
Sponsored by the U.S. Department of Defense
© 2003 by Carnegie Mellon University

page 1

Pittsburgh, PA 15213-3890

26 January 2003

“They Keep Moving the Cheese”

A Framework for Evolutionary
Acquisition of Large Software Intensive
Systems

Cecilia Albert
Lisa Brownsword

© 2003 by Carnegie Mellon University page 226 January 2003

Who Moved My Cheese?

Reprinted through the courtesy of CIO
© 2002 CXO Media Inc.

© 2003 by Carnegie Mellon University page 326 January 2003

A Story…
Program goal: provide a tool for strategic, operational, and tactical
planners from all services and defense agencies to support joint and
coalition engagements and peace keeping efforts
• Run on existing enterprise backbone (managed by another agency)
• Interface with multiple existing and developing systems
• Operate across multiple security levels

6 increments delivered across 6-7
years
• First release in 18-24 months

• Automate manual process
• Client-server architecture
• Support 2-3 day planning cycle

Program Start (late ’90s)

• Increment 1 is obsolete
• Struggling to build/field increment 2
• Users have built “interim” solutions
• Future is uncertain

• New planning processes
• Web-based architecture
• Dynamic planning cycles
• Collaborative planning

2003

© 2003 by Carnegie Mellon University page 426 January 2003

Size Matters!

0%+36+500>$10M

8%+24+250$6M-$10M

15%1840$3M-$6M

25%1225$1.5M-$3M

33%912$750K-$1.5M

55%66< $750K

Success
Rate

Time
(mos)

PeopleProject Size

Source:The Standish Group, 1999

© 2003 by Carnegie Mellon University page 526 January 2003

Definitions

A software-intensive system is one that
• Relies on software to provide core/priority mission

function(s)

A large software-intensive system is one whose software
• Takes longer than 6 months to implement
• Takes more than 6 people to implement
• Takes more that $750,000 to implement

and/or
• Is comprised of multiple interrelated systems or

independently developed components implemented in
software (system of systems, family of systems, etc)

© 2003 by Carnegie Mellon University page 626 January 2003

Outline

Change Happens

Adapting to Change

Be Ready to Change Quickly

© 2003 by Carnegie Mellon University page 726 January 2003

Change Happens

Large software-intensive systems change at a rate faster
than the full system capability can be implemented – and
they change during development and operation

Sources of change
• Enterprise priorities shift
• Business or operational needs change
• New technologies introduce new opportunities
• COTS products add and delete key features
• Participants rotate
• …

© 2003 by Carnegie Mellon University page 826 January 2003

Adapt to Change

Evolutionary Acquisition
Delivers capability in increments,
recognizing, up front, the need for
future capability improvements

• Success of the strategy depends on
the consistent and continuous
definition of requirements and
maturation of technologies that lead
to disciplined development and
production of systems that provide
increasing capability towards a
material concept.

Spiral Development
A desired capability is identified but
the end-state requirements are not
known at program initiation

• Those requirements are refined
through demonstration and risk
management; there is continuous
user feedback; and each increment
provides the user the best possible
capability. The requirements for
future increments depend on
feedback from users and technology
maturation.

* The Operation of the Defense Acquisition System, 30 Oct 02

DoD 5000* provides mechanisms for coping with change

© 2003 by Carnegie Mellon University page 926 January 2003

Lessons Learned

Going after “low hanging fruit” in the absence of an
overarching architecture and coherent plan results in
incompatible and stove-piped solutions

System requirements defined without sufficient insight into
what can be realistically built, results in systems that cannot
be built

There are no “silver bullets” that avoid disciplined system
and software engineering (doing the right engineering
correctly)

© 2003 by Carnegie Mellon University page 1026 January 2003

Be Ready To Change Quickly
Consciously apply spiral development practices at 2 (or
more) discrete levels – with continuous interaction between
the levels

