Property Directed Test Case

Generation

Dr. Arie Gurfinkel

Dr. Edward Schwartz
Dr. William Klieber
Jeffrey Gennari

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution.

Property Directed Test Case Generation
© 2016 Carnegie Mellon University

=== Software Engineering Institute | Carnegie Mellon University

Disclaimer E

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by DoD/SEI LENS under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center
sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DoD/SEI LENS or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-I1S” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

DM-0004040

Property Directed Test Case Generation [DISTRIBUTION STATEMENT A] This material has been approved
© 2016 Carnegie Mellon University for public release and unlimited distribution. 2

= Software Engineering Institute | Carnegie Mellon University

SEI Research Review 2016

Big Picture: Generating Test Case Input is Complex

Software evaluations often include creating test cases to trigger
Interesting behaviors

 Finding bugs, ensuring critical functionality executes, determining if
unwanted functionality Is present, etc.
Traditional test case generation requires testers to provide specific
Inputs, run tests, and evaluate results
. What input is
e Trial and error needed to trigger
behavior ...
« Complex and time consuming

Program Source Code Progr?jmdlrtlput
or Specification =)] neede 9

trigger behavior

rop: I S)V
== Software Engineering Institute | Carnegie Mellon University elefamegstEintes o ipiiemseadunimegasbion 3

SEI Research Review 2016

Test Case Generation and Model Checking

Model checkers use program abstractions to exhaustively check a program
for specified properties

* For example, can the system get into a bad state; if so, how?

Model checkers produce traces to show how a property is, or is not
satisfied

* Required program models very abstract

» Specified properties often expressed in complex, mathematical terms
e Returned traces are abstract and hard to operationalize

Propert -
Software Model Tra& # Program input needed
Abstract Program - Checker to trigger behavior
Model

STRIBUTION STATEMENT A] This material has been approved

:: ©20 GC i || iV i f blic rel d unlimited distribution.
—=— Software Engineering Institute | Carnegie Mellon University 3o e vy kb ke 4

SEI Research Review 2016

Property Directed Test Case Generation (PDTG)

Goal: Instead of relying on human-driven trial and error or interpreting
abstract results from model checkers we will automatically generate
executables to trigger desired behavior

* Provide evaluators with concrete evidence demonstrating a property is
present

* Give evaluators an executable artifact showing how to trigger the
property

Program’s

source code
augmented to » xecutable

flag areas of
Interest

—_ Property Directed Test Case Generation [DISTRIBUTION STATEMENT A] This material has been approved

il - u " . . . ©2016 C i Il iversi f bli | d unlimited distribution.
== Software Engineering Institute | Carnegie Mellon University o Camegeiston Bnversty 1 peblicreicese nd animicd dstbton 5

SEI Research Review 2016

Property Directed Test Case Generation (PDTG)

Model checker produces

Program’s counter example (trace)
source code showing how to reach
augmented to ropert
flag areas of PrOperty

interest e Seahorn

- http://seahorn.qgithub.io/

Executable Harness

|
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Directed Symbolic Execution # Executable
/
/

— oper
0

== Software Engineering Institute | Carnegie Mellon University

http://seahorn.github.io/

SEI Research Review 2016

Property Directed Test Case Generation (PDTG)

Executable harness
iImplements external methods

Program’s :
e GERE needed to execute path in trace
augmented to KLEE fuses together trace with
flag areas of values from executable
e harness to produce valid
executable
Executable Harness Resulting executable
deterministically triggers
property

Directed Symbolic Execution -
/

%

Property Directed Test Case Generation [DISTRIBUTION STATEMENT A] This m: t ial has been approved
© 2016 Carnegie Mellon University for public release and unlimited distributio

Software Engineering Institute | Carnegie Mellon University

SEI Research Review 2016

Example Harness

if (get input() == 6x1234 &&
get input() == 9Ox8765) {
__VERIFIER error();
} else {
return 0;
}

void get input () {
static int x = 9;
switch (x++) {

-

case 9: return 0x1234;
case 1: return 9x8765;
default: assert(false); }

Software Engineering Institute | Carnegie Mellon University

© 2016 Carnegie Mellon University

e get input() Is an external
function

 Program considered buggy if
and only if
__VERIFIER error() Is
reachable

 Implementation of external
functions linked to original
source code

e (Causes program to execute
__VERIFIER error()

for public release and unlimited distribution.

SEI Research Review 2016

Generating Harnesses for Linux Device Drivers

void *1ldv_undef_ptr(void)

{
void *tmp;
tmp = __c();
return tmp;

¥
[11717777777777777777777

void *is got =

ldv_undef ptr();

if (is_got <= (long)2012) {
}

« Samples from Linux Driver
Verification (LDV) project

e Harness functions returning
pointers are tricky
- May not be reasonable addresses
- Might return “new” memory

 Original program instrumented
with memory read/store hooks
that control access to external
memory
- Still working on general solution

= Software Engineering Institute | Carnegie Mellon University

© 2016 Carnegie Mellon University

for public release and unlimited distribution.

Malware Case Study E

PDTG useful for malware analysis

* Force execution of suspected malicious code

- For example, generate an executable to trigger malware’s information stealing
features

e Automatically construct program entry point to call function(s) needed to
trigger behavior of interest
- Set all conditions required to reach behavior

e Tested on GhOst RAT malware

——

_ define 132 @main()

Generate main entry

function to == | %0 = call %class.CSystemManager @ _sea get arg()

trigger behavior cailo\égig @ ZN14CSystemManager90nReceiveEPhj(%class.CSystemManager* %0)
ret i

=

— roperty Directe n
i © 2016 Carnegie Mellon Ul iversty ~~ forpubl ic release and unl imited distribution.
= Software Engineering Institute | Carnegie Mellon University "0 esye o Prniereseantunimed i 10

SEI Research Review 2016

Conclusions

We implemented the PDTG prototype to discover interesting behaviors,
generate harnesses, and produce working executables

 Completed malware case study demonstrating usefulness of approach

e Evaluated PDTG using Linux Driver Verification (LDV) Benchmarks
- http://forge.ispras.ru/projects/Ildv

Results based on 27 files in Idv-validator-0.8

File Count | Results

Successfully generated executable to demonstrate property of interest (i.e. trigger known bug)

Successfully proved buggy code was unreachable

Timeout

Memory exhausted

7
6
5
3

Bogged down in complex memory operations

%% Software Engineering Institute | Carnegie Mellon University

http://forge.ispras.ru/projects/ldv

SEI Research Review 2016

Acknowledgements

We would like to thank our collaborators on this project

e Carnegie Mellon University
- Dr. Temegshen Kahsali
- Dr. Limin Jia
- Jiagi Liu
* NASA
- Dr. Jorge Navas

—_ Property Directed Test Case Generation [DISTRIBUTION STATEMENT A] This material has been approved
il 9 © 2016 Carnegie Mellon University for public release and unlimited distribution.
== Software Engineering Institute | Carnegie Mellon University 12

	Slide Number 1
	Disclaimer
	Big Picture: Generating Test Case Input is Complex
	Test Case Generation and Model Checking
	Property Directed Test Case Generation (PDTG)
	Property Directed Test Case Generation (PDTG)
	Property Directed Test Case Generation (PDTG)
	Example Harness
	Generating Harnesses for Linux Device Drivers
	Malware Case Study
	Conclusions
	Acknowledgements

