{1280.0.00)

Data Structures for IPv6

Network Traffic Analysis
Using Sets and Bags

John McHugh, Ulfar Erlingsson




The nature of the problem

® |Pv4 has 232 possible addresses, |IPv6 has 2128,
® |Pv4 sets can be realized as bit arrays. (0.5GB)

® |[Pv4 bags can be realized as sparse arrays if
® reasonably good locality is present in the data
® an efficient lookup structure is used

® Current SiLK implementations work reasonably
well, but can be improved using

® block allocation strategies,

® adaptive counter sizes, but
at is a story for another day




|IPvo IS not business as usual

® Bit arrays and pointer based sparse arrays are
Infeasible for [Pv6

® Joo many pointer levels to reach the real data
® Don’t know anything about possible locality leverage

® This talk will look at several alternatives.
® Tree representations

® Hash based representations
® Bloom filters
® Perfect Hashes
® Cukcoo Hashes

olumn oriented databases




Requirements

® We impose stronger requirements that those
Imposed by the current SiLK implementation.
® Constant time access and insertion

® |ndexing by composite quantities (connections,
services, etc.)

® The first comes from a desire to be able to build
sets and bags in real time and to use sets for
filtering in real time (outside SiLK).

® The second Is motivated by some of our
visualization needs for connection bundles and the




More Requirements

®* We want to be able to do the usual set and bag
operations with reasonable efficiency.

e We do not anticipate real time requirements for set
union, bag add and inversion, etc.

* We would like to be open ended in the type of data
stored in bags.

e Within the current structure, we have implemented
“time bags” in which the payload is first and last seen
epoch times.

® We also have index bags using powerset bitmaps
® User defined payloads at the library level would be




General considerations

®* |ndex representation

® Current sets / bags use implicit representations for
the index sets

e All the replacements will require explicit index set
representation

® Keys require space in the tables or in auxiliary
storage.

® QOperations

® Set and bag operations generally require sorted index
lists imposing a potential O(N log(N)) operation on
the N actual keys of each list.

orted keys, the operations




Trees

® SiLK uses red / black trees for a number of
PUrposSes.

Lookup and insert operations are O(log(N))

About 2 pointers / entry so 509, space usage if
pointer and entries are same size

Inherently sorted, so operations are O(N)
Marginally useful for real time.
Could be adapted to arbitrary keys, index sets

® Existing implementation will be used as a base for
comparison




Bloom Filters

® Capture sets of arbitrary keys

® Bit array, indexed by multiple, independent, hash
functions.

® Entry: N functions will set up to N bits.
® [ookup: N bits set -> hit (or fp); <N bits set -> miss
® No false negatives, bounded false positives

® P(collision) function of %bits set (parallel formulation of
birthday paradox)

® Optimum size can be calculated.
® Typically a few bits per entry
® Non invertible.
© Separate key list must be maintained




Bloom Filter Operations

Union (of similar filters) is bitwise AND

Intersection can be approximated by bit operations

® Risk of higher FP rate on subsequent insertions /
lookups

Other operations done on key lists with preliminary
f(ortl_oc[ by construction of new filter from combined
ey list.

We have made a number of Bloom filter additions
to SILK, primarily for filtering and extracting
exemplars of connectione, etc.

Probably not suited for general set operations.




(Minimal) Perfect Hashes

® A perfect has takes a key set into indexes with no
collisions.

¢ A minimal perfect hash takes a key set of size N into
O...N-1 with no collisions.

e Fast O(C) lookup, no insertion

® This can be useful when the key set is static and
known, e.g. the |P addresses for a past month.

® MPH function generators exist for up to several
billion keys

® We have experimented with using MPHs for MAC
addresses in the Dartmouth wireless data to store
them in the input / output index fields in SiL




MPH Operations

Any operation that increases the key set size
requires recomputing the hash function. But order
preserving MPHs can be extended.

Operations on the index sets can be done on the
sorted index lists.

Bag operations would require creation of a new
MPH and combination of the existing bags into the
new one.

