning about itsalized architecture. As design and eventually
implementation of an architecture proceed, faithfulness to the principles of the intended
architecture is not always easy to achieve. This is particularly true in cases where the
intended architecture is not completely specified, documented or disseminated to all of
the project members. In our experience this is the rule, and well-specified, documented,
disseminated, and controlled architectures are the exception.

This problem is exacerbated during maintenance and evolutionary development, as
architectural drift and erosion occur. However, if we wish to transfer our reasoning

about the properties of a system’s intended architecture to the properties of the
implemented system, we must understand to what degree the realized architecture
conforms to the intended architecture.

Architectural conformance may only be measured if we have available two

architectures to compare: the intended architecture and the architecture as it is realized
in the implemented system. The former should be documented early in a system’s
lifetime and maintained throughout. The latter, however, typically exists only in

artifacts such as source code and makefiles and, occasionally, designs that are directly
realized as code (through, for example, the use of an architecture description language).
In addition, it is infrequent that an implementation language provides explicit
mechanisms for the representation of architectural constructs. Therefore, fdoilities

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 71

the reconstruction of a software architecture from these artifacts are critica in
measuring architectural conformance.

Beyond its importance for measuring architectural conformance, software architecture
reconstruction also provides important leverage for the effective reuse of software
assets. The ability to identify the architecture of an existing system that has successfully
met its quality goals fosters reuse of the architecture in systems with similar godls;
hence architectural reuse is the cornerstone practice of product line development.

In the remainder of this paper we will discuss severa issues relevant to the successful
reconstruction of software architectures. These issues include the following:

» the need to expand our horizons beyond the use of purely static information during
reconstruction

» the need to support the reconstruction of software architectures based on a paucity
of information, such as non-compilable code, obsolete artifacts, or the absence of
architectural information

» theneed to leverage existing commercial and research tools within a comprehensive
reconstruction framework

Static Information Is Insufficient

A significant quantity of information may be extracted from the static artifacts of

software systems, such as source code, makefiles, and design models, using techniques

that include parsing and lexical analysis. Unfortunately, system models extracted using

these techniques provide a minimum of information to describe the run-time nature of

the system. The primary factor contributing to this deficiency is the widespread use of
programming language features, operating system primitives, and middleware

functionality that allow the specification of many aspects of the system’s topology to be
deferred until run-time. All but the simplest systems use some subset of

» language features such as polymorphism and first-class functions (including
approximations such as those provided by C and C++)

» operating system features such as proprietary socket-based communication and
message passing

* middleware layers such as CORBA

These mechanisms permit systems to be designed with low coupling and a high degree
of flexibility. While these are laudable goals, they obscure the architecture
reconstruction process.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 72

In particular static extraction techniques can provide only limited insight into the run-
time nature of systems constructed using such techniques, because many of the details
that determine actual communication and control relationships simply do not exist until
run-time, and hence cannot be recognized until run-time. For example, relationships
among communicating processes might be determined via an initialization file, or even
dynamically, based upon the availability of processing resources. However, most
existing architecture reconstruction tools depend amost exclusively on abstract syntax
trees (ASTSs) extracted using parsing-based (i.e., compile time) approaches, and so they
cannot gather such information.

To achieve a better understanding of the run-time nature of systems that leverage
mechanisms such as those described above, we must consider how we may go about
extracting dynamic information from a running system. Some techniques to accomplish
thisinclude profiling and user-defined instrumentation. Profiling isatechnique that is
traditionally used for system performance analysis. When profiling, one typically
compiles a system with a special flag that instructs the compiler to instrument the code
such that it records information pertaining to function invocation during execution. The
system is then exercised and the recorded information is analyzed. We may use this
technique to determine actual function invocations, augmenting our statically extracted
models with improved information concerning polymorphic functions and functions
executed through function pointers (e.g., in C or C++).

In asimilar fashion, user-defined instrumentation is a technique for adding special-

purpose tracing functionality to a system to allow monitoring of its operation. For

example, instrumentation can be added to application code responsible for interprocess
communication to determine the system'’s run-time communication topology. In
addition, it is sometimes possible to instrument libraries or even the operating system.
This allows the possibility of instrumentation of systems without modifying any
application code and requires less application-specific knowledge.

Non-Compilable Code

Throughout our experience with software architecture reconstruction, we have

frequently been faced with systems that cannot be compiled. Often we are provided

with a complete body of application code, but we are missing the header files and/or
some of the libraries that are needed to compile it. In other cases, the application code

is written in a peculiar dialect of a standard language (e.g., Objective C or an obscure
dialect of Fortran), or implemented on an uncommon hardware platform, and thus may
only be compiled with specialized tools that are not available to us. Off-the-shelf

parsers and analyzers simply do not apply in these cases. There are cases when this lack
of information makes a tool-facilitated reconstruction of the architecture nearly

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 73

impossible. For example, when dynamic binding of function calls or dynamic

rel ationshi ps between processes are used extensively in a system, we may need to
compile and run the system to determine the true relationships between the
components.

Fortunately, we can often reconstruct software architectures even under these difficult
circumstances. To accommodate non-compilable code whenever possible, we can avoid
complete reliance on parsing-based techniques and can resort to lexical analysisfor
information extraction. While this is not an ideal situation (you often don’t have as
much information to work with in these circumstances, and lexical techniques are
frequently unreliable [2]), it is reality.

Reconstructing Architecture in a Vacuum

Unfortunately, it is frequently the case that our efforts to reconstruct the software
architectures of systems must contend with a complete lack of pre-existing architectural
information. This often occurs when the system being analyzed is particularly old (and
thus there are no longer any designers or developers who can relate architectural
information) or when the system’s intended architecture was never documented.
Furthermore, these are typically the situations in which we are most interested in
recovering a system’s architecture. In particular, it is common for such systems to be
involved in ongoing maintenance or even undergoing a more global re-engineering
effort (e.g., modernization or porting).

Successful architecture reconstruction revolves around the acquisition of architectural
constraints and patterns that capture the fundamental elements of the architecture.
Regardless of the mode of development of a system, its evolutionary state, or its age,
such constraints and patterns are always present. However, they are rarely (even when a
truly architecture-based development process is followed) captured explicitly. Thus, the
primary task of the reconstruction analyst is acquisition of this information by means
other than investigation of documentation.

One mechanism for acquiring architectural patterns is exploration of the information
extracted from the system artifacts. Such exploration will often uncover frequently-used
idioms of control flow, data flow, interface usage or interaction among the architectural
components of the system. An alternative to this type of ad hoc exploration is the
application of an architecture analysis method, such as the Architecture Tradeoff
Analysis Method (ATAM) [3], as an elicitation device. Although ATAM was

developed as a method for analyzing the tradeoffs inherent in architectural design, it
may also serve as a structured way to elicit architectural information. ATAM is
scenario-based: Scenarios are used to capture uses of and changes to the system being

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 74

analyzed. It is the “scenario mapping” step of the method that is useful for architectural
elicitation; in this step, the scenarios are traced through the architecture. For uses of the
system, the participating components and their communication patterns are identified.
For changes to the system, the architecture-level impacts are identified. In this way, we
have a structured exercise for exploration of the architecture of the system. If the
system being analyzed is indeed undergoing some level of maintenance, there will
always be one or more developers who have some knowledge of the system’s operation
and can patrticipate in such an exercise.

An Architecture Reconstruction Workbench

Based upon the above observations, in developing tool support for software architecture
reconstruction, our realization was that no particular static set of tools (extractors,
visualization tools, analysis tools, etc.) would suffice for every task. At the very least,

we wanted to support many implementation languages, many target execution
platforms, and many techniques for architecture analysis. Thus, we wanted a

wor kbench: anopen andlightweight environment that provides an infrastructure for the
opportunistic integration of a wide variety of tools and techniques. The workbench

must be open to allow easy integration of additional tools. The workbench must be
lightweight to ensure that no unnecessary dependencies exist among already integrated
tools and data.

We realized the workbench concept in Dali, a support environment for software
architecture reconstruction [4]. Dali’s current implementation uses an SQL repository
for data storage and manipulation. SQL provides the medium for the primary activities
of the Dali user: architectural pattern definition, view creation, view fusion, and pattern
recognition.

View fusion is a technique for combining extracted information—views—from

different sources (such as code artifacts, directory structures, naming conventions,
execution information) to improve the quality of the overall model of the system [5].
Architectural patterns are the medium for a Dali user to express an understanding of a
system’s architecture as structural and attribute-based relationships among its
components. The patterns are most commonly expressed via SQL, but may, in
principle, be expressed via any of the tools that Dali integrates.

Rigi [6], which provides flexible graph editing functionality and effective end-user

programmability, supplies Dali’s user interaction and also acts as a vehicle for tool
integration.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 75

Dali, asrepresented in Figure 1, currently integrates several commercial and research
tools for the following:

» extraction of information—rigiparse for C, Imagix [7] for C and C++, SNiFF+ [8]
for C++ and Fortran, LSME [2] for C++

» visualization—dot for graph layout

» architectural analysis—IAPR [9] for architectural complexity analysis, RMTool
[10] for automatic conformance measurement

The use of commercial tools has provided a great deal of leverage during the
development of Dali: These tools are typically robust, well documented, and well
tested.

