A
N @

_ Instrumented Fuzz
_Testlng using AIR

Integers
_
y
w

Will Dormann [wd@cert.org]
Robert Seacord [rcs@cert.org]

—== Software Engineering Institute | CarnegieMellon ©2010 Carnegie Mellon University

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 2

AIR Integers
mplementation
Performance
~uzz Testing
Experiment
Future Work
Summary

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 3

As-If Infinitely Ranged Integers

The purpose of the AIR integer model is to either

« produce a value which is equivalent to a value that would
have been obtained using infinitely ranged integers

 result in a runtime constraint violation.
This model is generally applied to both signed and

unsigned integers but may be enabled or disabled
per compilation unit.

CERT ‘ === Software Engineering Institute | CarnegieMellon 4

AIR Integer Model

In the AIR integer model, when an observation point
IS reached, and before any critical undefined
behavior occurs, if traps have not been disabled, and
If no traps have been raised, then any integer value
In the output is correctly represented (“as if infinitely
ranged”).

An observation point occurs at an output, including a
volatile object access.

Traps are implemented using either

« existing hardware traps (such as divide-by-zero)
« by invoking a runtime-constraint handler

CERT ‘ === Software Engineering Institute | CarnegieMellon 5

Observation Points

AIR Integers do not require where an exception is
raised every time there is an integer overflow or
truncation error.

It is acceptable to delay catching an incorrectly
represented value until an observation point is
reached just before it either

o affects the output

 causes a critical undefined behavior (as defined by the
C1X Analyzability Annex).

This model improves the ability of compilers to
optimize, without sacrificing safety and security.

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 6

Configuration

Requirements

A patched version of GCC 4.4.0 or GCC 4.5.0 to insert
the overflow and truncation checks

« A paiched stdlib.h file to include the runtime-
constraint handler definitions from ISO/IEC TR 24731-1

 The libconstraint library, which defines the
constraint handlers used by AIR Integers

All of this is available from
http://www.cert.orqg/secure-coding/inteqgralsecurity.html

CERT ‘ === Software Engineering Institute | CarnegieMellon 7

Using AIR Integers 1

AIR Integers do not require changes to source code
and can be used with pre-existing systems.

After configuring a system properly, AlR Integers can
be used simply by recompiling a program with the
following flags:

gce —-std=c99 -D__ STDC_WANT_LIB EXT
—fcheck-overflow=n -fcheck-truncation
—lconstraint -o prog prog.c

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 8

Using AIR Integers 2

-D STDC WANT LIB EXT enables the
constraint handler definitions in stdlib.h

—fcheck-overflow=n enables overflow checking

« n=0 — Disable overflow checks (default)
« n=1— Enable signed overflow checks
« n=2 — Enable signed/unsigned overflow checks

—fcheck-truncation enables truncation checks

—lconstraint links the constraint handler library

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 9

Constraint Handling

Constraint handlers are defined in the C1X normative
Annex K “Bounds-checking interfaces” and by
ISO/IEC TR 24731-1 to allow functions to trap when
their runtime constraints are violated.

Constraint handlers have the following type.
typedef void (*constraint_ handler_ t) (
const char * restrict msq,
void * restrict ptr,

errno t error

) ;

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 10

Constraint Handling 1

AIR Integers uses the custom libconstraint

library to define and implement simple constraint

handlers to be called when overflow or truncation
OCCUrs.

 abort_handler_ s :Indicate error on stderr and abort
« ignore_handler_ s : Continue execution as normal
- notify handler_ s :Indicate error on stderr and continue

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon "

Constraint Handling 2

The default handler is notify handler_s, which
prints errors like

*** Runtime constraint wviolated:

Signed integer overflow in addition at address 0x806dcde

The TR 24731-1 defined function
set constraint handler s, can be used to

register a different handler at runtime.

Custom constraint handlers can also be defined and
registered at runtime.

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 12

AIR Integers
mplementation
Performance
~uzz Testing
Experiment
Future Work
Summary

—— . . . : 13
CERT ‘ === Software Engineering Institute | CarnegieMellon

Testing vs. Runtime Protection
AIR integers can be used in both dynamic analysis and as a
runtime protection scheme.

There is a well understood tradeoff between runtime overhead
and development costs.

« Providing correctness “guarantees” requires extensive testing and
excruciating attention to detail

« Development costs can be decreased by adding runtime protection
mechanisms however this will

— increase the size of the executable

— Introduce runtime overhead

« Runtime protection mechanisms still require a viable recovery
strategy

 ltis reasonable to provide some level of assurance combined with
runtime checks, but you don’t want to pay twice

CERT ‘ === Software Engineering Institute | CarnegieMellon 14

Benchmark Tests

To evaluate the performance of AIR Integers, runs of

the integer portion of the SPEC CPU2006 benchmark
were performed.

