
John McHugh, Ulfar Erlingsson 

Data Structures for IPv6 
Network Traffic Analysis 

Using Sets and Bags 



The nature of  the problem 
  IPv4 has 232 possible addresses, IPv6 has 2128. 

  IPv4 sets can be realized as bit arrays. (0.5GB) 

  IPv4 bags can be realized as sparse arrays if  
  reasonably good locality is present in the data 

  an efficient lookup structure is used 

  Current SiLK implementations work reasonably 
well, but can be improved using 
  block allocation strategies, 
  adaptive counter sizes, but 

  that is a story for another day 



IPv6 is not business as usual 
  Bit arrays and pointer based sparse arrays are 

infeasible for IPv6 
  Too many pointer levels to reach the real data 
  Don’t know anything about possible locality leverage 

  This talk will look at several alternatives. 
  Tree representations 

  Hash based representations 
  Bloom filters 

  Perfect Hashes 

  Cukcoo Hashes 

  Column oriented databases 



Requirements 
  We impose stronger requirements that those 

imposed by the current SiLK implementation. 
  Constant time access and insertion 
  Indexing by composite quantities (connections, 

services, etc.) 

  The first comes from a desire to be able to build 
sets and bags in real time and to use sets for 
filtering in real time (outside SiLK). 

  The second is motivated by some of  our 
visualization needs for connection bundles and the 
like.  



More Requirements 
  We want to be able to do the usual set and bag 

operations with reasonable efficiency. 
  We do not anticipate real time requirements for set 

union, bag add and inversion, etc. 

  We would like to be open ended in the type of  data 
stored in bags. 
  Within the current structure, we have implemented 

“time bags” in which the payload is first and last seen 
epoch times. 

  We also have index bags using powerset bitmaps 

  User defined payloads at the library level would be 
useful. 



General considerations 
  Index representation 

  Current sets / bags use implicit representations for 
the index sets 

  All the replacements will require explicit index set 
representation 

  Keys require space in the tables or in auxiliary 
storage. 

  Operations 
  Set and bag operations generally require sorted index 

lists imposing a potential O(N log(N)) operation on 
the N actual keys of  each list. 

  With sorted keys, the operations are O(N) in the total 
number of  operand keys in general. 



Trees 
  SiLK uses red /  black trees for a number of  

purposes. 
  Lookup and insert operations are O(log(N)) 
  About 2 pointers / entry so 50% space usage if  

pointer and entries are same size 

  Inherently sorted, so operations are O(N) 
  Marginally useful for real time. 

  Could be adapted to arbitrary keys, index sets 

  Existing implementation will be used as a base for 
comparison 



Bloom Filters 
  Capture sets of  arbitrary keys 

  Bit array, indexed by multiple, independent, hash 
functions.  
  Entry:  N functions will set up to N bits. 

  Lookup: N bits set -> hit (or fp); <N bits set -> miss 

  No false negatives, bounded false positives 
  P(collision) function of  %bits set (parallel formulation of  

birthday paradox) 

  Optimum size can be calculated.  
  Typically a few bits per entry 

  Non invertible. 
  Separate key list must be maintained 



Bloom Filter Operations 
  Union (of  similar filters) is bitwise AND 

  Intersection can be approximated by bit operations 
  Risk of  higher FP rate on subsequent insertions / 

lookups 

  Other operations done on key lists with preliminary 
sort or by construction of  new filter from combined 
key list. 

  We have made a number of  Bloom filter additions 
to SiLK, primarily for filtering and extracting 
exemplars of  connectione, etc. 

  Probably not suited for general set operations.  



(Minimal) Perfect Hashes 
  A perfect has takes a key set into indexes with no 

collisions. 
  A minimal perfect hash takes a key set of  size N into 

0...N-1 with no collisions. 
  Fast O(C) lookup, no insertion 

  This can be useful when the key set is static and 
known, e.g. the IP addresses for a past month. 

  MPH function generators exist for up to several 
billion keys 
  We have experimented with using MPHs for MAC 

addresses in the Dartmouth wireless data to store 
them in the input / output index fields in SiLK.  



MPH Operations 
  Any operation that increases the key set size 

requires recomputing the hash function. But order 
preserving MPHs can be extended. 

  Operations on the index sets can be done on the 
sorted index lists. 

