. Carnegic Mdlon
“—— Software Engineering Institute

Pittsburgh, PA 15213-3890

The ComFoRT Reasoning Framework

Sagar Chaki
James lvers

Natasha Sharygina
Kurt Wallnau

© 2005 by Carnegie Mellon University

——— Carnegie Mellon
—— Software Engineering Institute

Predictable Assembly from Certifiable
Components

Enable the development of software systems from
software components where:

« critical runtime attributes e.g., performance and
safety, are reliably predicted (predictable
assembly)

 properties of software components needed for
prediction are trusted (certifiable components)

———— Carnegie Mellon
—— Software Engineering Institute

PACC Component Technology Idiom

Custom

code‘

i e

/ Prefabricated containers

| }e— Standard interface

Interaction
constraints

5 _
T “e——— Standard runtime

ntime Environment

Platform

The Construction and Composition Language (CCL) formalizes this idiom '

H.

———— Carnegie Mellon
Software Engineering Institute

PACC Reasoning Frameworks

| | + development of analysis techniques

- transitioning of analysis to practitioners
Composition Language

interpretation

Rate
Monotonic
Analysis

Real Time
Queuing
Theory

Model
Checking

© 2005 by Carnegie Mellon University

——— Carnegie Mellon
—— Software Engineering Institute

ComFoRT Reasoning Framework

« Contains a software model checker Copper:
- provides new model checking techniques developed
for verification of component software
- builds on academic tool MAGIC

« Analysis models are automatically extracted from
programs

« Claims and verification results (counterexamples) are
mapped to programs

——— Carnegie Mellon
— Software Engineering Institute

Verification Domain

High-level designs (CCL programs) and C programs

« Sequential and concurrent

Communication via shared actions
e Synchronous communication

 Asynchronous execution

——— Carnegie Mellon
—— Software Engineering Institute

Copper Capabilities
State/Event-based Verification
 |leverages distinction between data and communication actions
Compositional Deadlock Detection

 automated deadlock detection that ensures sound abstractions
and acts as a space reduction procedure

Verification of Evolving Systems

» automated component substitutability checks

———— Carnegie Mellon

—=— Software Engineering Institute

ComFoRT Underlying Framework

CCL/C

Program

V

© 2005 by Carnegie Mellon University

Abstraction

No error
or bug found

Validation

>

Counterexample

Validation
sucessful

Spurious counterexample

>
Bug found

—_o——

———— Carnegie Mellon

Software Engineering Institute

ComFoRT Underlying Framework

CCL/C

Program

No error
or bug found

@ O
—>» | Abstraction
L %

V

&

@)

© 2005 by Carnegie Mellon University

>

Counterexample

RN

alidation
ucessful

Validation >
jug found

Spurious counterexample

——— Carnegie Mellon
—— Software Engineering Institute

State/Event-based Model Checking (IFMO04)

Labeled Kripke Structures

« Every state is labeled with a set of atomic
propositions, P, true in the state

« Every LKS comes with
an alphabet of actions, ~ b

State/Event LTL and State/Event AW formalisms

Efficient model checking algorithms for SE-LTL and
SE-AW employing the compositional abstraction-
refinement framework

——— Carnegie Mellon
— Software Engineering Institute

State/Event-based Model Checking

Labeled Kripke Structures

« Every state is labeled with a set of atomic
propositions, P, true in the state

« Every LKS comes with
an alphabet of actions, ~ b

State/Event LTL and State/Event AW formalisms

State/Event-based Software Model Checking, In
Proceedings of IFM Integrated Formal Methods 2004
Conference, by Sagar Chaki, Edmund Clarke, Joel
Ouaknine, Natasha Sharygina and Nishant Sinha.