Dali offers an iterative, interpretive, user-driven approach to architectural
reconstruction. Our view is that no system has “an” architecture. It has many views of a
complex body of interrelated information and the choice of which views to extract and
reconstruct is driven by the user’s information needs. It is, however, interesting to
consider the implications of the user-driven nature of Dali with respect to the issues
raised above.

View Extraction

Lexical Parsing | | Profiling

External
Manipulation
T ,' Repository
Visualization
and Interaction

x |

[y

| |
h 4 h 4

Analysis View Fusion

Figure 1: The Dali Workbench

Consider the case of non-compilable code: Because of the iterative nature of Dali, we

can use the information gleaned from purely lexical extractors to guide the user’'s
investigations. For example, in this case the user could extract some portion of the
architectural information— knowing that it was incomplete—and then reconstruct just
part of the architecture. This would then lead to new questions being asked and new
lexical extractors written, and the process repeats with increasing fidelity.

In a similar fashion, when we extract views from dynamic information, these views are
incomplete, since dynamic information, like run-time testing, only reflects the parts of

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 76

the system exercised during the execution. To gain a complete picture of the system,
run-time views need to be fused with other (possibly static) views to improve the
overall quality of the reconstruction.

Lastly, it is again Dali’'s iterative and interactive nature that makes it appropriate for
supporting a process of reconstructing architecture in the absence of significant
architectural information. Lightweight view extraction and flexible visualization
provide an environment that fosters opportunistic exploration of the available
information. These features also provide the necessary support for the scenario-
mapping task that is central to the application of the ATAM method in this context.

It is the combination of Dali’s openness and its interactivity that helps us overcome the
inherent limitations of any single extraction and reconstruction technique. Dali does not
offer a monolithic solution, but rather a set of tools, some of which are heuristic. As a
result, we have been able to apply Dali to a wide range of systems, written in many
different languages and dialects, written for different hardware platforms and operating
systems, and created with vastly different levels of architectural expertise.

Architecture Reconstruction in Practice

As part of a large-scale product-line migration effort, the Software Engineering

Institute is assisting a major U.S. industrial organization (“BigTruck Inc.”) in the
identification of key architectural elements and their relationships in an existing real-
time embedded control system called “X1.” The existing legacy system supports many
product instantiations. X1 is being migrated to a product line, “X2.” The set of X1
components will be identified as an “X1 baseline,” to identify the current operating
architecture of the in-place software. It is expected that this baseline model will provide
the starting point for trading off a variety of to-be-determined architectural
requirements derived from existing X1 customers and BigTruck sources as well as new
or changed requirements for the future X2 (and beyond) architectures. The key players
in this effort are the SEI team members and the newly formed BigTruck Software
Architecture Group (SAG) headed by a very competent architect, “Hugh Effert.”

The SEI team and the BigTruck architect have worked together to define a
reconstruction process to support the product line migration. This process was evolved
in an effort to assist the SAG in gaining control over the many X1

components control that was initially distributed among a number of orthogonal sub-
projects. Further, the process is intended to support the reality that migration to product
lines must usually accommodate moving-target baseline systems. In the case of
BigTruck, three individual business-critical deliveries of instantiations of the X1
architecture will occur prior to the release of X2.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 77

The process of reconstructing the X1 architecture currently underway at BigTruck is
summarized in the major steps outlined below.

Task A: Develop Component Information/Identification Form

In order to reconstruct an architectural representation it isfirst necessary to identify

what the core set of components isin the particular implementation. This identification

form should provide examples and guidance to system experts to identify “what makes
a component a component” in the particular system or sub-system. The form will be
used in Task C when SAG members formalize the properties of components initially
identified by the SAG in Task B. The form is meant to provide guidance to SAG
members as they attempt to carefully specify what attributes and relationships in the
implementation signify membership in (or exclusion from) a particular component.
Examples of identifying attributes include naming conventions for code elements such
as functions or variables and code location in terms of directories. Examples of
relationships may include certain control-passing styles among components or within a
particular component, or potentially the types and names of data used within a
particular component.

Task B: Identify Components and Layers

As a first step, the SAG will attempt to determine major responsibilities and
architectural layout by naming the major architecture components and attempting to
assign them to layers according to current beliefs (hopes?) about the layered structure
of the existing X1 code base. Certainly it is currently believed that the X1/X2 (new)
architecture is intended to reflect the layers represented as closely as is practicable.
Following completion of this initial SAG effort, the individual components will be
characterized according to properties laid out in Task C.

Task C: Populate Information Forms

Using the forms created in Task A, the SAG member responsible for each component
will specify the defining characteristics of the component. This process of expert
identification of architectural signatures is critical to the task of extracting the “as-
implemented” architecture as this information is the primary source for the
specification, in Task D, of rules for clustering software into architectural components.
The process of populating the form with information developed in Task A may result in
the modification of the form itself as unanticipated features characterizing architectural
components are discovered by SAG members.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 78

Task D: Develop Architectural Rules

From the information formsfilled in by the SAG group members, the SEI will work
with Hugh to represent the information describing the architectural components in Dali
SQL queries, which will be used to match (Task E) the components from the extracted
system information database built in Task F. The SEI team can commence planning the
rule descriptions as soon as the information forms begin arriving from the SAG team
members.

Task E: System Extraction to Database

The SEI will, once the BigTruck source code and associated makefiles have been
received, parse the system into an intermediate representation stored in a Dali relational
database. While there is a standard set of parsing tools the SEI typically usesin such
extractions, the complexity of the identifying features used in component description in
Task C and D determines the degree of detail required in the parse-and-represent
process.

Task F: Apply Rules to Database

Following the population of the system database and the development of the
architectural rules (Tasks D and E), the SEI team will utilize Dali to match the rules
against the extracted system. The resulting clusters can be visualized and further
manipulated using Dali. Thiswork will be done in conjunction with the SAG in order
to facilitate the transfer of the skills required to BigTruck in atimely manner. The
actual rule application (and possibly refinement) may determine new constraints that
require additional (or repeated) extraction work, possibly with additional tools, and may
also impact the rules defined and potentially even the nature of the information forms
used to determine the component identity features.

Task G: Map Models to Architectural Views

Using Dali’s query, visualization, and manipulation tools, the extracted models of the
X1 system will be mapped to a standard UML template (previously developed by the
SAG). The architectural views will be constructed showing the “as-implemented”
architecture given the component definitions and rules developed earlier. The mapping
process will be undertaken jointly between the SEI and BigTruck’s Hugh Effort.

Task H: Evaluate Architectural Views

The views built during task G will be evaluated for use in the ongoing development of
the X2 architecture. This evaluation will verify that the views are able to support the

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 79

types of design and analysis that the X2 architecture devel opment process will require.
The sub-processes contained from Tasks D, F, E, and G are presumed to be iterative as
required.

The BigTruck Big Picture

The BigTruck effort is atremendous example of the role software architecture

reconstruction can (and should) play in the context of a product-line migration. The

migration itself depends upon reliable views of the existing software architecture in

addition to a clear understanding of the new architecture. The SEI has assisted

BigTruck in generating its new X2 architecture by mapping BigTruck’s new
requirements against its existing X1 architecture representation. Evaluation of the new
architecture is being conducted through architectural reviews and the use of the SEI's
Architecture Tradeoff Analysis Method [3]. Migration plans are being made in an
incremental manner, allowing BigTruck to continue delivering X1 instantiations during
the X2 evolution. Ultimately, the mapping at the code level to the X1 architectural
representation will support a reliable source migration to the X2 architecture. Since
BigTruck plans to generate performance models from its new X2 architecture and make
performance tradeoff decisions based on these models, the accuracy of the X2-to-
source mappings must be trustworthy.

About the Authors

Steven Woods is a Member of the Technical Staff at Carnegie Mellon University’s
Software Engineering Institute, where heis amember of both the Reengineering
Center and the Architectural Tradeoff Analysis (ATA) Initiative. The Reengineering
Center has a mandate to identify, enhance, and transition best practice in software
reengineering in adisciplined manner, while the goals of the ATA Initiative are to
refine the set of techniques for analyzing architectures with respect to various quality
attributes, to develop a method for understanding how these attributes interact, and to
offer the software development community mature architecture evaluation practices.

Steven's particular expertise lies with analyzing, applying, integrating and extending
existing and emerging toolsets for software reengineering, understanding and
architectural anaysis. In particular, the SEI wishes to leverage these toolsas an crucial
part of the process of developing and evolving software systemsinto product-line
assets.

S. Jeromy Carriere is a member of the technical staff at the SEI. Before joining the SEl,
Carriere was a software engineer with Nortel (Northern Telecom). His primary interests
are related to software architecture: recovery, re-engineering, representation, analysis,

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 80

and tool support. He is the author of several papersin software engineering,
information visualization, and computer graphics. Carriere received a B. Math from the
University of Waterloo and is amember of the Association for Computing Machinery.

Rick Kazman is a senior member of the technical staff at the SEI, whereheisa
technical lead in the Architecture Tradeoff Analysis Initiative. Heis aso an adjunct
professor at the Universities of Waterloo and Toronto. His primary research interests
within software engineering are software architecture, design tools, and software
visualization. He is the author of more than 50 papers and co-author of several books,
including a book recently published by Addison-Wesley entitled Software Architecture
in Practice. Kazman received a BA and MMath from the University of Waterloo, an
MA from Y ork University, and a PhD from Carnegie Mellon University.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-
Wesley, 1997.

