Carnegie Mellon
Software Engineering Institute

Pittsburgh, PA 15213-3890

“They Keep Moving the Cheese”

A Framework for Evolutionary

Acquisition of Large Software Intensive
Systems

Cecllia Albert
Lisa Brownsword

Sponsored by the U.S. Department of Defense
© 2003 by Carnegie Mellon University

= CarnegieMellon
~———— Software Engineering Institute

Who Moved My Cheese?

- E—g]

Reprinted through the courtesy of CIO o —~
© 2002 CXO Media Inc.

© 2003 by Carnegie Mellon University 26 Januar y 2003 page 2

=N Carnegie Mellon
~—— Software Engineering Institute

A Story...

Program goal: provide a tool for strategic, operational, and tactical
planners from all services and defense agencies to support joint and
coalition engagements and peace keeping efforts

* Run on existing enterprise backbone (managed by another agency)

* Interface with multiple existing and developing systems

» Operate across multiple security levels

Program Start (late '90s)

2003

* Automate manual process
» Client-server architecture
» Support 2-3 day planning cycle

* New planning processes
* \Web-based architecture
* Dynamic planning cycles
* Collaborative planning

6 increments delivered across 6-7
years
* First release in 18-24 months

* Increment 1 is obsolete

» Struggling to build/field increment 2
* Users have built “interim” solutions
* Future is uncertain

= Carnegie Mellon

~—— Software Engineering Institute

Size Matters!

Project Size People Time Success

(mos) Rate

< $750K 6 6 55%
$750K-$1.5M 12 9 33%
$1.5M-$3M 25 12 25%
$3M-$6M 40 18 15%
$6M-$10M +250 +24 8%
>$10M +500 +36 0%

Source:The Standish Group, 1999

Carnegie Mellon
Software Engineering Institute

Definitions

A software-intensive system is one that
 Relies on software to provide core/priority mission

function(s)

A large software-intensive system is one whose software
» Takes longer than 6 months to implement
» Takes more than 6 people to implement
« Takes more that $750,000 to implement
and/or
* |s comprised of multiple interrelated systems or
iIndependently developed components implemented in
software (system of systems, family of systems, etc)

Carnegie Mellon
Software Engineering Institute

Outline

Change Happens

Adapting to Change

Be Ready to Change Quickly

Carnegie Mellon
Software Engineering Institute

Change Happens

Large software-intensive systems change at a rate faster
than the full system capability can be implemented — and
they change during development and operation

Sources of change
» Enterprise priorities shift
» Business or operational needs change
* New technologies introduce new opportunities
« COTS products add and delete key features
 Participants rotate

Carnegie Mellon
Software Engineering Institute

Adapt to Change

DoD 5000* provides mechanisms for coping with change

Evolutionary Acquisition Spiral Development

Delivers capability in increments, A desired capability is identified but

recognizing, up front, the need for the end-state requirements are not

future capability improvements known at program initiation

» Success of the strategy depends on * Those requirements are refined
the consistent and continuous through demonstration and risk
definition of requirements and management; there is continuous
maturation of technologies that lead user feedback; and each increment
to disciplined development and provides the user the best possible
production of systems that provide capability. The requirements for
increasing capability towards a future increments depend on
material concept. feedback from users and technology
maturation.

* The Operation of the Defense Acquisition System, 30 Oct 02

=N Carnegie Mellon
~—— Software Engineering Institute

Lessons Learned

Going after “low hanging fruit” in the absence of an
overarching architecture and coherent plan results in
iIncompatible and stove-piped solutions

System requirements defined without sufficient insight into
what can be realistically built, results in systems that cannot
be built

There are no “silver bullets” that avoid disciplined system
and software engineering (doing the right engineering
correctly)

S L LY

Carnegie Mellon
Software Engineering Institute

Be Ready To Change Quickly

Consciously apply spiral development practices at 2 (or
more) discrete levels — with continuous interaction between

the levels

* Program or system level
- Evolve definition and implementation plan for system
end-state
- Define and spawn increments of useful capability that
will build to full system functionality and performance

