
© 2005 by Carnegie Mellon University

Pittsburgh, PA 15213-3890

The ComFoRT Reasoning Framework

Sagar Chaki
James Ivers

Natasha Sharygina
Kurt Wallnau

© 2005 by Carnegie Mellon University

Predictable Assembly from Certifiable
Components

Enable the development of software systems from
software components where:

• critical runtime attributes e.g., performance and
safety, are reliably predicted (predictable
assembly)

• properties of software components needed for
prediction are trusted (certifiable components)

© 2005 by Carnegie Mellon University

PACC Component Technology Idiom

The Construction and Composition Language (CCL) formalizes this idiom

Component Runtime Environment

Platform

Interaction
constraints

Prefabricated containers

Standard interface

Standard runtime

Custom
code

© 2005 by Carnegie Mellon University

PACC Reasoning Frameworks

Rate
Monotonic
Analysis

Real Time
Queuing
Theory

Model
Checking

Performance Formal
Analysis

interpretation

• development of analysis techniques

• transitioning of analysis to practitioners

Scheduling
Analysis

Construction and
Composition Language

(CCL)

© 2005 by Carnegie Mellon University

ComFoRT Reasoning Framework

• Contains a software model checker Copper:
- provides new model checking techniques developed

for verification of component software
- builds on academic tool MAGIC

• Analysis models are automatically extracted from
programs

• Claims and verification results (counterexamples) are
mapped to programs

© 2005 by Carnegie Mellon University

Verification Domain

High-level designs (CCL programs) and C programs

• Sequential and concurrent

Communication via shared actions

• Synchronous communication

• Asynchronous execution

© 2005 by Carnegie Mellon University

Copper Capabilities

State/Event-based Verification

• leverages distinction between data and communication actions

Compositional Deadlock Detection

• automated deadlock detection that ensures sound abstractions
and acts as a space reduction procedure

Verification of Evolving Systems

• automated component substitutability checks

© 2005 by Carnegie Mellon University

ComFoRT Underlying Framework

No errorNo error
or bug foundor bug foundCCL/C

Program
Model

Checker

Validation

ValidationValidation
sucessfulsucessful

Bug foundBug found
Refinement

Spurious counterexampleSpurious counterexample

Counterexample

Abstraction

© 2005 by Carnegie Mellon University

ComFoRT Underlying Framework

No errorNo error
or bug foundor bug foundCCL/C

Program
Model

Checker

Validation

ValidationValidation
sucessfulsucessful

Bug foundBug found
Refinement

Spurious counterexampleSpurious counterexample

Counterexample

Abstraction

© 2005 by Carnegie Mellon University

State/Event-based Model Checking (IFM04)

Labeled Kripke Structures

• Every state is labeled with a set of atomic
propositions, P, true in the state

• Every LKS comes with
an alphabet of actions, Σ

State/Event LTL and State/Event AW formalisms

Efficient model checking algorithms for SE-LTL and
SE-AW employing the compositional abstraction-
refinement framework

a

b c
b

a

0,1

1,1 1,0

0,0

© 2005 by Carnegie Mellon University

State/Event-based Model Checking

Labeled Kripke Structures

• Every state is labeled with a set of atomic
propositions, P, true in the state

• Every LKS comes with
an alphabet of actions, Σ

State/Event LTL and State/Event AW formalisms

State/Event-based Software Model Checking, In
Proceedings of IFM Integrated Formal Methods 2004
Conference, by Sagar Chaki, Edmund Clarke, Joel
Ouaknine, Natasha Sharygina and Nishant Sinha.

a

b c
b

a

0,1

1,1 1,0

0,0

© 2005 by Carnegie Mellon University

Surge Protector : State/Event

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

Changes of current beyond threshold are disallowed
G ((c2 → m=2) & (c1 → (m=1 V m=2)))

© 2005 by Carnegie Mellon University

Surge Protector : State Only

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

G (((c=0 V c=2) & X (c=1)) → (m=1 V m=2)) &
G (((c=0 V c=1) & X (c=2)) → m=2)

© 2005 by Carnegie Mellon University

Deadlock Detection (MEMOCODE’04)

Deadlocks are not preserved by abstraction

• Abstraction refinement does not work

[1,2,3]a,b,c1 2
a

3
bc

{b} {a,c} {a,b,c} A bsRef={a,b,c}

Deadlock= A bsRef(s) = ΣCopper:

to preserve deadlock the abstract model over-approximates not
just what concrete program can do but also what it refuses

© 2005 by Carnegie Mellon University

Compositional Deadlock Detection

Deadlock is inherently non-compositional

• Can’t say anything by looking at components individually

Copper: AbsRef(A1, A2) = AbsRef(A1) U AbsRef(A2)

Abstract deadlock - reachable state s such that AbsRef(s) = Σ

Copper: No abstract deadlock in abstract models No
deadlock in concrete models

Automated, compositional and iterative deadlock detection, In Proceedings of the Conference on
Formal Methods for Codesign (MEMOCODE) 2004, by Sagar Chaki, Edmund Clarke, Joel Ouaknine
and Natasha Sharygina

© 2005 by Carnegie Mellon University

Component Substitutability Check

Original
Component

Containment check (Local correctness)

Are all local old services (properties) of the verified
component contained in the upgraded component?