[2] G. Murphy, D. Notkin, “Lightweight Lexical Source Model ExtractioACM
Transactions on Software Engineering and Methodology, 5(3) (July 1996), 262-
292.

[3] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, S. J. Carriere,
“The Architecture Tradeoff Analysis Method?toceedings of ICECCS,
(Monterey, CA, July 1998).

[4] R. Kazman, S. J. Carriere, “Playing Detective: Reconstructing Software
Architecture from Available EvidenceJournal of Automated Software
Engineering, 6(2) (April 1999), 107-138.

[5] R. Kazman, S. J. Carriere, “View Extraction and View Fusion in Architectural
Understanding,Proceedings of the 5th International Conference on Software
Reuse (Victoria, BC, Canada, June 1998), 290-299.

[6] K. Wong, S. Tilley, H. Muller, M. Storey. “Programmable Reverse
Engineering,International Journal of Software Engineering and Knowledge
Engineering, 4(4) (December 1994), 501-520.

[7] Imagix Corporation, http://www.imagix.com.

[8] TakeFive Softwarehttp://www.takefive.com.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 81

[9] R. Kazman, M. Burth, “Assessing Architectural ComplexiBr,bceedings of
2nd Euromicro Working Conference on Software Maintenance and
Reengineering, (Florence, Italy, March 1998), 104-112.

[10] G. Murphy, D. Notkin, K. Sullivan, “Software Reflexion Models: Bridging the
Gap between Source and High-Level Modes Gceedings of the Third ACM
S GSOFT Symposium on the Foundations of Software Engineering
(Washington, D.C., October 1995).

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 82

The Business Edge

Eight Key Factors for Successful

Technology Collaboration
Mike Mattison

Many companies today are involved in various forms of
partnerships, alliances, and collaborations. “Technology

i collaborations” are formed specifically to improve the software

» development organization, in whatever capacity, whether it
‘%‘ involves technical methods, processes, or practices. In all cases,

1 these collaborations are difficult to manage, control, and track to

productive closure. To help guide the collaboration process, it is necessary to
first develop your organization’s software strategy. In this, the second of two
columns on the subject, | will explore in detail the eight key factors that |
consider essential to developing an effective software strategy as the basis for
managing and guiding the technology collaboration activity.

Which Attributes Are Vital?

Companies and their markets have many variant business drivers and operating

conditions, and a “universal strategy” cannot be expected to address software
engineering issues across all conditions. But which attributes, or key factors, are vital to
managing the technology collaboration process? How can we better understand which
factors are the vital core to building an effective software strategy?

By using the following eight key factors as a baseline analysis, organizations can
formulate an effective strategy in support of complex technology collaborations.

1. Technical Issues

Organizations must define and understand their primary software technical issues. This
assumes that software is an essential component of your ability to produce and deliver
value to your customers. Generally, this requires your team to analyze all key factors
that impact your technical capacity or abilities to develop software. Here are some
guestions to consider in capturing this in your strategy:

* What are at least three technical issues perceived as critical to improving or
evolving your software engineering capabilities? Why are they critical?

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 83

» What types of analyses or diagnostic methods do you employ to evaluate your
software development capabilities and improvement strategies?

* What types of measures apply to software development, and how is data captured,
recorded, and used in decision analysis?

* How do you rank criticality of such factors as cost, schedule, performance, safety,
reliability, or time to market in ng your software performance or
improvement analysis?

* What isthe greatest barrier to improving how your firm deals with primary software
technical issues (e.g., training budget, management support, etc.)?

2. Primary Business Drivers

Y our organization must understand the key factors that drive your business. Softwareis

not developed in avacuum,; it isamajor element of competitive advantage. The best-
performing firms have already closely aligned their software development capability to

the core business of the firm. For instance, embedded software that is devel oped based

on accurate market research can result in feature-rich products that customers value.
Manufacturing systems don’t just coordinate plant-floor mechanical production, but
now also gather key data into management reports and analyze that data in ways that
facilitate rapid decision making and course corrections.

Clearly, a software strategy that is disconnected from the core business drivers will fail.
In the final analysis, the software strategy must consider the primary business drivers of
the industry, and perhaps the customer markets. Often these drivers will have the
greatest impact on your success, and perhaps on your customers’ success. For instance,
firms that rely on critical manufacturing cycles (e.g., automotive and office-equipment
firms) may be driven by product schedule, and cycle time may be the business driver
for the embedded software. Thus, a strategy of software process discipline becomes
vital to developing schedule-release integrity. Another example is firms that rely on
critical safety or reliability (e.qg., firms in the airline or currency-trading industries) in
which large-scale, mission-critical systems are subject to extreme quality and safety
compliance as the business driver. In such cases, a strategy of architecture product
configurations may improve technical control over software upgrades, technology
insertion, and system-performance enhancements.

In the SEI's Strategy Workshop, we ask executives and managers to make a list of their
primary business drivers. These might include factors such as manufacturing schedule,
user quality requirements, government safety regulations, cost, or feature expansion.
One commonly occurring problem is that management teams have different
interpretations of business drivers, but also have divergent expectations for how

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 84

software should contribute to their business goals. (For more information on the SEI's
Strategy Workshops, please contact me at mvm@sei.cmu.edu or 412-268-3628.) Some
guestions to consider are:

* What is your core business, and why do customers buy your product or service?
What is the “value proposition” that your product fulfills?

* What are the major business drivers of your industry, and how does software
contribute to achieving these drivers for your firm? For example, a major driver in
the automotive industry is safety, and embedded electronics software is improving
component integrity and reliability on such components as anti-lock brakes, engine
controls, and driver displays.

* How does technological change or process evolution impact your ability to deliver
leading software performance, quality, and cost management to your customers?

* How much of your firm’s marketing strategy is derived from features that are
created by software? That is, how does software contribute to creating or enhancing
the most valued attributes of your product or service?

* How much of the total cost of your product or service is from software, and what is
that cost trend?

* What is the greatest barrier to improving how your firm relates software to the key
business drivers?

3. Improvement History

Nothing is as ineffective as launching an improvement program that already failed in
the past. Too often, organizations do not evaluate their improvement history as part of
their efforts to create successful change programs. Before you launch any form of
software improvement effort, know your organization’s history of improvement. Search
for advice from a variety of professionals in your company, and learn what has been
tried in the past, what worked, and what failed. Your software strategy should
demonstrate an understanding of the firm’s history of improvement, the culture of
improvement decision making, and how resources are allocated in your organization for
software improvements.

Understand how software improvements have been historically managed, and define
the resulting impacts upon your software operations and business. Who defines new
software technology programs or improvements, the technical organization or
management? How well have change efforts been accepted across your organization,
and then implemented? Do you track performance and outcomes of your improvement

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 85

programs? It helps to consider how your firm attends to related activities. These may
include using incentives for change, managing data or information to support the need
for change, devel oping executive buy-in before proceeding, and negotiating resource
decisions to support new improvements. Some questions to consider in capturing thisin
your strategy are:

* What has been the most successful improvement effort for your software
development organization? What has been the least successful ?

* Whoisresponsible for software, and what is the relation of the responsible party to
other business units—for example the design, production, marketing units?

» Have past efforts produced changes in the organization, structure, teams, process, or
training?

* What is the history of Total Quality Management (TQM) in the software
organization?

» Can you provide a brief explanation for how training supports continuous
improvements or new programs for software engineering?

* What is the greatest barrier to creating positive changes in the design, development,
and implementation of your software improvement programs?

4. Performance Goals

How does your organization define, manage, and improve software performance? This
area of software strategy is among the most difficult to manage, but may produce the
greatest near-term gains for your organization. Certainly a strategy cannot be achieved
if there is no consensus for performance goals and outcomes. For instance, a strategy to
increase sales by 50 percent is not attainable if production performance is already at 96
percent capacity. Understanding performance goals is especially important for
evaluating and designing technology collaborations that are intended to impact the
software engineering operation.

We have observed numerous firms that have invested in various new technologies
without first achieving agreement about their software performance goals. If you
presume that new technology will improve some aspect of your software capability, it
IS essential to define software performance in order to gauge the impact of any new
technology. The matter of software performance nearly always produces some volatile
exchanges among managers. The fact is, many organizations have not defined
“performance” for their software organization. By contrast, manufacturing performance
and marketing performance are typically defined by goals, dates, percentage deltas,
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 86

volumes, and other reliable metrics which, when combined, yield some desired
performance indication on aroutine basis. A more difficult analysisisto define how
your software performance relates to your business performance. For example, as
automotive sub-assemblies (e.g., anti-lock brakes, engines, and interior el ectronics)
become increasingly software-intensive, manufacturers will want to demonstrate how
increased feature-performance (derived from software) relates to business metrics such
asincreased unit sales, new vehicle contracts, and improved customer satisfaction.
Questions to consider include:

* How does your software team define software performance? What are the
performance goals for software in your firm?

* How do your customers define software performance? How well does this
definition (or expectation) align with your own definition?

» What measures are used to track software performance goals? What is the
guantitative basis for tracking and managing this performance?