——— Carnegie Mellon
—— Software Engineering Institute

Surge Protector : State/Event

m2

mO

Changes of current beyond threshold are disallowed
G ((c2 - m=2) & (c1 - (Mm=1V m=2)))

——— Carnegie Mellon
—— Software Engineering Institute

Surge Protector : State Only

m=0 m=1 m=2
c=0 c=0 c=0

m=0 m=1 m=2
c=1 fl/L c=1

G (((c=0 V c=2) & X (c=1)) — (m=1V m=2)) &
G (((c=0 V c=1) & X (c=2)) — m=2)

=~ (Carnegie Mellon
—— Software Engineering Institute

Deadlock Detection (MEMOCODE’04)

Deadlocks are not preserved by abstraction

* Abstraction refinement does not work

|

{b} {a,c} {a,b,c} AbsRef={a,b,c}
Copper: Deadlock=AbsRef(s) = =

to preserve deadlock the abstract model over-approximates not
just what concrete program can do but also what it refuses

sarnegie Mellon
Software Engineering Institute

Compositional Deadlock Detection

Deadlock is inherently non-compositional

« Can’t say anything by looking at components individually

Copper: AbsRef(A;,A,) = AbsRef(A,) U AbsRef(A,)

Abstract deadlock - reachable state s such that AbsRef(s) = X

Copper: No abstract deadlock in abstract models No
deadlock in concrete models

Automated, compositional and iterative deadlock detection, In Proceedings of the Conference on

Formal Methods for Codesign (MEMOCQODE) 2004, by Sagar Chaki, Edmund Clarke, Joel Ouaknine
and Natasha Sharygina

—=——_ Carnegie Mellon

—— Software Engineering Institute

Component Substitutability Check

Upgraded
~Component

Original
Component

Lost
Behaviors

Containment check (Local correctness)

Are all local old services (properties) of the verified
component contained in the upgraded component?

———— Carnegie Mellon

—— Software Engineering Institute

Component Substitutability Check

Original Upgraded
Component = - , Component

Lost
Behaviors

Compatibility Check (Global safety check)

Are new services of the upgraded component safe with
respect to other components in assembly: all global
specifications still hold?

——— Carnegie Mellon
—— Software Engineering Institute

Substitutability Check Approach

* Procedure for checking simultaneous upgrades of multiple
components (FM'04)

- Abstraction (under- and over- approximations) for the
component containment check

- Compositional reasoning + learning regular sets for
automated compatibility check

* Procedure for checking individual component upgrades
(SAVCBS’04)

- Algorithms based on learning reqular sets technique
for the component containment and compatibility tests

——— Carnegie Mellon
—— Software Engineering Institute

Substitutability Check Approach

* Procedure for checking simultaneous upgrades of multiple
components

- Abstraction (under- and over- approximations) for the
component containment check

- Compositional reasoning + learning regular sets for
automated compatibility check

Dynamic Component Substitutability Analysis, In Proceedings of FM 2005 Formal
Methods Conference, by Sagar Chaki, Ed Clarke, Natasha Sharygina and Nishant

Sinha.

Verification of Evolving Software, In Proceedings of SAVCBS 2004 by Sagar Chaki,
Natasha Sharygina and Nishant Sinha

f PECT - critical_section.ccl - SEI PECT IDE
File Edit Mavigate Search Project Tools Window Help

4 - & |- T | f-PECT
m = O || & ipc_queus,cel & critical_seckion.ccl 52 & read_msg_queue, ool & write_msg_queue, cel composed.spec 8
& [1= <~}==E> w7 int nuwWaiting = 0; e
—|-[= Design ~ int waitingl = 0O;
+-[= ComFoRT | int typel = 0;
== ComposedIPiC int waitingz = 0:
Claim1-annotated.txt int type2 = 0;
|Z| composed.spec int random = 0;
& N critical_section.col int error = 0;: B
|Z| critical_section.pp int caller = 0O:
|Z| critical_section,spec
|_| env?rnnment.pp sink mutex EntercCriticalSection read [(consume int caller):
|_| fenwrnnment.spec sink mutex LeaveCriticalSectiDn:read {consume int caller):
; IpC_qUELE.C.Dp gink mutex EnterCriticalSection write (consume int caller):
fpc_queue.ccl sink mutex LeaveCriticalSection write [(consume int caller):
|=| ipc_queue spec —
5 ipc_queue. xml

threaded react C5 (EnterCriticallection read, LeaveCriticalSection read, EnterCr
start -» one {1}

& read_msg_queus.ccl
|Z| read_msg_queue.pp

2| read_msg_queue.spec one -r two {trigger “EntercCriticallection read(caller):}
& write_msg_queue,ccl two —> one {}
|Z| write_msg_gueue.pp one -» three {trigger “LeavelriticalSection read(caller):}
|Z| write_msg_queus,spec three —-> one {}
+-[= CriticalSection L4 one -»> four {trigger “EnterCriticalSection write(caller):}
+- = 550 four -> one {}
+[= @eneratedCode one -»> five {trigger “LesveCriticalSection write(caller):}
=] projeck five -» one {1}