Identical Behaviors New
Behaviors

Lost
Behaviors

Upgraded
Component

© 2005 by Carnegie Mellon University

Component Substitutability Check

Original
Component

Compatibility Check (Global safety check)

Are new services of the upgraded component safe with
respect to other components in assembly: all global

specifications still hold?

Identical Behaviors New
Behaviors

Lost
Behaviors

Upgraded
Component

© 2005 by Carnegie Mellon University

Substitutability Check Approach

• Procedure for checking simultaneous upgrades of multiple
components (FM’04)

- Abstraction (under- and over- approximations) for the
component containment check

- Compositional reasoning + learning regular sets for
automated compatibility check

• Procedure for checking individual component upgrades
(SAVCBS’04)

- Algorithms based on learning regular sets technique
for the component containment and compatibility tests

© 2005 by Carnegie Mellon University

Substitutability Check Approach

• Procedure for checking simultaneous upgrades of multiple
components

- Abstraction (under- and over- approximations) for the
component containment check

- Compositional reasoning + learning regular sets for
automated compatibility check

Dynamic Component Substitutability Analysis, In Proceedings of FM 2005 Formal
Methods Conference, by Sagar Chaki, Ed Clarke, Natasha Sharygina and Nishant
Sinha.

Verification of Evolving Software, In Proceedings of SAVCBS 2004 by Sagar Chaki,
Natasha Sharygina and Nishant Sinha

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University

Applications

IPC Module
• Deployed by a world leader in robotics
• Discovered synchronization bug under which senders would

receive the wrong answer to their requests
• Problem had remained undetected for seven years prior to

independent discovery by business unit

Case Study: Micro-C OS
• Real-time OS for embedded applications

- 6000+ LOC, widely used
• Verified locking discipline
• Found four bugs

- Missing unlock and return
- Three already reported

© 2005 by Carnegie Mellon University

Ongoing and Future Work

• Use a SAT solver for computing abstraction

- Semantics of bit-wise operators is taken
into account

• Use of pattern languages for specifying properties

• Integrated Abstraction and Compositional reasoning

• Component certification

© 2005 by Carnegie Mellon University

ComFoRT Resources

ComFoRT tools
• http://www.sei.cmu.edu/pacc/comfort.html

Ongoing industrial & academic collaborations

• Prof. Edmund Clarke and his model checking group, Prof.
Peter Lee at CMU

• Prof. Dr. Daniel Kroening from ETH Zurich

• Industrial corporate research centers developing embedded
controllers

Conference and Journal publications

© 2005 by Carnegie Mellon University

References

Overview of ComFoRT: A Model Checking Reasoning
Framework, CMU/SEI Tech. Report SEI-2004-TN-018 by James
Ivers and Natasha Sharygina

State/Event-based Software Model Checking, In Proceedings
of IFM Integrated Formal Methods 2004 International Conference,
by Sagar Chaki, Edmund Clarke, Joel Ouaknine, Natasha
Sharygina and Nishant Sinha.

Automated, compositional and iterative deadlock detection,
In Proceedings of the Second ACM-IEEE International
Conference on Formal Methods for Codesign (MEMOCODE)
2004 , by Sagar Chaki, Edmund Clarke, Joel Ouaknine and
Natasha Sharygina

Dynamic Component Substitutability Analysis, In Proceedings
of FM 2005 Formal Methods Conference, by Sagar Chaki, Ed
Clarke, Natasha Sharygina and Nishant Sinha.

© 2005 by Carnegie Mellon University

References

Verification of Evolving Software, In Proceedings of SAVCBS
2004 by Sagar Chaki, Natasha Sharygina and Nishant Sinha

Snapshot of CCL: A Language for Predictable Assembly, In
CMU/SEI TR-2002-TR-031, by James Ivers and Kurt Wallnau

A Technology for Predictable Assembly from Certifiable
Components (PACC), In CMU/SEI-TR-2003-TR-009, by Kurt
Wallnau

SAT-based predicate abstraction for ANSI-C, In Formal
Methods System Design Journal, Vol. 25(2), 2004, by Daniel
Kroening, Ed Clarke, Natasha Sharygina and Karen Yorav.