• Program or system level
- Evolve definition and implementation plan for system

end-state
- Define and spawn increments of useful capability that

will build to full system functionality and performance

• Project or increment level
- Define and implement plan for delivering the defined

increment in the context of the system end-state

© 2003 by Carnegie Mellon University page 1126 January 2003

Disciplined Spiral Development

• Continuously determine a
compatible and feasible set of:

business processes, requirements, plans, architecture,
COTS products and other components

• Enterprise business objectives drive solution definition

• Risk considerations drive degree of detail

• Executable representations demonstrate current understanding
and agreements

Spiral development facilitates evolving a viable solution –
at both system and increment levels

Executable

Time

© 2003 by Carnegie Mellon University page 1226 January 2003

Phases Bounded by Anchor Points

Simultaneous
Definition

and Tradeoffs

LifeCycle
Objectives

LifeCycle
Architecture

Initial
Operational
Capability

… … … …
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable
Plan Plan Plan Plan iteration

GatherGatherGatherGatherinformation

AssessAssessAssessAssessiteration

RefineRefineRefineRefineinto
harmonized set

ExecutableExecutable

Programmatics/
Risk

Business Processes

Architecture/ •
Design

Marketplace

Stakeholder needs/

Simultaneous
Definition

and Tradeoffs

AssembleAssembleAssembleAssembleexecutable

Converging

decisions

Scope Design Build Field

Multiple iterations per phase

© 2003 by Carnegie Mellon University page 1326 January 2003

Disciplines* Extend Across Phases

Analysis & design

Test

Requirements

Implementation

Project management

Market research

Business modeling

*adapted from Kruchten; shows partial set of disciplines

Scope Design Build Field

© 2003 by Carnegie Mellon University page 1426 January 2003

Keep a Long View in Systems Planning

Reprinted through the courtesy of CIO
 © 2002 CXO Media Inc.

© 2003 by Carnegie Mellon University page 1526 January 2003

A B C D

Current state

Increm
ent 1

Increm
ent 2

Future state

Z vision

Evolving System Definition

D1

Z1

New technology
Modified environment

Changed mission

reassess and replan
B1

actual

© 2003 by Carnegie Mellon University page 1626 January 2003

Take a Short View on Increment Planning

Allows a stable development environment – if a short timeframe
(6-18 months)

Allows focused discovery, experimenting, and learning on a
manageable scale to find optimum way to understand and meet
user needs

Reprinted through the courtesy of CIO
© 2002 CXO Media Inc.

© 2003 by Carnegie Mellon University page 1726 January 2003

Increment Activity Mapping
Scope Design Build Field

Define feasible
scope

Survey/try
components

Agree to business
changes

Refine, experiment,
& select solution

Try/select
components

Prototype business
changes

Implement selected
solution

Apply/track
components

Prepare to change
business processes

Rollout and
support solution

Use/track
components

Change business
processes

Establish project plan

Develop business case

Outline candidate
architectures

Study COTS market;
screen candidates

Prepare demos of
candidate solutions

Identify key risks

Determine business
changes

Update project plan

Define, baseline and
demonstrate solution

Evaluate COTS products
and components

Stabilize requirements and
architecture

Develop plan to manage
business process change

Update project plan

Build production quality
solution for beta test

Continue market/COTS
surveys and evaluation

Prepare end users for
initial fielding

Complete rollout

Fix bugs, adjust
features, make minor
enhancements

Achieve user satisfaction
/ self-supportability

Continue market/COTS
surveys and evaluation

Support solution until
retirement

6 to 18 months

© 2003 by Carnegie Mellon University page 1826 January 2003

Leverage Feedback between Long- and
Short-Term

Maintain long-term strategy
(system level) aligned with
enterprise improvement

Make short-term
implementation decisions
(increment level) aligned with
long-term strategy

Use knowledge gained in short-
term increments to evolve long-
term strategy

Reprinted through the courtesy of CIO
 © 2002 CXO Media Inc.

