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A Simple Question

Given the issues with software engineering today, 

how can we build systems of the future likely to 

have billions of lines of code?



SEI Report on ULS Systems

 Report produced for U.S. Government by a 

group of scholars working with the Carnegie 

Mellon Software Engineering Institute

 Linda Northrop led the study group

 Ideas have achieved international visibility and 

are increasingly ―in the air‖



Report Author Team

 From the SEI: Peter Feiler, John Goodenough, 

Rick Linger, Tom Longstaff, Rick Kazman, 

Mark Klein, Linda Northrop & Kurt Wallnau

 Others: Richard P. Gabriel, Sun Microsystems, 

Inc. (now at IBM Research); Douglas Schmidt, 

Vanderbilt University; and me, Kevin Sullivan, 

University of Virginia



Study Group

 Gregory Abowd, Georgia Institute of Technology; 

Carliss Baldwin, Harvard Business School; Robert 

Balzer, Teknowledge Corporation; Gregor Kiczales, 

University of British Columbia; John Lehoczky, 

Carnegie Mellon University; Ali Mili, New Jersey 

Institute of Technology; Peter Neumann, SRI 

International; Mark Pleszkoch, SEI; Mary Shaw, 

Carnegie Mellon University; Daniel Siewiorek, Carnegie 

Mellon University; Jack Whalen, Palo Alto Research 

Center (PARC).



Reviewers

 John Bay, Air Force Research Lab; Brian Barry, Bederra 

Corporation; Barry Boehm, University of Southern 

California; Larry Druffel, South Carolina Research 

Authority (SCRA); Peter Freeman, National Science 

Foundation; Ron Goldman, Sun Microsystems; Watts 

S. Humphrey, SEI; Bruce Krogh, Carnegie Mellon 

University; Jim Linnehan, ASA ALT; Martin Rinard, 

Massachusetts Institute of Technology; Dennis Smith, 

SEI; and Guy Steele, Sun Microsystems, Inc.



From BLOC to ULS Systems

 We took BLOC as proxy for complexity in many forms

 Future systems will integrate and orchestrate the actions 

and evolution of thousands of platforms, decision 

nodes, sensors, machines, organizations, processes

 And they will adapt continuously to compensate for 

changes in needs and environments



What’s New?

 We have long lived in a world of ULS systems

 What’s really new is the pervasive cyber element

 Enables systems with radical forms and scale

 Becomes a dominant concern in system design



Basic Premises

 Today’s SE inadequate even for current systems

 Future systems will push SE to untenable point

 Study concludes need for breakthrough research, 

not just incremental extensions of current work

 Software engineering research at a crossroads.



Software Engineering at Crossroads

 SE research achieved a great deal

 But not enough to serve needs of new systems

 And maybe not so much lately.

 Step back and take stock.



ULS Systems Report (2006)

 Fundamental gaps in our current understanding of 

software and its development at the scale of ULS systems 

present profound impediments to the achievement of 

mission objectives. These gaps are strategic, not 

tactical. They are unlikely to be addressed by 

incremental research in established categories. 

We require a broad new conception of both the 

nature of such systems and new ideas for how to 

develop them.



NSF CISE

 http://cise.nsf.gov (2009):  CISE invites 

researchers to rethink the science and 

engineering of software - from the basic 

concepts of design, evolution, and adaptation to 

advanced systems that seamlessly integrate 

human and computational capabilities…. 

http://cise.nsf.gov/


Major Themes

 We’re facing demands for new kinds of systems

 Software is somehow at heart of phenomenon

 Conventional assumptions, concepts, methods, 
and tools are somehow fundamentally inadequate 

 Radically perspectives now needed to succeed



SEI Conclusion

 Need to shift our perspective

 how we characterize the problems we face

 new ideas on how to address them

 New perspectives will be arise from work at intersection 

of normal SE & other disciplines: 

 microeconomics, biology, city planning, anthropology, etc

 fields concerned with people as well as with coherence in the 

context of scale and complexity.