This benchmark evaluates compilers by compiling

and running multiple packages, such as bzip2, gcc,
and libquantum.

CERT ‘ === Software Engineering Institute | CarnegieMellon 15

Performance Results

The ratios are measured against a consistent
standard. Higher ratios reflect better performance.

Optimization Control AIR Integer
Level Ratio Ratio

00 4.93 4.65

O1 7.28 6.90

02 7.45 7.08

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

Percent

Overhead

These ratios summarize the size of the runtime
penalty imposed by using AIR Integers.

16

Performance Analysis

The benchmark test with AIR Integers was performed
with full overflow and truncation checking enabled.

However, actual calls to constraint handlers were
replaced by nop instructions (ideally, these should be
call instructions because nop is shorter resulting in

better code density).

This avoids confounding the performance overhead
of the checks with the overhead of constraint
handlers.

CERT ‘ === Software Engineering Institute | CarnegieMellon 17

AIR Integers
mplementation
Performance

~uzz Testing
Experiment
Future Work
Summary

—— . . . : 18
CERT ‘ === Software Engineering Institute | CarnegieMellon

Smart (Generational) Fuzzing

Requirements:

« In-depth knowledge of fuzzing target
 Specialized tools (e.g. Dranzer)
« Smart People

Results:

 Less crash analysis required
« Little duplication in results

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

19

Dumb (Mutation) Fuzzing

Requirements:

« No knowledge of fuzzing target
« Existing tools available
« Anybody can run the fuzzers

Results:

« More crash analysis required
« Much duplication in results

CERT ‘ === Software Engineering Institute | CarnegieMellon

20

WILL DORMANN ROBERT SEACORD

Winner:
Dumb
Fuzzing

CERT | == Software Engineering Institute | CarnegieMellon 21

The Fuzzers

Tavis Ormandy’s “fuzz”
« http://freshmeat.net/projects/taviso-fuzz
« Runs various patterns of random mangling on a file
« Looks at return code of process
e Linux-only
« Cannot save state or be resumed
 Fragile
* File formats only
« Unobtrusive

CERT ‘ === Software Engineering Institute | CarnegieMellon 22

Taviso-fuzz

Example syntax:

fuzz -T 1 -m 1:4 -d /mnt/hgfs/fuzz/tiff "ffmpeg -y
-i _ FILE__ -acodec pcm_sl6le -f rawvideo /dev/null"
smclock.ogv

-T <n> Timeout (seconds)

-m <x>:<y> Load distribution (x of y machines)

—-d <dir> Store crashing testcases in dir

“program _ FILE__ " Fuzztargetsyntax, FILE__ is the fuzzed file
smclock.ogv The “seed” file

CERT | == Software Engineering Institute | CarnegieMellon

23

The Fuzzers

Caca labs zzuf
« hitp://caca.zoy.org/wiki/zzuf
« Random, repeatable mangling of a file
« User-specified randomization percentage
e Linux and OS X supported
« Saves state and can be resumed
« Robust
 File formats, network
e Intrusive

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

24

Example syntax:

zzuf -¢S -s0:10000 -r0.00001:0.1 -t 1 ffmpeg -y -i
smclock.ogv —acodec pcm _slé6le —-f rawvideo /dev/null

-c Only fuzz files that appear on command line
-S Prevent installation of signal handlers

—S<W> : <x> Fuzz with seed number range from <w> to <x>
—r<y>:<z> Randomization range from <y> to <z>

-t <timeout> Application timeout

CERT | == Software Engineering Institute | CarnegieMellon

25

Verification

Platform differences

« Adobe Reader on Linux vs. Windows
Crash details

« Taviso fuzz and zzuf don’t use a debugger

e cdb / 'exploitable, gdb, valgrind
Unique crash determination

- unique.sh — memory location of crash

« Last line of source code before crash
« Hash of multiple lines before crash

CERT ‘ === Software Engineering Institute | CarnegieMellon

26

Caveats

Default Ubuntu VM is bad for fuzz testing

« Gnome has lots of memory leaks

« Gnome has lots of overhead
« By default, Ubuntu has memory randomization enabled

Solution:
« Use a lightweight window manager like £vwm Or £luxbox
and configure the window manager to not raise new

windows
« Disable memory randomization in /etc/sysctl.conf

Kernel.randomize_ va_ space=0

CERT ‘ === Software Engineering Institute | CarnegieMellon 27

Caveats

Non-optimized debug build required for reliable
debugging
./configure —-disable-optimization —-enable-debug

o |In Makefile:
—STRIP = /bin/true

— Remove any -02 or other optimization flags

Caveat Caveat

« Non-optimized code doesn’t always crash like optimized
code

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 28

Fuzzing Variables

Fuzzing effectiveness depends on many variables:
- Fuzzer

« Mutation strategy

- Seed File
- Program used to generate

- Options used for generation

. Size

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

29

AIR Integers
mplementation
Performance
~uzz Testing
Experiment
Future Work
Summary

e - 0 o - 30
CERT ‘ === Software Engineering Institute | CarnegieMellon

AIR Analysis Techniques

Just run the code

« During normal operation of an application, integer
constraint violations may be reported