* How are software goals tied to business goals? Who owns the decision process?
* What level of executive sponsorship is required to support new, evolving goals?
* What role does software engineering play in the development of these goals?

» How does software performance fit into your strategy?

5. Executive Owner

In every company we know of, senior executives are concerned with efforts that will

exceed one year in length, consume numerous company professionals, and require

budgetsin excess of $50,000. Y our software strategy must outline the role and

involvement of key senior executives. These executives are required as “sponsors” for
the technology collaboration. These executive sponsors often assume long-term roles
that take time and effort to ensure high-level awareness, buy-in, understanding, and
approvals for the ongoing collaboration. Some software groups operate with great
autonomy, making technical and business decisions without significant executive
oversight. Other firms require executive involvement and support to ensure successful
outcomes to

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 87

changes in the software organization. In either case, your software strategy must define
executive-level sponsorship for the collaboration. Some questions to consider are:

* Who manages the software engineering organization at your firm? Map out the
management hierarchy and examine the various reporting rel ationships up to the
executive team.

* What role does executive management have in relation to your software
organization? Can your firm expect successful change without senior management’s
involvement?

* Who is responsible for software at your firm? What is that party’s interaction with
senior management?

* How has software performance influenced your products, services, and internal
operations?

* Who is responsible for bridging software technology to business operations?

6. Management Team

How is management structured in relation to your firm’s software development
operations? In nearly all cases, successful collaborations are the result of widespread
support across management teams. For example, the software strategy for the cell
phone division of a telecommunications firm references managers from the marketing,
product development, manufacturing, and packaging groups. As software becomes
increasingly critical to the core business of the firm, it is important to involve key
members of the management team in developing and endorsing the software strategy.
This is especially useful when new collaboration opportunities emerge, as the
collaboration may depend upon proactive support—and perhaps resources—from those
managers who stand to benefit from improved software performance and features.
Consider whether your software teams are centralized or distributed across your
operations. Does your firm have a CIO who directs software strategy, or do you have
several distinct areas that own their own software functions? In many cases, we have
seen the value of mapping out how management controls the software assets of the
firm. This helps the organization develop a strategy that includes key managers, and
aids in the analysis of critical areas for change or improvement. Some questions to
consider in capturing this in your strategy are:

* What would a map outline of all key managers involved with software look like?
(Include all managers in development phases, product design, marketing, service,
etc.)

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 88

* Towhat extent should you involve all managers in the software strategy? Why?

* How vital are software performance, quality, cost, and schedule to your
management team? How are these items measured, and how are the people
responsible for them rewarded?

* How does management measure software activities? How are projects tracked and
managed?

* Areyour customersinvolved in software program activities? Do your customers
and users take interest in your software technology programs and innovations?

* What do managers do to gain buy-in and support from senior executives?

* Which managers are vital to the long-term support of new technology
collaborations to improve software?

7. Software Engineering

What are your firm’s software engineering capabilities, technical processes and
methods, and overall engineering conditions, resources, platforms, and operations? The
selection and design of effective technology collaborations requires a comprehensive
analysis and understanding of your software engineering capabilities. We are often
surprised by the lack of internal evaluation by corporate software groups of their
engineering resources and capabilities. Internal evaluations are necessary to formulate
defensible strategies and plans for technology improvements. Clearly, your capacity to
engage new software technologies is a function of how well you understand your
existing capabilities and competencies. This is precisely the purpose of the software
strategy: to lay down a solid foundation of principles and actions, and to balance those
attributes that are essential to advancing our ability to achieve the core goals of building
great software. In evaluating your software engineering capabilities, also consider
factors such as technical training, resource allocation, and measurement. These also
may have an impact on your software engineering capabilities. Some questions to
consider in capturing this in your strategy are:

» Can you produce a basic evaluation format for your software engineering
environment, including tools, test beds, training, languages, design, metrics, and
code development? What reasonable conclusions can you make?

* What are your greatest strengths in software engineering capability? What are your
greatest weaknesses or risks?

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 89

* What controls or tracking methods are performed to recognize problems and
mitigate risks?

* How areresources allocated for improvements in engineering functions?

* How stable are your processes for requirements collection, configuration
management, and project control ?

» How would you define the key factors that drive your designs and technical
processes (e.g., the cost of customer recall, time to market, schedule, or cost)?

* What level of planning is used to ensure that software engineers have the
appropriate technical training?

8. Customers

In forming your software strategy, it is essential to capture the role of the customer in

relation to the software development organization. We find that firms often focus

resources upon the software technology, processes, and sciences of development—
without taking into consideration end users or customers. This is the failure of cultures
that are highly technology intensive, and often leads to product or system functionality
that fails to deliver the core values that customers require. Consider financial services
firms, whose business is intangibles such as brokerage and banking services. We have
coached customer-service teams to gather customer and user information about their
monthly statements, and to use this market feedback in software strategy development.
In other cases, we have worked with companies that have involved customers in
product teams and co-development projects, to ensure that software development meets
customers’ growing or changing needs. This requires organizations to alter their
internal software operations to accommodate greater involvement by customers. In
short, great software often results where strategy is closely aligned to customers and
end users. Some questions to consider in capturing this in your strategy are:

* How would you describe how your software organization keeps close to the
customer? How do you keep abreast of customer preferences and values?

* How are your customers involved in ongoing software development efforts? Do you
include customers and users in integrated product-development teams?

* To what degree does software create the product or service value that your
customers demand?

* What is the greatest opportunity to increase customer satisfaction? How does this
impact software?

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 90

* How would you briefly explain how technical improvements will deliver a better
product or greater value to your customers?

* What isthe most critical customer issue regarding your software (e.g., time, budget,
quality, safety, function)?

* How would you describe the key problem of software from your customer’s
perspective?

Conclusion

Technology collaborations are essential to sustaining competitive advantages in
software engineering development, but technology transition and collaboration
planning require the support of good strategy formulation and planning.

While every company’s software strategy should address those factors unique to its
own business, software, and technical requirements, the above eight factors have
repeatedly proven absolutely essential to software strategies that drive successful
technology collaborations.

About the Author

Mike Mattison is a senior member of the technical staff at the Software Engineering
Institute. Mike is currently managing a portfolio of technology collaborations with
Fortune 500 client partners. The goal of his work is to accelerate the technical
development and commercial transition of new software capabilities and methods into
applied practice. He has directed a technology partnering strategy for SEI that has
produced successful software collaborations with Fortune 300 corporations in the
aerospace, automotive, banking, telecommunications, defense, and software industries.
Mike is presently researching critical software performance in extreme high-reliability
domains. His area of interest is the impact of software management performance on
sustainable competitive advantage in commercial industries. You can reach Mike at
mvm@sei.cmu.edu

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 91

The COTS Spot

Who's in Charge Here?
David Carney

In my last column, | discussed the issue of requirements in the
context of COTS-based systems, and described some of the
changes that a commercial bias imposes on the way that
systems are built (see “Requirements in COTS-Based
Systems: A Thorny Question Indeed”). One of the major points
of the article was that extensive use of COTS products brings
with it an unavoidable loss of control over a system’s requirements. In this
column | wish to explore that thesis a little more fully.

The Basic Idea

My essential premise is that we who are involved with government systems must
realize, as we shift our posture in software acquisition toward a preference for
commercia products, that we necessarily lose a significant amount of control over our
software systems.

First off, this sounds dangerous, since a phrase like “losing control” has a certain
ominous semantic ring. But before we hit the panic button, it's important to recall that
the government has willingly chosen to become a consumer; it should be no surprise
that consumers generally have only partial control over the shape of the things they
consume. To be sure, a consumer has some manner of control, in a very coarse-grained
way, through his willingness to buy or to reject a given product. For instance, when
Detroit puts out a car that few people like, marketplace rejection is certainly a form of
control. But beyond that, it's very doubtful that any given consumer can be said to
control the type of motor that the automobile is designed to use,contml the

automobile’s shape, silhouette, or profile.

This is not altogether bad, since there are things that we really don’t want or need
control over. Stretching the automobile analogy a little further, there are certainly some
things that we do explicitly care about. We probably care what color the car is, and we
often worry (some of us, anyway) about fuel efficiency. In addition, a buyer typically

has some laundry list of other desirable features as well. But few of us car buyers really
care too much about the torque (presuming we even know what torque is), and probably
no one, not even the die-hard specialist, cares about the firing order of the pistons. For
these things, we are just as happy that Ford or GM make all of the decisions, and we are
perfectly happy to purchase products whose specifications are at least partially out of
our control. (Even now | can hear the wails from the auto enthusiasts about torque...)

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 92

It's All a Matter of Balance

Aside from whether we wish or don’t wish to make every decision about a system, it is
nonetheless true that a loss of control is a necessary corollary to the benefits that come
from a COTS bias. Switching to a somewhat different metaphor, the loss of control
stemming from the use of COTS products is proof that some of the basic laws of
physics hold equally for system acquisition. Let’s recall two essential laws of physics.
For instance, Newton’s Third Law:

For every action thereis an equal and opposite reaction.
And the Law of Conservation of Matter and Energy:

The total quantity of matter and energy available in the universeis a fixed amount
and never any more or less (i.e., adding energy means reducing matter).