  Bag operations would require creation of  a new 
MPH and combination of  the existing bags into the 
new one. 

  The best usage of  MPHs with network data would 
be for activity indices for historical data 
  Hourly powerset index for month (750 bits/IP/month) 
  5 year monthly index (50 bits/IP) 
  etc. 



Cuckoo Hashes 
  Like Bloom filters. Uses multiple hashes, but 

resolve collisions by evicting and rehashing. 
  O(C) lookup, insertion.   
  Multiple hashes can be parallelized on multicore 

  Can guarantee 50% space utilization w 2 functions 

  above 90% with 4.  Usually better. 

  Must reallocate to a larger size table and rehash if  
a collision cycle occurs. 
  Estimating index set size will help. 
  Not an issue for non-real time as cost amortizes 



Cuckoo Hash Operations 
  In general, operations on sets and bags realized as 

Cuckoo hashes require construction of  the resulting 
table from scratch. 
  Depending on whether an ordered index list is 

needed, a sort may be involved, but operations such 
as union, addition, etc. can be done in O(N) time 
where N is the total number of  entries in all 
operands. 

  The high space utilization and constant time 
behavior appear to make cuckoo hashes a viable 
candidate for general purpose set and bag 
implementations at IPv6 and for composite keys 
such as connections.  



Experimental Results 
  Preliminary cuckoo hash results 

  Implemented using hash functions from  Arash 
Partow      -  http://www.partow.net modified for 
counted strings.  Arbitrary choice of  4 of  10 

  4 functions, table into 4 disjoint parts. 7 level BFS 
for collision resolution 

  Instrumentation includes eviction count, hash 
coverage, percent utilization 
  some backtrace when entry fails. 

  Table regenerates (size doubles) when not possible 
to add an entry.  Must copy and rehash contents. 



Trial cases 
  table with 224 entries. 

  hashed 224 random() keys 
  length 4, 8, 12, 16 bytes 

  looked at a number of  statistics 
  table utilization, evictions, regenerations 
  hash function coverage 



Statistics at regeneration 1 
  Key (data) 16 (8), size 16,777,216, - 2,071,506 evictions            

4 hash functions, 13,001,138 entries,  77.49% full 

  Key (data) 12 (8), size 16,777,216 - 2,032,597 evictions       
4 hash functions, 12,982,761 entries,  77.38% full 

  Key (data) 8 (8), size 16,777,216 - 2,300,169 evictions             
4 hash functions, 13,089,848 entries,  78.02% full 

  Key (data) 4 (8), size 16,777,216, - 1,503,281 evictions              
4 hash functions, 9,312,033 entries,  55.50% full 

               



Coverage at regeneration 1 
  16 byte keys: 16,282,508 of  16,777,216 97.05%  

  Hash[0] 4,070,540 of  4,194,304 97.05% 
  Hash[1] 4,070,635 of  4,194,304 97.05% 
  Hash[2] 4,070,965 of  4,194,304 97.06% 
  Hash[3] 4,070,368 of  4,194,304 97.05% 

  12 and 8 byte keys in 95%+ range 

  4 byte keys: 12,121,248 of  16,777,216 72.25%  
  Hash[0] 3,860,727 of  4,194,304 92.05% 
  Hash[1]    583,344 of  4,194,304 13.91% 
  Hash[2] 3,816,732 of  4,194,304 91.00% 
  Hash[3] 3,860,445 of  4,194,304 92.04% 



What does it mean? 
  Theory says that we should expect table loads in 

the 95% range, not upper 70s 
  May have a problem in the free space finder as it 

seems to terminate on graph cycles. 

  The hash coverage indicates that the low bits of, at 
least, hash(2) are not what we want. Don’t yet know 
if  distributions are uniform. 

  Nonetheless, the results are encouraging. 



Coda: Column Oriented 
Databases 

  Google uses a distributed database technology 
(Bigtable) in which entries are stored in columns, 
rather than in rows.  It is claimed to offer high 
performance for datasets with billions of  rows and 
thousands of  columns. 
  The system can be distributed over thousands of  

servers, allowing wide distribution of  data and 
processing. 

  Sparse columns are efficiently handled using Bloom 
filters to identify non empty rows. 

  This type of  organization would appear to be suited 
for storing massive amounts of  NetFlow and similar 
data.  
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