

**Carnegie Mellon
Software Engineering Institute**

Pittsburgh, PA 15213-3890

SATURN 2006 Working Session: Strategic Risk Management for Architectures

DRAFT – Work in Progress

**This summary is meant to convey preliminary
ideas for the purpose of getting feedback. It
does not necessarily represent the
consensus of the members of the session.**

**Sponsored by the U.S. Department of Defense
© 2006 by Carnegie Mellon University**

Plan for the Workshop

To determine an effective risk management plan for an architecture, you need to answer the following questions:

- How do you plan for risks?
- How do you estimate risk exposure?
- What risk assessment/reduction techniques do you use?
 - For which attributes?
- What are their costs?
- What is their effectiveness (in terms of risk reduction)?
- *How do you know?*
- In this workshop we wanted to elicit the above...

Project Attributes

- A1: Worst-case Performance (priority inversion, queue overflows)
- A2: Availability/Robustness (No single point of failure)
- A3: Ease of integration
- A4: Usability
- A5: Performance (no missed data frames)
- A6: Cost
- A7: Development Schedule
- A8: Portability/Replaceability
- A9: Maintainability
- A10: Scalability
- A11: Testability
- A12: Understandability
- A13: Resource Utilization
- A14: Security

Attribute Assessment Techniques

T1: SAAM	T7: ALMA
T2: ARID	T8: OCTAVE
T3: FRAP	T9: QAW
T4: Model Checking	T10: Markov Modeling
T5: ATAM	T11: CBAM
T6: ALPSM	T12: RMA

S(L) and P(L)

Attribute i (Ai)	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Loss potential (Ai)	100	90	90	80	60	30	50	20	10	10	60	10	90	60
P_{before}(Ai)	6	5	20	15	20	5	20	10	10	10	30	20	50	40

Cost of Assessments

Cost of
assessing

Ai with Tj	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
T1	50	x	10	70	10	x	x	x	x	50	5	x	10	x
T2	100	x	x	100	100	x	x	x	x	x	x	x	x	x
T3	x	x	80	80	80	x	x	x	x	x	x	x	x	x
T4	100	90	x	x	19	x	x	x	x	x	x	x	x	x
T5	70	100	70	70	70	x	x	x	x	x	x	x	x	x
T6	30	30	30	30	30	x	x	x	x	x	x	x	x	x
T7	x	x	x	x	x	5	10	x	5	5	3	x	3	x
T8	x	x	x	x	x	80	70	x	80	80	x	x	x	x
T9	x	x	x	x	x	x	3	10	20	20	20	10	20	10
T10	60	x	x	60	50	40	50	50	50	40	40	20	40	20
T11	60	x	90	60	60	x	x	x	x	50	10	x	10	x
T12	x	x	x	x	x	5	5	10	10	10	10	5	x	x
T13	30	x	x	30	30	x	x	30	x	30	5	x	30	x
T14	100	x	x	100	100	x	x	x	x	100	5	x	100	x

P(L) After Assessment

$P_{\text{after}}(A_i)$ using T_j	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
T1	4	x	15	12	15	x	x	x	x	5	15	x	20	x
T2	6	x	x	13	15	x	x	x	x	x	x	x	x	x
T3	x	x	15	12	13	x	x	x	x	x	x	x	x	x
T4	6	0	x	x	19	x	x	x	x	x	x	x	x	x
T5	6	2	2	13	18	x	x	x	x	x	x	x	x	x
T6	6	2	5	13	19	x	x	x	x	x	x	x	x	x
T7	x	x	x	x	x	2	15	x	8	10	30	x	30	x
T8	x	x	x	x	x	1	10	x	7	9	x	x	x	x
T9	x	x	x	x	x	x	10	4	6	8	25	20	30	30
T10	6	x	x	12	19	3	15	8	8	8	27	20	30	20
T11	3	x	15	5	5	x	x	x	x	5	5	x	5	x
T12	x	x	x	x	x	3	18	9	10	10	30	20	x	x
T13	5	x	x	12	15	x	x	5	x	6	20	x	28	x
T14	3	x	x	3	5	x	x	x	x	5	10	x	20	x

The Results

We mainly focused on identifying architectural risk assessment techniques.

We also examined a small amount of cost data.

The Results - 2

Security

- Series of characteristics in DoDAF, their security checklist
- ATAM like reviews with scenario generation and analysis only focusing on information assurance
- Boeing - PASM, largely DoD-based checklist style for qualitative security assessment

COTS Assessment

- Assessment techniques for COTS (book by Lewis et al)
- Testability
- Scenario-based testing

Project Management

- Time box scheduling
- Scope reduction
- Periodically re-compute cost to complete and time to complete to address schedule and cost risks to see how much more resources are left

The Results - 3

Performance

- Boeing – RACM for changing or new technologies.
- Boeing – PAPM for performance and scalability
- Instrumentation
- Modeling Tools, e.g. SLAM-2
- Build executable architectures with stubbed components to look for risks
- Simulation
- Experimenting for performance, scalability

Availability

- Boeing - PAAM for availability analysis.
- Experimenting for availability

Safety

- HazOp, fault-tree analysis, ...

Interoperability

- Inspections for measuring interoperability: look at data exchanges

The Results - 4

Modifiability

- Checklists for modifiability
- Experimenting for modifiability

Usability

- Rapid application development, GOMS, paper prototypes, visual basic mock-ups

Generic Risk Awareness

- Record assumptions from developers and use them as input to the list of risks.
- Argumentation, structured argument to find the risks – global structuring notation

Cost Data

Boeing's ATAM cost data: 730 hours +/- 10-20%

Boeing's own tools: 3-16 person-weeks (depending on project size/scope)

Cherokee's CMMD: 3-5 x cheaper than Boeing and ATAM (!)

The Final Result

Proposal: A “center of excellence” for exchanging information regarding techniques, their costs, their effectiveness (in terms of risk reduction).