What is common to both of these physical laws is the notion of balance: if something
happens on one side of the ledger then something also happens on the other side;
nothing in physics is absolutely independent.

| claim that this balancing act shows up just as naturally in system acquisition as well.
For instance, there are many significant benefits and savings that come from shifting to
a COTS-based acquisition strategy, at least for certain kinds of software. It is
immediately obvious that we gain in speed of deployment. Forgetting for the moment
the unfortunate delay of bureaucratic overhead, then buying a commercial product
means we get it immediately, not after several years’ development time. And it is no
less beneficial that by using best-of-breed commercial software, we in the government
have a fighting chance to avoid the kind of archaic and unmaintainable systems that
still surround us on every side. By positioning our information systems to ride industry
trends, we maintain the greatest potential for keeping our systems on an ongoing
evolutionary path, and for keeping technological currency in this rapidly changing
software world.

But these benefits, like those more tangible events that are subject to physical laws, do
not occur in a vacuum. Like atomic fission, where the release of energy means a
parallel reduction of matter, our gain (the newfound benefits mentioned above) is
balanced by the cost; not just in terms of the purchase price, but also manifest in that
we relinquish control over both our systems and the commercial components that
comprise them. (Note: there’s no claim here that using COTS is some sort of “zero-sum
game.” But therés a claim that when using COTS, you have to pay the piper.)

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 93

A Brief Tangent: Outsourcing

We need to be more precise in what this “loss of control” really implies. Since | like
tangents, let me try wandering away for just a bit, to examine a term that is very often
heard in the business world these days: outsourcing.

It is becoming common for an organization to take steps to avoid duplication of effort,
particularly with those business functions that are not part of its core competency. Thus,
an organization perceives that some ancillary product or service currently produced
internally mirrors a product or service also available externally. Through outsourcing,
the organization removes the unnecessary and costly duplication. For instance, imagine
a large company whose employees travel frequently. That company might at one time
have had an internal travel office to perform all travel-related services. Through
outsourcing, the company makes use of an external travel agency to perform the same
services. The cost of paying the external agency is more than offset by the savings in
internal resources.

Note the key phrase hegerform the same services. The things done by the company’s
internal travel bureau and the external travel bureau are essentially the same service.
The internal service might have been a little quicker perhaps, or it may have done a
little better in finding optimal flight times. But the basic services provided are the same,
which is why the company is willing to outsource the service.

Now, it is sometimes heard (by this listener, at least) that the widespread move toward
using COTS products is just a form of outsourcing. From my point of view, this is a
misunderstanding of what it really means to use COTS (“to the maximum extent
practicable,” as the mandate says). To be sure, there are certain parallels: both are
partially motivated by a desire to cut cost, and both involve going outside an
organizational boundary to procure something previously produced internally.

Probably the thing that most people mean when they claim that “using COTS is a form
of outsourcing” is that they now purchase software rather than build it themselves in-
house. They have “outsourced” the creation of their software infrastructure. The basis
of this view is the realization that many—perhaps very many—government systems
have few genuine differences from those used in the industrial world. For systems in
the domains of payroll, accounting, inventory, and so forth, the reality is that most of
the perceived government-specific requirements are illusory, and use of commercial
products to support these services is both feasible and warranted.

But there are vital distinctions as well. With few exceptions, the products available in

the COTS software marketplace only partially match with government business
processes. By making the conscious choice to use commercial software technology, the
government commits itself to whatever changed business processes are needed. The
changes might be relatively painless (as in the earlier example of a business outsourcing

SEI Interactive, September 1999 http://interactive.sei.cmu.edu o4

atravel service), but it may well be far more substantial, requiring a governmental

agency to make serious revision of its business processes. This becomes rather distant

from the notion of “outsourcing.” And, whatever the match between the COTS product
and the government’s business needs, using commercial products means that someone
else controls the government’s software infrastructure, which returns us to the main
point.

The Effect of Losing Control

Assuming that we’re willing to accept all this, what does it really mean in practice? In a
nutshell, it would seem that the loss of control is especially obvious in requirements, in
functionality, and in schedule.

We discussed the loss of control over requirements last month at length, so | will

merely summarize here. My assertion was that requirements at one time sat alone in the
driver’s seat, and were foundational in determining how the system was built and how

it worked. We all used, and rightly believed in, phrases like “get the requirements

right.” But in a COTS-based paradigm, this is less true: our requirements now have to
share the driver’s seat, and we may never get them quite right. To the extent that a
given system incorporates commercial components, it incorporates pieces whose
requirements were established independently of that system. Whether willingly or no,
the builders of the system must permit its commercial components (and their implicit
requirements) to have a say in the system’s overall shape and functioning.

To be sure, “requirements” in the very widest sense still drive the creation of COTS
software, since there is some set of technical objectives that govern how software—any
software—is created. But those “requirements” are now the collection of features that a
vendor believes will appeal to the widest set of potential customers; those requirements
are the aggregate requirements of the whole marketplace, not of any one individual.
This results in a kind of democracy of requirements: regardless of the feature you might
care about, you're just one consumer among many, and quality is secondary to market
share. One need go no further than everyday office software to see how profoundly this
is true.

So the requirements that drive a commercial product, and hence, the functional

workings of the product, are determined by its vendor. But that’s not all; it doesn’t stop
there. The vendor is also the one who makes the ongoing decisions about which

features stay and which are removed from future releases. The vendor makes the
choices about long-term sustainment, and also makes the critical decision about

whether the product continues to exist at all. The vendor has equal control over the
product’s release schedule, when upgrades are reissued, how often they occur, and what
additional long-term license costs will appear. (This should not be a surprise: the
vendor’s goal is to make money. That's why he’s in businessarastrategy we

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 95

adopt that involves commercia software components should always assume and be
based on this fundamental truth.

But What if We Can’t Afford to Lose Control?

Supposing that we’ll accept that the use of COTS leads to loss of control, whether of
the things mentioned in the previous paragraph or any others. Isn't it also the case that
there are some occasions when this conditimotiacceptable? Aren't there
circumstances when we really can't afford to lose control? And even more difficult:
how can we recognize such circumstances?

Well, let’s also go back to the Detroit analogy. Suppose we're not talking about
automobiles, but about robotic vehicles that do something nifty with nuclear explosives.
Do we seriously expect that the DoD should be willing to leave any decisions about
how such a machine works (and especially its deep-down internals!) to a designer of
commercial automobiles? Even more to the point: should we applaud if the DoD were
to buy such vehicles as cheaply as possible?

It's fairly obvious that I've asked these questions rhetorically, and that I'm arguing
against a COTS approach for such machines; they would probably not be good
candidates for a COTS-based acquisition strategy. Conceivably, perhaps, some sub-
components of such a vehicle might use commercial products, but even that kind of
decision would be based on a firm sense that the system requirements are still dominant
and not negotiable, that the engineering decisions are made by the robotic vehicles’
designers, not by anyone else, and that the system is not being built to leverage market
trends but to fulfill a very specific and life-critical mission.

As we said at the top, normal consumers don’t control Detroit’s plans, nor should they
expect to. Most consumers tend to accept what the marketplace offers, and derive the
benefits that come from marketplace competition. But some consumers aren’t normal,
either in schedule or in requirements or in functionality. Some people really do need to
worry about torque.

Last Thoughts

We sometimes forget that the current drive toward using COTS is a means to an end,
not the end itself. The real end is a complex mix of factors. Savings, sure; there’s no
room in the budget for the unnecessary duplication by the government of comparable
capabilities in the industrial world. But there are lots of other factors as well. One is a
realization by the government that it already has too many tasks, and overseeing large-
scale production of business software is an unwanted burden. Even more, guidelines for
the use of COTS should be based on an awareness that the lightning-fast technological
revolution we're caught up in is independent of any single force, even a force as big as

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 96

Uncle Sam. He (and we) are far better off if we watch the trends as closely as possible,
admit the reality of the marketplace, and hang on for dear life.

And hang on we must, given the frenzy of the commercial software marketplace. As
Bette Davis, in the film All About Eve, predicted long ago: “Fasten your seat belts,
everybody. It's going to be a bumpy ride!”

Next time, some thoughts about COTS and risk management. Stay tuned.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 97

Net Effects

The Net Effects of Product Lines
Scott Tilley

One of the most promising aspects of net-centric computing is its
ability to aid the incremental migration from stove-piped legacy
systems to product lines. Operational for many years, legacy
systems are often viewed as liabilities, in part because of the
difficulty involved in understanding their structures and upgrading
their capabilities to meet new business requirements. Net-centric
computing can play an important role in converting liabilities into assets through
a three-step process of decomposing the legacy system into separate
functional units, developing these artifacts into components using distributed
object technology, and deploying these components as core assets in the
product line.

As described elsewhere in this edition of SEI Interactive, a product line is a group of
products sharing a common, managed set of features that together address a particular
market segment or fulfill a particular mission. Product lines offer several advantages
over more traditional application-development approaches, not the least of which isthe
ability to reuse corporate assets across a number of separate but similar products.
However, in order to adopt a product-line approach to software engineering, the
existing base of legacy systems must be dealt with first.

