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Big Picture: Generating Test Case Input is Complex

Software evaluations often include creating test cases to trigger
Interesting behaviors

 Finding bugs, ensuring critical functionality executes, determining if
unwanted functionality Is present, etc.
Traditional test case generation requires testers to provide specific
Inputs, run tests, and evaluate results
. What input is
e Trial and error needed to trigger
behavior ...
« Complex and time consuming
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Test Case Generation and Model Checking

Model checkers use program abstractions to exhaustively check a program
for specified properties

* For example, can the system get into a bad state; if so, how?

Model checkers produce traces to show how a property is, or is not
satisfied

* Required program models very abstract

» Specified properties often expressed in complex, mathematical terms
e Returned traces are abstract and hard to operationalize

Propert -
Software Model Tra& # Program input needed
Abstract Program - Checker to trigger behavior
Model
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Property Directed Test Case Generation (PDTG)

Goal: Instead of relying on human-driven trial and error or interpreting
abstract results from model checkers we will automatically generate
executables to trigger desired behavior

* Provide evaluators with concrete evidence demonstrating a property is
present

* Give evaluators an executable artifact showing how to trigger the
property

Program’s

source code
augmented to » xecutable

flag areas of
Interest
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Property Directed Test Case Generation (PDTG)

Model checker produces

Program’s counter example (trace)
source code showing how to reach
augmented to ropert
flag areas of PrOperty

interest e Seahorn

- http://seahorn.qgithub.io/

Executable Harness
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Property Directed Test Case Generation (PDTG)

Executable harness
iImplements external methods

Program’s :
e GERE needed to execute path in trace
augmented to KLEE fuses together trace with
flag areas of values from executable
e harness to produce valid
executable
Executable Harness  Resulting executable
deterministically triggers
property

Directed Symbolic Execution -
/
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Example Harness

if (get input() == 6x1234 &&
get input() == 9Ox8765) {
__VERIFIER error();
} else {
return 0;
}

void get input () {
static int x = 9;
switch (x++) {

-

case 9: return 0x1234;
case 1: return 9x8765;
default: assert(false); }

Software Engineering Institute | Carnegie Mellon University
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e get input() Is an external
function

 Program considered buggy if
and only if
__VERIFIER error() Is
reachable

 Implementation of external
functions linked to original
source code

e (Causes program to execute
__VERIFIER error()
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Generating Harnesses for Linux Device Drivers

void *1ldv_undef_ptr(void)

{
void *tmp;
tmp = __c();
return tmp;

¥
[11717777777777777777777

void *is got =

ldv_undef ptr();

if (is_got <= (long)2012) {
}

« Samples from Linux Driver
Verification (LDV) project

e Harness functions returning
pointers are tricky
- May not be reasonable addresses
- Might return “new” memory

 Original program instrumented
with memory read/store hooks
that control access to external
memory
- Still working on general solution
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Malware Case Study E

PDTG useful for malware analysis

* Force execution of suspected malicious code

- For example, generate an executable to trigger malware’s information stealing
features

e Automatically construct program entry point to call function(s) needed to
trigger behavior of interest
- Set all conditions required to reach behavior

e Tested on GhOst RAT malware

——

_ define 132 @main()

Generate main entry

function to == | %0 = call %class.CSystemManager @ _sea get arg()

trigger behavior cailo\égig @ ZN14CSystemManager90nReceiveEPhj(%class.CSystemManager* %0)
ret i
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Conclusions

We implemented the PDTG prototype to discover interesting behaviors,
generate harnesses, and produce working executables

 Completed malware case study demonstrating usefulness of approach

e Evaluated PDTG using Linux Driver Verification (LDV) Benchmarks
- http://forge.ispras.ru/projects/Ildv

Results based on 27 files in Idv-validator-0.8

File Count | Results

Successfully generated executable to demonstrate property of interest (i.e. trigger known bug)

Successfully proved buggy code was unreachable

Timeout

Memory exhausted
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Bogged down in complex memory operations
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