Look at crashing test cases

« AIR constraint violations may be present in test cases

that cause an application to crash: Correlation =
Causation

Look at all fuzzed mutations

« AIR may report integer constraint violations that do not
necessarily lead to crashes

 Lots of duplicate violations, e.g. 500 fuzzed variants /
Sec.

CERT ‘ === Software Engineering Institute | CarnegieMellon 31

Experiment

AIR Integers have been used successfully to analyze
two software libraries: JasPer and FFmpeg.

With the help of fuzzing tools, a number of overflows
and truncations have been found.

Static analysis tools (such as splint) have been used
by several classes of CMU graduate and

undergraduate students to discover integer defects
not detected by AIR integers.

CERT ‘ === Software Engineering Institute | CarnegieMellon 32

False Positives

Instrumented fuzz testing all raised a number of false
positives.

False positives are traps for overflows or truncations
that are not errors because they are harmless for that
particular implementation.

CERT ‘ === Software Engineering Institute | CarnegieMellon 33

CERT C Secure Integer Guidelines

INT30-C. Ensure that unsigned integer operations do not wrap

INT31-C. Ensure that integer conversions do not result in lost
or misinterpreted data*

INT32-C. Ensure that operations on signed integers do not
result in overflow

INT34-C. Do not shift a negative number of bits or more bits
than exist in the operand

INT35-C. Evaluate integer expressions in a larger size before
comparing or assigning to that size

* No truncation errors were included in the results being presented today
because of a defect in the prototype.

CERT ‘ === Software Engineering Institute | CarnegieMellon 34

JasPer JPEG 2000 Project

JasPer is a popular software toolkit for the handling
of JPEG 2000 image data.

JasPer can be used to manipulate image data as well
as import/export images in a variety of formats.

Several integer overflows and truncations have been
detected in JasPer by using AIR Integers In
combination with fuzzing tools.

Used by: KDE, ImageMagick, Ghostscript and more

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 35

JasPer Diagnostics

N W A 01O N O ©
NOONN NN NN N

-_— o

INT30-C INT32-C INT34-C

INT35-C

Exploitable

m Crashable
Incorrect

m False Positive

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon

36

FFmpeg is a popular tool for recording, converting,
and streaming audio and video.

Many projects use code from FFmpeg, such as
mplayer, VLC, Handbrake, Google Chrome, and

ffdshow.

Combining fuzzing tools with AIR Integers revealed
many integer overflows and truncations in FFmpeg.

CERT ‘ === Software Engineering Institute | CarnegieMellon 37

Ffmpeg Diagnosti

CS

-_—

INT30-C INT32-C IN

T34-C

INT35-C

Exploitable

m Crashable
Incorrect

m False Positive

CERT ‘ === Software Engineering Institute | CarnegieMellon

38

Usage
mplementation
Performance
Results

~uture Work
Summary

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

39

Jasper and FFmpeg Combined Diagnostics

10
8
6
4
2

INT30-C INT32-C INT34-C

CERT ‘ === Software Engineering Institute | CarnegieMellon

INT35-C

Exploitable

m Crashable
Incorrect

m False Positive

40

Summary

Instrumented fuzz testing with AIR integers has some
false positives resulting from nonconforming coding
practices.

Code can be refactored to eliminate diagnostics

False negative rate (as measured using static
analysis tools) surprisingly low.

Runtime overhead of AIR integers is low (and can be
made lower) so retaining runtime protection is a
viable option.

CERT ‘ === Software Engineering Institute | CarnegieMellon H

For More Information

Visit CERT® web sites:

http://www.cert.org/vuls/discovery/
http://www.cert.org/secure-coding/

Contact Presenter

Will Dormann
wd@cert.org
(412) 268-8922

Robert C. Seacord
rcs@cert.org
(412) 268-7608

Contact CERT:
Software Engineering Institute

Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

CERT | == Software Engineering Institute | CarnegieMellon

Tuae CERT® C
SECURE CODING
STANDARD

ee*”

-
.
-

b RoBERT C. SEACORD

42

Acknowledgments

We got a lot of help:
Roger Dannenberg, David Keaton, Thomas Plum,
David Svoboda, Alex Volkovitsky, Timothy Wilson

CERT ‘ === Software Engineering Institute | CarnegieMellon 43

