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Predictable Assembly from Certifiable
Components

Enable the development of software systems from
software components where:

« critical runtime attributes e.g., performance and
safety, are reliably predicted (predictable
assembly)

 properties of software components needed for
prediction are trusted (certifiable components)
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PACC Component Technology Idiom

Custom

code‘

i e

/ Prefabricated containers

| }e— Standard interface

Interaction
constraints

5 _
T “e——— Standard runtime

ntime Environment

Platform

The Construction and Composition Language (CCL) formalizes this idiom '
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PACC Reasoning Frameworks

| | + development of analysis techniques

-  transitioning of analysis to practitioners
Composition Language

interpretation

Rate
Monotonic
Analysis

Real Time
Queuing
Theory

Model
Checking
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ComFoRT Reasoning Framework

« Contains a software model checker Copper:
- provides new model checking techniques developed
for verification of component software
- builds on academic tool MAGIC

« Analysis models are automatically extracted from
programs

« Claims and verification results (counterexamples) are
mapped to programs
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Verification Domain

High-level designs (CCL programs) and C programs

« Sequential and concurrent

Communication via shared actions
e  Synchronous communication

 Asynchronous execution
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Copper Capabilities
State/Event-based Verification
 |leverages distinction between data and communication actions
Compositional Deadlock Detection

 automated deadlock detection that ensures sound abstractions
and acts as a space reduction procedure

Verification of Evolving Systems

» automated component substitutability checks
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ComFoRT Underlying Framework

CCL/C

Program

V
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State/Event-based Model Checking (IFMO04)

Labeled Kripke Structures

« Every state is labeled with a set of atomic
propositions, P, true in the state

« Every LKS comes with
an alphabet of actions, ~ b

State/Event LTL and State/Event AW formalisms

Efficient model checking algorithms for SE-LTL and
SE-AW employing the compositional abstraction-
refinement framework
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State/Event-based Model Checking

Labeled Kripke Structures

« Every state is labeled with a set of atomic
propositions, P, true in the state

« Every LKS comes with
an alphabet of actions, ~ b

State/Event LTL and State/Event AW formalisms

State/Event-based Software Model Checking, In
Proceedings of IFM Integrated Formal Methods 2004
Conference, by Sagar Chaki, Edmund Clarke, Joel
Ouaknine, Natasha Sharygina and Nishant Sinha.
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Surge Protector : State/Event

m2

mO

Changes of current beyond threshold are disallowed
G ((c2 - m=2) & (c1 - (Mm=1V m=2)))
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Surge Protector : State Only

m=0 m=1 m=2
c=0 c=0 c=0

m=0 m=1 m=2
c=1 fl/L c=1

G (((c=0 V c=2) & X (c=1)) — (m=1V m=2)) &
G (((c=0 V c=1) & X (c=2)) — m=2)
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Deadlock Detection (MEMOCODE’04)

Deadlocks are not preserved by abstraction

* Abstraction refinement does not work

|

{b} {a,c} {a,b,c} AbsRef={a,b,c}
Copper: Deadlock=AbsRef(s) = =

to preserve deadlock the abstract model over-approximates not
just what concrete program can do but also what it refuses
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Compositional Deadlock Detection

Deadlock is inherently non-compositional

« Can’t say anything by looking at components individually

Copper: AbsRef(A;,A,) = AbsRef(A,) U AbsRef(A,)

Abstract deadlock - reachable state s such that AbsRef(s) = X

Copper: No abstract deadlock in abstract models No
deadlock in concrete models

Automated, compositional and iterative deadlock detection, In Proceedings of the Conference on

Formal Methods for Codesign (MEMOCQODE) 2004, by Sagar Chaki, Edmund Clarke, Joel Ouaknine
and Natasha Sharygina



—=——_ Carnegie Mellon

—— Software Engineering Institute

Component Substitutability Check

Upgraded
~Component

Original
Component

Lost
Behaviors

Containment check (Local correctness)

Are all local old services (properties) of the verified
component contained in the upgraded component?
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Component Substitutability Check

Original Upgraded
Component = - , Component

Lost
Behaviors

Compatibility Check (Global safety check)

Are new services of the upgraded component safe with
respect to other components in assembly: all global
specifications still hold?
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Substitutability Check Approach

* Procedure for checking simultaneous upgrades of multiple
components (FM'04)

- Abstraction (under- and over- approximations) for the
component containment check

- Compositional reasoning + learning regular sets for
automated compatibility check

* Procedure for checking individual component upgrades
(SAVCBS’04)

- Algorithms based on learning reqular sets technique
for the component containment and compatibility tests
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Substitutability Check Approach

* Procedure for checking simultaneous upgrades of multiple
components

- Abstraction (under- and over- approximations) for the
component containment check

- Compositional reasoning + learning regular sets for
automated compatibility check

Dynamic Component Substitutability Analysis, In Proceedings of FM 2005 Formal
Methods Conference, by Sagar Chaki, Ed Clarke, Natasha Sharygina and Nishant

Sinha.

Verification of Evolving Software, In Proceedings of SAVCBS 2004 by Sagar Chaki,
Natasha Sharygina and Nishant Sinha
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Applications

IPC Module
* Deployed by a world leader in robotics
» Discovered synchronization bug under which senders would
receive the wrong answer to their requests
* Problem had remained undetected for seven years prior to
independent discovery by business unit

Case Study: Micro-C OS
« Real-time OS for embedded applications
- 6000+ LOC, widely used
 Verified locking discipline
* Found four bugs
- Missing unlock and return
- Three already reported
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Ongoing and Future Work

« Use a SAT solver for computing abstraction

- Semantics of bit-wise operators is taken
into account

« Use of pattern languages for specifying properties
* Integrated Abstraction and Compositional reasoning

« Component certification
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ComFoRT Resources

ComFoRT tools
* http://www.sei.cmu.edu/pacc/comfort.html

Ongoing industrial & academic collaborations

» Prof. Edmund Clarke and his model checking group, Prof.
Peter Lee at CMU

 Prof. Dr. Daniel Kroening from ETH Zurich

 Industrial corporate research centers developing embedded
controllers

Conference and Journal publications
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