The best usage of MPHs with network data would
be for activity indices for historical data

® Hourly powerset index for month (750 bits/IP/month)
® 5 year monthly index (50 bits/IP)



Cuckoo Hashes

® [ike Bloom filters. Uses multiple hashes, but
resolve collisions by evicting and rehashing.
® O(C) lookup, insertion.
® Multiple hashes can be parallelized on multicore

® Can guarantee 509 space utilization w 2 functions
® above 909% with 4. Usually better.

® Must reallocate to a larger size table and rehash if
a collision cycle occurs.

® Estimating index set size will help.
® Not an issue for non-real time as cost amortizes




Cuckoo Hash Operations

® |n general, operations on sets and bags realized as
Cuckoo hashes require construction of the resulting

table from scratch.

® Depending on whether an ordered index list is
needed, a sort may be involved, but operations such
as union, addition, etc. can be done in O(N) time

where N is the total number of entries in all
operands.

® The high space utilization and constant time
behavior appear to make cuckoo hashes a viable

candidate for general purpose set and bag
Implementations at IPve and for composite keys

such as connections.




Experimental Results

Preliminary cuckoo hash results

Implemented using hash functions from Arash
Partow - http://www.partow.net modified for
counted strings. Arbitrary choice of 4 of 10

4 functions, table into 4 disjoint parts. 7 level BFS
for collision resolution

Instrumentation includes eviction count, hash
coverage, percent utilization

® some backtrace when entry fails.

Table regenerates (size doubles) when not possible
to add an entry. Must copy and rehash contents.




Trial cases

e table with 224 entries.

® hashed 224 random() keys
® |length 4, 8, 12, 16 bytes

® |ooked at a number of statistics

® table utilization, evictions, regenerations
® hash function coverage




Statistics at regeneration 1

* Key (data) 16 (8), size 16,777,216, - 2,071,506 evictions
4 hash functions, 13,001,138 entries, 77.499% full

e Key (data) 12 (8), size 16,777,216 - 2,032,597 evictions
4 hash functions, 12,982,761 entries, 77.389 full

e Key (data) 8 (8), size 16,777,216 - 2,300,169 evictions
4 hash functions, 13,089,848 entries, 78.029% full

* Key (data) 4 (8), size 16,777,216, - 1,503,281 evictions
4 hash functions, 9,312,033 entries, 55.509 full




Coverage at regeneration 1
® 16 byte keys: 16,282,508 of 16,777,216 97.05%

® Hash
® Hash
® Hash

0]

By
2]
® Hash[3

4,070, 540 of 4,194, 304 97. 05%
4,070,635 of 4,194,304 97.05%
4,070,965 of 4,194,304 97.06%

14,070,368 of 4,194,304 97.059%

e 12 and 8 byte keys in 959%+ range
® 4 byte keys: 12,121,248 of 16,777,216 72.25%,

® Hash
® Hash
® Hash
o

Hash|

0]

1]
2
3] 3,860,445 of 4,194,304 92.04%,

3, 860 727 of 4,194, 304 92. 05%
583,344 of 4,194,304 13.91%
3,816,732 of 4,194,304 91.00%




What does it mean?

® Theory says that we should expect table loads In
the 959% range, not upper 70s

¢ May have a problem in the free space finder as it
seems to terminate on graph cycles.

® The hash coverage indicates that the low bits of, at

least, hash(2) are not what we want. Don’t yet know
If distributions are uniform.

® Nonetheless, the results are encouraging.




Coda: Column Oriented
Databases

® Google uses a distributed database technology
(Bigtable) in which entries are stored in columns,
rather than in rows. It is claimed to offer high
performance for datasets with billions of rows and
thousands of columns.

® The system can be distributed over thousands of
servers, allowing wide distribution of data and
processing.

® Sparse columns are efficiently handled using Bloom
filters to identify non empty rows.

® This type of organization would appear to be suited
for storing massive amounts of NetFlow and similar




Acknowledgements

Department of Homeland Security under Contract
No. N66001-08-C-2032.

Ron McLeod of TARA
CA Labs
NSERC




