

eQualite:eQualite:
Quality Assessment Quality Assessment

of of
 Software Suppliers Software Suppliers

Tim Dietz
Nadeem Malik, Ph.D.
IBM Software Procurment Engineering

January 30, 2003

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Overview

eQualite methodology is based on software engineering best practices and
standards to assess and improve software deliverables from suppliers.

Determines viability of a software supplier to engineer quality software on schedule
and support it over it's life-cycle

Identifies schedule and quality risks associated with a supplier in terms of being able to
reliably take requirements and convert them into a product in a repeatable, efficient and
consistent manner
Provides a brief assessment of the SEI Capability Maturity Model (CMM) level, which is
used as the basis for profiling software development capabilities such as productivity
rates and ratios of system engineering, development, test, service/support and project
management needed for a required reliability
Models engineering/management effort and development processes practiced for a given
product development to determine the impact on schedule and quality
Provides a predictive measure of the software product quality in terms of expected
defects to the field for a given criticality and complexity
Assesses long-term robustness of the enterprise
Recommends actions for reducing cost//warranty exposure and risk abatement
Identifies weaknesses and shortcomings towards instituting improvements

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Maturity Model
Key KPA's are assessed to determine an approximate equivalence to a SEI
SW-CMM level

Risk Model
Linear model that determines the software life-cycle development capability and
operational readiness by assessing the best practices that are implemented and
how well the organization performs against it

Cost and Quality models
Product development effort and schedule models for system design, programming,
test, service/support and project management. Quality models provide product
defect rate projections and permit reconciliation of defect data from early discovery
through system test, if available.

Enterprise model
Linear model that determines the robustness and long-term viability of the
enterprise

Support Model
provides support requirements (L3-L1) based on product and customer data

Methodology

A compendium of models and methods:

Key Outcome: Assessment of supplier's ability to continue to operate and produce
timely, quality software and support for it

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Maturity questions
Process maturity

Risk questions
preparation plans

implementation efforts
 Data gathering

Quality models
Cost model

Support model

Enterprise questions
Customers
products
Skills, facilities,
resources, processes

Non-verbals

Estimate maturity level
(KPAs for SEI SW-CMM)
Analyze data

Productivity
Development Effort model

Systems engineering
Test
Project Mgmt

Product defect rate
support requirements

Compare actual with
historical data
Determine risk score
Assess enterprise
robustness

Assessment Process

Risk Factors
development effort
quality
schedule
enterprise viability

effort and schedule impact
warranty exposure
support resources

Recommendations
corrective actions
risk mitigation
improvements
strengths

Supplier Profile Analysis

interview analyze recommend

Report

Ent e r pr i s eMat ur i t y

Me t r i c s Ri s k
Suppl i e r

As s e s s me nt

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Capability Maturity Model

Level Focus Key Process Areas

5. Optimizing (1%) Continuous process improvement Defect prevention, Technology
change management, Process
change management

4. Managed (1.5%) Product and process quality Quantitative process
management, Software quality
management

3. Defined (8%) Engineering process Organization process focus,
Organization process definition,
Training program, Integrated
software management, Software
product engineering, Inter group
coordination, Peer review

2. Repeatable (15%) Project management Requirements management,
Software project planning,
Software project tracking, Software
subcontract management,
Software quality assurance,
Software configuration Mgmt.

1. Initial (75%) Ad hoc Ad hoc

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

The Software Engineering Capability can be determined by a linear model that ranks a
development team based on their planned use of the best practices and how they perform
against that plan. The operational readiness assessed by this model can be used as the
measure of development capability to determine the early defect removal potential of a
team.

Such a linear model has been successfully used for the last three years in assessing the
capability of IBM internal and external software organizations. The model used for these
assessments was originally developed based on data collected (by Nathan Davis, Kyle Rone
and Kitty Olson) from the mid seventies to the mid nineties by IBM federal Systems Group
for more than 250 projects. These projects include safety critical projects for the space
shuttle to mission critical projects for the Olympics to the commercial projects such as the
Ford Motor Company, Postal Service, etc. We have now collected data from over 80 projects
that will be used to further validate the model with recent trends.

Best practices are examined for project management, systems engineering, software
engineering, test and use of tools (engineering, support and management) and standards.
These best practices are assessed against the resulting product sizing, cost planning,
change management, project scheduling, resource planning, quality and performance
plans, defect estimation and risk planning for a given product. Such a measure of capability
as a result also implicitly accounts for defect insertion/removal that may arise from possibly
incorrect fixes for other defects.