= '[EP; Inkterackive

kd IE;'CDI'I'IFDRT e2tate twn I antvwrd :
+-[=% Design » < ¥
Problems | Properties Bl console &2 P W =8
ComFaRT
~
Verification complete. B
Claim ClaimzZg§ does not hold. Jee targets C1 ClaimZd.txt for the counterexample. =
b
< | >

DemojDesign/ComposedIPiC/critical_section.ccl

~
15 Start fp- PECT - critical_sectio... soft PowerPaint ...

f PECT - critical_section.ccl - SEI PECT IDE

File Edit Mavigate Search Project Tools Window Help
il ¥ e T | @ PECT
m = O || & ipc_queus,cel & critical_seckion.ccl 52 & read_msg_queue, ool & write_msg_queue, cel composed.spec B
& | = <~}==:> - int numWaiting = 0; A
—|- [Design A int waitingl = 0O;
+-[= ComFoRT int typel = 0;
== ComposedIPiC int waitingz = 0:
Claim1-annotated.txt int type2 = 0;
|Z| composed.spec int random = 0O;
. — : int error = 0O: b
=l eritical_ int caller = 0;
] criticall ©pen
! : Y
'—' env!rnn Ot sink mutex EntercCriticaliection read [(consume int caller);
|_| ,3nwrcun Copy sink mutex LeavelCriticalSection read [(consume int caller):
| ipc_que E=) -
; ipc_que - sink mutex EntercriticalZection write (consume int caller);
= _p 2 2 sink mutex LeaveCriticalSection write [(consume int caller):
= ipc_que _
. ¥ Delete
3 ipc_que
& read_m Move. .. threaded react C5 (EnterCriticallection read, LeaveCriticalSection read, EnterCr
|=| read_m Rename start -> one {}
] read_m one -r two {trigger “EntercCriticallection read(caller):}
& write_r £y Impart... two -> one {}
|=| write_r ﬁExpDrt.” one —-» three {trigger *LE&VECriticalSectiDn_readicaller],:}
|=| write _r three —-» one {1}
+|-[= CriticalSecti & | Refresh i one -»> four {trigger “EnterCriticalSection write(caller):}
+- = 550 four -> one {}
+-[= GeneratedCode Gener.ateCCnde one -» five {trigger “LeaveCriticalSection write(caller];}
= .project Compile fie —% one {}
= '[EP; Inkterackive y Performance RF
t IE;'CDI'I'IFDRT Interpretatiu:un CarmFoRT te twn f entwvwr! :
+-[=% Design T ¥
Properties
Problems | Properties Bl consorees P W =8
ComFaRT
~
Verification complete. B
Claim ClaimzZg§ does not hold. Jee targets C1 ClaimZd.txt for the counterexample. =
b
< | >

DemojDesign/ComposedIPiC/critical_section.ccl

‘4 Start

- PECT - critical_s

zoft PowerPaint ...