Anticipate continuous change

© 2003 by Carnegie Mellon University page 1926 January 2003

planning and
enactment

evaluation in context of system
scenarios

evaluated
increment
scenarios

initial scope System Level

Increment Level

refined scope,
requirement,
architecture
adjustments

analyzed in context of increment
level scenarios

updated
requirements,

architecture

Plan and Manage Efficient Feedback

Decisions take place simultaneously at both levels –
one informs the other

planning and
enactment

© 2003 by Carnegie Mellon University page 2026 January 2003

Managing Continuous Evolution
System level

Scope Design

• Business
model

• Scope
• Constraints
• Market study

• Critical use cases at
system level (what)

• Architecture (how)
• Available and

projected technology

LCO LCA

Scope Design

• Business
model

• Scope
• Constraints
• Market study

• Critical use cases at
system level (what)

• Architecture (how)
• Available and

projected technology

LCO LCA

…

Scope Design Build Field

Increment #1

LCO LCA IOC
6-18 months

© 2003 by Carnegie Mellon University page 2126 January 2003

Scenarios of Multiple Increments

…

Scope Design Build Field

Increment #n

LCO LCA IOC
6-18 months

Scope Design Build Field

Increment #n

LCO LCA IOC
6-18 months

Several
increments for
different areas
of system
capability
running
concurrently

System level

Scope Design

LCO LCA

System level

Scope Design

LCO LCA

Scope Design Build Field

Increment #n

LCO LCA IOC
6-18 months

Scope Design Build Field

Increment #n

LCO LCA IOC
6-18 months

Scope Design Build Field

Increment #n

LCO LCA IOC
6-18 months

Scope Design Build Field

Increment #n

LCO LCA IOC
6-18 months

Several increments for same area of
system capability where successive
generations provide greater capability

© 2003 by Carnegie Mellon University page 2226 January 2003

The Handwriting on the Wall
Change Happens

Adapt To Change Quickly

• Anticipate Change

• Monitor Change

• Change

• Enjoy Change!

Be Ready To Change Quickly
And Enjoy It Again

Reprinted through the courtesy of CIO
 © 2002 CXO Media Inc.

© 2003 by Carnegie Mellon University page 2326 January 2003

Contact Information

Lisa Brownsword Cecilia Albert
llb@sei.cmu.edu cca@sei.cmu.edu

© 2003 by Carnegie Mellon University page 2426 January 2003

Lisa Brownsword is a senior member
of the technical staff in the Commercial-
off-the-shelf- (COTS)-Based Systems
(CBS) Initiative at the Software
Engineering Institute (SEI). Before
joining the SEI, Lisa was on staff at
Computer Sciences Corporation in
support of NASA/Goddard’s Software
Engineering Lab. Prior to that, she was
employed at Rational Software
Corporation providing consulting to
managers and technical practitioners in
the use of and transition to software
engineering practices, including
architecture-centered development,
product lines, object technology, Ada,
and CASE.

Cecilia Albert is a senior member of
the technical staff in the Commercial-
off-the-shelf- (COTS)-Based Systems
(CBS) Initiative at the Software
Engineering Institute (SEI). Before
joining the SEI, Cecilia was in the Air
Force where she served in a variety of
information technologies related
positions including: developing major
software programs for simulation,
command and control, and mission
processing of national satellite systems;
teaching acquisition and leading an
industry study on telecommunications
and information systems at the
Industrial College of the Armed Forces;
and managing the archive and
dissemination programs at the National
Imagery and Mapping Agency.

	“They Keep Moving the Cheese” A Framework for Evolutionary Acquisition of Large Software Intensive Systems
	Who Moved My Cheese?
	A Story …
	Size Matters
	Definitions
	Outline
	Change Happens
	Adapt to Change
	Lessons Learned
	Be Ready To Change Quickly
	Disciplined Spiral Development
	Phases Bounded by Anchor Points
	Disciplines* Extend Across Phases
	Keep a Long View in Systems Planning
	Evolving System Definition
	Take a Short View on Increment Planning
	Increment Activity Mapping
	Leverage Feedback between Long- and Short- Term
	Plan and Manage Efficient Feedback
	Managing Continuous Evolution
	Scenarios of Multiple Increments
	The Handwriting on the Wall
	Contact Information
	Biographical Information