Legacy Systems

By definition, legacy systems are resistant to change. Although legacy systemsvary in

their individual features, they all share several characteristics. They are old (10-25
years) and large (100 KLOC-1 MLOC). Such age and size typically means the system

Is poorly structured, often due to traumatic maintenance over its lifetime. This
contributes to a poor understanding of the system’s essential functionality, a situation
that is exacerbated by personnel turnover: each developer is forced to relearn aspects of
the system that previous developers spent significant time and effort to recover.
Nevertheless, legacy systems represent substantial corporate knowledge and cannot
simply be discarded and rebuilt with a “green field” development effort.

Instead of viewing legacy systems as liabilities that are difficult to understand and
hence difficult to evolve, a better approach is to turn them into valuable corporate
assets. Product lines offer the ability to leverage existing assets to provide a significant
return on investment over the long term. This can be accomplished by providing the
infrastructure for the strategic reuse of corporate assets, such as mission-critical
systems and associated business rules. This process is illustrated in the following
figure.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu o8

Ability te Leverage Existing Asset L

Prosduct
Lines

Tactical Sustainment Strateqic Reuse

Het-Centric
n Comnputing

Potential e Value of Assets SEnifi:am
Liabilities RCH

Figure 1: Leveraging Assets

The Migration Process

Migrating legacy systems to product lines can be accomplished using a three-step
process. The first step isto decompose the legacy system into separate functional units.
The second step isto develop these extracted artifacts into components using
distributed object technology. The third step isto deploy the new components as core
assets, making them available to the product line.

The result of the migration processis athree-tiered set of interacting components, as
illustrated in Figure 2. Each component may reside on a client or a server, or it may
migrate between them (in effect, serving multiple roles ssmultaneously). Data can aso
be made similarly mobile. These components can provide the basis for a product line as
the software continues to evolve to meet changing business requirements.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 99

Loosaly Couplad, Geographically Remata,
. Hart@rogeneous Platforms and Operating Syst

Tier 3 Tiar 2 H Tier 1
End Usar Cliants Distributed Object Layar - Legacy Systams
[ratabasas
e L g Moinrames
Retwork ar H Legacy Saftware
AT LAN/ CLANY S0
e M Vircomputrs |
Fat Clients :
: Wir
P oaAp ons
Work WL Workstations |
Stations -
GUls and End Usar Middlawara : Lagacy System
Applications H Aszats

Figure 2: Three-Tiered Architecture

Decomposing the Legacy System

Thefirst step in the migration processis to decompose the legacy system into separate
functional units. This can be accomplished using two variants of system-understanding
technology. The first variant is a white-box approach that relies on traditional program
understanding. Thisistypically done using a reverse-engineering tool that parses the
legacy system’s source code, populates a repository with the data it gathers, and
performs analysis on this data to aid the user in understanding the system.

The second variant is a black-box approach that uses newer methods to understand the
system. These methods can include binary reverse engineering, interface analysis, and

behavioral probing. The black-box approach is used when the source code to the legacy
system is not available for white-box analysis.

The result of this procedure is the first tier of the new product-line infrastructure. At
this point, the artifacts can be considered to be virtual components. They represent
essential functional artifacts of the legacy system, but are not yet in a format suitable
for use as a true component in the software engineering sense.

Developing the Core Assets

The second step in the migration process is to develop the product line’s core assets
from the artifacts extracted from the legacy system in the first step. This is done by
wrapping the virtual components with object interfaces. This results in true components
that become available for use in the third step of the migration process.

Wrapping the virtual components can be accomplished using distributed object

technology as middleware. There are several different middleware offerings to choose
SEI Interactive, September 1999 http://interactive.sei.cmu.edu 100

from for this task. One of the most popular is the Object Management Group’s
Common Object Request Broker Architecture (CORBA). Microsoft is a proponent of
the Distributed Component Object Model (DCOM) and related technologies under the
COM+ rubric. Sun Microsystems espouses an approach relying on Enterprise Java
Beans (EJB), possibly augmented with its Jini networked-appliance enabling
technologies.

The result of this second step is the middle tier of the new product-line infrastructure.
The new business artifacts are encapsulated with object interfaces, turning them into
core assets and making them available to the third tier. The final step is to deploy the
assets.

Deploying the Core Assets

The third step in the migration process is to deploy the core assets using the network
infrastructure. The core assets are accessed by product-line developers, who in turn use
the assets to construct variant product instances. The result of this third step is the final
tier of the new product-line infrastructure.

By deploying the core assets across a network, client applications can access and
browse the collection of core assets. This facilitates the strategic reuse of business-
critical core assets, which has two benefits. The first benefit is the ability to leverage
existing capabilities—in other words, to convert legacy liabilities into valuable product-
line assets.

The second benefit is the ability to compose new functionality from the newly mined
business objects. Because the virtual components that were mined from the legacy
system in the first step of the process have been given object-oriented interfaces in the
second step of the process, the resultant artifacts can be combined to provide
functionality that would have required significant writing of new code in a non-
product-line approach. This composition of assets into new functionality facilitates the
evolution of the legacy system to meet new requirements in a disciplined and cost-
effective manner.

The Net Effects of Product Lines

Today’'s newly developed system is tomorrow’s legacy system. As such, legacy
systems will always be with us, and will remain vitally important for the foreseeable
future. The key to successfully adopting a product-line approach to software
engineering is converting existing legacy systems from liabilities into assets. This can
be accomplished using the three-step process described above.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 101

In essence, net-centric computing provides the same application and asset portability to
the client that distributed object technology providesto the server. Theresultisa
flexible deployment infrastructure for core assets of the product line. The three-tiered
architecture can be used by both end-users of the derived products, and by developers
who rely on the core assets to construct instances of the product line.

The net effects of product lines are that they make software engineering more akin to a
manufacturing process, with predictable attributes such as cost, schedule, and quality.

The key is the strategic reuse of corporate assets—assets that are usually considered
liabilities. Product lines promise to pervade software engineering in the new
millennium, resulting in the development of better products in shorter time at lower
cost. Underlying the success of product lines is the infrastructure provided by net-
centric computing for migrating legacy systems from stove-piped systems to deployed
core assets.

About the author

Scott Tilley is a visiting scientist with the Software Engineering Institute at Carnegie
Mellon University, an assistant professor in the Department of Computer Science at the
University of California, Riverside, and principal of S.R. Tilley & Associates, an
information technology consulting boutique. He can be reached at stilley@sei.cmu.edu.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 102

Security Matters

From Y2K to Security Improvement:

A Critical Transition
MoiraWest-Brown, Julia Allen

The previous issue in this series discussed how the
Internet community could better prepare to address
major security incidents. In this issue I'm joined by Julia
Allen, team leader for security-improvement practice
development. We will compare Y2K and information
technology (IT) security and suggest how your organization can build on its
Y2K efforts to initiate or enhance an IT security-improvement program (SIP).

The Basis for Security Improvement

Many organizations have spent the past year preparing for the impact of Y 2K.
Unfortunately few of them are ready to address the risks associated with IT security
incidents. The actions that must be taken to successfully deal with such incidents need
to be a continuous, planned part of normal, day-to-day business operations. Asin
preparing for Y 2K, IT security needs visible management sponsorship, investment,
policies, procedures, processes, methods, tools, measures, standing teams, and assigned
roles and responsibilities. This combination of people, technology, and processes is the
basis for security improvement.

Y2K vs. IT Security—A Comparison

Asthe Y 2K deadline looms ever closer, organizations find themselves in various stages
of readiness for the big event. After years of work, some are still frantically attempting
to complete their Y 2K compliance testing, while others are preparing their crisis
communications to monitor for and address Y 2K failures and glitches when they do
arise. However, as the new millennium dawns, organizations can expect to address
more than just Y 2K glitches and failures.

The tremendous energy that organizations have exerted to prepare for Y2K is
understandable when you consider what is at stake. However, the risks associated with
suffering an IT security incident or security breach can be just as devastating as those
associated with Y 2K non-compliance. Recent figures provided in the 1999 CSI/FBI
computer crime survey indicate that the greatest losses from IT security incidents are

associated with theft of proprietary information and financial fraud. But the survey also
SEl Interactive, September 1999 http://interactive.sei.cmu.edu 103

points out that many organizations are unable to quantify losses from incidents. All too

often organizations either don’t know what information may have been lost or don’t

have processes in place to help determine how to quantify loss. For instance, what is the
cost to an organization of losing its Internet connectivity for five hours?

Moreover, organizations may naively believe that IT security is under control if they
have some security measures in place—such as

» afirewall to keep out intruders

* investment in PKI (public key infrastructure), VPN (virtual private network), or e-
commerce solutions

* an IDS (Intrusion Detection System) to detect, alert, and possibly respond to
intrusions

» strong authentication using technologies such as one-time passwords and smart
cards

It is important to recognize that mitigating IT security risks is a complex issue that can
neither be addressed overnight nor through technological solutions alone.

A survey by the SANS Institute of 1,850 computer-security experts and
managers identified “Seven Top Management Errors that Lead to Computer
Security Vulnerabilities.”

For some time, computer-security experts have warned of the possibility of intruders
using the chaos and confusion of Y 2K as a smokescreen under which they can
camouflage attacks and other malicious activities. Recently the Gartner Group has
asserted the potential for someone to steal up to $1 billion during the Y 2K chaos by
installing back doors in software during Y 2K compliance changes.