)0 444am

‘p PECT - composed.spec - SEl PECT IDE

File Edit Mavigate Search Project Tools Window Help
=l . B | e PECT
: = read_msg_gueue.s... & critical_section,ccl | composed. spec £9 ..\‘-5 write_msg_queue, ... & ipc_queus. ool | Claim1-annokated. ... | |
: o - | E| Q,:D - | ghstract abs?,{ (FO::write msg_gueus gqueus == 0] && (PO::write msg gueue msg == 0] 2%
.[;-_5 Diema ol [(Fl::read msg queus gqueus == 0] && (Pl::iread msg queus src == 0] £& (Pl::read msg_ queus ms
-2 Design = [(F2:iipo queue writeTimeout == 0] && (P2::ipc gqueue readTimeout == 0) && (PE::iipc queus nu
i EI (= ComFoRT [PZ2:iipe gueue size == 2] && (PZ::ipe gueue messagel == 0] && (F2::ipc gqueue sourcel == 0]
=1 [= ComposedIPC [PZ2:iipc queue messagez == 0] && (P2::ipc gqueus sourcei == 0] && (P2::ipc gueus error ==
Claim1-annol [P3::icritical section owner == 0] && (P3::icritical section ownerType == 0] && (P3::critica
i E composed. sp [Fi::icritical section numWaiting == 0] £& (P3::critical section waitingl == 0] && (F3i:i:cri
=' critical_sectic (P3::critical section waitingZ == 0) &£& (P3::critical section typei == 0] &£&
|5 writical_sectic {P3:icritical section random == 0} && (P3::icritical section error == 0] && (P3::icritical s
o[critical_sectic 4
3 critical_seckic
= Envirl:unment AAClaiwd: G([P3::critical section error == 0]):
i -EnIoRmEr: Claimd = (epsilon -> ERRORO] .
g !pc_queue.c. Claimd = {}{P3::critical section error == 0};
- ipC_gueus.c = =
s | = ipC_queue.s
5 iEc_gueue x[| SfClaiml: Gibegin WaitFor3ingleChject write => [PZ::ipc dqueue nuwmMessages == PZ::ipe gueus size]):
: i o Claiml = | epsilon -» $11 J.
= { hegin WaitFor3ingleChject write -»> ERROR1).
= {}{P2::iipc queue numMessages == P2::ipc gueus size}; =+
Gi[Pz2::ipc_queuse error == 0]); ‘
i " T jepsilon —> ERRCRZ) . =
: aimz2 an ipc_queue : ;
E = C Claim3 on ipe_queue imz = {}{PZ::ipc_queue_error == 0};
laimi: G([P3::critical section numWaiting < Z]);
im3 = [(epsilon —-> ERROR3) .
Claim3 = {}{P3::critical section numWlaiting < 2}:
L B ritival smctic = = e
5 SRS N S i : 3
fF‘ru:uI:uIems|F‘ru:u|:uerties |.ECDI'ISD|E mo T | i E i
ComFaR.T
|
4 well-formed claims found. =
|
| | DemofDesignfComposedIPCfipc_queue, ccl

. s start Eﬁ ComFoRT EI. The ComFoRT ... B Control Panel fp PECT - compose. . Bl “hoose ComFoR. .. M Choose ComFoR... s -_ 10506 AM

e PECT - Claim1-annotated.txt - SEI PECT IDE
File Edit Mavigate Search Project Tools Window Help

M-Ee |2 e o- F | aPECT
TS Mavigator 53 = 08| @ ipc_queue.cel & critical_section,ccl & read_msg_queue,ccl & write_msg_queue, . composed. spec B claimi-annotate,., X
2 BEE - HESHEEHEEEEE P61 STUTTER SHS#ER#ERHY -
5= Design v Pea:itewp wvar 110 = do_enviromment | & Fe::x , & Pe::iy , & Per:z | @ ZTUTTER
N — || spsssdesgEsd Pe::STUTTER Sesfg#sgunsy
-2 ComposedIPC Poa:itewp wvar 110 = do_enviromment | & Fe::x , & Pé::iy . & Poi:z) : ZTUTTER
Claim1-annota HEHESESEEEEE P61 :STUTTER SHESESRERERY
= composed, spe PE::temp_var_lllil = dD_Envianment | & Poi:x , & Poi:y , & Po:i:z]
& ritical_section ####%% end local CE dag #g *+*+*
|Z| critical_section CE dag projections analysed |
|Z| critical_section <<< END [S=iRes4zleNsdgy ==
5 critical_section
|=| environment.p <<+« CHECEPOINT : Projection of CE on fourth component >>>
\=| enviranment,s *x%%* gtart local CE dag #3 wrrs
El ipc_queue.c.m P3::curState = 145
@ ipc_queue.ccl HESHEESEEEEE (P3:icurState = [$0 == 145 1} #E##EESHEEHE

\Z| ipc_gueue.spe
3 ipc_gueue.xml
a4 read_msg_que
|=| read_msg_que
|Z| read_msg_que

P3:icritical section owner = 0O
HHHHHAEEHEHESE (P33 ioritical section owner = [50 == 0]} HESSEG44HTEEE
Piticritical section ownerType = 0O