NSF “Rethinking Software” 2009

 CISE seeks ground-breaking, transformative research that will produce 
fundamentally new ways of thinking about how to develop, sustain, and 
reason about software, both during its design and deployment

 Such research will articulate new research challenges that cannot be 
addressed with existing software concepts, methods and tools

 CISE will [place] a premium on … proposals that push the frontiers of 
software research [and] cultivate partnerships between traditional 
software researchers and those from other areas within and outside of 
computing 



This Talk

 Succeeds if it encourages conversation

 Will leave more questions than answers

 Body of talk

 Survey of major ideas in SEI report

 Personal reflection: software & systems engineering

 What of components in ultra-large-scale systems?



SEI Report is Radical at its Core

 Questions engineering paradigm dating to 1968 

NATO report: we aim to be engineering discipline, 

connoting tight, centralized control over design, 

development, and operation of SW & systems

 Key idea: in the largest scale human–built and 

natural systems engineering is often not source 

of effective organization



Examples

 Electrical and water systems are engineered, but 
cities generally are not—although their forms 
are regulated by natural and imposed constraints

 Firms are engineered, but the structure of the 
economy is not—although it is highly regulated

 Ecosystems exhibit high degrees of complexity 
and organization, but not through engineering



Change in Perspective

 From direct satisfaction of coherent requirements by top-

down, centralized engineering planning & control 

– which is how we view software development today –

 To indirect satisficing of conflicting requirements by the 

regulation of complex, decentralized systems



Analogies

 Cities vs Buildings

 Socio-Technical Ecosystems

 Economies





Cities vs. Buildings

 Producing a city not a scaled-up version of producing a building

 Cities not conceived, built, or changed by single organization or group

 Emerge from regulated actions of individuals acting locally over time

 Regulatory mechanisms include
 government organizations and policies 

 building codes, zoning laws, city planning

 economic forces and incentives

 available infrastructure systems

 ULS systems should be thought of as more like cities than 
buildings, and should be developed accordingly



Socio-Technical Ecosystems

 ULS systems are more like ecosystems

 Dynamic communities of interdependent and 

competing organisms (people, organizations, 

sectors) in complex & changing environments

 Complex, dynamic, evolving, decentralized, 

hard-to-predict, difficult to monitor, niches, 

robustness, survivability, adaptability, health, …

 What are the software issues for such ecosystems?



Economies

 ULS systems more like economies than firms

 Competition for resources is inherent

 Decentralization of decision-making control

 Regulations, incentives, and mechanisms 

 Macro measures of overall performance

 Evolution of frameworks over time



Structure of the SEI Argument

 Distinguishing characteristics of ULS systems

 Major research challenges posed by ULS systems

 Seven proposed research areas for ULS systems



Characteristics of ULS Systems

 Decentralization in fundamental dimensions

 Conflicting, unknown, & diverse requirements

 Continuous evolution and deployment

 Heterogeneous, inconsistent, changing elements

 Deep erosion of the people-system boundary

 Failure normal & frequent, not rare & abnornal



Challenges Posed by ULS Systems

 Design and evolution

 Orchestration and control

 Monitoring and assessment



Design and Evolution

 Example: economics and industry structure

 Structure industrial ecosystems and harness their 

capabilities and motivations to find high-value 

regions in complex problem and design spaces

 Align technical architectures with economics 

and social dynamics of ULS system evolution



Design and Evolution

 Co-existence of conflicting requirements

 Modeling and analysis of social interaction 

 Governance mechanisms and processes

 Shared major infrastructure systems & services

 Integration & assurance across major boundaries



Orchestration

 How to maintain reasonable harmony among 

the components of vast and complex systems, 

under conflicting goals of self-interested parties

 adaptation to users and contexts

 enabling of user-controlled orchestration

 design & execution of policies, rules & forces

 online continuous updating of system elements



Monitoring & Assessment

 Monitor, assess, and, to extent possible, manage 

overall state, behavior, health, and well being

 Scale, decentralization, distribution, heterogeneity 

pose big challenges to monitoring and assessment

 Macro-metrics, like GDP or unemployment rate?