* Project or increment level
- Define and implement plan for delivering the defined
increment in the context of the system end-state

Carnegie Mellon
Software Engineering Institute

Disciplined Spiral Development

Time

@F‘@L

« Continuously determine a @

compatible and feasible set of:
business processes, requirements, plans, architecture,
COTS products and other components

» Enterprise business objectives drive solution definition

 Risk considerations drive degree of detalil

« Executable representations demonstrate current understanding
and agreements

Spiral development facilitates evolving a viable solution —
at both system and increment levels

~——— CarnegieMellon
~—— Software Engineering Institute

Phases Bounded by Anchor Points

Simultaneolis CO”Verging

Definition EEENEEEEEEEED

and Tradeoffs decisions

Scope Design | Buld | Field
N - RN AR - RN AR BN R R

T8 L__ T8 L_TF _TJ% __J% _JF _J% _.T%

Multiple iterations per phase

© 2003 by Carnegie Mellon University 26 January 2003 page 12

||‘||||

Carnegie Mellon
Software Engineering Institute

Disciplines* Extend Across Phases

Scope Design Build Field
Business mOdeIing e

RequirementS e

Analysis & design N s —

Market research I s —

Implementation | —] U

Test I I B DN (BN S e e EE .

Project management -—-T--—-f-—-—r-—-

*adapted from Kruchten; shows partial set of disciplines

© 2003 by Carnegie Mellon University 26 January 2003 page 13

~—— CarnegieMellon
Software Engineering Institute

Keep a Long View in Systems Planning

LN L BRI

A BALAICT

Reprinted through the courtesy of CIO
© 2002 CXO Media Inc.

Carnegie Mellon
Software Engineering Institute

Evolving System Definition

New technology
Modified environment
Changed mission

\ 4
reassess and replan_ o D, o
-

= CarnegieMellon
~—~——— Software Engineering Institute

Take a Short View on Increment Planning

: -_'_'.-- i i \ =~
Reprinted through the courtesy of CIO
© 2002 CXO Media Inc.

Allows a stable development environment — if a short timeframe
(6-18 months)

Allows focused discovery, experimenting, and learning on a

manageable scale to find optimum way to understand and meet
user needs

© 2003 by Carnegie Mellon University 26 January 2003 page 16

= Carnegie Mellon

~——— Software Engineering Institute

Increment Activity Mapping

Scope

Define feasible
scope

Surveyltry
components

Agree to business
changes

Establish project plan
Develop business case

Outline candidate
architectures

Study COTS market;
screen candidates

Prepare demos of
candidate solutions

|dentify key risks

Determine business
changes

Design

Refine, experiment,
& select solution

Trylselect
components

Prototype business
changes

Update project plan
Define, baseline and
demonstrate solution

Evaluate COTS products
and components

Stabilize requirements and
architecture

Develop plan to manage
business process change

Build

Implement selected
solution

Applyltrack
components

Prepare to change
business processes

Update project plan
Build production quality
solution for beta test

Continue market/COTS
surveys and evaluation

Prepare end users for
initial fielding

6 to 18 months

>

Field

Rollout and
support solution

Useltrack
components

Change business
processes

Complete rollout

Fix bugs, adjust
features, make minor
enhancements

Achieve user satisfaction
/ self-supportability

Continue market/COTS
surveys and evaluation

Support solution until
retirement

Carnegie Mellon
Software Engineering Institute

Leverage Feedback between Long- and
Short-Term ;,j

'“‘\
e

Maintain long-term strategy
(system level) aligned with

enterprise improvement DO THE TREES
BLOCK YOUR VIEW?

Make short-term
implementation decisions
(increment level) aligned with
long-term strategy

Use knowledge gained in short-
term increments to evolve long-
term strategy

Reprinted through the courtesy of CIO
© 2002 CXO Media Inc.