Software Engineering Capability in terms of Best Practices

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

The Quality Equation

Product Defects =
Total Inserted Defects - (Early Discovery Defects + Integration and System Test Defects)

The Total Inserted Defects can be determined from past history of a given project team in
terms of its proficiency in engineering a product through its entire life cycle. In other words,
it can be related to the level of maturity of a project team having a well defined and well
managed organization in terms of being able to track projects and apply prior experience
effectively towards repeatable success and continuos improvement.

Early Discovery Defects are the defects that are found through design inspections, code
reviews and unit testing. Therefore, this can be related to the capability of a development
team in terms of being able to adequately review and verify requirements, design and code
for correctness/conformance to specs.

Finally, Integration and System Test Defects are the defects that are exposed during the
formal test phase (also referred to as the Independent Test phase) of the project. The target
or acceptable defect rate and complexity for a given product determines the effort needed in
this phase.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Key Observations

The Rayleigh Defect Curve implicitly assumes a high maturity and capability level of a
development organization. The Rayleigh equation defining the curve was validated using
defect data from teams mostly developing mission and life critical projects. As such,
adjustment should be made for the actual maturity and capability of an organization to use
the Rayleigh curve effectively

The number of defects found during integration and system test accounts for 17% of the
total area (total inserted defects) under the Rayleigh curve. However, the shape of the curve
during integration and system test can be the same as the one for the Rayleigh Defect Curve
even if an inadequate test plan is followed.

Achieving 99.9% reliability by extending the test cycle is an exceptional (high development
capability) outcome. Increase in schedule beyond 50% provides diminishing returns.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Best estimate of insertion error rate is the demonstrated proficiency of a project team on a
prior project. However, it can also be determined from reported historical averages for a
given maturity of a team.

B. Boehm, et al. (COCOMO), C. Jones and Davis, Rone and Olson (DRO), have
independently analyzed empirical data with the following estimates of Defect Insertion
Rates. All three sources have defined it in terms of team's maturity with the latter two using
CMM level as the actual maturity index.

Insertion Defect Rates and Maturity/Proficiency

Maturity COCOMO C. Jones DRO

CMM 1 60
(Nominal Prof.)

5/FP (30-83) 90, 75, 60

CMM 2 N/A 4/FP (24-66) 60, 50, 40

CMM 3 N/A 3/FP (18-50) 30, 25, 20

CMM 4 N/A 2/FP (12-33) 15, 15, 15

CMM 5 N/A 1/FP (6-17) 15, 15, 15

Table 1: Defect Insertion Rate per KSLOC unless indicated otherwise. Multiple values delimited by commas are
for first, second and n+2 release, respectively. The numbers in parenthesis are ranges of defects per KSLOC for
C language. C. Jones also provides insertion defect rates broken down by defect origins, if a more detailed
estimation is needed.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

The removal of defects in the earlier stages of development (prior to formal test) depends
directly on the software engineering capabilities of the development team in terms of
experience level to conduct effective design/code reviews, use of standard practices,
configuration management, etc. This can be determined directly by tracking such defects
from the start of development and matching against the Rayleigh curve.

However, since all early discovery defects are generally not tracked, historical averages for
different levels of development capability have been reported by B. Boehm, et al. (COCOMO)
and Davis, Rone and Olson (DRO) can be used instead. Conversely, if the early discovery
defects are tracked, the observed rate vs. expected can be used to drive team's capability.

Early Defect Removal and Development Proficiency

Software Engineering
Capability

COCOMO DRO

Low/Minimum 53 50, 55, 60
Nominal/Average 76 60, 65, 70

High/Good 88 70, 75, 80

Very High/State-of-the-art 94 80, 85, 90

Extra High 97 N/A

Table 2: Early discovery defects found as a percent of total inserted defects for 5 levels of development
proficiency. These are the defects that are found during design reviews, code inspections, unit test, etc.,
before the code is committed to formal test. Multiple values delimited by commas are for first, second and
n+2 release, respectively. The COCOMO numbers are based on a Delphi process.

The Rayleigh Defect curve predicts that Early Defect removal rate should be 1-(0.17+(1-0.95)) = 78%, but it implies
a certain capability. Based on Table 2, the Rayleigh curve appears to model High to V. High capability.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Development Factors and Product Quality

Historical development factors can be used as a guideline to distribute the effort over
the development of a project. There appears to be a correlation between
development factors and quality, but the averaged numbers reported below (other
than the IBM group) mask the correlation.

Test System
Eng.

Project
Mgmt.