 Address well being of the human, organizational, 

economic, and business elements of ULS systems 

because they are essential parts of these systems



Breaking Traditional Assumptions

 The problem to be solved must be understood

 Requirements must be known before construction

 Conflicts must be resolved before construction

 Tradeoffs, once made, are considered stable

 Improvements are made at discrete intervals

 The effects of changes can be predicted well

 Configuration is accurate & tightly controlled

 Components & users are fairly homogeneous



Breaking Traditional Assumptions

 People are just users of the system

 Social interactions not particularly relevant

 Failures are abnormal, undesirable & infrequent

 Defects can be detected and removed

 A prime contractor & integral supply chain is 

responsible for system development & operation



Research Agenda

 Human Interaction

 Computational Emergence

 Design

 Computational Engineering

 Adaptive System Infrastructure

 Adaptable and Predictable System Quality

 Policy, Acquisition, and Management



Human Interaction

 Devise ways for anthropologists, sociologists, & 

other social scientists to conduct detailed socio-

technical analyses of user interactions in the field, 

to better understand how to construct and evolve 

ULS socio-technical ecosystems

 Modeling users and user communities

 Fostering non-competitive social interaction

 Context-aware assistive computing



Computational Emergence

 Devise methods and tools based on economics 

and game theory (e.g., mechanism design) to 

promote globally optimal ULS system behavior 

despite presence of many self-interested parties

 Explore metaheuristics and digital evolution to 

augment cognitive limits of human designers

 See work of Wallnau et al., on SEI ULS site, for 

work in algorithmic mechanism design



Design

 Design of all levels of ULS systems: e.g., not 
only of software artifacts but organizations, 
social networks, economic structures, whole 
development ecosystems

 Exploit concepts of design rules and evolution 
by value-seeking, highly decentralized, complex 
adaptive systems (e.g., work of Baldwin/Clark)

 Assimilation of diverse complex components 
into architecturally coherent ULS systems



Computational Engineering

 Improve the expressiveness of representations to 
accommodate semantic diversity of many languages 

 Provide automated support for computing the 
evolving behavior of components & compositions

 Develop methods of assurance and certification to 
address need for high assurance of quality attributes 
in ULS systems



Adaptive System Infrastructure

 Development environments and runtime platforms 

to support decentralized development, analysis, 

governance, evolution of ULS systems 

 Evolutionary development & deployment of ULS 

systems in deployment environments

 View-based evolution, through key abstractions



Adaptable & Predictable System Quality

 Devise ways to maintain quality in a ULS system 

in the face of continuous change, failures, and 

attacks 

 Develop approaches to identify, predict, and 

control system health appropriate given the scale 

of ULS systems

 Security, trust and resiliency at ultra-large-scale



Policy, Acquisition & Management

 Transform government acquisition policies and 

processes to accommodate rapid and continuous 

evolution of ULS systems 

 Treat suppliers, supply chains & industrial 

ecosystems as intrinsic and essential components 

of ULS systems



Capabilities & Mission Impact

 Common operating picture across ULS systems

 Survivability under failure, disaster & major attacks

 Rapid reactive fielding of new capabilities at scale

 Dynamic adaptation to changing environments

 Secure sharing across governments & industry

 Combining right information with local context

 Unprecedented performance in complex missions



Mission Domains

 Health Care

 Energy

 Defense

 Transportation

 Finance, etc.