Anticipate continuous change

Carnegie Mellon
Software Engineering Institute

Plan and Manage Efficient Feedback

planning and evaluation in context of system
enactment scenarios

initial scope System Level

updated
requirements,

architecture

refined scope,
requirement,
architecture
adjustments

evaluated
increment
scenarios

analyzed in context of increment Increment Level

planning and _
level scenarios

enactment

Decisions take place simultaneously at both levels —
one informs the other

Carnegie Mellon
Software Engineering Institute

Managing Continuous Evolution

System level
Scope Design Scope Design
* Business » Critical use cases at * Business » Critical use cases at
model system level (what) model system level (what)
» Scope * Architecture (how) » Scope * Architecture (how)
« Constraints | * Available and W W B . Constraints |+ Available and
» Market study projected technology - Market study projected technology
LCO LCA LCO LCA
| oty ot
Increment #1
Scope ‘ Design ‘ Build ‘ Field
LCO LCA I0C

6-18 months >

Carnegie Mellon
Software Engineering Institute

Scenarios of Multiple Increments

System level
Scope ‘ Design ‘ HE H &

50 G Several increments for same area of
system capability where successive
generations provide greater capability

A
el * N
rol [
. Increment #n
Increment #n
Scope Design | Build | Field Seops Design | — | —
Several LCO LCA _10C =0 LCAe_ s —
increments for 6-18 months
different areas *
of system l "
|I| m
capa_b ty Increment #n
running
Concurrently Scope Design | Build | Field
LCO LCA ‘IOC

K 6-18 months

= Carnegie Mellon
~—— Software Engineering Institute

The Handwriting on the Wall

Change Happens G .ﬂ.mm ¥ou can

Adapt To Change Quickly mlﬂ?
» Anticipate Change - R R

* Monitor Change

» Change

» Enjoy Change!

Be Ready To Change Quickly

Reprinted through the courtesy of CIO

And Enjoy It Again © 2002 CXO Media Inc.

Carnegie Mellon
Software Engineering Institute

Contact Information

Lisa Brownsword Cecilia Albert
lIb@sei.cmu.edu cca@sei.cmu.edu

=N Carnegie Mellon
~—— Software Engineering Institute

Lisa Brownsword is a senior member
of the technical staff in the Commercial-
off-the-shelf- (COTS)-Based Systems
(CBS) Initiative at the Software
Engineering Institute (SEI). Before
joining the SEI, Lisa was on staff at
Computer Sciences Corporation in
support of NASA/Goddard’s Software
Engineering Lab. Prior to that, she was
employed at Rational Software
Corporation providing consulting to
managers and technical practitioners in
the use of and transition to software
engineering practices, including
architecture-centered development,
product lines, object technology, Ada,
and CASE.

Cecilia Albert is a senior member of
the technical staff in the Commercial-
off-the-shelf- (COTS)-Based Systems
(CBS) Initiative at the Software
Engineering Institute (SEI). Before
joining the SEI, Cecilia was in the Air
Force where she served in a variety of
information technologies related
positions including: developing major
software programs for simulation,
command and control, and mission
processing of national satellite systems;
teaching acquisition and leading an
industry study on telecommunications
and information systems at the
Industrial College of the Armed Forces;
and managing the archive and
dissemination programs at the National
Imagery and Mapping Agency.

	“They Keep Moving the Cheese” A Framework for Evolutionary Acquisition of Large Software Intensive Systems
	Who Moved My Cheese?
	A Story …
	Size Matters
	Definitions
	Outline
	Change Happens
	Adapt to Change
	Lessons Learned
	Be Ready To Change Quickly
	Disciplined Spiral Development
	Phases Bounded by Anchor Points
	Disciplines* Extend Across Phases
	Keep a Long View in Systems Planning
	Evolving System Definition
	Take a Short View on Increment Planning
	Increment Activity Mapping
	Leverage Feedback between Long- and Short- Term
	Plan and Manage Efficient Feedback
	Managing Continuous Evolution
	Scenarios of Multiple Increments
	The Handwriting on the Wall
	Contact Information
	Biographical Information