Unlike Y2K—fixing a one-off issue at a known time in the future—IT security

incidents are a reality now, occur on a daily basis, and may prove at least as
catastrophic for a company as Y2K. Keeping pace with changing business and
technology demands results in dynamic IT environments with ongoing changes to
platforms, tools, technologies, staff and policies. Keeping pace is difficult enough from
a Y2K perspective; an IT-security perspective adds additional levels of complexity to
the problem and correspondingly increases risk.

Although the risks of Y2K and IT security to an organization are comparable,
recognition of this is not reflected in the associated level of investment needed to
address these risks. No one knows the real global cost of Y2K, but figures available in
the U.S. give an indication of the magnitude of the investment that companies are

SE Interactive, September 1999 http://interactive.sei.cmu.edu 104

making to address this one-off event. Organizations have invested and continue to
invest significant sumsin their Y 2K compliance efforts. In July 1999, for example,
U.S. and Canadian airlines reported that their combined Y 2K efforts totaled more than
$750 million. In December 1999, the total reported Y 2K costs for U.S. federal agencies
will reach over $6.4 billion. Even considering the enormous sums reported, some
experts claim that organizations are underreporting their real Y 2K costs so as not to
reduce customer confidence.

Figures on investment in IT security improvement are more difficult to obtain, but the

little information that is available would indicate that global IT security investment is
embarrassingly small in comparison with Y 2K budgets. The Gartner Group estimates

that most organizations spend as little as 1% of their operating costs on security when

5-8% is what is necessary. 11899 surveylnformation Week showed that
approximately 50% of information security professionals had an IT security budget of
$50,000 or less.

Y2K and security improvement are corporate-wide issues that could have serious
repercussions if not adequately addressed. Just as with Y2K, launching and sustaining a
successful security-improvement program requires visible advocacy by senior
management, funding, follow-through, and long-term commitment of resources.

Initiating a Security Improvement Program

Initiating a security improvement program (SIP) is hard work, even if you've had a
significant attack that has gotten everyone’s attention. Sustaining an SIP can be even
harder. First, you need to identify the risks to your business if the security
(confidentiality, availability, and integrity) of critical data, systems, and/or networks
(assets) is compromised. By compromised, we mean that the asset has been destroyed,
damaged, altered so as to hurt your operations, or revealed to your competitors. You
can't protect everything equally so it is important to carefully select what you do

choose to protect and how, based on its value to your organization.

Once you know your risks, you need to decide which ones are most likely to occur and
have the largest potential impact. Impact could be in dollars, time, lost productivity, or
loss of market share, customers, and reputation. But the work doesn’t end there. Let’s
say you have a prioritized list of risks and an effective plan to mitigate them. The next
day, you go into the office and find out your number one competitor has just launched a
new e-commerce site and is ready to do business on the Internet—and you're still six
months away from launching yours. Or a recently fired employee has successfully
penetrated your strategic planning database and posted your plans for the next 18
months on an Internet news group. In other words, change and surprises introduce new

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 105

risks that must be added to the ones you are aready managing. And you need to have a
way of adjusting where you invest SIP time and energy based on this very dynamic
environment.

In concert with the CERT/CC® community and several leading government and
commercial organizations, we have spent some time thinking about how to launch an
SIF”. One of the key components of an SIP is the definition and adoption of improved
security practices that will allow you to mitigate your most critical technical risks.

When considering who could most benefit from pragmatic, concise, how-to guidance

on what to do (practices), it became obvious that one of the audiences with the greatest
need was network and system administrators and their managers. They face the most
daunting challenges as a result of the growth and complexity of the IT infrastructures
they are responsible for keeping up and running 24 hours a day, seven days a week.
And they are constantly being asked to add new IT systems, networks, applications, and
data to keep pace with changing business and technology demands. Based on what
successful organizations were doing to deal with these demands, we developed specific
step-by-step guidance that did not rely on a particular operating system or platform,
making the information as broadly useful as possible. In addition, UNIX- and Windows
NT-specific “implementations” for many of the practices have been developed. All of
this information can be found on tB&ERT security improvement Web site

Each practice contains

» a brief description that expands the title of the practice

* an explanation of why the practice is important (what bad things can happen if you
don’'t do it)

a step-by-step description of how to perform the practice

related policy topics that support successfully deploying the practice

Planned future additions include

» cost/benefit analysis information for selecting among alternative approaches

« the means by which to measure success of implementation (did it solve the problem
it purported to solve and were the benefits of the investment worth the cost)

2 See oun 999 SEPG presentation on Securing Networked Systems

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 106

Some of the more frequently referenced sets of practices (each set is called amodule)
include Preparing to Detect Signs of Intrusion, Detecting Signs of Intrusion,
Responding to Intrusions; Securing Desktop Workstations, Securing Network Servers,
and Deploying Firewalls. The modules contain practices such as identifying and
installing tools, setting up logging options and examining what they produce, setting up
user authentication and file access control mechanisms, and determining how to deny
network traffic that you don’t want coming into your system.

(Many of the practices are starting to appear in training materials and are being
referenced by other Web sites. We don't have any feedback yet on how organizations
are using them but we would love to hear from you if you are. We are launching our
first significant set of pilot tests this year. So stay tuned and watch for new materials.)

Transitioning Y2K Resources

As Y2K efforts wind down and resources associated with them free up, many projects
that have been on hold or have been placed on the back burner will be competing for
those resources. It is important to plan for the future now and ensure that IT security
improvement is a major focus of those plans. In addition to redirecting Y2K resources

to other development projects, this is an excellent opportunity to transition some of

those resources to the formation of an SIP effort and to supplement these resources with
IT-security expertise. This approach is preferable to resourcing SIP from scratch, as the
people coordinating Y2K efforts in organizations are likely to be familiar with many of

the issues that you need to address for SIP including

establishing a crisis center

* agood understanding of the nature and level of risk across the organization

identifying critical resources

» establishing contacts across business units

Some organizations are already considering this apptoach

Security improvement won’t happen overnight; it will result from an ongoing effort.

Organizations need to be prepared to address IT-security incidents every day. However,
every organization should also consider the heightened possibility of security incidents

% See recent issues Béderal Computer Week articles 2K and theClO Counci).

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 107

coinciding with Y 2K. We encourage you to alert your Y 2K crisis center to be prepared
for possible security problems disguised as Y 2K issues or anomalies that may coincide
with apparent Y 2K problems. Have IT security staff on alert to address any such issues
asthey arise.

Many organizations scrambled to address the Melissa macro virus incident earlier this

year. Some have indicated that they were in some way thankful for the experience
Melissa gave them as they were then better prepared when the potentially more severe
explore.zip worm struck just months later. Organizations should take little solace from

such news—clearly this is not an effective or appropriate way to address security risks.
Y2K has taught us that having a deadline to shoot for can help us to focus our attention
and make significant progress toward addressing a major problem. We don’t deny that
security improvement is a much more complex and difficult nut to crack than Y2K.
However, to retain control of corporate assets and continue to enhance the nature of the
business conducted on the network while maintaining customer confidence, we must
tackle security improvement head-on.

About the Authors

Moira J. West-Brown is a senior member of the technical staff within the CERT®
Coordination Center, based at the SEI, where she leads a group responsible for
facilitating and assisting the formation of new computer security incident response
teams (CSIRTSs) around the globe. Before coming to the CERT/CC in 1991, West-
Brown had extensive experience in system administration, software development, and
user support/liaison, gained at a variety of companies ranging from academic
institutions and industrial software consultancies to government-funded research
programs. She is an active figure in the international CSIRT community and has
developed a variety of tutorial and workshop materials focusing mainly on operational
and collaborative CSIRT issues. She was elected to the Forum of Incident Response
and Security Teams Steering Committee in 1995 and is currently the Steering
Committee Chair. She holds a first-class bachelor’s degree in computational science
from the University of Hull, UK.

Julia Allen has more than 25 years of managerial and technical experience in software
engineering. She is currently a senior member of the technical staff within the
Networked Systems Survivability Program at the Software Engineering Institute,
leading the team responsible for developing security improvement practices. Prior to
this technical assignment, Allen served as acting director of the SEI for an interim
period of six months as well as deputy director for three years. She started the Industry
Customer Sector at the SEI in 1992. Before joining the SEI, Allen was vice president at
Science Applications International Corp., and was responsible for starting a new

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 108

software division specializing in embedded systems software for government

customers. Before that, she worked for 10 years with TRW. Allen received aBSin

Computer Science from the University of Michigan, aswell asan MS from the

University of Southern Californiaand an executive business certificate from the

University of Californiaat Los Angeles. Her professional affiliationsinclude ACM,

IEEE Computer Society, and the Internet Society (ISOC). Her publications include four
modules within the SEI's security improvement series as well as various presentations
and papers on the SEI's strategic plan and technical program.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 109

Watts New?
Getting Management Support for

Process Improvement
Watts S. Humphrey

Over the years, | have often been asked about how to get
management support for process improvement. Typically,
engineers want to use better software methods but they have found
that their management either doesn’t care about the methods they
use or, worse yet, even discourages them from trying to improve
the way they work. In addressing this subject, | have decided to
break it into two parts. The first part, which | covered in the June 1999 issue of
SEl Interactive, concerns disciplined work: what it is, and what it takes to do it.
In this column | address the problem of getting management support for
process improvement.

