

Mitigating Network Events Through Structured Information Sharing

Patrick Cain

The Cooper-Cain Group, Inc pcain@coopercain.com

Roman Danyliw

cert.org

Outline

- The Problem and Challenge
- Standardization efforts in the IETF
- Anti-Phishing Working Group: An Example Solution
- Lessons Learned

RSACONFERENCE2007 The Problem and Challenge

Defining the Problem

- Philosophy
 - Ignore the politics of whether we should share data, or if people will actually do it...
 - ... and focus on the communities who want to share incident data
- Sharing data is the means, not the end goal
- Particular use-cases will scope:
 - What to do with the data?
 - What is the right data?
 - How to share the data?
 - With whom should it be shared?

Observations: Motivations

- The purpose of data sharing is security event mitigation
 - Timeliness is key to resolving ongoing activity
 - Retrospection is important to understanding trends
- Timeliness necessitates automation
 - Structured data -- defined semantics, protocols, failures, and errors
 - Ease of reporting -- integration with existing work-flow process
- Trending requires efficient archiving
 - Comparable structured data as above, but kept historically
 - Scalability may necessitate:
 - Aging deletion after some period of time
 - Aggregation derived and reduced data
 - Diversity in the observed data

Observations: Sharing Partners

- External parties may:
 - Not speak my language
 - Not have my level of expertise
 - Not have the same detection, collection, or remediate infrastructure
- External parties have different requirements for the data
 - Remediation source and target sites
 - Sufficient detail for making changes
 - Trending -- involved or interested 3rd parties (e.g., ISAC, Network Intelligence Services)
 - Aggregation, making fidelity less significant
 - Prosecution -- Law Enforcement Agencies (LEA)
 - Acquisition, custody, and retention issues
 - Research universities, labs, R&D efforts

Observations: Process

- The lowering the bar for participation will yield a greater number of participants
 - Readily available tools that support sharing
 - Lowering the threshold for the quality of accepted information
- Some privacy and confidentiality must be lost for some gain
 - The producer of the information must drive this trade-off
- A shared information model is more desirable than normalization.
- Standardized information models need to be flexible
 - Understanding about an incident grows as more information is collected or analyzed
 - Every incident is different, in some way
 - What constitutes an "incident" varies by organization

A Review of the Approaches

Current

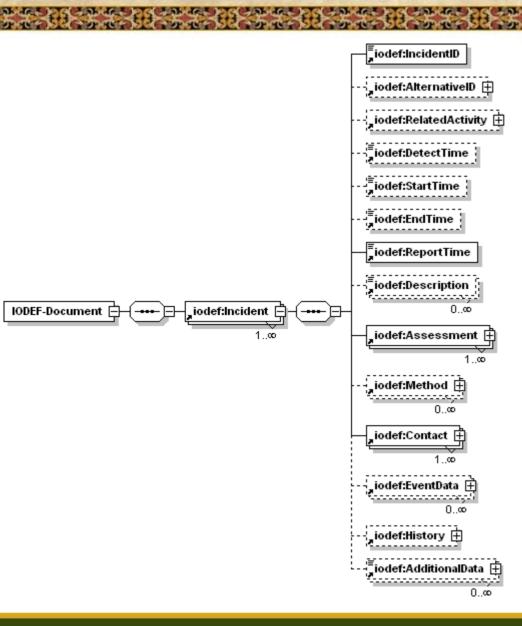
- Event is detected
- Event is reported
 - Reported to somebody
 - Reported to "correct" somebody
 - Maybe in the right language this time...
 - More info requested... (repeat)
 - Reported again... (repeat)
- Response started
- Attacker long gone

<u>Suggested</u>

- Get appropriate and correct data in one report
 - Sufficient data for use by the audience (e.g., investigation)
 - Standardize on a common framework with some flexibility on semantics and taxonomy
- Use an already understood format to enhance acceptance (if possible)
- Make it easy-to-use

Extended Incident Handling working group (INCH)

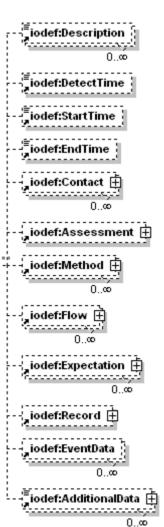
- Define a transport format to encode information commonly exchanged between Computer Security Incident Response Teams (CSIRTs)
 - Data relevant across administrative domains
- Incident Object Description Exchange Format (IODEF)
 - XML Schema
 - Mix of free-form text and enumerated values.
 - Recursive design reduces redundancy and obviates need for XML refs
 - Supports references rather than encapsulating the actual data
 - Ability to summarize and report the same information at different levels of detail
 - Incomplete for all purposes, but extensible


INCH WG: Assumptions

- Incidents are not IDS alarms
 - "Incidents are composed of events"
- Agnostic to specific incident taxonomies
 - "Your definition/threshold of an incident may be different than mine"
- Incidents are numbered and there is state kept about them
 - "Organizations assign incident IDs and have ticketing/handling/correlation systems that process them"
- Merely a wire format
 - "Sharing is different than storage and archiving"
- Incomplete information
 - "You may require more complete information than I need, can get, or have right now"

