CERT

CoBaSSA 2005

Best Practices for Secure Coding

© 2005 Carnegie Mellon University

Software Engineering Institute

Agenda
Strings
Common String Manipulation Errors

Mitigation Strategies

i

CERT 1

Strings

Comprise most of the data exchanged
between an end user and a software system

= command-line arguments
* environment variables
= console input

Software vulnerabllities and exploits are
caused by weaknesses In

» string representation
» string management
» string manipulation

——CFRT

Agenda

Strings
Common String Manipulation Errors

Mitigation Strategies

[‘-Mnli

CERT 1

Common String Manipulation Errors

Programming with C-style strings, in C or C++,
IS error prone.

Common errors Include

» Unbounded string copies
= Null-termination errors

* Truncation

» Improper data sanitization

—=—GERT

Unbounded String Copiles

Occur when data is copied from a unbounded
source to a fixed length character array

1. void main(void) {

2 char Password[80];

3. puts("'Enter 8 character password:"");
4

gets(Password);

—=—GERT

Copying and Concatenation

It Is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer

1. int main(int argc, char *argv[]) {
2 char name[2048];

3 strcpy(name, argv[1i]);:

4. strcat(name, " = ");
)

strcat(name, argv[2]):

6. }
iii CERT

C++ Unbounded Copy

Inputting more than 11 characters into following the
C++ program results in an out-of-bounds write:

1. #include <iostream.h>
int main() {
char buf|[12];

2

3

4. cin >> buf;
S cout << "echo: " << buf << endl;
6

-}

—=—GERT

Null-Termination Errors

Another common problem with C-style strings is a
faillure to properly null terminate

int main(int argc, char* argv|[]) {
char a[16];

char b[16]; Neither a[] nor b[] are
char c[32]; properly terminated

strncpy(a, ''0123456789abcdef", sizeof(a));
strncpy(b, '0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

—=——CERT

String Truncation

Functions that restrict the number of bytes are
often recommended to mitigate against buffer
overflow vulnerabilities

» strncpy() instead of strcpy()
= fgets() instead of gets()
= snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated

Truncation results in a loss of data, and In some
cases, to software vulnerabilities.

——CFRT

Write Outside Array Bounds

1. int main(int argc, char *argv[]) {
2. int i = 0; C
] Because C-style strings are character
3. char buff[128]; arrays, it is possible to perform an
4 char *argl = argv|1l]; | insecure string operation without
invoking a function
G
5. while (argl[i] '= "\0") {
6. buff[i] = argl[i];
7. 1++;
8. }
9. buff[i] = "\0";

10. printf("buff = %s\n", buff);
11. }

I

CERT

Agenda
Strings
Common String Manipulation Errors

Mitigation Strategies

Ml |

CERT 1

Mitigation Strategies

ISO/IEC “Security” TR 24731
Managed string library

Safe/Secure C++

l“n‘\l

| CERT 1

ISO/IEC TR 24731 Goals

Mitigate against

= Buffer overrun attacks
» Default protections associated with program-created
file

Do not produce unterminated strings

Do not unexpectedly truncate strings
Preserve the null terminated string data type
Support compile-time checking

Make failures obvious

Have a uniform pattern for the function parameters
and return type

——CFRT

ISO/IEC TR 24731 Example

int main(int argc, char* argv|[]) {
char a[1l6];

char b[16]; strcpy_s() fails and generates
char c[24]; a runtime constraint error

ST

strcpy_s(a, sizeof(a), '"0123456789abcde’);
strcpy_s(b, sizeof(b), '"0123456789abcde™);

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

—=——CERT

ISO/IEC TR 24731 Summary

Already available in Microsoft Visual C++ 2005
(being released today, November 7!)

~unctions are still capable of overflowing a
ouffer if the maximum length of the destination
ouffer is incorrectly specified

The ISO/IEC TR 24731 functions

= are not “fool proof”

= useful in
— preventive maintenance
— legacy system modernization

—= CERT

Managed Strings

Manage strings dynamically

= allocate buffers
* resize as additional memory is required

Managed string operations guarantee that

= strings operations cannot result in a buffer overflow
» data is not discarded

= strings are properly terminated (strings may or may not
be null terminated internally)

Disadvantages

= unlimited can exhaust memory and be used in denial-
of-service attacks

» performance overhead
" mitigation expensive

——CFRT

Software Production Supply Chain

Compiler
Producers
* 100+ d . .
Component vendors Application
Producers Producers
Quality Tools «Millions of programmers
Including but not limited to: Producers
*Plum Hall — Test Suites
*Edison Design - Parsers
*Crescent Bay — Optimizers Including but not limited to:
*Dinkumware - Libraries -Polyspace
*Coverity
*Fortify
*Secure Software
*PC-Lint

CERT

Safe/Secure C++

Commercial offering being developed by Plum
Hall, Inc.