Obtaining Broad Management Support

Perhaps the biggest problem in starting an improvement effort is getting management
support. The first and most important step is to get senior management backing.
Without support from the very top, it is generally impossible to make significant
changes. Next, however, you will need active involvement from all the appropriate
managers, particularly those managers who directly supervise the work to be impacted
by the change.

The reason for broad management support is that significant improvement programs

generally involve substantial changes in the way people work. If you don’t change the
engineers’ working practices, you can change the organizational structure and all its
procedures, but nothing much will really change. Thus, to have a substantial impact on
an organization’s performance, you must change the way the engineers actually work.
While this is possible, it is very difficult, and it requires the support of all levels of
management. Senior managers must establish goals and adjust reward systems.
Intermediate managers need to provide funding and change priorities. And most
important, the working-level managers must make the engineers available for training,
support process development, and monitor the engineers’ work to make sure they
follow the improved practices. So, how do you get this kind of support? To address this
guestion, we discuss three issues:

1. Why do you want to make changes?
2. Which managers do you need support from?

3. Why should those managers support you?

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 110

Why do you want to make changes?

Since you are reading this column, you are probably interested in making process

changes, and these changes are undoubtedly in the way your organization develops or
maintains software. This means you are probably talking about some kind of process
improvement, like getting a Capability Maturity Model® (CMM)® program underway
or introducing the Personal Software Prode¢®SP") and Team Software Proc&8s
(TSPM). Whatever the approach, you will be changing the way software work is done.

The first question to address is: why? That is, why do you want to improve the software
process, why should management support you in improving the software process, and
why should the organization care about how software is developed? These are tough
guestions, but they are the very first questions managers will ask. You need to be able
to answer these questions, and depending on which managers you talk to, they will ask
these questions differently. This leads us to the next question.

Which managers do you need support from?

Depending on the size of your organization, there could be many management levels.
Typically, the manager from whom most of us need support is the manager
immediately above us. While there are lots of levels to discuss, let me assume that this
immediate manager runs a project or a department. Unless you are in a very small
organization, this manager probably works for some higher-level manager, and this
higher-level manager probably works for some manager at an even higher level. Up
there somewhere there should be a senior-level manager or executive who is concerned
with the overall business, how it performs now, and how it will perform in the future.
This senior manager is concerned with where the business stands competitively, how
new technology will impact its products and services, and the changing needs of its
customers.

The reason the manager’s level is important to you is that improvement programs focus
on long-term issues that are the principal concern of senior-level executives. Unless the
managers below the executive level are specifically charged with working on process
improvement, most of them will view improvement efforts as a distraction at best or, at
worst, as a drain on critical resources.

The reason for this negative view is that process improvement deals with the overall
performance of an organization. It concerns competitive capabilities, long-term cost
effectiveness, development cycle-time improvement, and customer satisfaction. These
are strategic issues that generally only concern the most senior executives. Even in the
departments, laboratories, or divisions of large corporations, the performance measures
for division general managers, laboratory directors, and department managers are
invariably concerned with immediate short-term results: delivering products on time,
managing tight budgets, or responding to customer-related crises.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 111

While these issues are critically important, and they often spell the difference between
organizational failure and success, atotal concentration on these topics will not change
the way organizations perform. If the organization is not cost competitive, or if it
produces lower quality or less attractive products, afocus on current performance will
not improve the situation. The immediate problems may be fixed and the burning issues
resolved, but the organization will continue working pretty much asit always has. It
will thus continue producing essentially the same results and generating essentially the
same problems and issues. This brings us to the definition of insanity: doing the same
thing over and over and expecting a different result.

Generaly, only the managers who think strategically will support a process-
improvement program. These are usually managers who have broad business
responsibilities and are measured by total organizational performance. They probably
have multiple functions reporting to them, like product devel opment, marketing,
manufacturing, and service.

Even senior managers, however, do not always think strategically. Most organizations,
after all, are owned by stockholders who are interested in the stock price. And since the
stock price is heavily influenced by quarterly financial results, even the most senior
managers cannot afford to ignore short-term financia performance. Unfortunately,
many of these managers don’t worry about much else.

Why should this manager support you?

Now we get to the critical question: Why should any manager support you? In general
terms, there are three reasons why managers might be willing to support you:

1. What you want to do supports their current job objectives.

2. What you want to do will make them look good to their immediate and higher-level
managers.

3. What you want to do is so clearly right that they are willing to support you in spite
of its impact on their immediate performance measures.

Getting help from a senior manager

The relative importance of these reasons changes, depending on where the manager
resides in the management chain. At the very top are the managers who are most likely
to focus on long-term performance. This means that they will often support process
improvement for all three reasons. Thus, if you can show that process improvement will
have a significant long-term benefit, you will likely get support. You can generally
accomplish this by showing how similar improvements have benefited other
organizations or, better yet, how they have benefited other parts of your own
organization.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 112

For the CMM, for example, show how improvementsin CMM level have improved the
performance of other software organizations. Also, show where your organization
stands compared with other organizationsin your industry. For the PSP and TSP, you
could show data on quality, productivity, or employee turnover and how such changes
could impact your organization.

If you can get the attention of a senior manager, and if you have your facts straight, the
odds are you can get this manager to seriously consider the subject of process
improvement. Frequently thisis when you might get an outside expert to give atak or
to do an assessment. While you may have to settle for asmall initial step, the key isto
get some action taken. Once you can get the ball rolling, it isusually easier to keep it in
motion.

If the manager you are dealing with is not at the senior executive level but one level
lower, this manager is probably not measured on strategic issues. Such managers would
know, however, that their immediate manager had such a measure. Thus, your manager
is not likely to be motivated by reason 1 but might be persuaded to support you for
reason 2. Thus, by proposing something that will make him or her look good to higher-
level managers, this manager will personally benefit while also helping you to get the
improvement ball rolling. What you want to ask for from this manager is help in taking
the improvement story upstairs.

Getting help at the first management level

Finally, the most common problem is dealing with a manager who isfairly far down in
the organization. This manager not only is not measured on strategic issues, but his or
her immediate manager is not either. This means that strategic objectives are not likely
to be very compelling. At this point, you only have two choices:

» Convince this manager that the improvement is a strategic necessity for the
organization.

* Show how the improvement effort can help to address immediate short-term
concerns.

While the latter is often the approach you must take, it has a built-in trap. The reason is
that if improvement isaimed at solving a short-term problem, as soon as the short-term
pain isrelieved, the need for improvement isgone. Thisis like taking aspirin for a
splitting headache. If the headache isindeed a transient problem, that would be
appropriate. If the pain isthe first symptom of a stroke or a brain tumor, however, the
delay could be fatal. While promptly taking an aspirin may usually be helpful for a
stroke, you had better also see a doctor right away.

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 113

In the software process, the problems in most organizations are more like strokes and
brain tumors than they are like headaches. While you may have no choice but to sell the
improvement effort as a short-term solution, try to move to strategic issues as soon as
you can get the attention of someone upstairs.

The next questions concern making the strategic case for improvements, making the
tactical case, and moving from atactically based to a strategically based improvement
program. These will be topics of future columns.

Acknowledgements

In writing papers and columns, | make a practice of asking associates to review early
drafts. For this column, | particularly appreciate the helpful comments and suggestions
of Dan Burton, Jean-Marc Heneman, Julia Mullaney, and Bill Peterson.

An Invitation to Readers

In these columns, | discuss software issues and the impact of quality and process on
engineers and their organizations. | am, however, most interested in addressing issues
you feel are important. So please drop me a note with your comments, questions, or
suggestions. | will read your notes and consider them when | plan future columns.

Thanks for your attention and please stay tuned in.

About the Author

Watts S. Humphrey founded the Software Process Program at the SEI. He is afellow of
the institute and is a research scientist on its staff. From 1959 to 1986, he was
associated with IBM Corporation, where he was director of programming quality and
process. His publications include many technical papers and six books. His most recent
books are: Managing the Software Process (1989), A Discipline for Software
Engineering (1995), Managing Technical People (1996), and Introduction to the
Personal Software Process™(1997). He holds five U.S. patents. He is a member of the
Association for Computing Machinery, afellow of the Institute for Electrical and
Electronics Engineers, and a past member of the Malcolm Baldridge National Quality
Award Board of Examiners. He holds a BS in physics from the University of Chicago,
an MSin physics from the lllinois Institute of Technology, and an MBA from the
University of Chicago.

SEI Interactive, September 1999 http://interactive.sei.cmu.edu 114

SEl Interactive, September 1999 http://interactive.sei.cmu.edu 115

	Contents
	About the SEI
	Messages
	Product Lines: High-Quality Software Really Fast
	Welcome to SEI Interactive

	Features
	Product Line Practice: An Effort Worth Making
	A Framework for Software Product Line Practice
	Software Product Lines: A New Paradigm for the New Century
	Product Lines in Practice at Three Major Corporations
	A Scenario for Using the Product Line Practice Framework
	Links to Product Line Resources & References to Product Line Related Readings

	Columns
	The Perils and Joys of Reconstructing Architectures
	Eight Key Factors for Successful Technology Collaboration
	Who's in Charge Here?
	The Net Effects of Product Lines
	From Y2K to Security Improvement: A Critical Transition
	Getting Management Support for Process Improvement