HHHHBHEEHEHES (P33 ioritical section ownerType = [30 == 0]} HESHSHS44884

& write_msg_qu Pi:ticritical section timesEntered = 0
E Write_msg_quf_ HEAAHHHEEAASE (P3ticritical section timesEntered = [$0 == 0]} HE#AASF44E0H
5] write_msg_que Pi:ticritical section nuwWaiting = 0
+-[= CriticalSection SHESEAEAEREY (P3ricrivical section numWaiting = [§0 == 0 1} HSHSHAREHEEYE
+-[= 350 Pi:ticritical section waitingl = 0
+-[=- GeneratedCode BEffgAEEEaaE (P3icritical section waitingl = [§0 == 0 1} H#gsfidssss
\=| .project P3::critical section typel = 0
—-125 Inkeractive v HEHHHEEEHEESE (P31 icritical section typel = [$0 == 0]} HESHidfgsasg w’
< | * L | >
Problems | Properties Bl console &2 P W =8
ComFaRT
~
Fre-processing complete. b
Jtarting wverification as background task...
v
* | .
‘ritable Insert 2945 19 Verifying Claimi [| @

1 .f Eta n fF. PECT - Claiml-annaoka.. . W Cho ComFoR T claims a ComFoR T clairms W Choose ComFoRT claims IE‘ M oft PowerPaink ... "{J':: 4:50 AM

= PECT - Claim1 -annotated.txt - SEl PECT IDE
File Edit Mavigake Search Project Tools Window Help

I B @ ee-o- | g

{-'?E.Navigatnr 2 = 5] K=' ipc_queue, ool & critical_section,ccl & read_msg_queue,ccl & write_msg_queue, ,, composed,spec B dami-annokate,,, X
' I | = Q:b - model extracted in 276358.5 milliseconds
= (= Design - model loaded from f£ile

[E? ComFoRT B implementation states for control locations computed

E|[E7 ComposedIPC model extracted in 443.5 milliseconds
..... Claim1-annota model saved in V3.6 milliseconds
..... |Z| composed.spe implementaticon states for control locations computed
----- W critical_section model extracted in 27562.8 milliseconds

critical_section
~|Z| critical_section
..... 5 critical_section i1 “h [B3 i = on owner == 0
=| environment.p
enviranment, s :
""" =] ipc_gusue.c.p) ; with branch
""" @ ipc_queue.cd <<< END CHECKPOINT

----- \Z| ipc_gueue.spe
----- 5 ipc_queue, xml
----- & read_msg_que
----- |=| read_msg_que
----- |Z| read_msg_que

..... & write_msg_que

counter

on refined

write_msq_que nunber of abstract implementation states = 38975
write_msg_oue implementation statez for control locations computed
[#-[7= CriticalZection action—-guided transitions computed
[+-= 55L model extracted in 25543.6 milliseconds
[+~ GeneratedCode implementation machine extracted in 25544.Z millizeconds
----- |=| .project global states @ [280 254 626 3975 7 7 2) = 19391612016000
EI---'[EP- Interactive v M
< [< | >
a it
Prnblems|Pererties (E Console &3 i | = E-=0
ComFaR.T
~
Pre-processing complete. B
Starting werification as background task... =
h
< | >
| | Witable Insert 6344 : 31 Yerifying Claimi @

7 s Start fp- PECT - Claiml-annota. .. M Choose ComFoRT claims M “hoose ComFoRT claims M Choose ComFoRT claims [Micrasaft PawetPaint ... L4) E: 4153 AM

e PECT - Claim1-annotated.txt - SEI PECT IDE
File Edit Mavigate Search Project Tools Window Help

o4 . & |2 | o- T | f-PECT

B claimi-annotate. ..

TS Mavigator 53 = 08| @ ipc_queue.cel & critical_section,ccl & read_msg_queue,ccl & write_msg_queue, . composed. spec

S E <}==é> w
—-[=% Design Y
+-[= ComFoRT B
== ComposedIPiC
Claim1-annota
|Z| composed.spe
4 critical_section