A Personal Reflection

 Group struggled to maintain focus on software

element of ULS systems, given the pull of deep, 

interesting, and fundamental broader systems issues

 Expertise of group mainly in software and IT, 

not in systems engineering 

 Something going on that we need to understand



Tension Clear in Words we Used

 SEI: ―We require a broad new conception of 

both the nature of such systems and new ideas 

for how to develop them.‖

 NSF: ― … advanced systems that seamlessly 

integrate human & computational capabilities.‖

 Software Engineering vs Systems Engineering



Traditional Systems Engineering View

 Systems engineers

 Determine system requirements & manage tradeoffs

 Derive and partition technical specifications

 Allocate specifications to component disciplinary groups

 Responsible for system integration and assurance

 Software as sub-component of a system

 Software engineers receive component specifications

 Responsible for producing implementations to spec

 And for providing assurances to systems engineers
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Doesn’t Work Well for ULS Systems

 All manner of function, risk & complexity 
forced into software components of systems

 ―Software is soft‖ & so can accommodate all 
manner of late-breaking epiphanies/problems, 
right?

 Software then gets blamed for system failures, 
whether in procurement, operation, or evolution 
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Seeing Different Parts of Elephant

www.biokemi.org 



Problem

 Issues traditionally handled by systems engineering 

now in domain of experts in software/computation

 System-level requirements

 Cyber-enabled system architectures 

 Economic, social, human factors issues & methods

 Software engineering not set to address these issues

 Traditional systems engineering not well set up to 

handle complex software and computational issues



Thus Two Distinct, Related Issues

 Transition from conventional to cyber systems, 
challenging both software & systems engineering 

 Transition from conventional to ULS systems, 
challenging engineering perspectives altogether

 Software/IT driving both transitions

 Principal enabler of new class of ULS systems

 Dominant technical concern at the system level



Where Do We Go From Here?

 We really do need to rethink software research

 New synthesis of system & software engineering

 Systems = people + IT + hardware + physical world + 
economics… integrated by & performing computations

 Look beyond traditional engineering for sources of evolving 
structure, function and quality

 Find news ways to support conception, realization, operation, 
sustainment & evolution of ULS Cyber-Physical-Social Systems



Conversation: Implications for Components? 



INCOSE Definition

 Systems Engineering is an interdisciplinary approach and means 
to enable the realization of successful systems. It focuses on 
defining customer needs and required functionality early in the 
development cycle, documenting requirements, then proceeding 
with design synthesis and system validation while considering the 
complete problem… Systems Engineering integrates all the 
disciplines and specialty groups into a team effort forming a 
structured development process that proceeds from concept to 
production to operation. Systems Engineering considers both 
the business and the technical needs of all customers with the 
goal of providing a quality product that meets the user needs.

 http://www.incose.org

http://www.incose.org/


NSF Workshop

 For example, the scale and distributed nature of the systems now being envisioned 
suggests the need for significant changes in traditional views of ideal software 
development. While tight, centralized managerial and engineering control of 
development based on unrestricted access to artifacts and processes will arguably 
continue to be vital at the component level, for instance, the software that runs large 
systems increasingly will be produced by, and will operate within, distributed socio-
technical ecosystems, not all of whose participants have naturally shared interests. The 
cost and performance of the resulting systems will depend not only on traditional 
controls, but on the organization, regulation, analysis, and evolution of networks of 
several kinds: Software components, sometimes delivered as services, connected into 
architectures that cross organizational boundaries, interacting over communication networks; 
technical decisions connected by networks of constraints and objectives; development 
activities connected into networks of tasks and processes; arguments about design 
properties of components, and bodies of supporting evidence, connected into 
dependability cases; people connected in social networks; organizations connected in 
economic, contract, trust, and transaction networks. To the extent that the cost and quality of 
software, and thus systems, depends on the structure and performance of diverse 
networks, then finding effective methods for analyzing, organizing, regulating, and 
evolving them becomes a central concern in software engineering. 



Maier’s Systems-of-Systems

 Operational independence of elements

 Managerial independence of elements 

 Evolutionary development

 Emergent behavior

 Geographic distribution

 His virtual systems of systems closest to ULS systems:
Virtual systems lack a central management authority. Indeed, they lack 
a centrally agreed upon purpose ... Large scale behavior emerges, and 
may be desirable, but the super-system must rely upon relatively invisible 
mechanisms to maintain it.