Total

IBM Federal Systems
Group (DRO)

1.1 (1.2) 1.2 1.3 1.72 1.0

MetaGroup (av. of 1100
worldwide projects)

1.39 1.32 1.23 2.26 1.77

C. Jones (system and
commercial apps)

1.61 1.21 1.19 2.32 3.06
(Best Average 2.3)

Development Factors

Defects/KSLOC

Table 6: The test factors are relative to the programming effort. System engineering is relative to the total of test and
programming effort and project management is relative to the total of programming, test and system engineering
effort. The number of defects in the last row in the table is based on using average C programming language FP to
KSLOC ratio. The parenthetic test factor in the first row is for a CMM level 1 organization while all others for the first
row are for CMM level 2-5 organizations. MetaGroup and C. Jones factors are for an average maturity organizations,
which are at the "bottom half" of CMM level 1.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Programming Productivity and Test Factor/Product Quality

Programming Productivity implied in IBM FSD development factors:
C and other high level languages, low complexity code = 255-650 SLOC/PM. The high end of the
range results from increasing maturity of the development environments. Av.. = 450SLOC/PM

Programming Productivity for MetaGroup factors:
Worldwide average productivity measured over 770 projects = 650SLOC/PM.

Programing Productivity for factors reported by C. Jones:
Average productivity for commercial and system software using average FP conversion factor for C
language = 960 SLOC/PM

The higher programmer productivity reported by MetaGroup and C. Jones may be
because of the lack of software engineering discipline employed by the observed
projects towards code reviews, design, unit test, etc., which increases programmer
productivity, but pushes defects into system and integration test phase, hence
requiring more test resources. Higher product defect rate also supports this
conjecture.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Given the product size and early discovery defects (either actual or estimated), the
independent test defects can be tracked against the Rayleigh curve to reach the target
product defect rate.

Criticality based product defect ranges that have proved to work for some benchmark
applications, such as the space station, shuttle and large commercial systems, that can be
used as reasonable product defect goals are shown below.

Product Defect Ranges

Criticality Defect Rate
(Defects/KSLOC)

Low 1
Medium 0.5
High (mission/life critical) 0.1

Table 3: The defect rates that were determined to be reasonable during the NASA and IBM Federal Systems
programs for the three criticality levels of software systems.

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Other Product Defect Averages

IT Developm ent Organizations Defects/KSLOC
(1999 US/W orldw ide)

High Productiv ity Leaders (4GLs) 2.94/2.83

Average for all IT organizations 1.56/1.77

Table 4: The defect numbers from C . Jones were calculated using average lines per FP for C
programming language and average defect rate for a SEI SW -CMM level. The m inimum defect rates
are given in parenthesis for each level.

Table 5: The defect rates observed by Meta Group over 770 worldwide projects that delivered
programming productiv ity of twice the average for all the projects. These companies used 4GL
languages more than the average projects did.

CM M Level Defects/FP Defects/KSLOC

1 0.75 4.4-12.5 (1.17)
2 0.44 2.5-7.3 (0.94)
3 0.27 1.6-4.5 (0.59)
4 0.14 0.8-2.3 (0.18)
5 0.05 0.3-0.8 (0.02)

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

Development Effort and Quality

Historical Trends
IBM FSD:

Four times additional test effort and twice the project management to reduce the
defect rate by half
Eight times additional test effort and five times project management effort to reduce
product defect rate to 1/10th

Putnam
25% increase in schedule to reduce product defect rate by half
50% increase in schedule reduces product defect rate to one fourth

Procurement Engineering
Quality Assessment of Software Suppliers

Software Procurement Engineering

References

Nathan Davis, Kyle Rone and Kitty Olson, A Matrix Method for Software Labor and
Quality Estimations, Proceedings of the 1992 Decision Support Conference, IBM,
Thornwood, NY, September, 1992.

L. Boehm et al., Software Cost Estimation with COCOMO II, Prentice Hall, 2000

Caper Jones, Software Assessments, Benchmarks, and Best Practices,
Addison-Wesley, 2000

Lawrence Putnam and Ware Myers, Measures for Excellence: Reliable Software on
Time, Within Budget, Prentice Hall, 1992

B.G. Kohlkorst and A. J. Macina, Developing Error Free Software, IEEE AES Magazine,
pp25-31, 1988

Meta Group reports on IT Performance Engineering & Measurement Strategies,
1999-2001

IBM Software Procurement Engineering Supplier Assessment Reports, 2000-2002

	eQualite: eQualite: Quality Assessment Quality Assessment of of Software Suppliers Software Suppliers
	Overview
	Methodology
	Assessment Process
	Capability Maturity Model
	Software Engineering Capability in terms of Best Practices
	The Quality Equation
	Key Observations
	Insertion Defect Rates and Maturity/ Proficiency
	Ear y Defect Removal and Deve opment Proficiency
	Deve opment Factors and Product Qua ity
	Programming Productivity and Test Factor/ Product Quality
	Product Defect Ranges
	Other Product Defect Averages
	Development Effort and Quality
	References