INCH WG: Status

- Status of the work
 - INCH WG has concluded
 - draft-ietf-inch-iodef-10 under review by the Security Area
 Director for standards track RFC publication
 - All other documents are now individual drafts
 - Limited implementations
- Further reading
 - Summary Website
 - http://www.cert.org/ietf/inch/
 - Email Archive
 - http://listserv.surfnet.nl/archives/inch.html


IODEF Data Model: Meta Data

- CSIRT operations
 - Incident identifiers
 - Contact information
- Internationalization
 - Various encodings
 - Translations
- Data handling labels
 - Sensitivity
 - Confidence
- Extensibility of attributes and adding new elements

IODEF Data Model: Core

- Timing information
- Enumeration of hosts or networks
 - e.g., IP addresses, ports, protocols, applications, etc.
- History and requested action
- Exploit and vulnerability references
- Impact expressed technically, financially, or by time
- Forensics information

Implementing IODEF

- Prearranged "profiles" between parties are required to define:
 - Minimally required information (i.e., required "optional" fields)
 - Semantics of weights (e.g., "low" vs. "high")
 - Extensions
- Data model is not completely machine-parsable
 - Text blobs
 - Unknown extensions
- Requires integration with existing incident handling system
 - IODEF does not readily capture internal workflow
 - Export and import filters are necessary to translate between IODEF and ticketing (correlation) system
 - Import = IODEF → [translator] → ticketing system
 - Export = Ticketing system → [translator] → IODEF

Implementing IODEF (2)

- IODEF integration is not merely data translation
 - Honoring meta-data (e.g., sensitivity labels)
 - Establishing trust infrastructure (e.g., key infrastructure)
- Transport considerations
 - Real-time Inter-network Defense (RID) protocol
 - Message semantics to IODEF
 - draft-moriarty-post-inch-rid-00*
 - SOAP wrapper for RID
 - Transport binding for RID over BEEP and HTTP/TLS
 - draft-moriarty-post-inch-rid-soap-00*

^{*} http://www.ietf.org/internet-drafts/{file-name}

Related Standards Work

IP Flow Information Export (IPFIX)

- Define a data model to describe IP flows and an associated protocol to exchange it
- Standardize "Netflow/flow/cflow/argus"
- Packet Sampling (PSAMP)
 - Extend the IPFIX data model to support packets
- Cross Registry Information Service Protocol (CRISP)
 - Structured and extensible "whois" query protocol
- Intrusion Detection (IDWG)
 - Standardized IDS alerts
 - Intrusion Detection Message Exchange Format (IDMEF)

An Example Solution

The APWG repository

The Anti-Phishing Research Group (APWG)

- An independent organization of ~2500 international corporate, individual, law enforcement, and research members
- It's goal is to disperse anti-phishing and anti-phraud information and experiences
- Hosts a repository of ~600,000 phish and fraud attempts since '03
 - Mostly email, some other; additional 80-90,000/month received
 - Anyone can report phishing/fraud attempts
 - Every 5 minutes a list of URLs to block is generated and distributed to many web browser blockers, spam filterers, and anti-viral vendors

The APWG Repository

- Phishing/Fraud Reports as Data In
 - Email
 - 'Real-time'
- Database
- Data Out
 - Statistics
 - The famous monthly report
 - Searches
 - To compare amongst brands
 - To gather information for investigations
 - Products
 - URLs-to-Block list

Phishing and Other Frauds ⁽²⁾

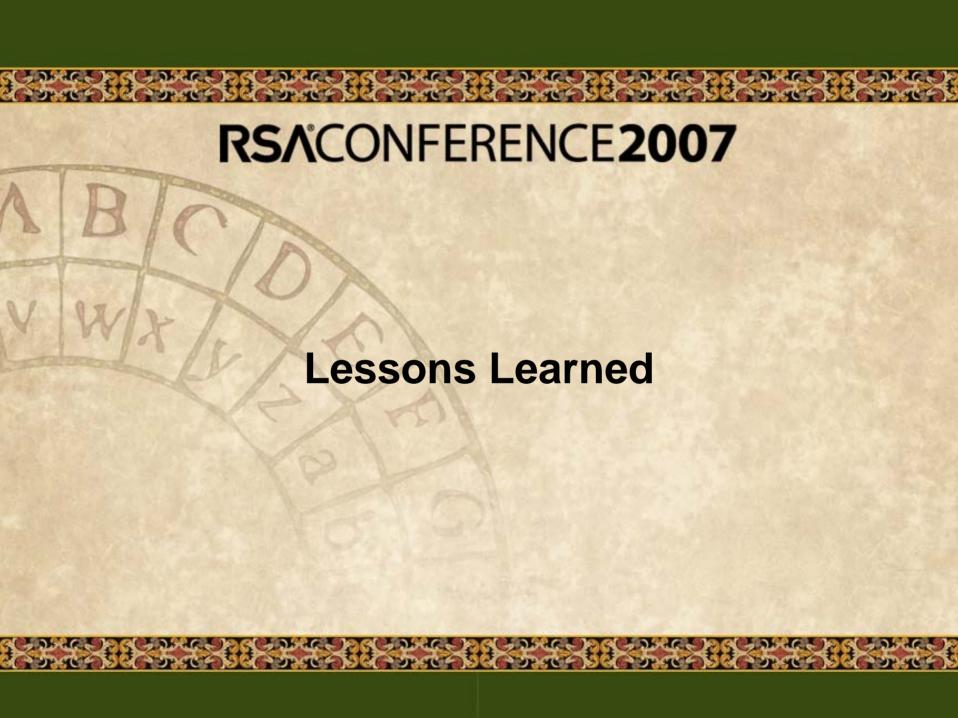
- Phishing-specific challenges:
 - The phished institution is always the last to know
 - Most victims are hooked in the first n hours, where 1<n<5</p>
- To { block | react | cry } requires quick reaction
 - How could reporters identify phishing sites easily and quickly so they get included in the URL block list?
 - Quickly -> automated, no humans
 - Easily → machine generated and processed