CHECEFOINT @ walid CE found

|Z| critical_section <<+ CHECEPOINT : warious statistics >>x
|Z| critical_section total global time = 1584534.2 milliseconds
5 critical_section total cpu time = 1414160.0 milliseconds
|= emvironment.p total input processing time = 542.7 milliseconds
=] erediranment.s total Buchi automston construction time = 0.0 mwilliseconds
=] IpE_quELE. &Ry total implementaticon machine extraction time = 223985.4 milliseconds
& ipc_queue.cd total werification time = 1238970.9 williseconds
= !pc_queue.spel total proof generation time = 0.0 mwilliseconds
ipc_gueue.=m
2 r?aa_dqms e total ashstraction refinement time = 121032.3 mwilliseconds
= S total CE generation time = 12.6 milliseconds
|=| read_msg_que o) -))
= total CE werification time = 2557.9 mwmilliseconds
|Z| read_msg_que
& write_msg_qu total predicate sbstraction refinement time = 113444.3 milliseconds
2] write_msg_que total LT3 abstraction refinement time = 0.0 milliseconds
5] write_msg_que total number of eliminating combinations = 0
+- [CriticalSection max humber of eliminating combinations for a CE = 0
+-[= 550 max Sige of eliminating combination = 0
4= GeneratedCode max Zize of tried combination = 0
\=| .project B nukber of iterations = 4
=== Interactive number of predicate iterations = 4
+-[= ComFaRT numwker of lt=s iterations = 0
+|-(= Design number of seed branches : &
[?;-Genn.aratedl:cude specification detail=s @ 3 states 2 transitions= —
= .Flr'l:l]El:t z vl A daman 1 mamman m 5 man a8 ACIE AT AT AT AN X
< | ® < | >
Problemns | Properties El consale 2 & | = =0
ComFoR.T
< | >
Wiritable Insert 12140 1 Werifying Claim1 mn c

I r
] j" Sfaﬂ i,"F. PECT - Claiml-annaoka.. . W Choose ComFoR T claims B “hoose ComFaoR T claims W Choose ComFoRT claims IE‘ Microsoft PowetPoink ... "{Jﬂl E_; 4:56 AM

——— Carnegie Mellon
—— Software Engineering Institute

Applications

IPC Module
* Deployed by a world leader in robotics
» Discovered synchronization bug under which senders would
receive the wrong answer to their requests
* Problem had remained undetected for seven years prior to
independent discovery by business unit

Case Study: Micro-C OS
« Real-time OS for embedded applications
- 6000+ LOC, widely used
 Verified locking discipline
* Found four bugs
- Missing unlock and return
- Three already reported

——— Carnegie Mellon
— Software Engineering Institute

Ongoing and Future Work

« Use a SAT solver for computing abstraction

- Semantics of bit-wise operators is taken
into account

« Use of pattern languages for specifying properties
* Integrated Abstraction and Compositional reasoning

« Component certification

——— Carnegie Mellon
—— Software Engineering Institute

ComFoRT Resources

ComFoRT tools
* http://www.sei.cmu.edu/pacc/comfort.html

Ongoing industrial & academic collaborations

» Prof. Edmund Clarke and his model checking group, Prof.
Peter Lee at CMU

 Prof. Dr. Daniel Kroening from ETH Zurich

 Industrial corporate research centers developing embedded
controllers

Conference and Journal publications

Carnegie Mellon
—— Software Engineering Institute

References

Overview of ComFoRT: A Model Checking Reasoning
Framework, CMU/SEI Tech. Report SEI-2004-TN-018 by James
lvers and Natasha Sharygina

State/Event-based Software Model Checking, In Proceedings
of IFM Integrated Formal Methods 2004 International Conference,
by Sagar Chaki, Edmund Clarke, Joel Ouaknine, Natasha
Sharygina and Nishant Sinha.

Automated, compositional and iterative deadlock detection,
In Proceedings of the Second ACM-IEEE International
Conference on Formal Methods for Codesign (MEMOCODE)
2004 , by Sagar Chaki, Edmund Clarke, Joel Ouaknine and
Natasha Sharygina

Dynamic Component Substitutability Analysis, In Proceedings
of FM 2005 Formal Methods Conference, by Sagar Chaki, Ed
Clarke, Natasha Sharygina and Nishant Sinha.

——— Carnegie Mellon
— Software Engineering Institute

References

Verification of Evolving Software, In Proceedings of SAVCBS
2004 by Sagar Chaki, Natasha Sharygina and Nishant Sinha

Snapshot of CCL: A Language for Predictable Assembly, In
CMU/SEI TR-2002-TR-031, by James Ivers and Kurt Wallnau

A Technology for Predictable Assembly from Certifiable
Components (PACC), In CMU/SEI-TR-2003-TR-009, by Kurt
Wallnau

SAT-based predicate abstraction for ANSI-C, In Formal
Methods System Design Journal, Vol. 25(2), 2004, by Daniel
Kroening, Ed Clarke, Natasha Sharygina and Karen Yorav.