Build upon today’s compiler and optimizer
Match concepts to programmer intuition

Careless C/C++ code runs safely but probably
slower

Performance improved by the 80/20 rule,
at compile-time, at link-time, at run-time 1

——CFRT

Sample Function

void hbAssignCodes(
Int *code, unsigned char *length,
int minLen, Int maxLen, i1nt alphaSize) {
int n, vec, 1;
vec = O;
for (n = minLen; n <= maxLen; n++) {
for (1 = 0; 1 < alphaSize; 1++)
iIT (length[i1] == n) { code[1] = vec; vec++; };

vec <<= 1;

e

CERT

Step 1. Label Fetch and Store

void hbAssignCodes(
Int *code, unsigned char *length,
iInt minLen, Int maxLen, i1nt alphaSize) {
int n, vec, 1;
vec = O;
for (n = minLen; n <= maxLen; n++) {
for (1 = 0; 1 < alphaSize; 1++)

iIT (length[i] == n) { code[1] = vec; vec++; };

S NN
}

1 | SUB4 length; | | i SUB4(code)

Il

Step 2: Look For { counted } Loops

void hbAssignCodes(
int *code, unsigned char *length,

int minLen, 1nt maxLen, iInt alphaSize) {

int n, vec, 1;

{ counted-plus } { counted-plus }

vec = 0;
for (n = minLen; n <= maxLen; n++) SZZZ////
for (i = 0; i < alphaSize; i++)

iIT (length[i] == n) { code[1] = vec; vec++; };

vec <<= 1;

il

Step 3: Look for Limits

void hbAssignCodes(

int *code, unsigned char *length,

int
int
vec

for

for (1 = 0; 1 < alphaSize;

minLen, Int maxLen, Int alphaSize) {

n, vec, 1,
:O;

(n = minLen; n <= maxLen; n++) {

iIT (length[i] == n) { code[1] = vec; vec++; };

alphaSize SUB5(length)

1++)

AN

alphaSize SUB5(length)

il

CERT

Step 4. New Signatures

void hbAssignCodes(
Int *code, unsigned char *length,

iInt minLen, Int maxLen, Int alphaSize

)

hbAssignCodes(code; length;
minLen; maxLen;
alphaSize SuUB4(length),
SUB4(code)

)

—=——CERT

Step 5. Evaluate Code in Context

unsigned char len [6][258];
int code [6][258];

alphaSize SUB5(len) so alphaSize SUB5(length)
alphaSize SUB5(len) so alphaSize SUB5(code)

hbAssignCodes(code; length;
minLen; maxLen;
alphaSize SuUB4(length),
SUB4 (code)

‘m‘l |

CERT

Bounds-checking Example

memcpy(targ, src, num)

becomes

memcpy_ s(targ, tsize, src, num)

The target size of targ must be determined so
It can be Inserted as a new argument.

—=—GERT

Summary

ISO/IEC TR 24731 good approach for
remediation

Managed strings good approach for new
development that is not performance critical

Analysis techniques based solely on detection
and mitigation of dangerous functions is targeted
at the wrong level of abstraction

Safe-secure C/C++ promising technology for
eliminating buffer overflows and improving
security of C/C++ programs 1

—= CERT

For More Information

Visit the CERT® web site
http://www.cert.org/

Contact Presenter

Robert C. Seacord rcs@cert.org
Jason Rafail rafail@cert.org

Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

.

CERT

© 2005 Carnegie Mellon University

— Software Engineering Institute

Data Type

Managed strings use an opaque data type

struct string mx;

typedef struct string mx *string._m

The representation of this type is

= private
* Implementation specific

Wl

| CERT 1

Error Handling

Return status code is uniformly provided in the
function return value

Prevents nesting of function calls but
consequently programmers less likely to avoid
status checking

Otherwise, the managed string library uses the
same constraint handling mechanism as
TR 24731

Failure to allocate memory, for example, Is
treated as a constraint violation
CERT

ff‘nuj

Create / Retrieve String Example

errno_t retValue;
char *cstr; // c style string
string_m strl = NULL;

iIT (retvalue = strcreate m(&strl, "hello, world")) {
fprintf(stderr, "Error %d from strcreate m.\n", retValue);

}
else { // print string

IT (retvalue = getstr_m(&cstr, strl)) {
fprintf(stderr, "error %d from getstr_m.\n", retValue);

+
printf(C"(%s)\n", cstr);
free(cstr); // free duplicate string

}

—=——CERT

Data Sanitization

The managed string library provides a
mechanism for dealing with data sanitization
by (optionally) ensuring that all characters in a
string belong to a predefined set of “safe”
characters.

errno_t setcharset(
string m s,

const string m safeset

——CFRT

Performance Breakthrough,
Combining Static and Dynamic

SPEC case SSCC penalty SSCC penalty
(raw) (adjusted)

164.gz1p 11. % 1.6%
176.gcc 5.7% 0.9%
181.mct 5.4% 0.8%
197 . parser 24. % 5.8%
256.bzip2 0.0% 0.0%
300.twolf 8.7% 1.8%
AVERAGE 9.3% 1.8%

i

CERT 1