Concerns in a Solution

- How could we get quick acceptance?
 - Ease of use and reporting
 - Simple creating and data mining tools
 - Make it so *ALL* incident repositories accept the same format
- Make sure solution is expandable
 - Incidents evolve
- Quick implementation for reporters

A Solution?

- "Brew our own" ideas....
- The IETF defined an XML-based format to report incidents among CSIRTs! [IODEF]
- We created extensions to the IODEF format for phishing & crimeware
- Use the structured XML report to shorten the reported → URLlist time


PhraudReport Structure

- A Phishing or Phraud Report contains:
 - Type of Attack
 - Brand Name involved
 - Info about the Data Collection Site
 - How the attack was Detected
 - Forensic/Archived Data about the Attack
 - Lots of Comment Areas
 - Information about Related sites or attacks
 - Info about Email (Headers, Content, etc)

Does it work?

- The machine processing has been a big win
 - Incomplete reports can be dealt with automatically
 - Invalid reports can be rejected promptly
 - A URL shows up on the block list about 10 minutes after it is reported
- Some interoperability testing occurred
 - There is at least two implementations
 - Negotiation with other phish reporters is ongoing
 - U2 can send in XML reports (<u>report_iodef@antiphishing.org</u>)
- Can the same processing model work for other sharing projects?

```
<?xml version="1.0" encoding="UTF-8"?>
<IODEF-Document xmlns="urn:ietf:params:xml:ns:iodef-1.0" lang="en-US">
 <Incident purpose="reporting" restriction="default">
  <IncidentID name="internetidentity.com">192620</IncidentID>
  <ReportTime>2006-11-03T16:32:07-08:00</ReportTime>
  <Assessment>
   <Confidence rating="high" />
  </Assessment>
  <Contact type="organization" role="creator">
   <ContactName lang="en-US">Internet Identity</ContactName>
   <Timezone>-08:00</Timezone>
  </Contact>
  <EventData>
   <AdditionalData dtype="xml">
    <PhraudReport xmlns="urn:ietf:params:xml:ns:iodef-phish-1.0" FraudType="phishemail">
      <FraudParameter>http://www.suntrust.com.ibswebsuntrust.cmserver.minuer.cc/sc/welcome/confirm.cfm.htm/FraudParameter>
      <FraudedBrandName>SunTrust/FraudedBrandName>
      <LureSource>
       <System xmlns="urn:ietf:params:xml:ns:iodef-1.0" category="source">
        <Node>
          <Address>unknown</Address>
          <NodeName>unknown</NodeName>
        </Node>
       </System>
      </LureSource>
      <OriginatingSensor OriginatingSensorType="human">
       <FirstSeen>2006-11-02T17:51:22-08:00</FirstSeen>
       <System xmlns="urn:ietf:params:xml:ns:iodef-1.0">
        <Node>
          <NodeName>www.internetidentity.com</NodeName>
        </Node>
        <Description>InternetIdenitySHARC</Description>
       </System>
      </OriginatingSensor>
      <DCSite DCType="web">
       <DCSiteData DCSiteType="web">
        <SiteURL>http://www.suntrust.com.ibswebsuntrust.cmserver.minuer.cc/sc/welcome/confirm.cfm.htm</SiteURL>
       </DCSiteData>
      </DCSite>
    </PhraudReport>
   </AdditionalData>
  </EventData>
 </IODEF-Document>
```


What we learned...

- Writing a standard against a moving target is hard
- Target audience and platform remains ill-defined
- Presentation and update semantics are difficult
 - Reports get updated (a lot)
 - Many non-technical people look at reports
- Consensus on data model easier than the transport protocol
- Things are still missing
 - Common taxonomies and terminology
 - Completeness of forensics information

